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Abstract

The paper investigates the mechanics through which novel technological principles are devel-

oped and di�used throughout an economy consisting of a technologically heterogeneous ensemble

of �rms. In the model entrepreneurs invest in the discovery and in the di�usion of a technological

principle and their pro�t �ow depends on how many �rms adopt the innovation and on how long

it takes other entrepreneurs to improve it. We show that technological convergence emerges from

the competition among entrepreneurs for the pro�t �ow and characterize the economy's growth

rate.
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1 Introduction

Technological di�usion is a crucial factor in fostering productivity growth. It is worth noting, however,

that this process is not merely the replication and imitation of known and well established techniques,

although this may be a substantial part of the whole, but is characterized by a sequence of innovations

through which the technology is spread across di�erent �rms belonging to di�erent production sectors.

Whilst the most radical form taken by this process is the di�usion of a general purpose technology (see

for example the discussion in David, 1991; Helpman and Trajtenberg, 1998; Helpman, 1998; Rosenberg,

1976, 1982; Rosenberg and Trajtenberg, 2004), it also involves the piecemeal adaptation of new artifacts

to di�erent usages and productive purposes. In any case, it clearly hinges on knowledge and information

transmission. As early as 1958, March and Simon (1958), in a seminal contribution concerning the

functioning of organizations, held that much innovation results from borrowed knowledge, that is from

knowledge �rstly developed in other �rms or in other industries. More recently, this important theme

has been further investigated by the work of Cohen and Levinthal (1989, 1990). Their case is based

on the well tested argument that new knowledge is strongly dependent on previously accumulated

knowledge. Furthermore, these authors argue that �rms that carry out and invest in R&D are capable

of adapting knowledge originating in other �rms. This is clearly a process that accounts for much

di�usion and ultimately for technological convergence.1

The purpose of this paper is to characterize the growth rate of an economy featuring a high degree of

heterogeneity both in terms of output variety and of the technologies that are accordingly employed and

to investigate the mechanics through which a single technological principle is introduced throughout

the whole economy. We show that entrepreneurs' investments, aimed at discovering a technological

principle and di�using it throughout the economy, together with the competition among entrepreneurs

for the pro�t �ow leads to the emergence of technological convergence.

Proximity in our model is de�ned in terms of technological distance. Although much literature has

dealt with geographical networks and clustering, consider for example the rich spate of contributions

on industrial districts, we take the view that in light of the new means provided by information tech-

nologies what matters most for innovation di�usion is technological rather than geographical proximity

(see also Andergassen, Nardini and Ricottilli, 2006). At least for the purpose of investigating innova-

tion di�usion, situations where the introduction of the new technological principle needs only minor

innovations, that is, a mere adaptation, are distinguished from situations where major innovations are

1See Fai and Von Tunzelmann (2001) for empirical evidence on technological convergence.
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required. Historical evidence has in fact indicated that the e�ective di�usion of a new technological

principle has often required enabling and essential complementary innovations (Goldfarb 2005). We

envisage a clustering principle responding to a criterion of technological proximity shaped by the inher-

ent problems they face, the corresponding skills and expertise they possess. The economy that results

from this view of �rm heterogeneity is an ensemble of clusters that di�er in terms of their technological

pro�le, each collecting �rms that produce di�erent things but that are technologically alike. Within

each cluster, �rms are still heterogeneous in terms of their performance and the goods they produce

but exhibit a high degree of technological likeness. It is important to stress that the proximity of

technological clusters is not de�ned at the beginning of the process but depends on the evolution of

the technology.

We distinguish two types of investments. Investment aimed at the discovery of the technological

principle and investment aimed at di�usion throughout the economy. While the �rst in quite standard,

the second one is the upshot of the assumption that �rms employ heterogeneous technologies and hence

di�usion implies that the original innovation must be adapted to the speci�c needs of a new user, even

in the case of technological proximity. We assume that investments in within-cluster di�usion gives rise

to a learning-by-doing principle, that may lead to ideas and opportunities to introduce the technological

principle into �rms belonging to other technological clusters2. In other words, it is conjectured that

technological opportunities to successfully �nd applications in distant clusters emerge as a consequence

of innovative investment that leads, on the one hand, to score success within clusters and, on the other,

as a consequence of learning, generates technological opportunities to cross over to other clusters. The

learning-to adapt process lays the ground for a success breeds success feedback but it is a necessary

condition not a su�cient one. Leaping across technological barriers is an e�ort of a very challenging

nature and quite distinct from that required to within-cluster di�usion.

Our paper is related to Silverberg and Verspagen (2005) where technological trajectories and innovation

dynamics are studied in a model of percolation in a complex technology space and Arenas et al.

(2002) where the dynamics of innovation are analyzed with a model of local interaction. Andergassen,

Nardini and Ricottilli (2006, 2009) investigate in a model of innovation di�usion and economic growth

with local interaction among heterogeneous �rms the conditions for the emergence of technological

convergence. While in these papers the set of technological neighbors is exogenously de�ned, in this

2Investment in the di�usion within a technology cluster may also lead to a reduction of costs as a consequence of a
learning-by-doing e�ect. Hence, the greater the number of within-cluster adoptions the lower the costs and therefore the
greater the likelihood of introducing the technological principle in other clusters.
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one technological proximity is endogenously determined, depending on the characteristics and the

unfolding of the technology development process. Moreover, we show that technological convergence

is the result of investment in technology di�usion and the competition among entrepreneurs for the

pro�t �ow.

The remaining part of the paper is organized as follows. In Section 2 we discuss the innovation process.

In particular, we describe technological clusters, the process of within- and between-cluster di�usion,

the time and space dimension of the innovator's pro�t �ow and determine the innovator's incentive to

invest in the discovery and in the di�usion of the technological principle. In Section 3 we characterize

the resulting emergent properties of the di�usion process and the features of economic growth. In

Section 4 we generalize the model by considering the di�usion of heterogeneous technological principles

and the competition among an endogenously determined number of entrepreneurs that invest in R&D.

Section 5 draws some conclusions.

2 The innovation process

The economy we wish to deal with is composed of J �nal goods each of which is produced by a �rm with

a speci�c technique and monopoly power. We consider an R&D race of vertical non-drastic innovations

where the successful innovator replaces the incumbent. In particular, we distinguish two innovation

processes: the discovery of a novel technological principle and its di�usion throughout the economy.

Both are ultimately chance events the key of which is the investment that the innovating entrepreneur

is willing to devote to these tasks and they are accordingly modeled by a probability structure that

depends on investment. We start by considering the e�orts of just one innovator discussing later the

competition that arises thanks to a sequence of further competing productivity increasing innovations.

As a matter of reference and for simplicity's sake, the economy we discuss can be viewed as one in

which there is a representative consumer with the following utility function:

U (x1, ..., xJ) =

J∑
j=1

ln (xj) (1)

where xj denotes the quantity of good h bought. Normalizing the consumer's income to one, from the

optimal consumption choice ζjxj = 1, where ζj is the price of product j.

We �rst start describing the di�usion process and afterward we discuss the discovery of the novel
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technological principle.

2.1 Technological clusters and di�usion

It is expedient to group the J �nal goods according to their technological proximity in order to form

clusters of technological neighbors. These clusters are to be understood as ensembles of �nal goods

that employ similar techniques. Within each, the goods that compose them are not homogeneous,

they are all produced by speci�c processes but the di�erence in terms of the technological principles

employed across clusters is far greater than within each. As stated in the introduction, the di�usion

of a technological principle is a matter of innovative adaptation within a cluster and a matter of

innovative application across clusters. The distance separating the latter is accordingly not apriori-

ly known but depends on the improvement and development of the technological principle that is

capable of achieving a cross-over linking clusters that may not have any beforehand likeness. There

may, therefore, be innovations that prove easily introducible whilst others do not; some innovations

that di�use speedily in some clusters but do not in others or �nd barriers forbidding any di�usion.

A technologically connected network is the result of the process, not its prerequisite. For the sake of

simplicity we assume that each cluster is composed of N goods, the whole economy to be a set of J
N

clusters and consider the limit J →∞ with a �nite number of goods N in each.

2.2 Within-cluster di�usion

Innovations lead to non-drastic productivity increases of size γ > 1. Let κ be the marginal production

cost of an incumbent �rm, then the marginal production costs of an outsider �rm adopting the inno-

vation are γ−1κ. Because of competition between the insider and the outsider, the price charged by

�rm h adopting the technology is ζh = κ and �rm pro�ts are

πh = θ°− ch (2)

where θ° ≡ 1 − γ−1 and where ch are �xed costs (per unit time) of the new technology. Successful

implementation of the original technological principle depends thus on the size of the �xed costs. We

designate by I the investment expenditure aimed at reducing them. We assume that for each �nal good

producer h, �xed costs ch, h = 1, 2, ..., J , are i.i.d. random variables that take the value θ′ < θ° with

probability p (I) and θ′′ > θ° with probability 1 − p (I), where we assume that p (I) is an increasing
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and concave function of I, with p′ (I) > 0 for each I < ∞. Adoptions occur as long as θ° ≥ ch , it

then follows that the mean number of adoptions is n̂ (I) = Np (I), where n̂ (I) is also increasing and

concave in I. We de�ne θ = θ°− θ′.

2.3 Between-cluster di�usion: the role of investment and di�usivity

Every economic system lends itself in varying degrees to the di�usion of new technological principles.

It is its structure, the degree of development and its technological capabilities that set the framework

enabling an innovation to di�use. We term this feature of the di�usion process di�usivity and represent

it by a single parameter d.3

Reaching out to other clusters after the root one has been invaded requires the opening of technological

opportunities, provided that the original innovation takes o� from the drawing board. These paths

away from a root cluster pry open with a probability that depends on the number of adoptions in the

root cluster, a case of learning by adopting. Learning-by-adopting is of the utmost importance since by

being conducive to the establishment of user-producer linkages, it is the instrument to gain knowledge

and expertise that may point the way to other clusters; at every new adoption the technological

principle widens its scope and the capability that is associated with it rises opening up new technological

opportunities. For simplicity's sake we assume that this e�ect is captured by the mean number of

adoptions.4.

Assumption 1 The mean number µ(I, d) is a concave increasing function with respect to I and d,

with µ (0, d) < 1 and limI→∞µ (I, d) > 1.

The innovating entrepreneur will consider investment as a tool to maximize pro�ts. I plays a double

role generating, on the one hand, adoptions of innovations within a cluster and, on the other, through

the e�ect of learning by adopting, increasing the mean number of new clusters that the innovator

expects to reach. In this sense, it is a case of success breeds success.

3A more realistic hypothesis is to assume that di�usivity varies from cluster to cluster and is not a priori-ly known to
the innovator. In this case, it can be assumed that di�usivities are i.i.d. random variables of which the innovator may only
conjecture the cumulative distribution function G(d, a), smooth and decreasing in a, where a is a measure of di�usivity
intensity: a property of the technological state of the economy which can be taken as known by the innovator. In this
case µ(I, d) =

´+∞
0 E(k | d = x)dxG(x, a) where E(k | d = x) =

´
kdkF (k, I, x) and under appropriate assumptions

about concavity, qualitative results found below still hold.
4Assumption 1 is the natural consequence of the fact that the expected number of adopters within the cluster is

increasing with respect to investment and that �success breeds success�. In the Appendix we restate Assumption 1
providing conditions such that µ(I, d) be a concave increasing function with respect to I and d.
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2.4 Investment and the di�usion of innovations

The innovator's pro�t �ow has two dimensions: one in time and one in space. The pro�t �ow stemming

from a single adoption continues until a new technological principle is successfully introduced by an

entrant which thereby ousts the current incumbent. This event occurs with probability λ (over a unit

time period) and clearly depends on the joint probabilities that a new seeding technological principle

appears and that it di�uses originating adoptions and applications both within and across clusters.

The size of the innovator's pro�t �ow depends also on the number of within and between cluster

adaptations. λ will later be fully and consistently endogenously characterized.

Let r be the long-term risk-neutral interest rate that de�nes the macroeconomic environment and

which can be interpreted as the �nancial cost to be borne when investment is undertaken.5

Expected pro�ts from the introduction of an innovation within a cluster are then π (I, λ) = Np(I)
r+λ θ,

which is a strictly increasing and concave function of I.

The di�usion process between clusters can be viewed as a branching process. Pro�ts that the innovator

expects to gain once step s of the di�usion process has been reached depend both on the within-cluster

expected pro�ts and on the expected pro�ts that can be made by reaching out to clusters one step

further, the s+1-th: the former are given by π (I, λ) and let the latter be designated by Vs+1. Note that

expected pro�ts in a given cluster do not depend on s. The innovator's problem is then to establish

the amount of investment that determines the distribution of �xed production costs, and hence the

number of adoptions within a cluster, and the expected number of new clusters that are likely to be

reached.

How far an innovation can penetrate into complex, heterogeneous economies does not solely depend

on their structural characteristics. Highly industry-speci�c technologies are less likely to pass across

clusters and, therefore, the time it takes for an adoption transfer to be achieved can be assumed

to be lengthier than in the case of technologies that are intrinsically easier to adapt. In this sense,

an innovator must take into account the implied di�usion time span and discount the probability of

successfully bridging any two given clusters. Let τ be this expected time, we denote then with ρ = e−rτ

the related discount factor. The slower is the technology likely to di�use on account of its intrinsic

characteristics, the larger τ and hence the lower the discount factor ρ.

5Assuming that consumers face an intertemporal consumption choice problem with utility function´∞
0 eσt

∑J
j=1 ln (xj,t) dt, where σ is the intertemporal discount factor, then the balanced long term growth path re-

quires that r = σ.
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Denoting by Vs the value of the innovation at the s-th step, the innovator's problem can be framed as:

Vs = max
I≥0
{π(I, λ) + ρµ(I, d)Vs+1 − I} . (3)

which recursively de�nes the value of an innovation. The �rst term in curly brackets represents expected

pro�ts within a given technology cluster, while the second term describes expected discounted pro�ts

from di�using the innovation to other technology clusters. Both terms depend on investment since the

latter reduces the probability of high �xed costs within a cluster thereby increasing the probability of

within-cluster adoptions and, because of learning-by-doing, it opens up new avenues for adaptions into

technologically distant clusters.

To insure that a unique solution to this problem exists, we must assume the following.

Assumption 2 The function π(I, λ) + ρµ(I, d)Vs+1 is concave in I.

Assumption 2 is far from restrictive since it is satis�ed provided that π(I, λ) is su�ciently concave.

Since at every step the outlook for further di�usion is the same as at the preceding ones, the expected

values of Vs+1 and Vs are equal, and (3) becomes

V = max
I≥0
{π(I, λ) + ρµ(I, d)V − I} (4)

FOC for the maximum in (4) is simply:

∂π(I,λ)
∂I + ρ∂µ(I,d)

∂I V − 1 = 0 (5)

from which I = I (V, ρ, d, λ) is obtained. Consequently we can write (4) as

V = ψ (V, ρ, d, λ) (6)

where

ψ (V, ρ, d, λ) = π (I (V, ρ, d, λ) , λ) + ρµ (I (V, ρ, d, λ) , d)V − I (V, ρ, d, λ) (7)

A su�cient condition for the existence of a unique solution for (6) is that the function ψ in (7) is a
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contraction with respect to V . Using the envelope theorem

∂ψ (V, ρ, d, λ)

∂V
= ρµ (I (V, ρ, d, λ)) (8)

from which the following su�cient condition for the existence of a solution to (4) is obtained:

ρµ (I (V, ρ, d, λ) , d) < 1 (9)

In the following we assume that parameters ρ and d are such that this condition is always satis�ed

and that θ is su�ciently large such that V is always positive.

Let V ∗ = V (ρ, d, λ) be the solution of (6) and I∗ (ρ, d, λ) = I (V (ρ, d, λ) , ρ, d, λ) . The following

Lemma holds.

Lemma 1 (i) ∂V ∗

∂ρ > 0, ∂V ∗

∂d > 0, ∂V ∗

∂λ < 0 and (i) ∂I∗

∂ρ > 0, ∂I∗

∂d > 0, ∂I∗

∂λ < 0

Proof of Lemma 1. Consider �rst part (i). Using the envelope theorem it is easy to see that ∂ψ
∂ρ > 0,

∂ψ
∂d > 0. Applying the implicit function theorem to (6) one obtains ∂V ∗

∂ρ =
∂ψ
∂ρ

1− ∂ψ∂V
> 0,

∂V ∗

∂d =
∂ψ
∂d

1− ∂ψ∂V
> 0 and ∂V ∗

∂λ =
∂ψ
∂λ

1− ∂ψ∂V
< 0. Let us rewrite FOC (5) as Θ = 0, where Θ = ∂π(I,λ)

∂I + ρ∂µ(I,d)
∂I V − 1 .

Because of the second order condition ΘI < 0 and applying the implicit function theorem we obtain

∂I∗

∂ρ = −Θρ
ΘI

> 0, ∂I
∗

∂d −
Θd
ΘI

> 0, ∂I
∗

∂λ = −Θλ
ΘI

< 0.

Whilst the �rst two partial derivatives are quite straightforward to interpret, the third is a reminder

that the innovation value decreases when the probability of new innovations emerging as a result of

entrants' success increases. The partial derivatives with respect to investment help to shed light on

the role of the di�usivity parameters, d and ρ. As it is to be expected, the higher is d, that is, the

proner is the economy to di�usion on account of its inner technological characteristics, the larger is

investment. This is, of course, due to the positive impact on pro�ts that can be expected by exploiting

the innovative principle in a favorable technological context. The lower is τ , that is, the higher is ρ,

the easier it is for a technology to bridge heterogeneous technology clusters, due to the positive impact

on the value of innovation, the larger the investment. The larger is the probability of success of a new

entrant (λ), the lower is the value of an innovation since entrepreneurs expect to pro�t from it for a

shorter time span, and thus the lower the investment in within and between cluster adaptations.
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2.5 The discovery of the technological principle

If any di�usion is to occur in this economy a seed innovation must appear. As in the case discussed

above, those who partake in the race to innovate stand a chance of success that must be grounded on

the amount of initial investment that they are willing to undertake for this very purpose. Within and

across cluster di�usion depends upon this initial successful event as well as on the speci�c investment

intended to support it. It is accordingly envisaged that such an initial innovation occurs according to

a Poisson arrival rate that depends on the intensity of investment speci�cally intended to research and

initially develop.

Let such a function be de�ned by φ(H), with the usual properties φ′ > 0 and φ′′ < 0, H being the

investment magnitude. Furthermore, making an innovation market ready and potentially applicable to

a production process requires a further sunk cost, for instance the making of a prototype, the de�nition

of an operative book of blueprints, etc. Let this cost be designated by F . This is the crucial �rst step

in the chain of events likely to lead to productivity growth and to the eventual establishment of a

true and generalized technological paradigm. It is, however, important to note that this investment

expenditure and the activity it supports are to be distinguished from those that are conducive to

learning-to-adapt and thus to within and between cluster di�usion. The incentive to engage in this

groundwork activity is precisely the value of the innovation and it is accordingly assumed that the

magnitude of investment H results from the following maximum problem:

Π = maxHφ (H)V (ρ, d, λ)−H − F

Since V (ρ, d, λ) is the solution of (6), the �rst order condition yields H∗ (ρ, d, λ) and consequently

φ (ρ, d, λ) is the probability that a new technological principle is discovered. Using Lemma 1, the

concavity assumption of φ and the implicit function theorem it can be shown that H∗ is increasing in

ρ and d and decreasing in λ. We assume that F is su�ciently low such that Π > 0.

3 Innovation di�usion and economic growth

Whilst ρ, d, are parameters that pertain, the former, speci�cally to the type of the new technology,

the latter to the economy's structure, λ is endogenously determined since it is the arrival rate of an

innovation applied to a single �nal good. This event is generated by an entrant that if successful can
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terminate the incumbent's �ow of pro�ts. As such, it is an arrival rate that is jointly determined by

two components: the probability of a seed innovation φ(H) and the probability that an innovation be

adopted in the production of a single good. The latter can be derived from the expected number of

adoptions, that is by the expected number of �rms that adopt over the total number of �rms, J . This

magnitude can, in turn, be computed by considering the average number of adopters in each cluster

multiplied by the expected number of clusters that the innovation is likely to reach. As shown above,

the former is p(ρ, d, λ)N while the latter can be obtained recursively. The average number of clusters

reached at stage s given that zs−1 have been reached at stage s− 1 is:

E (zs) = µ (ρ, d, λ) zs−1

and thus E (zs) = µ (ρ, d, λ)
s
. Summing over all the possible stages G, dividing by J and taking into

account that the average number of within-cluster adoptions is p(ρ, d, λ)N , the probability that the

innovation reaches a particular �nal good is p(ρ, d, λ)NJ
∑G
s=1 µ (ρ, d, λ)

s
. N

J

∑G
s=1 µ (ρ, d, λ)

s
is also

the expected proportion of all clusters that are likely to be reached.

Since the economy considered is very large, in the limit J → ∞, we can consistently take the limit

limJ→∞
N
J

∑G
s=1 µ (ρ, d, λ)

s
. It is immediate to see that it depends on µ(ρ, d, λ) ≷ 1. If it is smaller

than 1, then branching is very short, the number of clusters reached is scant and the share of �rms

that are likely to adopt vanishing small for J that tends to in�nity: the limit is accordingly zero; if on

the other hand, it is greater than 1, then there exists a positive and �nite limit: ∆ (ρ, d, λ), i.e.

limJ→∞
N

J

G∑
s=1

µ (ρ, d, λ)
s

=

 ∆ (ρ, d, λ) > 0 for µ (ρ, d, λ) > 1

0 for µ (ρ, d, λ) < 1

Note that limJ→∞
N
J

∑G
s=1 µ (ρ, d, λ)

s
, which is the proportion of clusters likely to be reached by the

technological principle, is also the survival probability of the branching process. If µ (ρ, d, λ) < 1 then

such a proportion is negligibly small and the branching process dies out with certainty; if µ (ρ, d, λ) > 1,

then ∆ is positive; equivalently, ∆ is the probability that all clusters be reached.

On the strength of this result, a solution, λ∗ can consistently be obtained by solving the �xed point

problem

λ =

 φ (ρ, d, λ) ∆ (ρ, d, λ) p (ρ, d, λ) for µ (ρ, d, λ) > 1

0 for µ (ρ, d, λ) < 1
(10)
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Note that on account of the concavity of functions µ and p and since ∂V
∂λ < 0 and ∂I

∂λ < 0 , ∂φ∂λ < 0,

∂p
∂λ < 0 and ∂∆

∂λ < 0; hence, the right hand side of the equation for µ (ρ, d, λ) > 1 is strictly decreasing

in λ leading to the conclusion that a positive λ∗ exists. In consequence of this solution the economy is

fully characterized by only two exogenous parameters, one structural, d, and one technology-speci�c,

ρ.

Proposition 1 For su�ciently low r the unique solution to the �xed point problem (10) is λ∗ > 0

which solves λ∗ = φ (ρ, d, λ∗) ∆ (ρ, d, λ∗) p (ρ, d, λ∗), where µ (ρ, d, λ∗) > 1 and ∆ (ρ, d, λ∗) > 0. The

corresponding economy's growth rate is

g =
γ − 1

γ
φ (ρ, d) p (ρ, d) ∆ (ρ, d)

which is increasing in d and ρ since φ (ρ, d, λ∗) ∆ (ρ, d, λ∗) p (ρ, d, λ∗) is increasing in ρ and d.

Proof of Proposition 1. Consider the case where r → 0 and suppose that λ = 0, implying full

monopoly power enjoyed by the innovator. As a consequence ∂
∂I π (I, λ) = Nθ

r+λp
′ (I) → ∞, with the

consequence that the optimal investment becomes in�nitely large I∗ → ∞ and thus µ (I∗, d) > 1,

proving that λ = 0 is not an equilibrium solution.

To clarify this point, consider the following extreme case. For r → 0, implying an inexhaustible source

of �nancial support, and suppose that λ = 0, implying full monopoly power enjoyed by the innovator,

marginal gains from investments diverge to in�nity. As a consequence, the amount invested in the

di�usion of the technological principle by the innovator will be in�nitely large and thus the average

number of clusters reached cannot be lower than 1, implying that λ = 0 cannot be an equilibrium.

Therefore, for su�ciently low r the unique equilibrium outcome is λ∗ > 0 with µ > 1 where the

technological principle is expected to be introduced in a fraction ∆ (ρ, d, λ∗) of all clusters and in a

fraction ∆ (ρ, d, λ∗) p (ρ, d, λ∗) of all �nal goods. It is the competition among innovators for pro�t

�ows that leads to this result. The historical record does show that the great innovation waves (the

railroads, electricity, the microchip and internet) have all taken place at at time of plentiful �nance

and low real interest rates.

An increase in the technology-speci�c (ρ) and and in the economy-speci�c di�usivity rate (d) increases

the investment in the discovery of the technology principle and in its di�usion within and between

technology clusters thereby increasing the economy's growth rate.
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4 A more general case

We generalize the previous analysis in two ways. Firstly, we relax the assumption that all technologies

are identical, and consider the case where some technologies are more easily propagated than others.

Secondly, we consider the case where the number of innovators investing in the discovery and di�usion

of technological principles is endogenously determined.

4.1 Heterogeneous technological principles

In the previous section any seed technology and its related technological principle appearing with

probability φ(H∗) bear a time horizon measured by τ consequently de�ning a technology-speci�c

discount factor. This assumption can be relaxed at no great cost by recognizing that innovations appear

stochastically: they can be assumed to be drawn from a distribution re�ecting the relative di�culty of

each to be adaptable and transferable across heterogeneous goods. Simplifying somewhat the problem,

the idea can be retained that some technologies are intrinsically more di�cult to adopt by other sectors

than others, while some are simpler, a stylized fact that we model by the length of the time span, τ , it

takes to bridge two technology clusters. Let there be an ordering of 1, ...,m, ...,M possible technologies

with τ1 > ... > τm > ... > τM and the corresponding discount factors ρ1 < ... < ρm < ... < ρM .

The would-be innovator at the moment of investing in the discovery of the technological principle

does not know the type of technology that will be discovered, but knows the probability distribution

Q = {qm}Mm=1 where Pr (τ = τm) = qm and
∑M
m=1 qm = 1. We indicate with Q′ > Q the probability

distribution Q′ that �rst order stochastically dominates Q.

As a consequence, for each λ it is possible to �nd the critical technology that separates those tech-

nologies that have economy-wide impacts from those that have vanishing small ones. More formally,

a critical technology m∗, if it exists, is de�ned as

m ≥ m∗(d, λ) =⇒ µ(d, λ) > 1

m < m∗(d, λ) =⇒ µ(d, λ) < 1

where m∗ (and ρ∗m) are increasing in λ and decreasing in d. Thus, it is only for technologies above m∗

that di�usion across sectors is likely to be sustained leading to economy-wide e�ects. If this critical
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technology does not exist then we set m∗ =∞ and hence µ(d, λ) is always smaller than 1.

Once the technological principle has been discovered, the innovator solves problem (4) and thus for a

given ρm and λ the value of the innovation of type m can be determined V (ρm, d, λ). In this case we

also assume that θ is su�ciently large such that V is always positive and ρm and d are su�ciently

small such that ψ (V, ρm, d, λ) is a contraction for each m = 1, ...,M .

The innovator's problem to conjure up a seed innovation can now be set as:

Π = maxH

{
φ (H)

M∑
m=1

qmV (ρm, d, λ)−H − F

}

the FOC yielding H∗(d, λ) and φ(d, λ) = φ (H∗ (d, λ)).

Taking the limit for J →∞

lim
J→∞

N

J

G∑
s=1

µ (ρm, d, λ)
s

=

 ∆(ρm, d, λ) > 0 for m ≥ m∗(d, λ)

0 for m < m∗(d, λ)

Let Γ be the number of competing innovators, then in the limit for J →∞ the probability λ of being

ousted from the production of a single �nal good solves the following �xed point problem:

λ =

 Λ (d,Γ, Q, λ) if m∗(d, λ) ≤M

0 if m∗(d, λ) > M
(11)

where Λ (d,Γ, Q, λ) ≡ Γφ (d, λ)
M∑

m=m∗(d,λ)

qmp (ρm, d, λ) ∆(ρm, d, λ).

Proposition 2 If r is su�ciently small then the solution to the �xed point problem (11) is λ∗ > 0

that solves

λ∗ = Λ (d,Γ, Q, λ∗) (12)

where λ∗ = λ (d,Γ, Q) is increasing in d and Γ and λ (d,Γ, Q′) > λ (d,Γ, Q) for Q′ > Q.

The economy's growth rate is

g (d,Γ, Q) =
γ − 1

γ
Λ (d,Γ, Q, λ∗)

where technologies m ≥ m∗ �nd an application in a fraction ∆(ρm, d, λ
∗)p (ρm, d, λ

∗) of �rms, while

technologies m < m∗ are introduced in a negligible fraction of �rms. The growth rate g is increasing

in d and Γ and g (d,Γ, Q′) > g (d,Γ, Q) for Q′ > Q.
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Proof of Proposition 2. The Proof of Proposition 2 is similar to the one of Proposition 1. Consider

a technology of type m′ < M . For a given value of ρm′ there always exists a su�ciently small r such

that for λ = 0 the incentive to invest in the di�usion of the innovation, and hence the amount invested,

becomes in�nitely large. Hence µ > 1 for each m > m′ and hence λ = 0 cannot be a solution to the

�xed point problem (11).

Since Λ (d,Γ, Q, λ∗) is increasing in d and Γ and Λ (d,Γ, Q′, λ∗) > Λ (d,Γ, Q, λ∗) for Q′ > Q the result

stated in the proposition follows.

The interpretation of these results is very similar to the ones in Proposition 1.

4.2 Competing innovators and endogenous entry

The number of competing innovators can then be made endogenous by introducing a free-entry con-

dition. In this case, the probability of a seed innovation appearing is itself a function of the number

of innovators just as is the expected value of an innovation. We assume that as long as the expected

return from the investment in the discovery of the technology principle is positive, innovators en-

ter the race to snatch a pro�t �ow away from incumbent monopolists by paying the involved sunk

cost F . Let us assume that r is su�ciently small such that from Proposition 2 the arrival rate of

a technological principle is φ (H∗ (d,Γ)) and the value of the innovation of type m is V (d, ρm,Γ, Q)

= V (d, ρm, λ
∗ (d,Γ, Q)), then innovators enter as long as

M∑
m=1

qmφ (H∗ (d,Γ))V (d, ρm,Γ, Q)−H∗(d,Γ) ≥ F (13)

For simplicity's sake we neglect the integer problem and assume that Γ is real-valued. Hence, at the

equilibrium condition (13) is satis�ed with the equality sign. Resorting to the envelope theorem it

can be concluded that since V (d, ρm,Γ) is strictly decreasing in Γ6, the left-hand side of this equation

is strictly decreasing in Γ insuring that a solution Γ∗ = Γ (d,Q) exists. A larger di�usivity d and a

Q′ > Q increase the entrepreneur's expected pro�ts �ow but they also increase the probability of being

ousted by a subsequent innovator; the overall e�ect of d and Q on entry is therefore ambiguous.

Given the distribution of the M possible seed innovations and related technological principles, and

de�ning µ (d, ρm,Γ
∗ (d)) = µ (d, ρm), it is then possible to identify the technology m∗ such that

µ (d, ρm) < 1 for each m ≥ m∗ and µ (d, ρm) > 1 for each m < m∗. The following proposition

6From Proposition 2 we know that an increase in Γ increases λ∗ and as a consequence decreases V (d, ρm, λ∗)
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holds. Let us de�ne φ (d, λ (d,Γ (d,Q) , Q)) = λ (d,Q), p (ρm, d, λ (d,Γ (d,Q) , Q)) = p (ρm, d,Q) and

∆ (ρm, d, λ (d,Γ (d,Q) , Q)) = ∆ (ρm, d,Q).

(12)

Proposition 3 For su�ciently low values of r, λ∗ is given by (12), Γ∗ is determined by the free entry

condition (13) and the economy's growth rate is given by

g (d,Q) =
γ − 1

γ
Γ (d,Q)φ (d,Q)

M∑
m=m∗

p (ρm, d,Q) ∆ (ρm, d,Q)

If d and Q have a positive e�ect on entry then g is increasing in d and g (d,Q′) > g (d,Q) for Q′ > Q.

Proof of Proposition 3. If d and Q have a positive e�ect on entry then λ∗ = λ (d,Γ (d,Q) , Q) =

λ (d,Q) is increasing in d and λ (d,Q′) > λ (d,Q) for Q′ > Q. Hence, Λ (d,Γ, Q, λ∗) in Proposition 2 is

increasing in d and Λ (d,Γ, Q′, λ∗) > Λ (d,Γ, Q, λ∗) for Q′ > Q and the result stated in the Proposition

follows.

Proposition 3 describes the growth rate of an economy where entrepreneurs invest in the discovery and

the di�usion of innovations throughout the economy and the equilibrium number of entrepreneurs is

determined endogenously through a free entry condition.

5 Conclusions

In this paper we have shown that technological convergence, that is, the process of di�usion of an

original innovative principle across a heterogeneous economy, emerges as a result of the dynamic

interplay between competition among entrepreneurs' for pro�t �ows and entrepreneurial investment

decisions. In particular, we have argued that di�usion rests on investment aimed at introducing and

adapting a seed innovation into a cluster of �rms sharing a degree of technological similarity. As a

consequence of this initial e�ort a process of learning-to-adapt is likely to arise cumulating su�cient

expertise to enable the original principle to cross-over to technologically distant clusters. Investment,

therefore, lays the ground for success to breed more success. Di�usion is thus modeled as a branching

process and the condition for its survival has been identi�ed. It has, accordingly, been shown that

below a precisely de�ned threshold in terms of the expected number of clusters that at each step

are likely to be reached the process dies out while above, it stands a positive probability of di�using
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over a signi�cant part of the whole economy. Investment to entice di�usion through learning-to-

adapt as well as to conjure up the original seed innovation is determined as a result of innovators

attempting to maximize their innovation value. The framework within which di�usion unfolds is shaped

as a monopolist-incumbent, innovation-searching entrant confrontation. This generates an equilibrium

between the incentive to invest and the probability of an innovation being introduced. This probability

has, in turn, been endogenously determined as a function of the probability of di�usion to penetrate the

whole economy. We have shown that the entrepreneur's investment in the di�usion of the technological

principle together with the competition among entrepreneurs for pro�ts �ows sets the economy in a

state where technological convergence occurs and general purpose technologies emerge with a positive

probability characterizing the economy's growth rate.

6 Appendix

Generalization of Assumption 1.

Lemma 2 Assume that the number k of clusters that are reachable be a random variable, the cumu-

lative distribution function of which, F (k, n, d), depends on the the number n of adoptions within the

cluster, on the di�usivity parameter d and is convex and decreasing with respect to both variables. It,

then, follows that mean number µ(I, d) is a concave increasing function with respect to I and d.

Assume that F (K,n, d) = 1.

Proof. The mean value of the number k of reachable new clusters, conditional on the number n of

innovations, is

E(k|n) =

K̂

0

kdkF (k, n, d) (14)

which is an increasing concave function of n and d.

On the other hand, by lemma 2 the probability mass function of the random variable n is

pr(n = j) =

 N

j

 p (I) j (1− p (I))
N−j
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Hence µ = E(k) is

µ(I, d) =

N∑
j=0

 N

j

 p (I) j (1− p (I))
N−j

E(k|j)

deriving we have

∂µ(I,d)
∂I =

∑N
j=0

 N

j

 kp (I) j−1 (1− p (I))
N−j

E(k|j)∂p∂I

−
∑N
j=0

 N

j

 (N − j)p (I) j (1− p (I))
N−j−1

E(k|j)∂p∂I

rearranging terms

∂µ(I,d)
∂I =

∑N−1
j=0

 N

j

 p (I) j (1− p (I))
N−j−1

(N − j) (E(k|j + 1)− E(k|j)) ∂p∂I

(15)

By the properties of function (14) the right hand side of (15) is positive: hence µ(I, d) is increasing in

I.

The second derivative can be analogously calculated

∂2µ(I,d)
∂I2 =

∑N−2
j=0

 N

j

 p (I) j (1− p (I))
N−j−2

(N − j)(N − j − 1)

(E(k|j + 2)− 2E(k|j + 1) + E(k|j))
(
∂p
∂I

)2

+
∑N−1
j=0

 N

j

 p (I) j (1− p (I))
N−j−1

(N − j) (E(k|j + 1)− E(k|j)) ∂
2p
∂I2

(16)

Again by the the properties of function (14), the right hand side of (16) is negative: hence µ is concave

in I.

The proof of the properties of µ(I, d) as a function of d can be proved along the same lines.
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