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Dipartimento di Scienze Economiche, Università di Bologna, Strada Maggiore 45, 40125 Bologna, Italy

This version: February 2006

Abstract

In a two sectors, two regions economy I show that the higher increasing returns to
scale of an industry, the easier it will concentrate in response to natural advantage.
To this end, one sector is assumed to be perfectly competitive and the other is mo-
nopolistically competitive, with a region’s firms producing at a lower marginal cost
than the others in the monopolistic sector (or equivalently producing varieties more
intensely demanded by consumers). If capital is mobile between regions in the long
run, I analytically characterize the process of industrial location of the imperfectly
competitive sector in the region with the comparative advantage.

Keywords: Industrial location; monopolistic competition; intraindustry trade; cost
advantage; demand intensity.
JEL Classification: D43; F12; F21; L13; R12.

∗This paper is a revised version of Discussion Paper n. 40/2004 of the Department of Economics of the
University of Pisa. I would like to thank for many helpful suggestions Gianmarco Ottaviano, participants
to a lunch seminar in Bologna, to the 1st doctoral students Seminar held by Società Italiana di Economia e
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1 Introduction

This paper follows a well established tradition in economic theory by studying the interac-

tion between increasing returns and local market conditions in the joint determination of

trade patterns and firms’ location. The main issue this paper addresses is to establish how

exogenous variations in increasing returns to scale map into changes of location equilibria

and, consequently, trade patterns in a two regions world, where one of them has a compar-

ative advantage over the other in the production of imperfectly competitive commodities.

Since the comparative advantage descends from an exogenous technological difference in

the increasing returns to scale industry, I will refer interchangeably to the terms natural

advantage and comparative advantage. I will argue, in general terms speaking, that the

higher market power of firms in a given industry, the more sensitive they will be to local

market conditions. Local markets’ attractiveness can be defined with respect to several

dimensions: for instance, it could be defined in terms of the size of local demand, as in

Krugman (1980) and Venables (1987) trade models, or in terms of a local cost advantage,

within a one-factor-of-production Ricardian model, as in Venables (1987) again. In inves-

tigating how location and trade depend on the intensity of scale economies, when a region

has a natural advantage that leads to a comparative advantage, I then extend Venables

research.

Let us set up the model. Economic space is made of two regions hosting two sectors

which differ in the underlying market structure. The first is monopolistically competitive

and produces an array of horizontally differentiated varieties, while the other is a residual

sector, characterized by perfect competition, representing the rest of the economy. I assess

the emergence of different patterns of trade and location equilibria in the monopolistic

sector as a consequence of: a) a differential in marginal cost among firms according to

the region they belong to; b) a differential in the degree of competition in each region,

due to the difference in the number of firms in each local market; c) different degrees

of overall competitive pressure, measured by the total number of firms in the economy,

determined in turn by the degree of increasing returns to scale; d) the abandoning of
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the CES (Dixit-Stiglitz) monopolistic competition model, in favour of a linear demand

specification. Due to the linearity of the demand for differentiated varieties, we will show

that point a) is amenable to an interpretation in terms of different intensities of demands

for the differentiated products, according to the region where they are manufactured.

The perfectly competitive sector is characterized by constant returns to scale. The

monopolistically competitive sector is modelled according to a quadratic specification cast

in an economic geography setting by Ottaviano, Tabuchi, and Thisse (2002). This sector

can be thought to be manufacturing. The absence of strategic interaction among firms

makes monopolistic competition particularly suited to capture market structure prevailing

in traditional sectors as textiles, clothing, and food processing.

After having derived short-run trade equilibria, we make the hypothesis that capital is

mobile between regions in the long run, and flows where the rental rate is higher. I build

on Ottaviano et al. (2002) and Behrens (2004, 2005) modelling. While their papers are

full-fledged core-periphery (CP henceforth) models (what is mobile there are workers that

locate where indirect utility is higher) I assume the mobility of capital towards locations

where the rental rate is higher. The main contribution of the present paper is to add to

the picture exogenous asymmetries between the two regions, and to see how they interact

with increasing returns to scale in shaping the space economy. I model asymmetries as

stemming either from a cost advantage of producing in region A over region B, or from

a demand premium that varieties manufactured in A enjoys with respect to B products.

The linearity of the demand functions then ensures that, from the point of view of the

individual firm, profit functions in the two circumstances are analytically equivalent, giving

to our problem a twofold interpretation.

The basic set up employed in this paper then follows what is known in the economic

geography literature under the headings of footloose capital model (Martin and Rogers,

1995, Ottaviano, 2001, Baldwin et al., 2003), FC model hereafter. The model choice is

dictated by the need of building a framework not too far from standard trade models, such

that labour is immobile but capital and firms are mobile, thus easing the comparison of
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our results to those of the trade literature. The differences between CP and FC models

are thoroughly analyzed in Baldwin et al. (2003). For our purposes it suffices to stress the

following. In a CP setting the mobile factor is labour, so that its migration induces also

an expenditure shifting in the region where migration occurs, because people spend their

earnings where they live. On the contrary, in a FC model the mobile factor is capital,

whose rewards are repatriated to capital owners who are immobile in the two regions.

Due to this fundamental difference, the FC model does not show circular causality (self-

reinforcement) in agglomeration, and is more tractable analytically.1

As already shown in Behrens (2005), the linear demand model gives rise to asymmetric

trade patterns when the two regions differ in the number of firms located, with one region

hosting significantly more firms than the other. The idea is that when many firms are

located in a region it is difficult to penetrate its market. The possibility of asymmetric

trade patterns is a realistic feature being inevitably lost under the CES Dixit-Stiglitz spec-

ification when both regions host a positive share of firms. Introducing cost (or demand)

asymmetries among the two regions, so that the more crowded region produces at a lower

cost, strengthens the tendency of asymmetric patterns to arise. If they want to export

to the other region, firms in the high cost one have to overcome the cost disadvantage as

well. This makes the range of two-way trade smaller.

As argued in Behrens (2004), the choice of including or not in the computation of the

price index of a given region varieties not traded in equilibrium is sometimes essential

for the resulting equilibrium. This is precisely the case under the weighted quadratic

utility specification of Tabuchi and Thisse (2002). If different ways of computing the

price index in a given region yield different results, the equivalency between price and

quantity competition should a fortiori be invalid in trade models with non-traded varieties,

and this is a striking difference with respect to baseline specifications of monopolistic

competition models. I argue that, in Behrens model, price competition and a special
1Another possible comparison could be carried out between the FC model and the footloose entrepreneur

model (see Baldwin et al., chapter 4). I prefer to stick to the comparison with the CP model since previous

literature on asymmetric trade in economic geography was about CP models.
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assumption he makes about prices of non-traded commodities are indeed equivalent to

assume quantity competition. This feature gives to Behrens conjecture more strength with

respect to competing hypotheses about the formation of the price index. All subsequent

calculations in this paper are derived consistently with quantity setting, since it simplifies

computations.

The paper is organized as follows. In section 2 we present the model. In section 3 we

compute the short-run equilibrium of the economy (for a fixed spatial distribution of firms)

distinguishing among different trade patterns. Afterwards (section 4) we let capital going

where the rental rate is higher. In some cases, which we analytically characterize, full

agglomeration of the manufacturing sector in one region will be the long-run equilibrium.

Section 5 focuses on the link between location, trade surplus, and scale economies in the

presence of natural advantage.

2 The model

The model developed in this paper is in various manners linked to other works in the eco-

nomic geography literature. The closest relatives are Belleflamme et al. (2000), Ottaviano

et al. (2002), and Behrens (2004, 2005). The economy is made of two regions s = {A,B}

of equal size, and two sectors: a monopolistically competitive sector, producing an array

of differentiated varieties, and a perfectly competitive sector producing a homogeneous

good 0, which we may think of as a composite commodity summarizing the rest of the

economy.

2.1 Consumer’s behaviour

The representative consumer in the two regions shares the same preferences and maximizes

the following utility function:

U(q0, x(j)) = ξ

∫
j∈N

x(j)dj − 1− ω

2

∫
j∈N

[x(j)]2dj − ω

2

[∫
j∈N

x(j)dj
]2

+ q0 (1)
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Parameters in the utility function are ξ > 0 and 0 ≤ ω ≤ 1. The set of varieties is

S = {j|j ∈ [0, N ]}. They are uniformly distributed on [0, N ], with N being the total mass

of the monopolistic sector.2 The parameter ξ is a proxy for the intensity of preference

for the differentiated good. The higher ξ, the higher this preference. The parameter ω

represents the degree of product differentiation among varieties. When ω approaches zero

varieties are so much differentiated that they can be thought to belong to completely

different sectors (total utility is simply additive in the utility derived from each good and

the inverse demand function of each variety, derived later, only depends on the quantity

demanded of that same variety), while ω equal to 1 represents perfectly homogeneous

products.

We assume that the representative consumer in region s is endowed with Ks units of

capital and L units of labour, with labour supply L being equal in the two regions. Income

comes from the rental rate of capital and wage.

The budget constraint of the representative individual in region A can be written as∫
j∈nA

p(j)x(j)dj +
∫

j∈nB

p(j)x(j)dj + p0q0 = wAL + max{rA, rB}KA (2)

where p(j) is the price of a variety, x(j) is the quantity demanded, wA is wage in region

A, rA is the rental rate of capital in region A, and rB rental rate in region B. Consumers

will allocate capital in the region where the prevailing return is higher. We distinguish

between varieties produced in region A (whose mass is nA), and varieties produced in

region B (whose mass in nB). The quasilinear structure of U(·) implies that consumption

of commodity 0 is the residual of what is spent on the monopolistic sector. Consequently,

provided income is high enough so to allow a positive consumption of good 0 in equilibrium,

every further increase in income corresponds to an equal increase in the consumption of

the agricultural commodity, not affecting the demand for the differentiated varieties in

manufacturing.
2In Vives (1990) and Belleflamme et al. (2000) the total mass of the monopolistically competitive

sector N is normalized to 1. We do not use this normalization because N will turn to be one of the key

parameters of the model.
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After having plugged the budget constraint in the utility function, maximization yields

inverse demand functions. Inverse demand for a variety j ∈ nA produced in A and sold in

A is

pAA(j)
p0

= ξ − (1− ω)xAA(j)− ωXA (3)

where xAA(j) is demand for variety j and

XA =
∫

j∈nA

xAA(j)dj +
∫

j∈nB

xAB(j)dj

is total demand for the monopolistic sector from consumers located in region A, consisting

of varieties manufactured both in region A and in region B. A variety j ∈ nB produced

in B but sold in A has an inverse demand equal to

pAB(j)
p0

= ξ − (1− ω)xAB(j)− ωXA (4)

where variables have the same interpretation as above. Similar expressions can be derived

for products sold in market B.

2.2 Labour market

L is employed as a variable input either in manufacturing or in agriculture, and the

supply of labour is perfectly elastic between sectors. In manufacturing, cs units of labour

are needed for each unit of output, and this labour requirement differs in the two regions,

that is cA 6= cB. This assumption wants to capture the fact that there are locations

where productivity of labour in manufacturing is higher. Turning to the production of

the homogeneous good, it is carried out under constant returns to scale, with unit labour

requirement equal across the two regions and set equal to one by an appropriate choice

of scale. A positive amount of labour is employed in sector 0 because labour supply

is assumed to be high enough so to cover all input requirements of the differentiated

commodity sector. Constant returns to scale ensure that wage in sector 0 is equal to the

exogenously fixed price p0. Since labour market is assumed to be in equilibrium, wA = p0.

If wA ≷ p0 workers would move from one sector to the other until equality in the wage
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rates is reached due to perfect elasticity of supply. Total numeraire production Q0 in

region A is then

Q0 ≡ L−
∫

j∈nA

cAx(j)dj.

2.3 Firms’ behaviour

Firms play a two-stages game. In the first stage they establish in each region, up to the

point clearing capital market. Each plant requires φ units of capital for functioning. By

an appropriate choice of scale, each plant’s capital requirement can indeed be normalized

to one (entry cost). In this case, the mass of firms will exactly equal the mass of capital

available in that region at a given moment.3 In the second stage there is market competi-

tion. As said earlier, cs units of labour are needed to produce one unit of the differentiated

output, and this marginal cost differs across regions. Markets are segmented, so that each

firm sets the strategic variable (price or quantity) in each regional market in which it

operates. Notice that exporting in the foreign region requires t units of good 0 for each

unit of output. Total profits of a representative A firm are then:

ΘA(i)
p0

=
[
pAA(i)

p0
− cA

]
xAA(i) +

[
pBA(i)

p0
− cA − t

]
xBA(i)− rA

p0

We substitute inverse demands (3) and (4) in the profit function. We do so because

we assume that firms maximize profits with respect to quantities. As claimed by Vives

(1990), in a model of monopolistic competition maximization with respect to prices or

quantities brings the same results, since the individual firm behaves as a monopolist on

the residual demand. The equivalency could possibly fail in a trade model like ours if trade

does not take place actually, because transport costs are too high, and a positive foreign

demand does not correspond to a price greater or equal to costs. In this case firms may

be thought to set a fictional price abroad, even if demand at this price is zero, and this
3This is the same assumption made in Martin and Rogers (1995). As they do, we will introduce two

different time horizons. In the short run capital available in each region equals the capital endowment of

the representative consumer in that region (Ks = ns). In the long run capital flows freely from one region

to the other, so that the only equality that has to hold is KA + KB = N .
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could prevent the equivalency. In Behrens (2004), when a firm does not sell in the foreign

market, because transport costs are too high, it will ”set the lowest possible price for which

this [foreign] demand is zero”.4 These fictional prices enter the foreign region’s price index,

even if the corresponding varieties are not actually traded. Including or not such prices

affect the resulting equilibrium. If one were to include in the price index only the prices of

varieties actually exported in equilibrium,5 the equilibrium would in general be different.6

In Appendix 7.1 I show that, employing Behrens fictional pricing rule, price and quantity

setting are perfectly equivalent. On this ground, his conjecture about the formation of the

price index is to be preferred because it preserves the distinctive property of monopolistic

competition models, that is the equivalency of price and quantity competition. Using a

quantity index, the output of a firm enters the index only if it is a strictly positive quantity

(i.e. only if the variety is effectively traded).

Solving the model with respect to quantities, and substituting inverse demand func-

tions, profits for a firm in A are:

ΘA(i)
p0

= [ξ − (1− ω)xAA(i)− ωXA − cA]xAA(i)+

+ [ξ − (1− ω)xBA(i)− ωXB − cA − t]xBA(i)− rA

p0
(5)

Given that each firm is negligible with respect to aggregate quantities, a change in output

in one of them leaves unchanged the output index XA. A similar expression can be derived

for profits of a firm in B.

3 Short-run equilibrium

In the short run capital is immobile so that the number of firms located in each region

is fixed and equal to the capital endowment of residents. In the first stage of the game,

free entry and exit imply that there is a bidding process for available capital in both
4See Appendix A in Behrens (2004).
5This is done by Tabuchi and Thisse (2002).
6See Appendix B in Behrens (2004).
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regions so that the rental rate equalizes operating profits. We now introduce the following

assumption.

Assumption 1. Throughout the paper, cA < cB, and θ ≡ cB − cA.

This is the formalization of the idea of comparative advantage of region A in the pro-

duction of varieties belonging to the monopolistic sector, while region B has a comparative

advantage in the production of the homogeneous good. The parameter θ is the fixed cost

differential. As to the number of firms located in the short run in the two regions, we

restrict to the case nA > nB. This is not restrictive at all: as it will be clear below,

given the properties of the model, in the long-run equilibrium region A will always end

up with more varieties (i.e. firms) than region B. Notice that assuming that low cost

region A hosts less firms than B would not be interesting because producing in A would

be unconditionally more profitable in the short run.7

In addition, as mentioned earlier, there is another interpretation to our set up. Due to

the linearity of demand, the cost disadvantage of region B is equivalent to an upward shift

of the intercept of the demand function for region A products with respect to region B,

with firms in both regions incurring the same marginal cost of production, as an inspection

of the objective function (5) shows. Recovering the underlying preference structure, it is

U(q0, x(j)) =

ξ

∫
j∈nA

x(j)dj + (ξ − θ)
∫

j∈nB

x(j)dj − 1− ω

2

∫
j∈N

[x(j)]2dj − ω

2

[∫
j∈N

x(j)dj
]2

+ q0

Asymmetric trade patterns are then the by-product of an asymmetry in tastes, with

the region having a stronger preference for its products hosting at the same time more

firms.

Remark. In the profit function (5), the cost differential θ is analytically equivalent to an

upward shift equal to θ of the intercept of demand functions for A varieties with respect to

B.
7This is true in terms of operating profits. It applies also to total profits if overhead and setup production

costs, others than the fixed cost for capital, are null or equal across the two regions.
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In the model we work with, production side parameters have an equivalent interpreta-

tion in terms of preference parameters. This is so because in both ways we measure the

incentives of producing a good (either in the sense that making it wastes few resources or

in the sense that utility consumers derive from it is high). Without loss of generality, we

make the following substitutions:

η ≡ ξ − cA, η − θ = ξ − cB

Firms in A maximize profits with respect to xAA(j) and xBA(j), taking as given quantity

indices XA and XB. The adoption of the Nash equilibrium solution implies that each firm

takes as given individual output of rival firms and consequently total market output Xs.

Equilibrium quantity of a firm located in A and selling to consumers in A is

x∗AA =
η − ωXA

2(1− ω)
(6)

As to the quantity sold by firms located in A to consumers in B we have

x∗BA =
η − t− ωXB

2(1− ω)
(7)

Expressions pertaining to firms in B can be derived similarly.

Let us initially consider the case where the two markets overlap, with firms in A

exporting to B, and firms in B exporting to A (two-way trade). Total output in market

A at equilibrium is:

XA = nAx∗AA + nBx∗AB

where we used the symmetry of the model to say that

xAA(i) = xAA(j) ∀i, j ∈ nA, i 6= j

xAB(i) = xAB(j) ∀i, j ∈ nB, i 6= j

The equilibrium values are:

x∗AA =
2η(1− ω) + ωnB(θ + t)
2(1− ω)(2− 2ω + ωN)

x∗AB =
2(η − θ − t)(1− ω)− ωnA(θ + t)

2(1− ω)(2− 2ω + ωN)
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At equilibrium, quantities sold in market B are:

x∗BB =
2(η − θ)(1− ω)− ωnA(θ − t)

2(1− ω)(2− 2ω + ωN)

x∗BA =
2(η − t)(1− ω)− ωnB(t− θ)

2(1− ω)(2− 2ω + ωN)

We see the role of the comparative cost (or demand) advantage and competitive pres-

sure (proxied by nA and nB) computing the relative share of export from a firm in A with

respect to a firm in B,

x∗BA

x∗AB

=
2(η − t)(1− ω)− ωnB(t− θ)

2(η − θ − t)(1− ω)− ωnA(θ + t)
> 1

meaning that firms located in region A export more than their counterparts in region

B. There are two elements bringing this result: the cost advantage, and the fact that

nA > nB. Let us consider the case where θ = 0, and nA = nB. The ratio x∗BA/x∗AB would

be then equal to 1. If nA > nB, a firm in A exports more: even if firms in A have no

a priori advantage, they face less competition when exporting to market B because less

firms are located there.8 As soon as there is a comparative advantage of A firms (θ > 0),

the ratio x∗BA/x∗AB gets even bigger. Turning to equilibrium delivered prices, p∗BA and

p∗AB, after some straightforward algebra it is possible to show that

p∗BA

p∗AB

> 1

meaning that prices charged by firms located in A for market B are higher than those

charged by B firms for market A. The explanation is that even though the quantity sold

by each exporting firm is higher in market B than in market A (x∗BA > x∗AB), market A

as a whole is bigger than market B (XA > XB in equilibrium), this depressing prices in A

with respect to B. As a result, region A is a net exporter of the differentiated commodity

(nAp∗BAx∗BA > nBp∗ABx∗AB).

8When a firm located in A exports to B it has to face a greater number of competitors from the same

region (nA > nB) than a firm in B which exports to market A. However, due to transport costs, the

pressure exerted by domestic competitors in the export region (i.e. B) is relatively more important in

determining firms’ relative profitability.
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Focusing on the ratio of domestic production of each firm in the two regions,

x∗AA

x∗BB

=
2η(1− ω) + ωnB(θ + t)

2(η − θ)(1− ω)− ωnA(θ − t)

we have that this ratio could be higher, lower, or equal to 1 according to the parameters

of the model. When θ = 0, and nA = nB, then x∗AA/x∗BB = 1. If nA > nB, and θ = 0

then x∗AA/x∗BB < 1 because firms in A face more domestic competitors than firms in B.

The same holds if θ is sufficiently small. On the contrary, when θ is high enough, the

competition effect is offset by the technological (or demand) effect, and domestic output

of a firm in A will be higher than output of a firm in B.

3.1 Trade patterns

We now determine the different trade patterns that arise in our linear demand monopolistic

competition model. The analysis of trade patterns other than two-way trade has already

been carried out in a core-periphery setting by Behrens (2004, 2005), without asymmetries.

The aim of this section is to stress the role played by the total mass of the monopolistic

sector N , which is an endogenous parameter determined by the availability of capital in

the economy on the one side, and increasing returns to scale on the other. The total mass

of firms can be written as N = (KA + KB)/φ. The higher the total mass N , the tougher

competition will be. Since we normalized the fixed capital requirement of firms φ to 1, a

higher value for N stands for less capital required to set up a firm, so that returns to scale

are less intense.

We proceed imposing the non-negativity of equilibrium quantities x∗AA, x∗BA, x∗BB, and

x∗AB, and then we consider all possible configurations to get the full characterization of

short-run trade patterns. The share of firms in region A is λ ≡ nA/N .

Firms in A always produce a positive quantity of the monopolistic good for their

domestic market, because it is always true that x∗AA > 0.

We concentrate now on exports of A firms to B. If t > η, x∗BA < 0 for every λ. When

θ < t < η, x∗BA > 0 if the share of B firms is small enough relatively to the total:

λ > 1− 2(η − t)(1− ω)
ωN(t− θ)

≡ νBA (8)
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When the share of firms in B is high enough, export to region B is blockaded. By

assumption, the number of firms in region A is greater than the number of firms in B, so

that admissible values are λ ∈ (1/2, 1). Hence νBA will be binding if it belongs to (1/2, 1).

This is verified when the total mass N is

N >
4(η − t)(1− ω)

ω(t− θ)
≡ NBA

On the contrary, for N < NBA, the threshold νBA is less than 1/2, it is not binding, and

export to B is always possible under our assumptions. Finally, when t < θ, A firms export

for every λ.

We pass on to deriving conditions for firms located in region B. They always sell a

positive quantity in their domestic market if t > θ. If transport costs are greater than the

cost differential, firms in B, producing under less favourable terms, will be protected in

their domestic market, because the disadvantage they have is more than offset by barriers

to trade. If t < θ, x∗BB > 0 if

λ <
2(η − θ)(1− ω)

ωN(θ − t)
≡ νBB (9)

that is relatively few firms are located in A. The intuition is that when many competitors

have a cost advantage (many firms are located in A) the competitive pressure exerted by

A firms hinders domestic production in region B. Conversely, if λ is small, there are few

competitors producing at a lower cost. The threshold νBB belongs to the interval (1/2, 1)

when the total mass of firms is

NBB < N < 2NBB

where

NBB ≡ 2(η − θ)(1− ω)
ω(θ − t)

with νBB > 1 for N < NBB (νBB > 1/2 for N < 2NBB). If the total mass of firms N

is less than NBB, competitive pressure is softened, allowing a positive (i.e. profitable)

production of B firms in their domestic market whatever the spatial distribution is. If N
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exceeds 2NBB, the fact that xBB be positive is not compatible with the assumption that

λ > 1/2.

Firms in B cannot export a positive quantity to A as long as t > η − θ. If t < η − θ,

x∗AB > 0 provided

λ <
2(η − θ − t)(1− ω)

ωN(θ + t)
≡ νAB (10)

We have that νAB ∈ (1/2, 1) when

NAB < N < 2NAB

where

NAB ≡ 2(η − θ − t)(1− ω)
ω(θ + t)

with νAB > 1 for N < NAB (νAB > 1/2 for N < 2NAB).

Two cases should be distinguished at this point: the cost advantage of region A could

be high (respectively low), if θ > η−θ (respectively θ < η−θ). In terms of asymmetries of

the demand functions, the intercept of the demand for B products η − θ could be smaller

(respectively bigger) than the difference θ between the two intercepts. In what follows we

stick to the following assumption.

Assumption 2. The cost advantage θ is such that θ < η − θ.

The analysis could be carried out without substantial changes to the results for the

case θ > η− θ as well, but for simplicity it is carried out only in one case. Moreover, if we

interpret the model as one featuring taste asymmetries, it is preferable to assume that the

difference between the intercepts of the demand functions (θ) be smaller than the smallest

intercept (η − θ).

First we consider autarchy, the case involving no-trade among the two regions.

Lemma 1. Autarchy constitutes the short-run equilibrium if one of the following condi-

tions is satisfied:

i) t > η;

ii) θ < t < η, with N > NBA and λ ≤ νBA.
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Proof. Point i) is easily derived. As to point ii), autarchy is the short-run equilibrium

only if N > NBA, that is only when x∗BA could be zero. Both for θ < η − θ < t < η, and

for θ < t < η − θ < η, this is true if λ ≤ νBA and N > NAB. Since 2NAB < NBA, when

N > NBA x∗AB is zero.

Under one-way trade firms in A supply domestic and foreign markets, while firms in

B supply their domestic market only. There is an asymmetry in trade relations.

Lemma 2. One-way trade constitutes the short-run equilibrium if one of the following

conditions is satisfied:

i) for η − θ < t < η, N < NBA; or N > NBA and λ > νBA;

ii) for θ < t < η − θ, NAB < N < 2NAB and λ ≥ νAB; or 2NAB < N < NBA; or

N > NBA and λ > νBA;

iii) for t < θ, NAB < N < 2NAB and νAB ≤ λ < νBB; or 2NAB < N < 2NBB and

λ < νBB.

Proof. Let us start from t > θ. Remember again that NBA > 2NAB. Then simply

consider all the combinations of N and λ ensuring that x∗BA > 0 and x∗AB = 0.

When t < θ, it is possible to show that NBB > NAB. Nothing can be said about the

ordering among NBB and 2NAB and the threshold νBB becomes redundant when it is

greater than 1 (think for example of a case where 2NAB < N < NBB).

We now characterize two-way trade, when both regions trade with each other.

Lemma 3. Two-way trade constitutes the short-run equilibrium for t < η − θ, and N <

NAB; or NAB < N < 2NAB and λ < νAB.

Proof. We derive conditions making the quantity sold abroad by B firms, x∗AB, positive

either for θ < t < η − θ, or t < θ < η − θ. Two-way trade is possible for every admissible

λ when N < NAB. When the total mass is NAB < N < 2NAB, for two-way trade to be

possible it has to be λ < νAB. As to the quantity x∗BB, it will be always positive under

the conditions stated in the proposition: it suffices to remind that NAB < NBB (implying

trivially 2NAB < 2NBB) and νAB < νBB.

16



As mentioned earlier, the role played by N , and scale economies has often been ne-

glected in the literature. Notice that when NAB < N < 2NAB, the share of firms located

in A should not exceed the threshold νAB if we want two-way trade to be feasible. If this

were not the case, then it would be prohibitive to export to region A for B firms, due

to toughness of competition. If the total mass of the monopolistic sector exceeds 2NAB,

two-way trade is impossible, since profits’ margins will be compressed by the large num-

ber of firms, and B firms will not be able to export under the assumption that λ > 1/2.9

Belleflamme et al. (2000) in their paper restrict attention to two-way trade. The only con-

dition imposed concerns the level of transport costs t, that should be sufficiently low, and

they normalize the total mass N to 1. By Lemma 3, the relative share λ could be ignored

only if N < NAB (which corresponds to NAB > 1 in their setting). If NAB < N < 2NAB,

as the agglomeration process of firms in region A unfolds, when λ reaches νAB two-way

trade is no longer sustainable, and the short-run equilibrium consists of one-way trade.10

We say that in region B a process of deindustrialization has occurred when it is not

possible for a firm operating in B to make non-negative profits.

Lemma 4. Short-run equilibrium involves deindustrialization of region B for t < θ,

NBB < N < 2NBB and λ ≥ νBB; or N ≥ 2NBB.

To appreciate the economic meaning, let us focus on the cost of products that could

be sold in market B. The fact that t < θ, means that the total cost for A firms (cA + t)

of a product sold in region B is lower than the cost incurred by B firms themselves

(cB). If N ≥ 2NBB, only A firms are capable of being in the market, assuming a spatial

distribution λ ∈ (1/2, 1).
9When N ≥ 2NBB , firms in B cannot profitably produce even for their domestic market, see below

Lemma 4.
10Even if our model is not equivalent to Belleflamme et al., because we assume that the cost differential

is fixed, what they do is hence to assume implicitly that N ≡ 1 < NAB ,

NAB > 1⇔ 2(η − θ − t)(1− ω) > ω(θ + t)

which is an additional parameters’ restriction that should be indicated explicitly.
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Equilibrium prices can be derived simply substituting equilibrium quantities in (3)

and (4). Conditions for the non-negativity of mark-ups (p∗AA − cA) and (p∗BA − cA − t)

coincide with those for equilibrium quantities x∗AA, x∗BA so that non-negativity of mark-ups

is implied by non-negativity of quantities (the same applies for firms in B).

4 Long-run equilibrium

Bidding for available capital determines the equality between equilibrium operating profits,

Π∗
s, and the rental rate in the short run, r∗s/p0 = Π∗

s, for a given spatial distribution of

firms.11 In the long run capital is mobile between regions so that the spatial distribution of

firms is no longer equal to the initial endowment of capital in A and B. Capital flows occur

in response to the differential in the equilibrium rental rate r∗A(λ)− r∗B(λ), determined in

the short-run. When the differential is positive capital goes from region B to region A.

Viceversa, when the differential is negative, capital flows out of A into B.

For every trade pattern we identified, we argue about existence, uniqueness and con-

vergence to the equilibrium distribution λ∗, so that rA(λ∗) = rB(λ∗), in the sections below.

If an interior equilibrium is reached, operating profits in the two regions will be equalized

as well, Π∗
A = Π∗

B. In other terms, individuals look first for investment opportunities in

the local market (which fixes the rental rate at operating profits in that region), then they

look abroad, causing the exit of firms in the local market and the subsequent entry in the

foreign one if the rental rate obtained there is higher (which determines equality of rental

rates and operating profits across regions).

In what follows we compare operating profits in the two regions under different trade

patterns. Our goal is to establish which firms are performing better, whether those located

in A or in B, as a function of the total mass of the monopolistic sector N , and the spatial

distribution λ. Once having obtained these results, it is possible to determine the long-run

outcome of the economy, under the assumption that capital is invested where interest rate
11Competition in capital market drives the rental rate down to operating profits because of free entry of

firms hiring capital.
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is higher.

4.1 Autarchy

Under autarchy, operating profits of a variety i ∈ [0, ns] produced in s ∈ {A,B} are

Πs(i) = [ξ − (1− ω)xs(i)− ωXs − cs]xs(i)

where total output under autarchy in region s is equal to

Xs =
∫

j∈ns

x(j)dj

Equilibrium output x∗s is:

x∗s =
ξ − cs

2(1− ω) + ωns
(11)

and correspondingly equilibrium price is

p∗s
p0

=
(1− ω)(ξ + cs) + csnsω

2(1− ω) + ωns

Profits are finally

Π∗
s =

(1− ω)(ξ − cs)2

[2(1− ω) + ωns]2
(12)

Proposition 1. When differentiated varieties are not traded (see Lemma 1), Π∗
A > Π∗

B

if:

i) N < NU , where

NU ≡ 2θ(1− ω)
ω(η − θ)

and every λ;

ii) N > NU and λ < λU , where

λU ≡ 2θ(1− ω) + ωηN

ωN(2η − θ)

with λU being the long-run spatial equilibrium.

Proof. Solving the inequality Π∗
A > Π∗

B leads to the condition

ω[(η − θ)nA − ηnB] < 2θ(1− ω)

19



that, after having substituted nA ≡ λN , and nB ≡ (1− λ)N , is equivalent to

λ <
2θ(1− ω) + ωηN

ωN(2η − θ)
≡ λU (13)

When λ = λU it immediately descends that Π∗
A = Π∗

B. It is easy to argue about stability

of the long-run equilibrium, since (12) is monotonically decreasing in ns. Assuming that

N < NU , where

NU =
2θ(1− ω)
ω(η − θ)

makes λU bigger than 1, so that Π∗
A > Π∗

B for every λ and the equilibrium involves full

agglomeration of the manufacturing sector in region A, provided conditions in Lemma 1

are fulfilled.

The proposition says that a long-run equilibrium involving partial agglomeration exists

only if the total mass of the monopolistic sector is greater than NU . The economic intuition

of this result is the following. When the total mass of firms N is small, and scale economies

are strong, firms in A will make higher profits for every admissible λ, because of the cost

advantage θ: region A is sufficiently attractive to host the whole manufacturing sector.

On the other hand, if N is large, then the whole manufacturing sector could not locate

entirely in A, still doing better than an isolated firm in B. In this case the actual spatial

distribution of firms will matter for profitability, and the fraction of firms in A should be

small enough to get Π∗
A > Π∗

B.

Two components related to the degree of competition affect profitability: the first

is overall competitive pressure, measured by N , being a measure of increasing returns

to scale; the second is local competitive pressure, measured by λ. The bigger the cost

advantage θ, the larger the values of N , and the lower scale economies intensity, under

which we get full agglomeration. Similarly to NU , also λU increases as θ rises. A partially

agglomerated stable spatial equilibria under autarchy is also found in Behrens (2004).

We now proceed to show how the same kind of reasoning applies to the other trade

regimes.
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4.2 One-way trade

Under one-way trade, firms located in region B do not make positive export to A. The

output index in region A is then XA =
∫
j∈nA

xAA(j)dj. Substituting in (6), and employing

the symmetry of the model, the equilibrium quantity x∗AA is

x∗AA =
η

2(1− ω) + ωnA

equal to (11), the quantity sold in region A under autarchy. As in a situation without trade

at all, firms in A are protected against competition coming from foreign firms, and they

behave in the same way of autarchy in the local market. This makes the home component

of profits equal to autarchy profits. Profits of A firms are also made of a component

coming from abroad, making total profits equal to:

Π∗
A = Πh

A + Πf
A =

(1− ω)η2

[2(1− ω) + ωnA]2
+

[2(η − t)(1− ω) + ωnB(θ − t)]2

4(1− ω)(2− 2ω + ωN)2
. (14)

This is the sum of home profits (Πh
A) and foreign profits (Πf

A). Profits of firms in B are

Π∗
B = Πh

B =
[2(η − θ)(1− ω)− ωnA(θ − t)]2

4(1− ω)(2− 2ω + ωN)2
(15)

corresponding just to the home component.

A sufficient condition for A profits to be greater than B profits is t < θ, which turns to

be true under case iii) of Lemma 2. If the cost (or demand intensity) advantage of region

A is greater than transport costs, markets are relatively well integrated and location in A

allows higher profits regardless of the spatial distribution.

When t > θ, I am not able to provide a closed-form solution for λO, the long-run

spatial equilibrium such that Π∗
A(λO) = Π∗

B(λO), and Π∗
A(λ) ≷ Π∗

B(λ) for every λ ≶ λO.

Nonetheless in Appendix 7.2 I prove that, whenever this value exists, it is unique. Results

are summarized in the proposition that follows.

Proposition 2. When one-way trade is established (see Lemma 2), Π∗
A > Π∗

B if t < θ. If

t > θ, we have one of the following cases:

i) If N < NO, where

NO ≡ 2(1− ω)
ω(t− θ)

(√
η2 + (η − t)2 − η + θ

)
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Π∗
A > Π∗

B for every λ.

ii) If N > NO, and the long-run spatial equilibrium λO exists, then there exists a

unique λO, and Π∗
A ≷ Π∗

B for λ ≶ λO.

iii) If N > NO, and λO does not exist, then Π∗
A < Π∗

B.

Proof. See Appendix 7.2.

Under one-way trade and t > θ, several configurations are possible in the short run,

with firms in A performing better than firms in B, or, viceversa, firms in B doing better

than in A. If λO does not exist, and in the Appendix I state when this is the case,

one-way trade cannot be a stable long-run outcome of the economy: we have either full

agglomeration (point i) in the proposition) or transition to another trade pattern (point

iii)).

If λO exists, then the interior equilibrium will be stable. Behrens (2005) shows that

partial agglomeration is unstable as soon as one-way trade emerges. This contrasts our

result about the stability of λO, provided its existence. The reason lies in the fact that

in this paper the only mobile factor is capital, while consumers-workers stay put in their

regions of residence. In other words, our model lacks the strong agglomeration forces

typical of the core-periphery setting.12 In the CP model of Behrens (2005) migration of

workers generates both demand-linked circular causality (migration generates expenditure

shifting by workers, which generates in turn production shifting, and this determines

more migration to fulfill firms’ fixed costs requirements) and cost-linked circular causality

(a higher mass of differentiated products is available where production is concentrated,

and workers find more convenient to locate there to save on trade costs), whereas in our

FC model, these effects are not present.

The existence of a stable λO in our framework highlights once more that the type of

spatial equilibrium depends on the type of factor that moves across regions, and it makes

a difference assuming that capital, instead of labour, is mobile.
12See Chapter 3 in Baldwin et al. (2003) for a comparison of FC and CP models.
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4.3 Two-way trade

From Lemma 3, two-way trade is possible only if t < η − θ. At the same time, the total

number of firms in the economy has to satisfy the conditions N < NAB; or NAB < N <

2NAB, and λ < νAB. Profits of firms in A are

Π∗
A = Πh

A + Πf
A =

[2η(1− ω) + ωnB(θ + t)]2 + [2(η − t)(1− ω) + ωnB(θ − t)]2

4(1− ω)(2− 2ω + ωN)2
(16)

while profits of firms in B are

Π∗
B = Πh

B + Πf
B =

[2(η − θ)(1− ω)− ωnA(θ − t)]2 + [2(η − θ − t)(1− ω)− ωnA(θ + t)]2

4(1− ω)(2− 2ω + ωN)2

(17)

made up of a home component and a foreign component. The following proposition

explains the relative profitability of firms in the two regions as a function of the total mass

N and the share λ.

Proposition 3. When two-way trade is established (see Lemma 3), Π∗
A > Π∗

B if t < θ. If

θ < t < η − θ one of the following conditions has to be satisfied:

i) N < NT , where

NT =
2θ(1− ω)(2η − t− θ)

ω(θ2 + t2)

and every λ;

ii) N > NT and λ < λT , where

λT ≡ 1
2

+
1
2

NT

N

with λT being the long-run spatial equilibrium of the economy.

Proof. If t < θ, it is easy to see that Π∗
A > Π∗

B. If θ < t < η − θ, comparing (16) and

(17), A profits are greater than B profits if

nA − nB <
2θ(1− ω)(2η − t− θ)

ω(θ2 + t2)
≡ NT (18)

which could be expressed in terms of λ and N as

λ <
1
2

+
1
2

NT

N
≡ λT
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The threshold λT is lower than one as long as N > NT . The stability of the long-run

equilibrium in this case is ensured by the fact that profits are monotonic in λ under two-

way trade. When N < NT we have full agglomeration in A, provided conditions in Lemma

3 are fulfilled.

If the total mass of firms is big enough, this guarantees the existence of a spatial dis-

tribution making better off firms in B in the short run. The long-run behaviour of the

economy depends as usual on the assumption that capital flows where the interest rate is

higher, with the interest rate equal to operating profits, and a long-run equilibrium with

partial agglomeration and bilateral trade exists. This is not the case in the CP setting

of Ottaviano et al. (2002), where the equilibrium is either symmetric or involves full

agglomeration in one region. As in the previous trade patterns, the partially agglomer-

ated nature of the equilibrium does not depend on the cost asymmetry only. Keeping

fixed θ, depending on N , so on the strength of returns to scale, we have different spatial

configurations.

The effect played by N is similar to the one present in CP models: a lower N (higher

increasing returns to scale) makes full agglomeration more likely. The explanation is

partially different. In CP models stronger scale economies (higher fixed costs) imply that

firms’ relocation will involve a considerable amount of demand shifting, due to workers’

migration, this enhancing circular causality. Since in a FC model there is no demand

shifting, our context retains just one effect of returns to scale: the higher fixed costs, the

lower the total mass of firms, the lower overall competitive pressure, the higher mark-ups

and profits, so that firms more easily establish in the region with the location advantage

because they are influenced less intensely by the presence of the other competitors.

4.4 Full versus partial agglomeration in the long run

We now characterize in terms of the parameters’ values, and in terms of the total mass

of the monopolistically competitive sector the emergence of full agglomeration of manu-

facturing in region A. We give conditions so that, starting from a short-run equilibrium
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involving a positive share of firms in B, capital eventually becomes employed solely in

region A.

Lemma 5. Full agglomeration of the manufacturing sector in region A is the long-run

equilibrium of the economy whenever one of the following conditions is met:

i) t > η and N < NU ;

ii) η − θ < t < η, and N < NO;

iii) θ < t < η − θ, and N < NAB; or NAB < N < NT < 2NAB (equivalently

NAB < N < 2NAB < NT ), and N < NO; or λT > νAB if NT < N < 2NAB, and

N < NO;

iv) t < θ.

Proof. See Appendix 7.3.

Summarizing the results, we can say that when t > θ, that is transport costs are greater

than the cost advantage of A, full agglomeration in the long run of the manufacturing sector

requires that the total mass of firms in the economy be sufficiently small. If this is not

the case then the long-run equilibrium of the economy involves partial agglomeration only.

Analytically this requires that N be less than NU and NO under autarchy and one-way

trade respectively. When transport costs allow the emergence of two-way trade (point

iii)) the conditions are more elaborated, essentially due to the fact that full agglomeration

can be reached either directly (N < NAB) or transiting across one-way trade first. In the

latter case, the conditions in the proposition guarantee two things: that two-way trade be

not the long-run equilibrium of the economy, and that once one-way trade is reached as a

result of migration of firms to region A it cannot be a long-run equilibrium either (which

is the case if N < NO). Finally, if t < θ, comparative advantage of region A is strong and

full agglomeration of the manufacturing sector will be the long-run equilibrium whatever

the total mass of the monopolistically competitive sector is. We have then proved the

following proposition.

Proposition 4. Full agglomeration of manufacturing in a single region can be the out-

come of two situations: i) strong natural advantage of a region over the other; ii) moderate
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natural advantage but strong increasing returns to scale in the sector undergoing agglom-

eration.

In addition, a clear-cut implication this paper shares with other economic geography

models is that sufficiently low transport costs foster full agglomeration of the monopolis-

tically competitive sector in the more productive region (∂NO/∂t < 0 and ∂NAB/∂t < 0).

5 Natural Advantage Effect and Home Market Effect

The analysis of location equilibria of the mobile manufacturing industry in relation to the

degree of increasing returns to scale can be easily carried out under partial agglomeration

either. We state as follows a property of interior equilibria common to all the trade

patterns we identified.

Proposition 5. When trade is allowed between regions, region A is a net exporter of the

differentiated commodity. If the long-run equilibrium involves only partial agglomeration

of firms in the region with the natural advantage, the equilibrium share of firms in region

A is a decreasing function of increasing returns to scale.

Proof. We have already shown that region A is a net exporter of the differentiated

commodity under two-way trade (see section 3). The statement is also trivially true under

one-way trade.

Then we need to show that ∂λp/∂N < 0, with p = {U,O, T}. While the proof

is straightforward in the case of λU and λT , since we managed to express them in closed

form, it is slightly more complicated for the equilibrium under one-way trade. Considering

the definition of λO,

Π∗
A(λO, N) = Π∗

B(λO, N)

and totally differentiating, one gets

dλ

dN

∣∣∣∣
λ=λO

=
∂Π∗

B(λO, N)/∂N − ∂Π∗
A(λO, N)/∂N

∂Π∗
A(λO, N)/∂λ− ∂Π∗

B(λO, N)/∂λ
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The numerator of this fraction is positive (see the expressions of Π∗
A and Π∗

B under one-way

trade) while the denominator is negative (see the characterization of Π∗
A and Π∗

B contained

in Appendix 7.2).

Natural advantage makes region A more attractive than B, and since a higher mass

of firms is located in A, it becomes tougher for B firms to export in A, this leading to a

trade surplus for region A. Moreover, the lower increasing returns to scale, the higher the

endogenous equilibrium number of firms in the economy N , the lower the market power

enjoyed by firms, the more sensitive they will be to the presence of other competitors in

the same region, due to the presence of transport costs. In other words, when increasing

returns to scale are strong (low N), firms will care little about the presence of other

firms in region A, and this facilitates the process of spatial clustering in that region.

When N is high they will be more sensitive to competition and a higher share of them

will cluster in B, even at the expense of higher production costs. I call the interaction

among imperfect competition and natural advantage Natural Advantage Effect (NAE).

The fact that cost advantage in a region makes that region a net exporter of differentiated

products in a Ricardian framework has been previously analyzed, within a CES Dixit-

Stiglitz monopolistic competition model, by Venables (1987). The result of Proposition

5 adds to Venables paper by working out, in a different monopolistic competition model,

how variations in scale economies affect the equilibrium distribution of firms between the

two regions, something that in the context of Venables model is a difficult task.13

The reasoning about NAE shares a lot with the well-known Home Market Effect (HME)

by Krugman (1980).

Definition. The Home Market Effect implies that the region with the larger number of

consumers of an industry’s goods will be a net exporter of those goods. Keeping constant

the size of the Home market compared to the Foreign one, the share of firms located in the

Home market decreases as the intensity of increasing returns to scale diminishes.
13I tried to analytically characterize in Venables (1987) how variations in increasing returns to scale,

captured by the parameter ε, modified the relative share of firms located in the two regions, but I was not

successful.
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The firs part of the definition is formalized in Krugman (1980). It is also straight-

forward to derive the second part of the definition from Krugman paper.14 The channel

through which HME operates is precisely the same of NAE, that is market power, so that

monopolistically competitive industries are sensitive to local market conditions, and the

sensitiveness rises along with the strength of increasing returns. The only difference is

that while HME is defined with respect to the local market demand size, NAE is defined

with respect to the local market natural advantage.15

5.1 Discussion of testable implications

A testable implication of this paper is that variations in the degree of increasing returns to

scale in some industries should map into changes of the concentration of those industries

in the regions with a natural advantage. From a cross-sectional perspective, industries

with higher increasing returns to scale will be more concentrated, keeping fixed the cost

differential among two regions. Since we have proved that the marginal effect of θ is

increased by a lower N , in a regression explaining the share of industry located in a region

we would interact the variable capturing natural advantage with a proxy measuring scale

economies. If our model is correct, we expect that the coefficient on this interacted variable

be negative.

6 Conclusion

This work focused on cost and competitive asymmetries among regions shaping differ-

ent trade patterns at various levels of transport costs. We derived analytical conditions
14Let us consider expression (25), p. 957, in Krugman (1980). The relative number of varieties produced

in Home region with respect to those produced in the Foreign one, n/n∗, equivalent in our paper to

λ/(1 − λ), is equal to (L/L∗ − σ)/(1 − σL/L∗). L is the dimension of Home market, while L∗ is the

dimension of Foreign market, L > L∗. The parameter σ is an index of the importance of scale economies:

the lower σ, the lower the importance of scale economies. It is easy to show that d(n/n∗)/dσ > 0, when

both regions host a positive share of the monopolistic sector.
15One may wonder at this point whether the peculiar monopolistic competition model I considered

exhibits HME itself. The answer is affirmative, and this is proved in Head et al. (2000).
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ensuring full agglomeration in the long run of the monopolistically competitive sector in

the region where production is cheaper or, alternatively, where more intensely demanded

varieties are manufactured. We proved that if scale economies are sufficiently strong a

single region hosts the whole sector, because firms take advantage of the better produc-

tion conditions while not suffering excessively from the presence of the other competitors.

When scale economies are weak, both regions host a positive share of the industry, and

we derived several possible trade patterns as a function of the parameters. The share of

firms in the region with the natural advantage is increasing in scale economies. Finally,

our model yields a testable implication that could undergo a falsification test through

appropriate empirical work.

7 Appendix

7.1 Equivalency of quantity and price setting under the pricing rule in

Behrens (2004)

In Appendix A in Beherens (2004) it is shown that in order to achieve the equivalency

between the perceived demand function and the realized demand function in the linear

demand model it is sufficient to assume a particular pricing rule for varieties not traded

in equilibrium.

The perceived demand function is the solution to maximization of utility function (1)

under the budget constraint, that we call maximization problem PQ:

(PQ)


max U(q0, x(j))

s.t.
∫ N

0
p(j)x(j)dj + q0 = φ0

Substituting directly the equality constraint and computing the first order conditions yield

the following system of equations for the differentiated varieties:

ξ − (1− ω)x(i)− ω

∫ N

0
x(j)dj − p(i) = 0, i ∈ [0, N ]. (19)
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The system is solved giving

x∗(i) ≡ ξ

1 + ω(N − 1)
− 1

1− ω
p(i) +

ω

(1− ω)[1 + (N − 1)ω]

∫ N

0
p(j)dj (20)

For sufficiently high values of p(i) the term x∗(i) could be negative. Since the quantity

demanded of a variety is non-negative by definition, we get that the perceived demand

function of variety i, x̃∗(i), is x̃∗(i) = max{0, x∗(i)}. Demand is indeed zero when x∗(i) ≤

0, that is

p(i) > p̄(i) ≡ ξ(1− ω)
1 + (N − 1)ω

+
ω

1 + (N − 1)ω

∫ N

0
p(j)dj

and x̃∗(i) = x∗(i) = 0 for p(i) = p̄(i). Hence p̄(i) is the smallest price making the perceived

demand equal to zero (see Figure 1).

[Figure 1 about here]

It can be shown that the solution to PQ is in general different from the solution to the

following maximization problem, taking into account explicitly non-negativity constraints

on the quantity consumed of each variety:

(PQE)


max U(q0, x(j))

s.t.
∫ N

0
p(j)x(j)dj + q0 = φ0, x(i) ≥ 0, i ∈ [0, N ]

Following Behrens (2004), the lagrangian associated to this optimization problem gives

the Karush-Kuhn-Tucker conditions

ξ − (1− ω)x(i)− ω

∫ N

0
x(i)di− p(i) + µ(i) = 0, i ∈ [0, N ] (21)

µ(i) ≥ 0, x(i) ≥ 0, i ∈ [0, N ] and
∫ N

0
µ(i)x(i)di = 0 (22)

and realized demand functions are then

x∗(i) =
ξ

1 + ω(N − 1)
− 1

1− ω
[p(i)− µ(i)] +

ω

(1− ω)[1 + (N − 1)ω]

∫ N

0
[p(j)− µ(j)]dj

where µ(i) are the multipliers.

Behrens demonstrates that if firms set p̄(i) abroad whenever they do not export, per-

ceived and realized demands coincide. Our purpose it to show that this equivalency could
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be achieved directly making the behavioural assumption that firms set quantities. Ac-

tually in this case the dependent variable in the demand functions has to be p(i). The

perceived demand is

p(i) = ξ − (1− ω)x(i)− ω

∫ N

0
x(i)di

while the realized demand is

p(i) = ξ − (1− ω)x(i)− ω

∫ N

0
x(i)di + µ(i)

It is straightforward to see that the two demand functions always coincide as long as µ ≡ 0,

which is a necessary condition to get equivalency between the two optimization problems

(if µ(i) 6= 0 for some i the equivalency never holds). Moreover when µ ≡ 0 conditions (21)

and (22) reduces to (19).

7.2 Proof of Proposition 2

Step 1 (Non-monotonicity of Π∗
A(λ)). We substitute in (14) and (15) the expressions

nA ≡ λN , and nB ≡ (1 − λ)N . First of all we determine whether, under one-way trade

and t > θ, Π∗
A(λ) and Π∗

B(λ) are strictly monotonic in λ. It is easy to see that Π∗
B is

increasing in λ.

The function Π∗
A(λ) is non-monotone. First of all notice that ∂Πh

A/∂λ < 0. Then

we have that ∂Πf
A/∂λ ≥ 0 (both quantity x∗BA and price p∗BA are non-decreasing in λ).

Moreover ∂Πf
A(λ, t)/∂λ = 0 when t = {θ, tsup}, where tsup is the maximum value of

transport costs compatible with one-way trade for a given λ (derived making explicit in

(8) transport costs t). The function ∂Πf
A(λ, t)/∂λ has a unique maximum in t, computed

equalizing to zero its derivative, let it be tmax. Then if

∂Πh
A(λ)
∂λ

+
∂Πf

A(λ, t)
∂λ

∣∣∣∣∣
t=tmax

< 0, (23)

∂Π∗
A(λ, t)/∂λ < 0 for every admissible t. Actually it turns out that (23) is less than zero

if and only if the following condition is verified:

η2

[2(1− ω) + ωλN ]3
>

(η − θ)2

4(2− 2ω + ωN)2[2− 2ω + ω(1− λ)N ]
(24)
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Consequently (24) does not hold when λ is sufficiently close to one and θ is small. In such

a case profits of firms located in region A increase as the share of firms in A increases,

because the rise in profits coming from the foreign region more than offset the fall in the

home component. The function Π∗
A can be first decreasing and then increasing in λ as it

tends to 1, provided that t is in a neighborhood of tmax.

Step 2 (Uniqueness of λO). We demonstrate the following two properties. They turn to

be useful when dealing with existence and uniqueness of λO.

Property P1. The first is that

∂Π∗
B(λ, t)
∂λ

∣∣∣∣
λ=1

−
∂Π∗

A(λ, t)
∂λ

∣∣∣∣
λ=1

> 0. (25)

Computing (25), we get the following condition:

Nωφ(ω)
2(1− ω)(2− 2ω + ωN)3

> 0,

where φ(ω) is a parabola with upward concavity and imaginary roots, so that it is always

positive.

Property P2. The second property we are interested in is that ∂2Π∗
A/∂λ∂λ > 0,

meaning that Π∗
A is a convex function.

Taken together, these two properties ensure that whenever Π∗
B(λ) crosses Π∗

A(λ) it will

do it only once: provided λO exists in an admissible range of λ, it will be unique.

Step 3 (Cases of non-existence of λO). Π∗
A(λ) and Π∗

B(λ) are continuous functions on

λ ∈ (1/2, 1], but existence of λO is not always guaranteed. The first case of non-existence

is when Π∗
A(1) > Π∗

B(1). Given properties in Step 2, this is also a necessary and suffi-

cient condition for Π∗
A(λ) to be greater than Π∗

B(λ) for every admissible λ. Solving the

inequality, Π∗
A(1) > Π∗

B(1) if N < NO, where

NO ≡ 2(1− ω)
ω(t− θ)

(√
η2 + (η − t)2 − η + θ

)
.

Other cases of non-existence are when Π∗
B(λ) lies above Π∗

A(λ) for every admissible λ.

In particular, it could be the case that, even though Π∗
A(λ) and Π∗

B(λ) intersect at some
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λ ∈ (1/2, 1], this point does not satisfy constraints νAB, or νBA under points i) and ii) in

Lemma 2. When this is the case, in the long run we have transition from one-way trade

to two-way trade (λ < νAB) or autarchy (λ ≤ νBA).

7.3 Proof of Proposition 5

I prove separately each point in the statement of the proposition.

Point i). The proof descends from Lemma 1 and Proposition 1 and corresponds to full

agglomeration with non-tradeable varieties.

Point ii). If θ < t < η and we are in the short-run autarchic equilibrium (point ii) in

Lemma 1), full agglomeration is not possible because no-trade requires that λ ≤ νBA < 1,

while full agglomeration obviously entails λ = 1. Full agglomeration cannot be reached

unless transiting across the one-way trade short-run equilibrium.

With one-way trade and η − θ < t < η (point i) of Lemma 2), Proposition 2 requires

that N < NO. Notice that NO < NBA. This can be checked solving the corresponding

inequality, and arriving at a point where it is straightforward to see that√
η2 + (η − t)2 < 2η − t < 3η − t− θ

When the total mass of firms is less than NO then full agglomeration takes place.

Point iii). When θ < t < η−θ, we could be either in a one-way or a two-way short-run

equilibrium. Two-way short-run equilibrium occurs under conditions in Lemma 3. By

Proposition 3, if N < NT then Π∗
A > Π∗

B for every λ. If N < NAB, two-way trade is

the short-run equilibrium for every share λ. We prove that whenever N < NAB we get

full agglomeration, since NT − NAB > 0. Solving this inequality is equivalent to solve

f(θ) > 0, where f(θ) is equal to

f(θ) = (η − t)θ2 + 2tηθ − t2(η − t) (26)

The function f(θ) is a parabola in θ with upward concavity, with two negative roots. Since

all admissible values of θ are greater than zero, f(θ) will be positive in this range, implying

that NT −NAB > 0.
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For NAB < N < 2NAB, two-way trade arises only if λ < νAB, and full agglomeration in

the long run can be reached only through transition to short-run one-way trade equilibrium

(λ ≥ νAB, see point ii) in Lemma 2). With one-way trade, we recall that a necessary

condition for complete agglomeration is N < NO.

Transition to one-way trade happens if two-way trade is not a long-run equilibrium,

which turns to be true in the following cases. The first case is when NAB < N < NT <

2NAB (equivalently NAB < N < 2NAB < NT ), this making profits in A greater than in

B for every λ under two-way trade. Consequently, λ rises until the economy experiences

one-way trade. The second case is when NAB < NT < N < 2NAB, so that an equilibrium

distribution λT exists. In such a case two-way trade equilibrium is impossible only if

λT ≥ νAB. Again, there will be a switching to one-way trade before the equilibrium share

λT could be reached.

Point iv). When t < θ, the short-run equilibrium depends on the total mass of firms

N . Let us first consider short-run one-way trade (iii) in Lemma 2). Profits in A are

higher than in B by Proposition 2. As capital moves to region A (λ rises) we have

deindustrialization of B provided N > NBB. Actually when λ becomes greater or equal

to νBB profits of firms in B are non-positive. Consequently all the residual capital in B

is suddenly diverted towards region A, and this ensures complete agglomeration in A. If

N < NBB, firms in B make positive profits for every λ but profits made in A are higher

and full agglomeration is attained again.

Consider short-run two-way trade of Lemma 3. If NAB < N < 2NAB, as the fraction

of firms in A rises, we go back to one-way trade (νAB ≤ λ < νBB), and so it applies what

we said earlier, that is full agglomeration is always the long-run outcome. If N < NAB,

being in A is always more profitable, and in the long-run the whole manufacturing sector

will be concentrated in this region.
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Figure 1: The perceived demand function x̃∗(i).
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