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Abstract.

Two parties bargaining over a pie, the size of which is determined by their
previous investment decisions. The bargaining rule is sensitive to investment
behavior. Two games are considered. In both, bargaining proceeds according
to the Nash Demand Game when a symmetric investments pro�le is observed.
When, on the other hand, an asymmetric investments pro�le is observed, we
assume that bargaining proceeds according to the Ultimatum Game in one case
and according to a Dictator Game in the other. We hereby show that in both
games when a unique stochastically stable outcome exists it supports an homo-
geneous behavior in the whole population both at the investment stage and at
the distribution stage. A norm of investment and a norm of division must there-
fore coevolve in the two games, supporting both the e¢ cient investment pro�le
and the egalitarian distribution of the surplus, respectively. The two games dif-
fer depending on the conditions needed for the two norms to coevolve. The
games are proposed to explain the social norms used in modern hunter-gatherer
societies.
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1 Introduction

In this paper we study a two-stage game with two risk-neutral players in which
a production phase precedes a division phase. In stage one both players have
to simultaneously decide whether to invest or not; in stage two, after observing
the gross surplus produced, they have to decide how to divide it. The game
has a multiplicity of equilibria; players thus face a serious equilibrium selection
problem which may nevertheless be solved if adequate social norms are in place
(Binmore, 1998, 2007; Binmore and Shaked, 2010). Since in our model agents
strategically interact in each stage of the game, the social norm of interest is
twofold: it is a norm of cooperation, which dictates how to play the produc-
tion stage, and a norm of distribution, which dictates how to divide the surplus
produced. Examples of social norms of this kind can be found in the anthro-
pological literature on cooperative food acquisition and cooperative hunting in
modern hunter-gatherer societies. For instance the Ache of Paraguay developed
a rule of thumb for hunted resources of the kind "cooperate frequently and share
fully" (Hill, 2002); a similar conclusion, related to whale hunters in Lamelera, is
drawn by Alvard and Nolin (2002). The observed compliance to these rules of
thumb by several hunter-gatherers has led some social scientists to suggest that
these norms must have been evolving over time, probably as a way to regulate
large-game hunting (Bohem, 2004). Our goal is to explore whether and under
what conditions social norms supporting both an e¢ cient outcome and neat
distributional rule can endogenously arise through an evolutionary process.

We assume that the investment is costly and, to simplify the analysis, that
the cost is the same for both agents. The surplus depends on the investment
pro�le. We further assume that when nobody invests no surplus is produced
and both agents receive nothing. Thus, a bargaining stage only occurs when at
least one agent has invested in the �rst stage.
Two di¤erent extensive games, corresponding to two di¤erent structures of

political and social organization, are considered. In both extensive games we
assume that when the two players have chosen to invest the bargaining stage
follows the rule of the Nash Demand Game (NDG). When, on the other hand,
an asymmetric investment pro�le is observed two simple alternatives are con-
sidered. Each of these speci�es how the unique investing agent can reap the
rewards of her own action.
In the �rst alternative we assume that the sociopolitical organization pro-

motes full right of possession. As a consequence all the bargaining power is
assigned to the player who has decided to invest; by allowing her to behave as
a dictator, the bargaining stage then collapses into a Dictator Game (DG). In
this framework if a sharing occurs it only depends on the free will of the unique
investing agent. In the second alternative we assume that the sociopolitical or-
ganization recognizes a right to sharing by asking an agreement across agents
as condition to gather the surplus. However the agreement has to emerge in a
situation in which, due to the recognized right, the bargaining power is asym-
metric. This suggests that bargaining can take the form of an Ultimatum Game
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(UG) in which the player who has chosen to invest proposes a distribution which
is only realized if the opponent accepts it otherwise the surplus is lost due to
(unspeci�ed) con�ict. By �DG (resp. �UG), we denote the whole game in which
an NDG occurs when a symmetric investment pro�le is observed, and a DG
(resp. UG) occurs when an asymmetric investment pro�le is observed. Both
games (�DG and �UG) have a multiplicity of equilibria.
The anthropological literature suggests that �DG can be appropriate in a so-

ciety in which production is a collective venture and property rights are secured,
as it seems to happen among the Mbuti pygmies (Ichikawa, 1983); on the other
hand �UG can be suitable for a society in which production is an individual
activity but in which full right of possession is not supported, as it seems to be
the case for the !Kung (Woodburn, 1982).

In order to identify the evolved social norms we use the concept of stochas-
tic stability and we apply the evolutionary framework for extensive games put
forward by Noldeke and Samuelson (1993). We claim that a social norm has
evolved when the stochastically stable set only supports an homogeneous be-
havior for at least one population. Our main result states that in both games
(i.e. �UG and �DG) when a social norm evolves then not only do we observe
an homogeneous behavior along the whole path of play but the prescribed ac-
tions are uniform across populations. We can thus claim that in both games
the norms coevolve; in this case the investment norm supports full cooperation
in the production stage (meaning that both agents choose to invest) and the
bargaining norm entails an egalitarian division of the realized surplus. The two
games di¤er depending on the conditions needed for the two norms to coevolve.
In particular we always observe a coevolution of norms in �DG whereas in �UG
this only occurs when investments are complements and the cost of investment
is not too high; when these conditions fail a great deal of outcomes are sto-
chastically stable so that neither an investment norm nor a bargaining norm
evolve.

Our main results are derived under the natural assumption that full co-
operation in the production stage is e¢ cient; this means that the net surplus
observed when both agents choose to invest is greater than the net surplus when
only one invests. Recently Avard (2004) advanced the hypothesis that norms of
cooperation and norms of fair division were more likely to be observed in soci-
eties in which "the payo¤s to cooperation are high". In order to verify Alvard�s
hypothesis, in the last Section we very brie�y extend our analysis to the case in
which full cooperation in the production stage is not e¢ cient and we show that
our results do not change.

The basic model is presented in Section 3. Section 4 describes evolutionary
dynamics and gives some preliminary results. The main results are provided in
Section 5, and further insights are discussed in Section 6. In the next Section 2
we brie�y relate our model to the relevant literature.
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2 Relation to literature

Troger (2002), Ellingsen and Robles (2002) and Dawid and MacLeod (2001,
2008) investigate the consequences of evolutionary dynamics in scenarios char-
acterized by investment speci�city3 . Broadly speaking this literature has shown
that evolution (i.e. stochastic stability) may or may not support an e¢ cient
investment pro�le depending on whether only one (Troger, 2002; Ellingsen and
Robles, 2002) or both parties (Dawid and MacLeod, 2008) make a relation-
speci�c investment in the project, respectively. However any further compar-
isons between these models is hindered by the fact that the games structure is
rather di¤erent.
In particular, Ellingsen and Robles (2002) and Troger (2002) consider the

case in which total output is determined by the decision of one agent only and
the bargaining proceeds according to the rule of NDG. They have shown that
all the stochastically stable equilibria are e¢ cient and that a neat distributive
norm evolves virtually assigning all the surplus to the investor provided that a
�ne grid of possible investments is allowed. When the size of the pie is endoge-
nous, the aforementioned papers have proved an important result, namely that
separating the analysis of the bargaining stage from the prior investment stage
is illegitimate in the context of the hold-up literature.
Dawid and MacLeod (2001) is the contribution closer to our model. They

consider a two-stage game with two-sided relation-speci�c investment and show
that the e¢ ciency result proved by Ellingsen and Robles (2002) and Troger
(2002) may not extend to this case. However in our opinion their way of shaping
the distribution stage is rather critical. Indeed they assume that equal split
occurs after a symmetric investment pro�le while a bargaining game, which
follows the rule of the NDG, only occurs after an asymmetric investment pro�le.
We argue that, though the equal split at symmetric investment pro�le may be
an adequate hypothesis, it sweeps away the main issue namely the origin of
this social norms when total surplus depends on previous investment decisions4 .
When instead an asymmetric investment pro�le is observed, the assumption that
they haggle according to the rule of NDG is tantamount to assume a structure of
individual preferences more biased towards free-riding demeanor; although this
assumption can be adequate in some context we contend its general validity.
These assumptions, coupled with the considered evolutionary dynamics,

make the whole model unsuitable for studying the evolution of a bargaining
norm; this follows directly from the fact that, although in Dawid and MacLeod
(2001) bargaining only occurs when asymmetric investment pro�les are ob-
served, no limit set supporting this asymmetric pro�le exists under their unper-
turbed dynamics.5 Dawid and MacLeod (2008) is a further extension in which

3We say that investment is completely relation-speci�c when it is only valuable to a par-
ticular trading partner. It is well known that investment speci�city, making the investor
vulnerable to ex-post exploitation, may give rise to the so-called hold-up problem.

4When the size of pie is exogenously given Young (1993) has shown that equal split emerges
as bargaining norm.

5The evolutionary dynamics they use are an adaptation of Young (1993a) to extensive
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the outcome of the investment decision is stochastic. They show that (i) the
bargaining norm a¤ects the investment norms but the opposite is not true; (ii)
the problem of under investment is stricter when investments are complements.

As we said, this literature is concerned with (one-sided or two-sided) relation-
speci�c investment. By contrast our main interest is to study a generic setting
in which people are not dependent on speci�c other people for access to basic
requirements and in which individuals are not bound to �xed assets or �xed
resources. This makes our model more apt for describing simple societies as
modern hunter-gatherers (Woodburn, 1982), for instance. Notwithstanding, if
some scholar want to apply our models to two-sided relation-speci�c investment
then we suggest to consider �UG only. In fact, it is only in this game that the
single agent who has invested is vulnerable to ex-post exploitation.6 It is worth
noting that, although the formal conditions for a stochastically stable outcome
to exist in �UG coincide with those required by Dawid and MacLeod (2001),
the basic models and evolutionary dynamics are di¤erent. In particular, while
in �UG these conditions support the coevolution of a norm of investment and
a norm of distribution, they only uphold a norm of investment in Dawid and
MacLeod (2001).

3 The model

In this Section we describe strategic environments; in the next, these will be
embedded in an evolutionary framework. Two risk neutral players (A and B)
are engaged in a two stage game. In stage one, both have to simultaneously
decide whether to invest (action H) or not (action L); when a player chooses H
she incurs cost c. A surplus is produced and observed at the end of stage one;
each player can then correctly estimate her opponent�s investment. We denote
the surplus arising when both choose H by VH ; the surplus accruing when only
one chooses H by VM ; and lastly, when both choose L, by VL = 0. Obviously,
VH > VM > 0:
In stage two, they bargain over the available surplus. The bargaining rule

depends on the investment pro�le. If both have chosen H, they are engaged in

form games. Although this extension is not problematic with one sided investment (as in
Troger, 2002), it is a bit tricky with two sided relation-speci�c investment since it can imply
that some agents can continue to believe that all the opponents make the same investment
(i.e. all choose high or low investments) even when some bargaining outcomes (which in their
model can only happen when high-low matches occur) are observed.

6Ellingsen and Robles (2002) also considered the case in which, in stage two, the distri-
bution of the surplus is determined by an ultimatum game where the player who makes the
proposal is the trading partner, i.e. the agent not responsible for the investment decision.
They have shown that in this case the stochastic stability has little cutting power because
many outcomes are stochastically stable. Our game �UG mainly di¤ers from Ellingsen and
Robles (2002) in two respects. First, the player who makes the proposal is the player who
decided to invest in the �rst stage. Second, since both agents can decide to invest, both can
be in a position to a¤ect the distribution of the surplus generated by the other. Our result
for �UG says that, under the appropriate conditions, a unique stochastically stable outcome
exists.
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a Nash Demand Game (NDG). If they have chosen di¤erent investments, two
alternatives are conceivable: an Ultimatum Game (UG) and a Dictator Game
(DG). We denote �UG the whole extensive game in which a NDG occurs when
both players have invested while a UG occurs when only one player has invested.
Analogously we denote �DG the whole extensive game in which a DG occurs
when only one agent has invested.7 Let D (Vj) = f�; 2�; :::; Vj � �g ; j 2 fH;Mg
denote the set of feasible claims.

Throughout the paper we consider a class of games in which the following
Assumption holds:

Assumption 1 (a) VH
2 and c are divisible by � and c > �;

(b) the e¢ cient net surplus arises when both players choose H, i.e.

c < min

�
VH
2
;VH � VM

�
; (1)

(c) the maximum payo¤ attainable by playing H when the opponent chooses
L is not negative, i.e.

c � VM � �: (2)

In NDG, both players simultaneously make y and x demands. If the demands
are compatible, each receives what she claimed; otherwise they receive nothing.
When both choose H, the payo¤s are

�A =

8<: y � c if y + x � VH

�c if y + x > VH

and

�B =

8<: x� c if y + x � VH

�c if y + x > VH :

In UG the player who has chosen H makes a proposal that the opponent
can either accept or reject. Let�s suppose HL is observed and A proposes the
division (y; VM � y). If B accepts, the payo¤s are y � c for A and VM � y for
B; otherwise A gets �c and B nothing.
In DG, the player who has chosen H decides a division her opponent cannot

reject. Suppose HL is observed and A demands y: The payo¤s are y � c for A
and VM � y for B.
It is worth noting that, under Assumption 1, both �UG and �DG admit a

subgame perfect equilibrium which supports investment pro�le HH. Neverthe-
less, both games admit a great deal of subgame perfect equilibria some of which
are ine¢ cient.

7We stress that this strategic environment is compatible with two kinds of overt behavior
regards production. In one case, production calls for a collective activity, while in the other
it arises from an individual activity. In both cases, the agents are aware that a distribution
stage will follow. Both forms are present among modern hunter-gatherers.
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4 Evolutionary dynamics

In this Section we consider the evolutionary dynamics put forward by Noldeke
and Samuelson (1993). To this end we postulate a �nite population of size N
for each player, A and B. In each period, every possible match between agents
occurs meaning that each agent belonging to population A interacts with each
agent of population B, one at a time. An agent is described by a characteristic
which consists of a detailed plan of action and a set of beliefs concerning the
choice and the demands made by opponents in the �rst stage and in the second
stage respectively. In �UG, a plan of action for player A must specify: (i) the
type of investment; (ii) the demand when both players choose H (the action at
HH); (iii) the demand when A chooses H and B chooses L (the action at HL);
(iv) whether to accept or reject any demands made by B, when in the �rst stage
B chooses H and A chooses L. The same applies for player B. In �DG, a plan
of action for player A must specify: (i) the type of investment; (ii) the demand
when both players choose H (the action at HH); (iii) the division of the surplus
when A chooses H and B chooses L (the action at HL). The same applies for
player B. A state, �; is a pro�le of characteristics of the overall population.
z (�) is the probability distribution across terminal nodes, given the state of the
population �. The set of possible states, �; is �nite.

At the end of every period each agent with probability � observes z(�) and
her characteristic may change: In particular the received information allows
agents to correctly update their beliefs on opponent�s choices at the observed
information sets. Given their new beliefs, they also update their action pro�le
by choosing a best reply8 at each information set. With probability 1 � � the
single agent does not observe z (�) and her characteristic does not change. This
learning mechanism engenders an (unperturbed) Markov process (�; P ) where
P is the transition matrix on �.
By 
 we denote a generic limit set9 of the process; this is a minimal subset of

states such that, when the process enters, it does not exit. By � (
) we denote
the set of observable terminal nodes under 
. Lastly by � we denote the union
of the limit sets of the process .
Besides being updated, agents�beliefs and actions can also change by mu-

tation. In every period, each agent has a probability � of mutating. Mutations
are independently distributed across agents. When mutating, agent changes her
characteristic according to a probability distribution assigning positive proba-
bility on each possible characteristic.
A particular type of mutation occurs when the mutants change belief and/or

action at some unreached information set under the current state �. In this case
we assert that the state drifts.

8However if the learning agent has already played a best reply her action does not change.
Moreover when the best reply contains more than one action, one of these can be randomly
chosen according to a distribution with full support.

9A set 
 � � is called a limit set of the process (�; P ) if: (a) 8� 2 
;
P rob f�t+1 2 
 j �t = �g = 1; (b) 8 (�; �0) 2 
2; 9s > 0 s.t. Prob f�t+s = �0 j �t = �g > 0:
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Mutations generate a new (perturbed) Markov process (�; P (�)) ; which is
ergodic. It is well known that, for any �xed � > 0; the perturbed process
has a unique invariant distribution ��. Let �� = lim�!0 �� denote the limit
distribution. A state � is stochastically stable if �� (�) > 0: We denote the
set of stochastically stable states by �S ; this is the set of states which has a
positive probability in limit distribution. Noldeke and Samuelson (1993) proved
that the stochastically stable set is contained in the union of the limit sets of
the unperturbed process. In order to detect the stochastically stable set we �rst
have to characterize the limit sets of our model; this is the aim of the following
two Propositions.

Proposition 2 In �UG all the limit sets have one of the following structures:
(a) they contain one state only, and this is a self-con�rming equilibrium of
the game; (b) they contain more than one state and all investment pro�les are
observed. Moreover, only one outcome is realized for each investment pro�le in
which the claims exhaust the surplus.10

Proof. See the Appendix

Proposition 3 In �DG all the limit sets contain one state only, and this is a
self-con�rming equilibrium. Moreover, at least one agent chooses to invest at
every equilibrium.

Proof. See the Appendix

From now on when we speak of equilibrium we refer to self-con�rming equi-
librium.11

Propositions 2 and 3 state that the considered evolutionary dynamic gives
rise to a large multiplicity of limit sets. However, this dynamic admits limit sets
in which both investment and bargaining behavior is uniform in each population.
It is thus likely that homogeneous behavior in one or both populations could
be molded by evolution. When this happens, we say that a norm has evolved.
Accordingly, an investment norm has evolved if all agents belonging to the
same population make the same investment and the investment behavior is
correctly anticipated . Analogously, a bargaining norm has evolved if a pair
of demands (y; x) exists at some reached information set which exhausts the
gross surplus and the bargaining behavior is correctly anticipated. When the

10Careful reading of the Proposition proof shows that the claims must satisfy a well-de�ned
set of constraints.

11According to Noldeke and Samuelson (1993) a state is a self-con�rming equilibrium if
each agent�s strategy is a best response to that agent�s conjecture and if each agent�s conjec-
ture about opponent�s strategies matches the opponent�s choices at information sets that are
reached in the play of some matches.
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set of stochastically stable states contains only equilibria supporting the same
outcome we speak of a stochastically stable outcome rather than a stochastically
stable set.
Despite the fact that Propositions 2 and 3 do not help to pin down which

behavior is more likely to become the conventional one, in the next Section we
shall show that the stochastically stable set can support only one outcome in
both games. Our remarkable result stems from direct application of Noldeke and
Samuelson (1993) and Ellison (2000). In particular, Proposition 1 of Noldeke
and Samuelson (1993) states that if �S is a strictly subset of � (i.e. �S � �)
then a 
 =2 �S can not be reached from �S by a sequence of single-mutation
transitions. Hence, our �rst task (Lemma 4 and 5 below) is to detect the smallestb� � � such that a sequence of a single-mutation transitions is enough to escape
from any 
 2 � n b� and reach b�. In this case when �S � � we know that
�S � b� . From now on, by slightly abusing notation, (HH; yHH ; xHH) denotes
a terminal node in which both agents have chosen H, agent A makes a demand
yHH and agent B makes a demand xHH . This applies for the other terminal
nodes, too.
The next Lemma states our �rst preliminary result, which holds true for

both the extensive games considered

Lemma 4 Consider a limit set 
 such that � (
) is not a singleton. An equi-
librium supporting one outcome only can be reached from 
 by a sequence of
single-mutation transitions.

Proof. See the Appendix.

Lemma 4 enables us to limit our attention to the equilibria supporting one
outcome only. According to the investment pro�le observed, we can partition
this set of equilibria into four subsets. We note these subsets respectively as
�H ; �L;�HL and �LH : Of course, �H includes all the equilibria supporting
the outcome fHH;VH � xHH ; xHHg where xHH 2 D� (VH) : The same applies
for the other subsets. The following Lemma 5 highlights that the process can
move from any equilibrium belonging to the set (�L [ �HL [ �LH) to a new
equilibrium � 2 �H through a sequence of single-mutation transitions.

Lemma 5 Consider an equilibrium �; then:
(a) if � 2 �L an equilibrium �0 2 �H can be reached from � by a sequence of

single-mutation transitions provided that c+ � < xHH < VH � c� �;
(b) if � 2 �HL (resp. �LH) an equilibrium �0 2 �H can be reached from

� by a sequence of of single-mutation transitions provided that c + � < xHH <
VH � c� �.

Proof. See the Appendix.

9



It is worth stressing that since subset �L is empty in �DG, then only point
(b) of the previous Lemma is relevant to this game.
Lastly Lemma 6 below asserts that in �UG a sequence of single-mutation

transitions is enough to shift the process from any equilibrium � 2 �L to a new
equilibrium �0 in which only one agent has invested.

Lemma 6 Consider �UG and an equilibrium � 2 �L then an equilibrium �0 2
�LH [ �HL can be reached from � by a sequence of single-mutation transitions
provided that at �0 the agent who has chosen H is better o¤;

Proof. See the Appendix.

All the results so far obtained only require that c � min
�
VM � �; VH2 � �

�
:

From Lemma 4 we know that, when a limit set underpins a multiplicity of
outcomes, then we can reach an equilibrium sustaining only one outcome by a
sequence of single mutations. Lemma 5 tells us that if the single equilibrium
outcome does not support the e¢ cient investment pro�le, then the process can
reach a single equilibrium belonging to �H by a sequence of single mutations.
Hence, when �S � �, both these Lemma suggest we focus on subset �H .

5 Main results

The conclusion of the previous Section suggests we limit our concern to the set
of equilibria �H for both games. In this Section we show that when a unique
stochastically stable outcome exists it always supports the e¢ cient investment
pro�le and the egalitarian distribution rule.
In this Section, we introduce a further technical assumption.

Assumption 7 The population is su¢ ciently large, i.e.

VH
N

< �: (3)

First and foremost, we provide a characterization of the stochastically stable
set for �UG; we then brie�y consider �DG. A number of further de�nitions are
needed: By x�B (resp. VH � x�A) we denote the share going to player B (resp.
A), such that she receives a payo¤ equal to (VM � �) when both agents have
invested:

x�B = VM � � + c

x�A = VH + � � c� VM :
(4)
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Since c is divisible by � and c > �; then x�B ; x
�
A 2 D� (VH) : Let12bxA = max�x 2 D� (VH)j (VH � x) N�1N � c � VM � �

	
bxB = min�x 2 D� (VH)jxN�1N � c � VM � �

	
:

(5)

Under assumption (3) it follows that bxA = x�A � � and bxB = x�B + �: ThereforebxB � bxA if
VM � VH

2
� c: (6)

When this condition holds, then we can de�ne the following set:

�IH = f� 2 �H j x 2 [bxB ; bxA]g :
It is worth noticing that VH � bxA = bxB , meaning that in �IH the lowest share
of surplus is the same for both agents. Few computations show that VH2 2 �IH :

By de�nition when � 2 �IH each agent receives an equilibrium payo¤ not
smaller than the maximum payo¤ attainable when she deviates by playing L.
Any equilibrium in �IH thus dominates all the equilibria supporting other in-
vestment pro�les. Hence even if at an equilibrium � 2 �IH the belief on the
outcome in high-low matches drifts, allowing some agents to expect to get al-
most the whole surplus if they do not invest, this drift does not push the process
away from the basin of attraction of �:
Let �CH = �H��IH be the subset of �H such that x =2 [bxB ; bxA] : The next

Lemma 8 shows that both �IH and �CH have some desirable features.

Lemma 8 Consider �UG: Then:
a) under condition (6) more than one mutation is needed to escape from

�IH ;
(b) one mutation is enough to escape from �CH and to reach �L;
(c) under condition (6) ; �IH can be reached from � 2 �CH by a sequence of

single mutations:

Proof. See the Appendix.

The next Proposition states our main result for �UG: In order to derive this
Proposition, we make use of both the su¢ cient condition developed by Ellison
(2000) and some of the results for the NDG proved by Young (1993).

Proposition 9 Consider �UG: If � is su¢ ciently small and VM � VH
2 � c then

a stochastically stable outcome exists. In this case all agents choose to invest
and the surplus is equally split.

12 bxA is the largest demand agent B can make at HH such that A does not have any
incentive to change action by playing L when she knows that: (i) N � 1 agents B play H and
claim bxA; (ii) one agent B makes a larger demand. Analogously for bxB .
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Proof. See the Appendix

Proposition 9 holds provided that the set �IH includes at least one equi-
librium, condition satis�ed when (6) holds. According to Dawid and MacLeod
(2008), the investments are complements if the marginal e¤ect of action H when
the opponent always plays H is greater than the marginal e¤ect of action H
when the opponent plays L. Since in our model VL = 0; this condition is met
when VM < 1

2VH . This in turn implies that only the e¢ cient investment pro�le
HH supports a Pareto dominant equilibrium when � is su¢ ciently small. Sure
enough when �IH is not empty investments are complements in the sense of
Dawid and MacLeod (2001), but investments can be complements in the sense
of Dawid and MacLeod also when �IH is not well de�ned.

We now turn to the case in which a Dictator Game (instead of an Ultimatum
Game) is played when an asymmetric investment pro�le is reached. Lemma 10
below points out a desirable propriety for some equilibria belonging to �H :

Lemma 10 Consider �DG and let � be an equilibrium belonging to �H . When,
at �, the distribution rule satis�es the following condition

(� + c)
N

N � 1 < x < VH � (� + c)
N

N � 1 (7)

then more than one mutation is needed in order to reach an equilibrium sup-
porting a di¤erent set of outcomes.

Proof. see the Appendix

Lemma 10 suggests that also for �DG we can identify a subset of �H with
the property that more than one mutation is required to escape from it. As
before we denote this subset by �DIH . The same argument used above shows
that �DIH is well de�ned when13

� <
VH � 2c
4

: (8)

Consequently, when � is su¢ ciently small and the rules of the game give all
the bargaining power to the only agent who has played H, then no further
assumptions on the cost of investment are needed in order to argue that the most
e¢ cient investment norm evolves in the long run. The following Proposition
summarizes our �nding concerning �DG.

Proposition 11 Consider �DG: If � is su¢ ciently small and c � VM � � then
a stochastically stable outcome always exists and it supports full investment and
the egalitarian distributional rule.

13See the Appendix for the details.
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Figure 1: game �UG. Parameter regions supporting the unique stochastically
stable outcome (HH) compared with the region (NN) where no norm evolves
since several stochastically stable outcomes can exist

Proof. See the Appendix

Proposition 11 states an intuitive result. Indeed in �DG the unique stochas-
tically stable outcome is always

�
HH; VH2 ;

VH
2

�
even when condition (6) does

not hold. This implies that for whatever beliefs o¤ the path (i.e. at HL and/or
LH) the process still sustains the outcome

�
HH; VH2 ;

VH
2

�
. In particular, sup-

pose that in period t the process is at an e¢ cient equilibrium � in which the
surplus is equally split but condition (6) does not hold. Let one B agent expect
to get almost the whole surplus if she does not invest. In period t + 1 she will
not invest. However, since at HL all A agents behave like a dictator, they will
get almost the whole surplus. Hence in period t + 2 ; by letting all B agents
revise, they all will choose to invest. Therefore the process does not leave the
basin of attraction of �:

6 Discussion

In this Section, we provide further insights into our results. First consider �UG.
Borrowing from anthropological literature, we have suggested that this game is
more apt for describing the evolution of investment and distribution norms when
full rights of possession are not socially supported. Proposition 9 describes the
scenarios we can expect to observe over the long run in a society of this kind14 .

14Our results can be compared with Dawid and MacLeod (2001). If we put the assumptions
VL = 0 and VM � c > 0 into their model, then the formal conditions for a single stochastically
stable outcome stated in their Proposition 7 are in line with those stated in our Proposition
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First, either a norm of investment and a norm of bargaining coevolve, or no norm
evolves at all. Second, when norms coevolve, they support e¢ cient investment
and egalitarian distribution. However, we can expect norms to coevolve when
investments are complements (i.e. VM < 1

2VH) and the investment cost is
su¢ ciently low (c < VH

2 � VM ). These conditions are satis�ed in region HH
of Figure 1, which is drawn under the assumption that � is negligible. Instead,
when investments are complements but the investment cost is higher than VH

2 �
VM , or when investments are not complements (i.e. VH2 < VM � VH), we do not
observe any norm. This happens in region NN of Figure 1. In this region, since
Lemmas 5, 6 and 8 (point b) are still true, we are sure that any equilibrium
supporting a unique outcome belongs to the support of the limit distribution
��. This means that all investment pro�les and any distributional rule can be
observed in the long run.
To see this consider region NN and suppose15 that the only outcome ob-

served is
�
HH; VH2 ;

VH
2

�
. Since no high-low matches are observed, the beliefs

on bargaining outcomes in high-low matches can drift. Because of said drift,
all agents B (resp. A) might, for instance, deem that A (resp. B) will only
accept a distribution granting her almost the whole pie at LH (resp. HL)
pro�le even if all B (resp. A) are ready to accept any proposal at HL (resp.
LH). Sure enough the drift does not shift the process from the equilibrium out-
come

�
HH; VH2 ;

VH
2

�
: Suppose now that one agent B deems to capture a share

VM � � at HL. According to this new belief she will play L in the next period.
Therefore the initial equilibrium

�
HH; VH2 ;

VH
2

�
can be overturned when both

populations update, once at the time, so that the process enters the basin of
attraction of (LL; 0; 0) eventually. However this cannot be a social norm since
a single mutation is enough to move the system into the basin of attraction
of another equilibrium supporting a single outcome with a di¤erent investment
pro�le (see Lemma 5, point (a), and Lemma 6). And so on and so forth.

We have also seen that �DG is more appropriate for describing the evolution
of investment and distribution norms when full rights of possession are socially
protected. In this context, Proposition 11 ensures that norms always coevolve.
This result is illustrated in Figure 2, in which region NN of the previous Figure
1 disappears and is replaced by regionHH. Therefore, regionHH now coincides
with the whole parameter space compatible with our main assumptions. Indeed,
since in this case the only agent who has invested behaves as a dictator, any
drift of beliefs does not upset the outcome

�
HH; VH2 ;

VH
2

�
even when condition

9. However their Proposition 7 is only concerned with the evolution of investment norms
instead of the coevolution of investment and bargaining norms. As we said, this stems from
deep di¤erences between the two models and the evolutionary dynamics considered. In the
preliminary version of the present paper we have also studied the model in which the surplus
is equally split when both agents invest, as in Dawid and MacLeod (2001), but an Ultimatum
Game occurs when only one agent has invested. In this case Proposition 9 continues to be
true. Lastly Proposition 9 continues to hold even when in the UG the agent who makes a
proposal is not the agent who has chosen to invest, as in Ellingsen and Robles (2002).

15We remind that in region NN condition (6) does not hold.
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Figure 2: game �DG. Parameter region supporting the only stochastically stable
outcome (HH).

(6) is not satis�ed. Con�dence in the dictator�s unsel�sh behavior is thus always
shortsighted.

In both games, when social norms emerge, they support the e¢ cient invest-
ment pro�le and the egalitarian distribution of the surplus. The fact that the
distributional norm is egalitarian is not a surprise since our model is symmetric.
In turn this symmetry depends on the assumptions that investment costs are
identical and that the surplus accrued when only one agent invests does not de-
pend on the identity of the investing agent. One may then reasonably question
whether an egalitarian norm could still be expected to emerge when some form
of heterogeneity is allowed (Baker and Swope, 2005). This is an important point
since the literature on modern hunters-gatherers suggests that, in some cases,
these societies endorse an egalitarian rule of distribution even when di¤erences
in hunting-gathering abilities are observed (Kaplan and Hill, 1985; Woodburn,
1982) while in some other cases they do not (Hawkes, 1992). We have left this
to further research.

Our results are derived under the natural assumption that full cooperation
in the production stage is e¢ cient. We now brie�y provide some insights on its
role; this allows us to evaluate a conjecture recently advanced by Alvard (2004).
In discussing the results of some experiments in �fteen small scale societies16 ,
Alvard (2004) suggested that norms of cooperation and norms of fair division
were likely to be observed in societies in which "the payo¤s to cooperation are

16See Heinrich et al. (2004). An assessment of these experiments can be found in Chibnik
(2005) and in Hagen and Hammerstein (2006).
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Figure 3: Top: game �DG; bottom: game �UG. In both Figures, the triangle
on the right hand side denotes the parameter region for which investment by
both agents is ine¢ cient. No norms are observed in �UG while norms co-evolve
in �DG

high". Hence by relaxing our e¢ ciency assumption and by comparing the results
we can test the cutting power of Alvard�s hypothesis in our settings. In order to
do this we keep all the assumptions so far made with the exception of point (b)
of Assumption 1 which is replaced by VM � c > VH � 2c > 0: Under this new
scenario all our intermediate results as well as point (b) of Lemma 8, Lemma
10 and Proposition 11 are still valid. However condition (6) can no longer be
satis�ed; as a consequence points (a) and (c) of Lemma 8 and Proposition 9 are
not true. Therefore our results do not change. In �DG the same social norms
coevolve with and without the e¢ ciency hypothesis. In �UG no norm evolves
in the added region due to the failure of condition (6); consequently region
NN enlarges: Both cases are illustrated in Figure 3 where the new parameter
con�guration is represented by the triangle added on the right hand side of each
panel.

Lastly, we speculate on the role played by bargaining in the evolution of
social norms in �UG and in �DG under the e¢ ciency assumption. In order
to do this, we apply the evolutionary framework to a simpler model in which
a distributional norm already exists and agents only have to coordinate their
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investment decisions. To this end we consider the one shot game suggested by
Hawkes (1992, payo¤matrix 8). Let �C denote this model. The resulting game
is represented by the normal form (9) in which we assume17 (i) that for whatever
investment pro�le the pie is equally split18 ; (ii) that the net surplus arising when
both agents invest is the greatest one, and (iii) that the net surplus accruing
when only one invests is not negative. The latter two conditions are satis�ed
when c < min( 12VH ; VH � VM ; VM ). In this strategic framework, when there
is more than one pure Nash equilibrium, the stochastically stable one coincides
with the risk dominant equilibrium (Young, 1993a).
From an anthropological perspective, this game is suitable to describe a

situation arising when the pie to be distributed has to be produced in advance
but, since property rights cannot be enforced19 , it must always be split equally.

H L

H VH
2 � c; VH2 � c VM

2 � c; VM2

L VM
2 ;

VM
2 � c 0; 0

(9)

Few computations show that the game has either three Nash equilibria (two
in pure strategies and one in mixed strategies) or only one pure symmetric
Nash equilibrium. When the game admits a unique Nash equilibrium, this is
investment pro�le HH if c < min

�
VM
2 ;

VH�VM
2

�
and investment pro�le LL if

c > max
�
VM
2 ;

VH�VM
2

�
. When the game admits two pure Nash equilibria, these

are HH and LL if VM2 < c < VH�VM
2 and HL and LH if VH�VM2 < c < VM

2 :
When the game has two pure symmetric equilibria, the stochastic stability

selects one of them. In particular, it selects investment pro�le HH if VM2 < c <

min
�
VH�VM

2 ; VH4
�
, while it selects investment pro�le LL if max

�
VM
2 ;

VH
4

�
< c <

VH�VM
2 . When instead the game has two pure asymmetric equilibria, LH and

HL; both are stochastically stable.
These results are illustrated in Figure 4, where HH (resp. LL) denotes the

region in which investment pro�le HH (resp. LL) is the only stochastically
stable equilibrium and where NN denotes the region in which no investment
norms emerge since both equilibria, LH and HL, are stochastically stable. In
this last game, a coordination failure arises when investment pro�le LL is the
only stochastically stable equilibrium. Direct comparison of Figures 1 (�UG)
and 3 allows us to argue that the main consequences of modeling a bargaining

17This game tallies with Hawkes�s game under the assumptions V = VH and sV = VM :
18This means that the distributional rule in �C coincides with the unique distributional

norm which can evolve in �UG:
19According to the anthropologist, this situation is compatible with societies admitting the

so-called tolerated theft (Hawkes, 1992). This means that sharing also occurs when the pie
is only provided by one agent, since excluding outsiders is too costly. However, Bell (1995)
argued that tolerated theft presumes that society ensures the hunter the full right to his or
her catch, a condition that may not be granted.
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Figure 4: game �C . The parameter regions where e¢ cient investment (HH) and
no investment (LL) are stochastically stable compared with the region (NN)
where no investment norm evolves.

stage as a game is that the region supporting the worst outcome (LL) disap-
pears while the region supporting the best outcome (HH) shrinks. Hence, the
region in which no investment and bargaining norms evolve is enlarged. This
highlights the fact that, contrary to what happens in �C in which an egalitarian
distributional norm is already established, when a distribution norm is allowed
to evolve, its evolutionary process a¤ects the evolution of the investment norm
(Hackett, 1993, 1994).
When we do the same exercise for �DG, we obtain a new game �0C which

di¤ers from �C . This is because at the asymmetric investment pro�les, the whole
surplus goes to the investing agent only. Under the structural assumptions of
the paper, it turns out that H is now a dominant strategy and HH is the only
Nash equilibrium.20 Since �C and �0C essentially di¤er in the degree of property
protection assured, we conclude that modeling a bargaining stage is crucial
for understanding the evolution of both investment and distribution norms in
societies in which full rights of possession are not socially supported. In societies
in which full rights of possession are socially protected, this only explains which
bargaining norm is brought to bear.
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7 Appendix

First of all we introduce some useful notations. Let us consider a state � and
suppose that all agents observe z (�). In �UG action L is not preferred to action
H for agents i 2 A if

pB (�)
�eyiHH (�)� eyiLH (�)� c�+ (1� pB (�)) �eyiHL (�)� c� � 0;

analogously, action L is not preferred to action H for agents i 2 B if

pA (�)
�exiHH (�)� exiHL (�)� c�+ (1� pA (�)) �exiLH (�)� c� � 0:

Here, by pA (�) (resp. pB (�)) we denote the frequency of agent A (resp. B) who
played H in �, and by eyiHH (�) (resp. exiHH (�)) the expected payo¤s of agent
i 2 A (resp. i 2 B) at the information set HH, given z (�). This applies for the
other information sets, too. Similar conditions hold for �DG.
The following preliminary results are needed in order to prove Propositions

2 and 3. Lemma 12 and Lemma 14 are needed for both games (�UG and �DG);
Lemma 13 is needed for �UG only.

Lemma 12 Let xHH;1 < xHH;2 < ::: < xHH;k be the demands made by B at
HH for some state �. Then the set of best behavioral demands following HH
for agents A is a subset of fVH � xHH;lgkl=1.

Proof. See Lemma A.1 in Ellingsen and Robles (2002).

Lemma 13 Consider �UG and let 
 be a limit set of (�; P ) : If (HL; yHL; xHL) 2
� (
) (resp. (LH; yLH ; xLH) 2 � (
)) then:
(i) xHL = VM � yHL (resp. yLH = VM � xLH);
(ii) (HL; yHL; xHL) (resp. (LH; yLH ; xLH)) is the only outcome which sup-

ports investment pro�le HL (resp. LH) in � (
) :

Proof. We only consider pro�le HL. The same holds true for LH.
Point (i). Let � be a state such that: (a) � 2 
; (b) (HL; yHL; xHL) belongs

to the support of z (�) and xHL 6= VM � yHL. Let us suppose that only B
agents update their characteristics: they will all accept yHL. For whatever
belief regards the behavior of the opponents, this action is always a best reply.
It is then impossible to return to the original state �. This contradicts the
assumption that � 2 
.
Point (ii). First we show that 
 cannot include a state � in which multiple

demands are made at HL. Subsequently, we show that 
 cannot include two
di¤erent states supporting di¤erent outcomes following HL.
Let � be a state such that: (a) � 2 
 and (b) multiple demands are made

by agents A at HL. We already know from point (i) that at � all agents B
accept all the demands made by their opponents. Suppose now that only agents
A revise their characteristics. Afterward, any agent A will make the maximum
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demand observed at HL. Hence, it is impossible to return to the original state
�. This contradicts the assumption that � 2 
.
Now let � and �0 be two states such that: (a) both states belong to 
 and

(b) HL is observed. A single demand is made by A but yHL
�
�0
�
> yHL (�).

Since it is impossible to return to � then assumption � 2 
 is contradicted. �

Lemma 14 Let 
 be a limit set of (�; P ) : If f(HH; y; x) ; (HH; y0; x0)g 2 � (
)
and either x 6= x0or y 6= y; then 
 is a singleton and a self-con�rming equilibrium
of �:

Proof. Consider a set 
 and let � 2 
 be a state in which at least two
demands have been observed in one population (i.e. B). Suppose that at least
one of these demands (x�) is not a best reply to z (�). Suppose also that,
after observing z (�) ; all agents who demanded x� revise; as a consequence x�

disappears. A new state � 2 
 is then reached in which pro�le HH is still
observed. Suppose now that all A update; then, by Lemma 12, nobody will
make demand fVH � x�g. These two demands have thus disappeared and it is
impossible to return to the original state �. This contradicts the assumption
that � 2 
. Therefore, if multiple demands are made, each must be a best reply
to z (�) :
Now consider an agent belonging to population A who has played H in �

and suppose this agent has the incentive to change her investment should she
know z (�). When this agent updates, the distribution of the demands made by
population A in subgameHH di¤ers from the original. This implies that at least
one demand made by some opponents (i.e. B) is no longer a best reply when B
updates. By applying the argument made in the paragraph above, we conclude
that at least one pair of demands has disappeared and cannot reappear. This
contradicts the assumption that � 2 
 . �

Proof of Proposition 2
Assume that 
 is not a singleton. We know from Lemmas 13 and 14 that, if

a bargaining subgame is reached, only one of its terminal nodes is almost always
observed.
First we show that � (
) must contain one outcome for every bargaining

subgame. Of course � (
) must di¤er from f(HH; yHH ; VH � yHH) ; (LL; 0; 0)g :
Suppose � (
) includes the following outcomes: (a) (HH; yHH ; xHH) with yHH+
xHH = VH ; (b) (HL; yHL; xHL) with yHL+xHL = VM : In 
 a state � in which
both outcomes are observed must exist and it cannot be an equilibrium. We
show that it is possible to reach either the basin of attraction of one equilibrium
of the game, or a state in which all bargaining nodes are observed from � .
Suppose some agents B update. If xHH � c > xHL then the updating agents
will choose H so that, at the new state �0, the frequency of this action in
population B will increase:
If at least one agent A has beliefs eyiLH leading her not to prefer H to L

when all agents B play H; then it is possible to reach a state in which all
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investment pro�les are realized from �. This contradicts the assumption that
� (
) = f(HH; yHH ; xHH) ; (HL; yHL; xHL)g. Otherwise, by letting all agents
B update from � it is likely to reach the basin of attraction of one equilibrium
of the game supporting the outcome (HH; yHH ; xHH). If xHH � c � xHL we
reach the same conclusion by using a similar argument. It is simple to see
that the same conclusion holds when � (
) includes any two di¤erent outcomes.
Therefore if 
 is a not a singleton, all the bargaining nodes are almost always
visited meaning that � (
) includes four outcomes each of which is a subgame
equilibrium.

We now have to show that the payo¤s must satisfy a well-de�ned set of
constraints. Notice that a state � 2 
 in which all the investment pro�les are
observed must exist. Moreover when we allow all agents to update, all agents
A will choose H:

pB (�) (yHH � yLH � c) + (1� pB (�)) (yHL � c) > 0; (10)

and all agents B will choose H:

pA (�) (xHH � xHL � c) + (1� pA (�)) (xLH � c) > 0: (11)

We can rewrite these conditions as

pB (�)A1 + (1� pB (�))A2 > 0

pA (�)B1 + (1� pA (�))B2 > 0:

If all expressions are null, then 
 is a singleton. Furthermore, when - for
some populations - both expressions are either not negative or not positive, and
at least one is not null, then the process can reach a new state from � which is
a self-con�rming equilibrium.
Consider the case in which both expressions are null for population A only.

WhenB1 is strictly positive andB2 is strictly negative allBs preferH if pA (�) >
p�A where:

p�A =
c� xLH

(xHH � xHL)� xLH
: (12)

Otherwise when B1 is strictly negative and B2 is strictly positive all Bs prefer
H if pA (�) < p�A: In both cases, when all Bs agents update they will choose
the same investment. Hence, a state which is an equilibrium of the game can
be reached from �.

A similar argument is applied when both expressions B1 and B2 are null. In
this case, the threshold value of pB (�) is p�B which is now given by:

p�B =
c� yHL

(yHH � yLH)� yHL
: (13)
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We are left with the case in which the product of the corresponding two
expressions is strictly negative for each population. However, when A1 and
B1 have the same sign the process can go into the basin of attraction of an
equilibrium. Indeed, suppose that both A1 and B1 are strictly positive. This
implies that all Bs prefer H if pA (�) > p�A and all As prefer H if pB (�) > p�B .
Hence, for whatever values of pA (�) and pB (�) ; starting from � the process
can reach an equilibrium when one population revises at a time. The remaining
possible case occurs when B1B2 < 0 and A1A2 < 0 but A1B1 < 0. �

Proof of Proposition 3
It follows by applying the same arguments as above and taking into account

that yHL = xLH = VM � � holds at any limit set. In this case the conditions
B1B2 < 0, A1A2 < 0 and A1B1 < 0 can not be simultaneously met because
both A2 and B2 are strictly positive. Consequently all limit sets are singleton.
In addition an equilibrium of the game can only support outcome (LL; 0; 0) if
it also supports at least one outcome following each investment pro�le. �

Before giving the proof we brie�y review the concept of mutation connected
set.

De�nition 15 Consider a union of limit sets X. This set is mutation connected
if for all pairs 
, 
0 2 X exists a sequence of limit sets (
1 = 
;
2; :::;
n = 
0)
such that (a) for any k 2 f1; :::; n� 1g ; 
k 2 X and (b) every transition from

k to 
k+1 needs no more than one mutation.

Consider a limit set 
 which does not support all information sets and sup-
pose a single mutation occurs. If this mutation is a drift then the process reaches
a new limit set 
0 which di¤ers from 
 only for some belief and/or action at
some unreached information sets. Let � (
) be the set of equilibria which only
di¤er from 
 for some beliefs (and/or actions) held in some unreached informa-
tion set. Sure enough the set � (
) is mutation connected. When 
 is singleton,
namely 
 = f�g, we use � (�) instead of � (
) :

Proof of Lemma 4
We give the detailed proof for �UG. Then we suggest how to adapt it to �DG:

In this proof, when � is an equilibrium and multiple demands are observed at
HH, we denote the full ordered sets of demands made by B and A by fxHH;lgkl=1
and fyHH;lgkl=1 respectively. By iterative applications of Lemma (12) we get
fyHH;lgkl=1 = fVH � xHH;lg1l=k. Since � is an equilibrium then the expected
payo¤ at HH is:

eyiHH (�) = yHH;1 = VH � xHH;k; 8i 2 A
exiHH (�) = xHH;1 = VH � yHH;k; 8i 2 B

Moreover yHH;1 = yHH;k�B1 and xHH;1 = xHH;k�
A
1 where �

B
1 (resp. �

A
1 ) is

the number of B (resp. A) agents who claim xHH;1(resp. yHH;1) under �.
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I) Consider an equilibrium � in which only one pro�le is realized and multiple
demands are made at HH pro�le. Let a single agent B switch from xHH;k
to xHH;1. Let all agents A update; then they will make a demand yHH;k =
VH�xHH;1. Hence, we reach a new equilibrium �0 in which only HH is observed
and only the two demands (VH � xHH;1; xHH;1) occur.

II) Suppose now that two pro�les are observed at the equilibrium � . This
implies that the same type of investment is made in one population . We give
the proof only when HH and HL are observed. The other remaining cases are
similar.

II.1) First, consider the case in which multiple demands are made following
HH. Since � is an equilibrium, the following conditions must always be met:

pB (�)
�
yHH;1 � eyiLH (�)� c�+ (1� pB (�)) (yHL � c) � 0; 8i 2 A

(VH � yHH;k)� c = VM � yHL; 8i 2 B:

Consider an equilibrium �1 2 � (�) in which
�
yHH;1 � eyiLH (�1)� c� > 0 for

all As:When yHH;1�c > �; the population can get from � to �1 2 � (�) through
a sequence of single-mutations. At �1 let a single agent A mutate from yHH;k
to yHH;1 and let all agents B revise; as a consequence they will all choose H
and ask (VH � yHH;1). Therefore, the process enters a new equilibrium �0 where
�
�
�0
�
= fHH; yHH;1; VH � yHH;1g. Instead, when yHH;1� c � �, the inequality

yHL � c � 0 must hold for all As: Suppose a single A mutates from yHH;k to
y where y > yHH;k and let all agents B update: as a consequence they all will
choose L. Therefore, by a sequence of single mutations the process reaches a
new equilibrium �0 where �

�
�0
�
= fHL; yHL; VM � yHLg.

II.2) Now consider the case in which a single demand is made following
HH. When yHL � c � 0, the process can reach a new equilibrium �0 where
�
�
�0
�
= fHL; yHL; VM � yHLg by letting a single agent A mutate from yHH;1

to y where y > yHH;1 and all agents B to revise. When instead yHL � c < 0;
then: (a) since point (c) of Assumption 1 holds, the subgame (HL; VM � �) at �
is not reached; (b) yHH;1� eyiLH (�1)� c � 0 for every A. By drifting, all agents
B are led to accept the maximum feasible demand made by A in HL so that
a new equilibrium �1 is reached. Sure enough, �1 2 � (�). Suppose now that a
single agent A changes her demand from yHL to (VM � �). When all agents A
update, they observe that all Bs have accepted the demand (VM � �) ; therefore,
in HL their best response is yHL = VM � �. When all agents B update, they
will choose H being xHL = �: Hence, the process reaches equilibrium �0 where
�
�
�0
�
= fHH; yHH;1; VH � yH;1g.

III) Suppose now that all investment pro�les are observed at equilibrium �.
Since � is an equilibrium the following conditions must be satis�ed:

pB (�) (yHH;1 � yLH � c) + (1� pB (�)) (yHL � c) = 0

pA (�) (xHH;1 � xHL � c) + (1� pA (�)) (xLH � c) = 0:
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where yHH;1 = VH � xHH;k, yHL = VM � xHL and yLH = VM � xLH . We may
rewrite these conditions as

pB (�)A
0
1 + (1� pB (�))A02 = 0

pA (�)B
0
1 + (1� pA (�))B02 = 0:

We argue that when at least one of the expressions A02 and B
0
2 is not pos-

itive then the process, through a sequence of single-mutations, can reach one
equilibrium in which a smaller number of investment pro�les are realized. In
order to see this suppose, for instance, that A02 < 0; then, under assumption (2)
at � the subgame (HL; VM � �) is not reached. A drift can lead all agents B to
accept the maximum feasible demand of the opponent at HL. A new �1 2 � (�)
is then reached. Suppose now that at this new equilibrium a single agent A
mutates her demand from yHL to VM � �. When all agents A revise, they will
play H and will make a demand yHL = VM � �. Now let all agents B update.
Since each agent B knows that xHL = � and that all As have played H; then
her best reply depends on the sign of (xHH;1 � � � c). However, it is simple
to see that for whatever value of (xHH;1 � � � c), the process can reach a new
equilibrium in which a smaller number of investment pro�les is realized. If, at
this new equilibrium, two investment pro�les are realized, then the process can
reach an equilibrium which supports a single outcome by a further sequence of
single transition (see point II.2 above).
When both A02 and B

0
2 are positive, a single mutation occurring in population

A is enough to trigger a shift from � to a new equilibrium �0 where:

�
�
�0
�
= fLH; yLH ; VM � yLHg : (14)

In this case the mutation needed depends on how many demands are ob-
served at HH. In particular:
(i) when multiple demands are made at HH; it is enough for one agent A to

mutate from yHH;k to yHH;1;
(ii) when only one demand is made at HH it is enough for one agent A to

mutate from H to L;

IV) The remaining case occurs when 
 is not a singleton. Under the as-
sumption (2) at least one of the following two subgames (LH; VM � �) and
(HL; VM � �) is never reached. The same argument used above implies that
the population can get from 
 to �0 through a sequence of single-mutations.

Now consider game �DG. Some of the arguments above continue to work
with minor modi�cations. First of all, notice that yHL = xLH = VM � � in this
case. Therefore, it follows that: (a) in case II) the set of investments pro�les
supported by an equilibrium can either be fHH;HLg or fHH;LHg; (b) in case
III) both A02 and B

0
2 are positive; (c) case IV) does not arise.�

Proof of Lemma 5

25



Since in �DG the set �L is empty, the �rst point of the lemma hold only for
�UG.
(a) Let � be an equilibrium belonging to �L. From �; by a sequence of single

mutations, the process reaches a new equilibrium �� 2 � (�) in which for every
agent A and B it is true that: (i) eyiHH (��) = VH�xHH and (VH � xHH) > c+�;
(ii) at the subgame (LH; VM � �) each agent A accepts (i.e. she chooses �); (iii)exiHL (��) = � and exiHH (��) = xHH and xHH � �� c � 0. Suppose now, that an
agent B mutates by playing H and makes a demand VM � � in LH. When all
agents B update, they will choose H since all agents A have accepted demand
VM � �: Suppose now that all agents A revise. Since (VH � xHH) > c + �;
they will play H. Hence, the process reaches a new equilibrium �0 2 �H where
�
�
�0
�
= fHH; (VH � xHH) ; xHHg :

(b) Consider �UG and let � be an equilibrium belonging to �HL. At � the
pair of demands (yHL; VM � yHL) is observed. Suppose that yHL < VM ��. By
drifting, all agents B are led to accept the maximum feasible demand made by
A in HL and deem that all A make demand larger than (VH � c+ �) at HH:
A new equilibrium �1 is thus reached. Sure enough, �1 2 � (�). Suppose now
that a single agent A changes her demand from yHL to (VM � �). When all
agents A update, they observe that all Bs have accepted the demand (VM � �) ;
therefore, inHL their best response is yHL = VM��. When all agents B update,
since exiHH (�1) < c + � holds for all Bs, they continue to play L. Hence, the
process reaches a new equilibrium �0 2 �HL where �

�
�0
�
= fHL; (VM � �) ; �g.

From �0; by a sequence of single mutations, the process can reach an equilibrium
�� 2 �

�
�0
�
in which all agents A have beliefs such that: (i) eyiHH (��) = yHH ;

(ii) eyiLH (��) = �; (iii) �+ c < yHH < VH � c� �. Suppose now, that an agent B
mutates by playing H and making a demand (VH � yHH) in HH. Let all agents
B revise; they will choose H and ask (VH � yHH). When agents A update, the
process reaches a new equilibrium �0 2 �H in which the pair of demands is
(yHH ; VM � yHH). Of course, if yHL = VM � � then only the last sequence of
mutations is required. The same argument holds true for �DG with the caveat
that any equilibrium belonging to �HL supports the outcome (VM � �; �) only.
�

Proof of Lemma 6
Let � be an equilibrium belonging to �L. From �; by a sequence of single

mutations, the process can reach a new equilibrium �� 2 � (�) in which, for every
agent A it is true that at the subgame (LH; VM � yLH) each agent A accepts (i.e.
she chooses yLH) and eyiHH (��)�yLH�c < 0 but (VM � yLH)�c > 0. Suppose
now, that an agent B mutates by playing H and makes a demand VM � yLH
in LH. When all agents B update, they will choose H since population A
has accepted demand VM � yLH . Suppose now that all agents A revise. SinceeyiHH (��)�yLH�c < 0, they will continue to play L. Hence the process reaches a
new equilibrium �0 2 �LH in which the pair of demands is (yLH ; VM � yLH).�

Proof of Lemma 8
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Point (a). Consider some � 2 �IH and let fVH � x; xg be the observed pair
of demands. Note that �IH is always well de�ned under condition (6) : We
show that a single mutation transition is not enough to push the process into
the basin of attraction of a di¤erent equilibrium which does not belong to �IH :

I) First of all we show that a single mutation from H to L does not enable
the process to enter the basin of attraction of a di¤erent equilibrium, even if
each agent expects to receive: (i) the maximum payo¤ when she plays L but
the opponent still plays H; (ii) the minimum payo¤ when she plays H but the
opponent shifts to L. Let us consider this scenario and suppose that a B agent
had switched from H to L and all agents A revised. This updating does not
cause agents A to play L if

N � 1
N

[(VH � x� c)� (VM � �)] + 1

N
(� � c) > 0 (15)

which can be rewritten as

N � 1
N

(VH � x)� c >
N � 1
N

VM � �: (16)

Since x 2 [bxB ; bxA] then condition (16) holds by de�nition. Therefore no agent
A will change her action after the revision. Similar argument can be applied to
population B: Hence, a single mutation fromH to L does not trigger a transition
to a di¤erent equilibrium.

II) We now show that a single mutation from x to x0 (resp. from VH � x
to y0) does not enable the process to enter the basin of attraction of a di¤erent
equilibrium. Suppose each agent expects to get the maximum payo¤ when she
plays L and the opponent chooses H. Let one agent B only change her demand
to x0. Obviously, no agents B imitate the mutant when revising. Consider
population A and allow them to update. By Lemma (12) their best response is
either (VH � x) or (VH � x0).
If x0 > x, agent A expects to receive (VH � x) N�1N � c when she demands

(VH � x) and (VH � x0)�c when she demands (VH � x0) : It is simple to see that
under Assumption (3), the former payo¤ is greater than the latter. Hence, agents
A will not change their demand when updating. Moreover, since (VH � x) N�1N �
c � (VM � �), then updating will not cause agents A to play action L.
If x0 < x, agent A expects to get (VH � x)� c when she demands (VH � x)

and 1
N (VH � x

0)�c when she demands (VH � x0). It is simple to see that under
Assumption (3) the former payo¤ is greater than the latter. Hence, agents A
will not change their demand when updating. Moreover, since (VH � x) � c >
(VM � �) ; then updating will not cause agents A to play action L. The case
in which an agent A mutates from VH � x to y0 is symmetric. Hence, a single
mutation from x to x0(resp. from VH � x to y0) does not trigger a transition to
a di¤erent equilibrium.

Points I) and II) taken together say that, whatever single mutation we con-
sider, this does not trigger a transition from � 2 �IH to a di¤erent equilibrium

27



outside the set � (�). Indeed, the population returns to equilibrium �0 2 � (�)
as soon as the mutating agent revises.

Point (b). Consider some � 2 �CH and let fVH � x; xg be the observed
pair of demands. We show that a single mutation transition is enough to enter
the basin of attraction of an equilibrium �0 belonging to �L. In order to fully
describe the transition from � to �0, we have to take four cases into account :
(1) x > x�A; (2) x = x�A ; (3) x < x�B ; (4) x = x�B . Since cases (3) and (4)
are symmetric to case (1) and case (2) respectively, we will give proof for these
latter cases only.

Case (1): x > x�A:
At � the following inequality must hold:

Population A Population B

VH � x� c� eyiLH (�) � 0 x� c� exiHL (�) � 0
VH � x� c < VM � � x� c > VM � �:

(17)

From � the process can reach a new equilibrium �1 2 � (�) by a sequence of
single mutations, in which the following is true for every agent : (i) exiLH (�1) = �;
(ii) eyiHL (�1)� c < 0. Suppose an agent A mutates by playing L and accepting
the demand made by her opponent at LH. Let all agents A update. Since the
mutating agent receives VM � �; all As imitate and play L. When agents B
revise they will play L . The process then reaches a new equilibrium �0 2 �L.

Case (2): x = x�A :
At � the following inequality must hold for agents A:

VH � x�A � c = VM � � (18)

From �, the process can reach a new equilibrium �1 2 � (�) by a sequence of
single mutations, in which the following it is true for every agent: (i) exiLH (�1) =
xLH ; (ii) xLH � c < 0; (iii) eyiLH (�1) = (VM � �); (iv) eyiHL (�1)� c < 0: Suppose
an agent B mutates by demanding x0 > x�A at HH. When agents A update they
will all choose L since, for whatever best action at HH, the expected payo¤ by
playing H is now smaller than VM � �. When all agents B revise they will play
L . The process then reaches a new equilibrium �0 2 �L.

Point (c). Under condition (6) �IH is well de�ned. By a direct application
of previous point (b), along with point (e) of Lemma 5, it follows that from
� 2 �CH it is possible to reach b� 2 �IH through a sequence of single mutations.
�

The following two Lemmas are needed for the proof of Proposition 9. In the
text below we write �x as shorthand for an equilibrium belonging to �IH with
(VH � x; x) as distributional rule.
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Lemma 16 Consider �UG and let �x 2 �IH : The minimum number of muta-
tions required to get from � (�x) to an equilibrium which supports a di¤erent
investment pro�le is:

rA (x) =
�
N
�
1� VM��+c

x

��
if x < VH

2

rB (x) =
j
N
�
1� VM��+c

VH�x

�m
if x > VH

2

(19)

where bse denotes the least integer greater than s when s is not an integer and
(s+ 1) is otherwise.

Proof. Suppose p1 agents B mutate by playing L and p2 agents B mutate by
claiming x0 > x�A. For a given pair (p1; p2), agents A have the largest incentive to
change into L if their beliefs are such that: (i) they expect to get the maximum
payo¤ in an LH match ; (ii) they expect to obtain the minimum payo¤ in an
HL match . Consider equilibrium e�x 2 � (�x), in which the following applies
for all agents:(i); eyiLH = VM � � and eyiHL = �; (ii) exiLH = � and in the subgame
fHL; �g all agents B accept. When at e�x, some agents B mutate and these
mutations induce all agents A to play L, then the process enters the basin of
attraction of the equilibrium �0 2 �Lwith positive probability. Sure enough
after updating all agents A decide to play L if

N � p1
N

(VM � �) > �H
�e�x; p1; p2� (20)

where LHS is the expected payo¤ by playing L and RHS is the expected payo¤

by playing H. However, �H
�e�x; p1; p2� depends on what the best demand in a

match HH is. In particular

�H (:) =

8><>:
N�p2�p1

N (VH � x) + p1
N � � c if N�p2�p1

N�p1 (VH � x) � (VH � x0)

N�p1
N (VH � x0) + p1

N � � c if N�p2�p1
N�p1 (VH � x) < (VH � x0)

(21)
The minimum number of mutations in population B comes from the compar-

ison between the solutions of two constrained minimization problems. In both
problems, the objective function is p1+p2: In the �rst (resp. second) problem we
contemplate the case in which the best action in HH is VH �x0 (resp. VH �x).
Both problems require p1 = 0 as a solution. Moreover, pM1

2 = N
�
x0�x
VH�x

�
is the

solution to the �rst problem and pM2
2 = N

�
1� VM��+c

VH�x

�
is the solution to the

second. Since pM1
2 > pM2

2 ; the minimum number of mutations in population B
involves that: (i) mutating agents only change their demands in the HH pro�le;
(ii) these mutations cause agent A to shift to action L when the best action in
the HH match continues to be (VH � x). Hence:

rB (x) =

�
N

�
1� VM � � + c

VH � x

��
(22)
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and
rB = min

x
rB (x) = rB (bxA) : (23)

We now suppose that some agents A mutate. As before, two kinds of mu-
tations must be considered: p1 agents A mutate by playing L and p2 agents A
mutate by demanding (VH � x0) where x0 < x�B . In this case, we look for an
equilibrium b�x 2 � (�x) in which for all agents: (i) exiLH = � and exiHL = VM � �;
(ii) eyiHL = � and in the subgame fLH; �g all agents A accept. It is easy to see
that if some mutations of agents A occurs at b�x and these mutations induce all
agents B to play L; then the process enters the basin of attraction of equilibrium
�0 2 �L with positive probability.
After updating, all agents B decide to play L if

N � p1
N

(VM � �) > �H
�b�x; p1; p2� (24)

where

�H (:) =

8><>:
N�p2�p1

N x+ p1
N � � c if N�p2�p1

N�p1 x � x0

N�p1
N x0 + p1

N � � c if N�p2�p1
N�p1 x < x0:

Proceeding as before, the minimum number of mutations in population A is

rA (x) =

�
N

�
1� VM � � + c

x

��
(25)

and

rA = min
x
rA (x) = rA (bxB) (26)

By comparing (22) and (25) we obtain rB (x) < rA (x) if x > VH
2 : �

Lemma 17 For � su¢ ciently small, the minimum number of mutations needed
to get from � (�x) to an equilibrium with the same investment pro�le but di¤erent
demands is:

r+B (x) =
j
N
�

�
VH�x

�m
if x < VH

2

r�A (x) =
�
N
�
�
x

��
if x > VH

2

(27)

where r+B (x) is the number of mutations needed for the transition from � (�x)
to � (�x+�) whereas r

�
A (x) is the number of mutations needed for the transition

from � (�x) to � (�x��). Moreover, r
+
B (x) is a strictly increasing function of x

and r�A (x) is a strictly decreasing function of x.

Proof: By a direct application of Young (1993). �

Proof of Proposition 9
Before giving proof we will brie�y introduce the radius modi�ed coradius

criterion (Ellison, 2000). Let � be a union of limit sets (
) : Radius R (�) is the
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minimum number of mutations needed to escape from the basin of attraction of
� and enter into the basin of attraction of another one with positive probability.
Consider an arbitrary state � =2 � and let (z1; z2; ::; zT ) be a path from � to �
where 
1;
2; ::
r is the sequence of limit sets through which the path passes
consecutively. Obviously 
i =2 � for i < r and 
r � �. Furthermore, it may be
that a limit set can appear several times but not consecutively. The modi�ed
cost of this path is de�ned by:

c� (z1; :::; zT ) = c (z1; ::; zT )�
r�1X
i=2

R (
i)

where c (z1; ::; zT ) is the total number of mutations over the path (�; z1; z2; ::; zT ).
Let c� (�;�) be the minimal modi�ed cost for all paths from � to �. The modi�ed
coradius of the basin of attraction of � is then:

CR� (�) = max
�=2�

c� (�;�) :

Theorem 2 of Ellison (2000) shows that every union of limit sets � with R (�) >
CR� (�) encompasses all stochastically stable states.
From Lemmas 4, 5 and 8, points (b) and (c), we can deduce that for any


 =2 �IH the minimal modi�ed cost for all paths from � to �IH , is equal to one,
whatever the number of limit sets the path goes through may be. Therefore,
CR� (�IH) = 1. Since we know from point (a) of Lemma 8 that R (�IH) > 1;
by direct application of Ellison�s result it follows that all stochastically stable
states are included in �IH .
In order to �nd the stochastically stable outcome, we need: (i) the radius of

� (�), i.e. the smallest number of mutations required to destabilize the outcome
supported by �; 8� 2 �IH ; (ii) to �nd an equilibrium belonging to �IH such
that R (� (�)) > CR� (� (�)). All the details needed to compute R (� (�x)) for
every x 2 [bxB ; bxA] are given by Lemmas 16 and 17: In particular, Lemma 16
provides the minimum number of mutations required to make a transition from
� 2 �IH to �0 =2 �IH : Lemma 17 provides the minimum number of mutations
required to make a transition from � 2 �IH to another equilibrium supporting
the same investment pro�le HH, but a di¤erent distributional rule. Remember
that for any x 2 [bxB ; bxA] it is always true that

(VH � (x+ �))� c � VM � � (28)

and
(x� �)� c � VM � �: (29a)

Thus, from (28) and (29a) respectively we infer that:

r+B (x) � rB (x)

r�A (x) � rA (x) :
(30)
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For any x 2 [bxB ; bxA] ; it follows from Lemma (16) and Lemma (17) that

R (� (�x)) = r+B (x) if x < VH
2

R (� (�x)) = r�A (x) if x > VH
2 :

(31)

Let x � VH
2 and consider the set of equilibria � (�x). Let �x 2 �IH be an

equilibrium. When x < x, then the minimal modi�ed cost from �x to � (�x) is
associated with the path �x ! �x+� ! ::: ! �x�� ! � (�x) : Conversely, when
x > x, the minimal modi�ed costs is associated with path �x ! �x�� ! ::: !
�x+� ! � (�x) : Hence

c� (�x; � (�x)) = r+B (x) if x < VH
2

c� (�x; � (�x)) = r�A (x) if x > VH
2 :

(32)

By the monotonicity of r+B (x) and r
�
A (x) we obtain

CR� (� (�x)) = max
�
r+B (x� �) ; r

�
A (x+ �)

�
:

Since
R (� (�x)) = r

+
B (x) = r

�
A (x) > CR

� (� (�x)) (33)

it follows from Ellison (2000) that the only stochastically stable outcome is�
HH; VH2 ;

VH
2

	
: �

Proof of Lemma 10
Consider an equilibrium � 2 �H which satis�es condition (7). This implies

that:

(VH � x) N�1N � c > �

xN�1N � c > �:

Suppose that an agent A (resp. B) mutates by drifting her belief at LH
(resp. HL) to eyLH > VH � x � c (resp. exHL > x � c). Under this belief the
mutant chooses L. This implies that pro�le LH (resp. HL) is reached. Then
suppose all agents A (resp. B) revise. Since all agents B (resp. A) have claimed
(VM � �), then for all agents A (resp. B) we get eyiLH = � (resp. exiHL = �);
hence all agents A (resp. B) choose to play H. The process then returns to an
equilibrium �0 2 � (�).
Suppose that a single mutation occurs from x to x0. Obviously no agent B

imitates the mutant when updating. Allow all agents A to revise. By Lemma
12 their best response is either VH � x or VH � x0.
When x0 > x; agent A expects to receive (VH � x) N�1N �c by claiming VH�x

and VH �x0� c by asking VH �x0. Otherwise, when x0 < x; agent A expects to
receive VH�x�c by claiming VH�x and (VH � x0) 1N �c by asking VH�x

0. It is
simple to see that, whatever the relation between x and x0 is, under assumption
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(3) the best response continues to be VH � x. Since (VH � x) N�1N � c > � then
updating will not cause agents A to change investment action. �

A few de�nitions are necessary before giving the proof of Proposition 11; in
particular, letbxDB = min

�
x 2 D� (VH)jxN�1N � c � �

	
bxDA = max

�
x 2 D� (VH)j (VH � x) N�1N � c � �

	
and let �DIH =

�
� 2 �H j x 2

�bxDB ; bxDA�	 : Under assumption (3) it follows thatbxDB = 2� + c and bxDA = VH � 2� � c. Therefore the set �DIH is well-de�ned only
when bxDB < bxDA which can be translated into condition (8), i.e.

� <
VH � 2c
4

:

Since VH � 2c > 0 by assumption, then it is always possible to detect a
decreasing sequence of � which satis�es condition (8). This assures that the set
�DIH is always well-de�ned in �DG. Moreover, since for all equilibria � 2 �DIH
condition (7) is satis�ed, then Lemma (10) holds.

The following Lemma, which replaces Lemma 16, is needed for the proof of
Proposition 11. As before, by �x we denote an equilibrium belonging to �DIH
with (VH � x; x) as the distributional rule.

Lemma 18 Consider �DG and let �x 2 �DIH . The minimum number of mu-
tations required to get from � (�x) to an equilibrium which supports a di¤erent
investment pro�le is:

rA (x) =
�
N
�
1� �+c

x

��
rB (x) =

h
N
�
1� �+c

VH�x

�i (34)

where [s] denotes the least integer greater than s when s is not an integer and
(s+ 1) is otherwise.

Proof. We give proof for rB (x) only. Similar arguments can be used for
rA (x). Consider �x 2 �IH . Suppose p1 agents B mutate by playing L and p2
agents B mutate by claiming x0 > bxDA +�; let e�x be the resulting state. Suppose
these mutations induce all agents A to play L. With positive probability, the
process enters the basin of attraction of equilibrium �0 2 �LH only if updating
does not induce all agents A to return to play H. By eyLH , we denote the
expected payo¤ at LH of agents A, which is compatible with the assumption
that �x is an equilibrium.21 Sure enough, at e�x all agents A decide to play L if
after updating

N � p1
N

eyLH > �H �e�x; p1; p2� (35)

21 In particular eyLH must not be larger than (VH � x)� c.
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where the LHS is the expected payo¤ by playing L and the RHS is the expected

payo¤ by playing H. However, �H
�e�x; p1; p2� depends on the best demand in

an HH match. In particular

�H (:) =

8><>:
(N�p2�p1)(VH�x)

N + p1(VM��)
N � c if (N�p2�p1)(VH�x)

N�p1 � (VH � x0)

(N�p1)(VH�x0)
N + p1(VM��)

N � c if (N�p2�p1)(VH�x)
N�p1 < (VH � x0) :

(36)
Given eyLH ; the minimum number of mutations in population B are obtained

by solving two constrained minimization problems (M1 and M2). In both
problems, the objective function is p1 + p2: In M1 (resp. M2), we contemplate
the case in which the best action atHH is VH�x0 (resp. VH�x). Both problems
require p1 = 0 as a solution. Moreover, pM1

2 = N
�
x0�x
VH�x

�
is the solution of M1

for whatever value of eyLH , and pM2
2 (eyLH) = N �1� eyLH+c

VH�x

�
is the solution of

M2. Note that pM2
2 depends on eyLH : Suppose that pM2

2 (eyLH) agents B claim
x0 > x. By updating, all agents A play L so that only pro�le LH is observed.
Since all agents B claim VM � � then, after updating, all agents A learn thateyLH = �. This implies that no agent A has the incentive to play H if

N � pM2
2 (eyLH)
N

(VH � x)� c � �;

condition weakly satis�ed when

eyLH = �:
Therefore, in M2 the minimum number of mutations of agents B needed to
enter the basin of attraction of �0 from �x is

pM2
2 = N

�
1� � + c

VH � x

�
:

Since pM1
2 > pM2

2 ; the minimum number of mutations involves that: (i) mutating
agents only change their demands in the HH pro�le; (ii) these mutations cause
agent A to shift to action L when the best action in match HH continues to
be (VH � x) ;(iii) all agents A correctly anticipate the distribution occurring at
LH: Hence:

rB (x) =

�
N

�
1� � + c

VH � x

��
: (37)

�

Proof of Proposition 11
The proof proceeds along the lines previously used for �UG with few modi�-

cations. We know from Lemma 10 that, starting from � 2 �DIH ; more than one
mutation is required in order to enter the basin of attraction of one equilibrium
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which does not belong to �DIH . It is easy to observe that only bxDB�� and bxDA +�
can be supported respectively as distributional rule under �DCH = �H��DIH
Consider an equilibrium � 2 �DCH with bxDB � � as distributional rule and

suppose that a single mutation from bxDB � � to x0 > bxDB � � occurs. Allow all
agents A to revise. Since

�bxDB � �� N�1N � c is positive22 the best action at HH
continues to be bxDB��. However, given that �bxDB � �� N�1N �c < �, updating will
now cause agents A to change investment action and to play L. Therefore when
� 2 �CH one mutation is enough to leave � (�) and enter the basin of attraction
of �0; �0 2 (�HL [ �LH). Hence, from Lemmas 4 and 5, we can deduce that, for
any � =2 �DIH , the minimal modi�ed cost for all paths from � to �DIH is equal
to one, whatever the number of limit sets the path goes through. Therefore
CR�

�
�DIH

�
= 1. Since we know from point (a) of Lemma 10 that R

�
�DIH

�
> 1;

by a direct application of Ellison�s result it follows that all stochastically stable
states are included in �DIH . Concerning the radius of � (�) for every � 2 �DIH ,
Lemma 17 continues to hold but now Lemma 18 replaces Lemma 16. Since for
any x 2

�bxDB ; bxDA� it is always true that
r+B (x) � rB (x)

r�A (x) � rA (x) ;
(38)

the proof of Proposition 11 follows immediately by applying Theorem 2 of Ellison
(2000). �

22This follows from (3), (1) and assumption c > �.
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