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Abstract

I analyse two differential games describing electoral campaigns where two
candidates invest so as to increase the number of their respective voters. In
both cases, parties overinvest and the number of voters is larger than in the
social optimum. I extend both models to n candidates, so as to derive the
socially optimal number of candidates. This yields non-univocal results, in
that the number of candidates maximising social welfare when a benevolent
planner controls their efforts may be higher or lower than the optimal num-
ber of candidates given the non-cooperative investment behaviour of parties,
according to the shape of cost functions and the dynamic behaviour of con-
sensus associated with investments.
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1 Introduction

The aim of this paper consists in formalising electoral competition as a dif-
ferential game where parties invest resources in the electoral campaign so as
to increase the consensus for their respective candidates. T'wo parties non-
cooperatively invest or a finite horizon, with elections taking place at the
terminal date, when the candidate receiveng the highest consensus wins the
office. The campaigning activity is characterised by external effects, in the
sense that part of each candidate’s investment spills over to rivals. To model
parties’ investments during the campaign, two alternative technologies are
considered. One involves a quadratic costs of investment at each point in
time, while the amount of consensus evolves linearly over time. The other
involves a linear cost of investment at each point in time, with decreasing re-
turns to investment characterising the intertemporal evolution of consensus.

This setup allows me to address the following issues. First, whether par-
ties invest too much in the electoral campaign as compared to what would
be socially efficient. Relatedly, the second issue is whether maximising the
number of voters (i.e., collective participation to the polls) is a sensible mea-
sure of welfare in such a setting, or not. This problem can be reformulated in
equivalent but perhaps clearer terms by asking whether it is necessarily true
that “the more people express their political opinions, the merrier we are”.
Indeed, the models presented in the remainder of the paper point to the op-
posite conclusion, as it appears that, since increasing the overall number of
voters is costly, a social planner would maximise collective welfare by invest-
ing less in the electoral campaign, and having consequently a smaller number
of voters at equilibrium, as compared to the private optimum generated by
the non-cooperative behaviour of parties.

A third issue is whether it is possible to establish what the optimal number
of parties should be, on welfare grounds. To address this topic, I generalise
the model to account for n parties, and assume for simplicity that all of them
are a priori symmetric. Then, two alternative situations are envisaged. The
first is social planning, where a benevolent dictator controls the advertising
investment of each party, and maximises the collective steady state welfare
level w.r.t. n. This is the first best solution. The second scenario is a private
equilibrium driven by individual incentives, with the planner controlling only
the number of parties, this being a second best solution. The answer of the
model is not clear-cut. In general, the outcome is sentitive to the relative
size of parameters as well as to the specific functional form assumed for the



dynamics of accumulation of consensus. In particular:

e If the investment technology is characterised by quadratic instanta-
neous costs of investment, the socially optimal number of parties is
higher (respectively, lower) than the number of parties at the second
best solution, if the spillover effect is sufficiently large (low).

e If the investment technology is characterised by linear instantaneous
costs of investment, the socially optimal number of parties is always
lower than the number of parties at the second best, independently of
the size of spillover effects.

The ensuing analysis is carried out by using dynamic models where the
open-loop solution is subgame perfect. This is appealing since it means that
agents rely upon simple decision rules adopted the very outset, and then
strictly abided by along the game, as they are strictly time consistent.

The remainder of the paper is organised as follows. Section 2 briefly
discusses the related literature. The basic setup is laid out in section 3. The
alternative two-party models are investigated in sections 4-5. Sections 6-7
extend the analysis of both models to the case of n parties. Section 8 contains
concluding remarks.

2 Relation to the literature

Issues like the cost of campaigning, the search for funds, the value of incum-
bency and their relation with the outcome of elections have received a large
amount of attention by economists and political scientists alike (Jacobsen,
1978, 1980, 1987; Baron, 1989; Abramovitz, 1991; Austen-Smith, 1995; An-
derson and Prusa, 2001, to mention only a few). Indeed, Federal Election
Commission data reveal the striking relevance of money in politics in general
and electoral campaigns in particular. Candidates raising little or no money
have negligible, if any, chances of winning.

To the best of my knowledge, this topics have never been explicitly put in
relation with two connected streams of literature which are very familiar to

!The present paper shares this problem with the literature on economic policy. On
this, as well as the growing attention to the interplay between economics and politics, see
Persson and Tabellini (2000).



industrial economists, namely those dealing with advertising and R&D ac-
tivities. Both kinds of investment relate to rent seeking behaviour, and they
have been investigated extensively with and without uncertainty.? Firms
carry out advertising and R&D to acquire a dominat position on the market,
either by increasing market share or by improving production technology.
In doing so, some of each firm’s effort spills over to rivals (see Brander and
Spencer, 1983; Dixon, 1985).> Profit incentives may give rise to overinvest-
ment or underinvestment as compared to the social optimum, depending
upon the shape of downstream market competition.*

Electoral campaigns share many fundamental features with advertising
campaigns and R&D races. Increasing consensus through costly investments
is formally equivalent to acquiring a dominant market position through ad-
vertising or R&D either in process or in product innovation. In doing so,
each party may waste some amount of resources to the benefit of rivals, and
the optimal investment effort as well as the outcome of elections will depend
upon the size of such external effects. The only relevant difference is that
the electoral campaign has a terminal date which is known a priori, while
R&D races end at some uncertain date in the future, as soon as the first
innovator obtains the new technology or product, and advertising campaigns
may never end at all.

3 Setup and definitions

Consider a two-party system where each party has a candidate racing for the
presidential office (or premiership), and elections are expected with certainty
at date T. Over t € [0,T], each party invests in an advertising campaign so
as to increase the number of votes to its candidate. Instantaneous investment
is k;(t) while the number of votes, or the measure of consensus, is x;(t). In
the jargon of optimal control theory, k;(t) is the control variable while x;(t)

?Dynamic R&D races under uncertainty are in Reinganum (1981, 1982a), Harris and
Vickers (1985, 1987). A deterministic differential game of R&D is in Cellini and Lam-
bertini (2001). Comprehensive surveys on dynamic models of advertising can be found in
Jorgensen (1982), Feichtinger, Hartl and Sethi (1994), Dockner, Jorgensen, Van Long and
Sorger (2000).

3 Advertising is often thought of as being a public good, in that firms may experience
difficulties in internalising its beneficial effects (see Friedman, 1983; Fershtman, 1984;
Fershtman and Nitzan, 1991).

*For exhaustive accounts, see Tirole (1988), Reinganum (1989) and Martin (1993).



is the state variable.’
In the remainder of the paper, I will investigate two different dynamic
equations for the state variable z;(t).

Model I Candidate #’'s consensus evolves according to:

ot

= ki(t) — sk;(t) — ox; (1)

where s € [0,1] is a negative spillover from candidate j's investment
onto candidate i's consensus, and ¢ € [0, 1] is a constant depreciation
rate. This is a slightly modified version of an advertising model de-
scribed in Leitmann and Schmitendorf (1978) and Feichtinger (1983).

The gross instantaneous utility associated with consensus x;(t) is 3,z;(t),
B; > 0, while the instantaneous cost of investment is

Cilt) = 5 [k (t)) (2)

Therefore, candidate ¢ aims at maximising

= [ e Bt - SIOP e+ e S ()] (3

under the constraint (1). The term e TS [z; (T)] is the discounted
scrap (or terminal) value of the state at the terminal date 7'

Model II Candidate #’s consensus evolves according to:

ot

= \/ki(t) — sk;(t) — ox; (4)

The gross instantaneous utility associated with consensus x;(t) is 3,z;(t),
B; > 0. In this case, the instantaneous cost of investment is C;(t) =
ck;(t). The discounted scrap value of the state at the terminal date T'
is e 1S [z; (T)].

5In the present setting, the political platforms of parties is left unspecified. This issue is
detailedly addressed in the literature using the spatial approach to multiparty competition.
See Bartholdi, Narasimhan and Tovey (1991), Page, Kollman and Miller (1993), Anderson,
Kats and Thisse (1994), Weber (1998), Adams (1999, 2000) Ansolabehere and Snyder
(2000), inter alia.



The main difference between model I on one side and model II on the other
is in the way decreasing returns to advertising expenditure are introduced.
While in model I decreasing returns to investment are modelled through
a quadratic instantaneous cost, in model II they appear in the dynamic
equation governing the evolution over time of the stock of votes accruing
to candidate 1.

4 Model I

When consensus accumulates according to (1), the relevant closed-loop Hamil-
tonian for party (or candidate) i is:

Hi(t) = e {@xz’(t) - g (ki (8))7 + Nis(t) [Ri(8) — sk;(t) — 6]
i (8) [k (8) = shit) — 5]} ()
where \;;(t) = u,;(t)e?, and p,;(t) is the co-state variable associated to x;(t).

The supplementary variable A\;(t) is introduced to ease calculations as well
as the remainder of the exposition.

4.1 The private optimum

Here I investigate the outcome of the noncooperative game where each party
maximises its own discounted (constrained) utility. On the basis of (5), the
following holds:

Lemma 1 The open-loop equilibrium is a degenerate closed-loop equilibrium.
Therefore, the open-loop equilibrium is subgame perfect.

Proof. See the Appendix. B

Lemma 1 amounts to saying that this game is perfect or state redundant
(see Mehlmann and Willing, 1983; Fershtman, 1987),% and can be solved
open-loop to obtain a strongly time-consistent equilibrium.

The open-loop solution leads to the following result:

SFor the detailed analysis of several classes of games where open-loop equilibria are
subgame perfect, see also Clemhout and Wan (1974), Reinganum (1982b), Dockner, Fe-
ichtinger and Jorgensen (1985), Fershtman, Kamien and Muller (1992). An exhastive
exposition can be found in Basar, and Olsder (1982, 19952), Mehlmann (1988, ch. 4) and
Dockner, Jorgensen, Van Long and Sorger (2000, ch. 7).



Proposition 1 At the open-loop steady state equilibrium, party i invests

; Bi

ki = ————, and obtains x} = L2 Party i's steady state invest-
P+ ) c(p+8)8 Y Y
ment and consensus are both larger that party j's if 8; > 3; .

Proof. In the open-loop formulation, the Hamiltonian for party (or candi-
date) ¢ rewrites as follows:

Hi(t) = e {Bans(t) = S IO + \l0) [(t) = shy(t) = 5]} (6)
The first order conditions for the open-loop equilibrium are:

OH, ()

S S CRRYORL (7)
G = T+ ®
Oi(t)

22 = (N -5,

plus the initial conditions z;(0) = z; and the transversality condition A; (T") =
0 for all 7.
From (7), one obtains \;(t) = ck;(t) and

Oki(t) M)

The r.h.s. of the above expression is zero at
ﬁ.
kf = ——— 10
e P (10)

which can be plugged into (1) to obtain

Oxi(t) . Bi—sp;
T R PO (1)

It is then immediate to check that 3, > ; is both necessary and sufficient
to ensure that k7 > £} and 27 > z7. B
Hence, a straightforward corollary to Proposition 1 is the following:

6



Corollary 1 The candidate (or party) that attaches a larger weight to the ad
interim utility of consensus invests more than the rival and ultimately wins
the elections.

As to the stability analysis of the dynamic system, the following holds:
Proposition 2 The open-loop equilibrium {x} , kf} is a saddle point.
Proof. See the Appendix. B

Before passing on to the social planning case, a last remark is in order.
Expression (9), describing the dynamics of party i’s investment, reveals that
it is independent of the rival’s. This entails that, in model I, strategic inter-
action between parties takes place only through the dynamics of the state
variable, as described by (1). This constrats with some of the acquired wis-
dom (see, e.g., Anderson and Prusa, 2001), where the efforts of parties are
strategic complements. On this basis, whether parties overinvest or underin-
vest as compared to the social optimum is not obvious from the outset.

4.2 The social optimum

Now consider the setting where a benevolent social planner chooses the vector
of investments {k;(t)} so as to maximise collective welfare, which is defined
as the sum of both parties’ discounted payoffs, under the constraint (1). This
amounts to assuming that parties (or their candidates) are indeed represen-
tative of their electors, to the extent that those individuals who do not vote
are irrelevant.” In the present setting, the planner’s behaviour is aimed at
assessing the social convenience to put a ceiling to the parties’ investments
during the electoral campaign, even if this may well entail trading off some
voters against a lower expenditure.
Now the relevant Hamiltonian is:

Cc

HP(t) = e {ﬁixi(t) + B,24(t) — g [ki(t)]2 -3 [kj(t)]Q (12)

+Ai(t) [ki(t) — skj(t) — 0xi] + Aj(t) [k;(t) — ski(t) — oz]}

"This is somewhat similar to what is sometimes assumed in innovation race models,
where the value of innovation is the same irrespectively of whether the firm racing for it
is a private or a public one (see Kamien and Schwartz, 1982, and Reinganum, 1989, inter
alia).



where superscript S P stands for social planning. The outcome is summarised
by the following:

B; — 8B,
clp+6)’

. Party i's steady state investment and con-

Proposition 3 At the social optimum, party i invests kT = and

(14 s%) — 280,

obtains x7¥ = B ) 5;
c(p+06)06

sensus are both larger that party j's if B; > f3; .

Proof. The first order conditions are:

OH P (t) B
O\, (t)

(p+0)\i(t) — B,

ot

plus of course the initial conditions x;(0) = z;o and the transversality condi-
tion \; (7') = 0. From (13), we have:

Ai(t) = cki(t) + X\;(t)s (15)
and
d(t) M) N0
di o ot
From (15) one obtains X;(t) = c[ki(t) + sk;(t)] / (1 — s?). Using this and
(14), (16) can be rewritten as follows:

(16)

dk;(t
% oc cki(t) (p+0) — B; + 58, (17)
the r.h.s of (17) being zero at
e P (18)

This equilibrium investment can be substituted into the dynamic equation
of z;(t), to obtain

Ox;(t) 0 at 257 — B; (1 +s?) — 253,

ot LT T C(p+0)8 (19)




As in the case of Proposition 1, it is quickly checked that 3; > (3, is both
necessary and sufficient to ensure that k7 > k77 and 277 > 257, ®

Hence, under social planning the winner is the same candidate as in the
social optimum. However, a thorough comparison between the two regimes
remains to be carried out. In particular, one may wonder whether social
planning may prevent parties from performing a wasteful effort duplication,
and how this affects the total number of voters at equilibrium.

The stability properties of the steady state under social planning are
stated in the following:

Proposition 4 The social planning equilibrium {x;.gp , kST } 18 a saddle point.

The proof is omitted, as it proceeds along the same lines as for Proposition

4.3 Private vs social optimum

Consider first equilibrium investments in advertising in the two regimes:
ki — kY o s (20)
which entails that individual incentives leads to a socially wasteful duplica-

tion of efforts.
As to the equilibrium level of consensus, we have:

(ﬁz + ﬂ;) (1-s)

X* — gt 4t — 21
Tt c(p+6)6 (21)
and ( ) )
Bi+8;) (1—s)
Sp _ SP sp_ \i J
X7 =a7" + 1 c(r+ 000 (22)

with X* > X*7 for all admissible s.
The above discussion produces the following Corollary to Propositions
1-3:

Corollary 2 At the private optimum, candidates invest more than at the
social optimum, for all admissible {s, B, ﬂ]} Accordingly, the number of
voters is always higher at the private optimum than at the social optimum.

That is, the planner is happy with a lower number of voters, as long as
this is more than compensated by a reduction in the wasteful duplication of
efforts during the electoral campaign.



5 Model 11

When the stock of consensus evolves according to equation (4), it can be
easily shown that the following holds:

Lemma 2 The open-loop solution is a degenerate closed-loop solution. There-
fore, the open-loop equilibrium is subgame perfect.

Proof. See the Appendix. B

Lemma 2 states that, as the open-loop equilibrium is strongly time con-
sistent, it is subgame perfect. That is, as in model I, the game is perfect
or state redundant. In the remainder of the section, in order to concen-
trate on the comparison between the private and the social optima, I assume
B3; = (3.8 This entails that the model can only produce symmetric equilibria
and therefore cannot determine which party (or candidate) ultimately wins
the elections.

The relevant open-loop Hamiltonian for party (or candidate) 4 is:

Hi(t) = e # { Baa(t) — chalt) + M(t) | halt) — sk (8) — S24(2)

b

where \;(t) = p;(t)e””, and p,(t) is the co-state variable associated to z;(¢).

5.1 The private optimum

The solution of the non-cooperative game between the two candidates leads
to the following:

Proposition 5 At the open-loop steady state equilibrium, each party invests

2
k* = b 5 , and obtains x* = L )
42 (p+06)" (1 —s) 2c(p+06)6

Proof. The first order conditions for the open-loop equilibrium are:

OMi(t) _ Ai(t) _
O k() — sk;(t) ! (24

8 Although desirable in line of principle, keeping the asymmetry on (3}s across parties
yields an awkward expression for 9k;(t)/0t, which can be treated only numerically.

10



i = T+ (25)
Ai(t)
ot

plus the initial conditions z;(0) = x;y and the transversality condition \; (T') =
0. From (24) one obtains:

Q Q

= (p+o)N(t) - B

M(t) = 2e\/ki(t) — sky (D) (26)
and )
ki(t) = sk;(t) + % (27)

which can be differentiated w.r.t. time to yield:

dki(t)  Ok(E) MN(D) oMY
& S "o T o (28)

Imposing the symmetry conditions:

k(1) = kr) ; 290 OhlD) (29

and using (25) and (26), (28) rewrites as follows:”

dkd;it) o< 2c(p+06)\/ki(t) (1 —5) = (30)

which is equal to zero at
2
k= s . .
4 (p+0)" (1 —s)

Then, substituting (31) into (4) and imposing that Ox;(t)/0t = 0, one ob-
tains:
.8

2c(p+06)6

(31)

x (32)

This proves the Proposition. l

As to the dynamic properties of the steady state, the following can be
shown to hold:

9The equation dk;(t)/dt = 0 has another root, k;(t) = 0, which can obviously be
disregarded.

11



Proposition 6 The open-loop equilibrium {x}, kI} is a saddle point.
Proof. See the Appendix. B

Moreover, on the basis of (27) and (28), it can be established that parties’
investments are strategic complements, that is, any increase in k;(t) entails an
increase (although less that proportional, due to the spillover effect) in k;(t),
and conversely. Therefore, one can expect the private to be characterised by
excess investment as compared to the socially optimal effort.

5.2 The social optimum

If a benevolent social planner chooses k;(t) and k;(t) to maximise social
welfare, the relevant Hamiltonian is:

HP(t) = e {B[wi(t) + z;(t)] — c[ka(t) + k;(t)] (33)
() [ Fa(t) — sk (8) — 6| + A () [ ko (1) — ska(t) — 5%} }

The outcome is summarised by the following:

2 —_—
Proposition 7 At the social optimum, each party invests k5" = LS)Q ,
4c? (p+0)
SpP ﬁ (1 — 3)
and obtains x = (s 85" (7008
Proof. The first order conditions are:
SP(4
A
Oki(t) — sk;( "5 k(1) — skq(t
OHSE(t ) OXi(t)
_ 0361( = 5 Ai(t) = (35)
O\ (t
M = a0

Now, imposing symmetry, I obtain:

A (1~ )

4c?

12



from which:

ot ot 1—s N (37)
Therefore,’ )
8k_(t) _ sp B (1-15)
o =0tk = o (38)
" o _sa—y) B(1-3)
x(t) -5 B sp -5
ot 2c(p+9) 6$(t>_0atxp_2c(p+6)6' (39)

This concludes the proof. B
The stability properties of the system at the steady state produced by
social planning are as follows:

Proposition 8 The social planning equilibrium {xSP , k5P } 15 a saddle point.

The proof is omitted for brevity, as it is analogous to the proof of Propo-
sition 6.

5.3 Private vs social optimum

The comparative evaluation of the two regimes can be quicly dealt with, as
it is qualitatively analogous to section 3.3. Evaluating Propositions 5 and 7,
it is immediate to verify that

5P < k5 2P < 2 (40)

Accordingly, as in model I, also here the social optimum is achieved by in-
vesing less that in the private optimum. As a consequance, the socially
efficient number of voters is lower under social planning than at the private
equilibrium.

10 Again, the solution k() = 0 can be dismissed.

13



6 Extension of model I: optimal fragmenta-
tion

In the foregoing analysis, I have adopted the assumption that there exist only
two parties, and I have evaluated the efficiency of such a system. However,
multiparty systems are rather common, and to this regard several interesting
questions can be addressed in a generalisation of any of the above settings.
One such question is whether there should be a limit to the number of parties,
and, if so, how to set this limit. Two related questions are (i) whether the
optimal number of parties obtains by maximising the overall number of voters
or collective welfare, and (ii) whether optimal fragmentation is higher in the
social or in the private optimum. In particular, question (ii) involves the
comparison of two situations. One is the first best where a benevolent social
planner controls both the number of parties and their individual investment
in the electoral campaign. The other is a second best where the investment is
noncooperatively decided by parties, while the number of parties is controlled
by a benevolent planner.

Here I reconsider model I with n parties (and n candidates), where, for
the sake of simplicity, I adopt the symmetry assumption 3, = g for all <. This
amounts to excluding the use of a quorum so as to determine the optimal
number of parties (or candidates), since the equilibrium size (i.e., the volume
of votes in steady state) is the same across parties.

The differential equation of the state variable is:

ot i
Accordingly, the closed-loop formulation of candidate i's Hamiltonian now
rewrites as:

Hi(t) = e { Ba(t) — g [k (8)]? + Naa(t) [k:i(t) — s> k;(t) — 5%]

J#i
+2 (1) [k’j(t) = 5> km(t) - 5%’] } (42)
Ji maj
Once again, it can be shown that the open-loop solution is a degenerate

closed-loop solution, and therefore (42) can be reformulated by setting A;(t) =
)\z(t) and )\w(t) = ( for all ]

14



Proposition 9 In the private optimum with n candidates, the overall num-

ber of voters is mazximised at n} = ﬁ, while the equilibrium collective
s
6(14+2s)+2p(1+s)
4s(p+0)

utility is maximised at ny = , with n} > nj; in the

admissible range of parameters.

Proof. First order conditions for the private optimum are:

OHi(t) _

Om —cki(t) + Xi(t) = 0 (43)
_%Zi(%) — a/\(?;it) — pAi(t) = (44)

ONi(t)

= (p+o)N(t) - B

plus the same initial and transversality conditions as in section 3.1. From
(41), (43) and (44) I obtain:!!

B . Bl-sk-1)  14s
B o0 T s VT

(45)

Hence, the total number of voters at equilibrium is X* = nx}, while the
collective payoff accruing to parties is

_ Bn[6(1+2s(1—n))+2p(1+s(1—n))

C 2

IM"=n x*——k*} 46

It is then immediate to verify that X* is maximised at

1+s
e <7 47
=t <m (47)
while IT* is maximised at
O6(1+2 20 (1

ot = (14+2s)+2p(1+5s) (48)

4s(p+0)

T omit computational details for brevity. It can be also easily shown that (45) is a
saddle point.

15



with
)

m > 0 for all S,(S,p. (49)

n, —ng =
This concludes the proof. B

The above result tells that, at the privately optimal steady state, the
fragmentation that ensures the highest collective utility produces too little
participation to elections on the part of voters. This, in turn, calls for the
evaluation of the same issue under social planning.

Proposition 10 Under social planning with n candidates, both the overall
1+s

3s

number of voters and the collective utility are maximised at n°F =

Proof. The benevolent social planner maximises

M (8) = e {Ba(t) = S RO + MO k() (1= s (0 — 1) = 521} (50)
w.r.t. individual advertising effort k(¢). The usual procedure yields the fol-
lowing saddle point equilibrium:

sp Bll—s(n—1) _ 1+s o Bll-s-1)
kT = 4 0) >0Vn<mn= . ol = NPEEY;

(51)

These values allows me to calculate

nB[l—s(n—17

X5F = 52
c(p+06)6 (52)
which is maximised at "
sp s _
= < 53

Finally, routine calculations are needed to verify that n5% also maximises

SP _ sp € (,5P\2
1" =n |z —5(]6) (54)

and therefore ngf’ = nSf = n 7. W

A relevant consequence of Propositions 9-10 is:

1
Corollary 3 For all s € [0, 5) ;

16



2(1+s)
1—2s

*

w0
o nt >n >nf iff — >
p

8 %

. e O 2(1+s)
>nH>nSP lﬁ;E |F], ﬁ)

1
For all s € (5, 1|, nt >n" >nk forall 6,p.

Proof. From Proposition 9 we already know that n} > nj;. Moreover,
n} > n°F always. To complete the proof, observe that

6(1—2s)—2p(1+s) 0 2(1+9)
SP % _ T = 2\ T2
n ny 125 (0 0) >01 ,0> 10 (55)
where 5 (1 .
1(_—2? > 2 and increasing in s, for all s € [0, 5) , (56)

1
while it is negative for all s € (5, 1] . Therefore, in the latter interval,

nSF —nj >0 forall 6,p. M

Now examine the two alternative scenarios. The first is social planning,
where a benevolent dictator controls the advertising investment of each party,
and maximises collective welfare in steady state w.r.t. n. The second scenario
is a private equilibrium driven by individual incentives, with the planner
controlling only the number of parties. Needless to say, the welfare level
associated to the first equilibrium is strictly larger than that associated with
the second. However, the socially optimal fragmentation depends upon the
size of parameters. In particular, it is higher under planning than in the
private optimum (i) for all values of parameters describing the intertemporal
properties of the model, if the negative externality is large; and (ii) if the
depreciation rate 6 is considerably larger than the discount rate p, when the
negative externality is low.

Result (i) indicates that having a large number of candidates (or parties)
is socially preferable when each party’s advertising expenditure is highly
effective in stealing voters from the rivals, while result (ii) states that a large
number of candidates is socially efficient when the opposite holds, provided
that the perceived duration of the game (as measured by p) is low enough
compared to the decay rate of the stock of each party’s consensus.
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7 Extension of model II: optimal fragmenta-
tion

An analogous exercise can be carried out under the dynamics (4), by assum-
ing that n symmetric candidates race for the office. As the procedure closely
replicates what I have just exposed in section 5, here I will confine myself to
the main elements.

The open-loop Hamiltonian of party 7 is:

Hi(t) =e { Bai(t) — cki(t) + \i(t) [ \/k:i(t) — s> k;(t) — 6:132-(75)] } (57)

JF#

while the Hamiltonian of the social planner is simply HF (t) = S0, H,(t).
As the open-loop equilibrium is subgame perfect, the closed-loop formulation

of the problem is redundant. On these bases, the following results can be
shown to hold.!?

Proposition 11 In the private optimum with n candidates, the overall num-
n
ber of voters is X* = —ﬁ , which is everywhere uncreasing in n. The

C2c(p+6)6

equilibrium collective utility is

Hhﬁ_ﬂﬁ_{l_ 1 }
C2c(p+6) |6 2(p+8)[1—s(n—1)

2(p+06)—06(1+s)
2s(p+9) )

Proposition 12 Under social planning with n candidates, the overall num-
ber of voters in steady state is

which takes its global maximum at nf; =

_ ull = s(n—1)
2c(p+06)6

and the associated collective payoff is
B nB*[1 —s(n—1)](2p +6)
de(p +6)°6 '

2The proofs are omitted for the sake of brevity. They are available from the author
upon request.

XSP

HSP
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Both the overall number of voters and the collective utility are mazximised at
1+s
SP _

n _—
2s

Propositions 11-12 produce the following:

Corollary 4 n}; > n°F for all {5, p} and all s < 1/(n —1).

That is, in model II the second best optimal fragmentation is surely higher
that the socially optimal fragmentation. Corollaries 3 and 4 indicate that the
optimal number of parties (or candidates ) is sensitive to the shape of the
advertising technology used for the electoral campaign. If decreasing returns
appear in the instantaneous cost (as in model I), than anything may happen,
depending upon the relative size of parameters. If instead decreasing returns
affect the dynamics of consensus (as in model II), then it clearly emerges
that the maximisation of collective welfare at the private optimum involves
too many parties as compared to the socially efficient situation.

8 Concluding remarks

I have analysed two differential games describing electoral campaigns where
two candidates invest so as to increase the number of their respective voters.
The outcomes of the non-cooperative games have been evaluated against the
social optimum, where a benevolent social planner chooses the investment
levels so as to maximise collective welfare. In both games, the private op-
timum is characterised by overinvestment and a larger number of voters as
compared to the social optimum. Therefore, it appears that, beyond some
point, the social benefit associated with having more electors expressing their
opinion at the polls is not worth the cost that must be borne for convincing
them to vote.

Then, I have extended both models to account for n candidates, in order
to evaluate what is the optimal number of candidates (or parties), on a wel-
fare basis. This analysis has produced non-univocal results, in that the first
best number of candidates (i.e., the number that maximises social welfare
when the planner also controls directly the parties’ efforts) may be higher
or lower than the second best number of candidates (i.e., the number that
maximises social welfare given the non-cooperative investment behaviour of
parties), depending on the shape of cost functions and the dynamics of con-
sensus. If the instantaneous cost of investing is convex and the dynamics of
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accumulation is linear, then the number of parties at the first best is higher
(lower) than the number of parties at the second best, if the spillover effect is
large (low) enough. If instead the cost of investment is linear, the first best
number of parties is always lower than the second best number of parties,
irrespectively of the spillover level.
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Appendix
Proof of Lemma 1. The first order conditions for the closed-loop equilibrium

are:

OH,;(t)

Ok;i(t)

_OH(t)  OM(t) Ok;(t)  ONu(t)

Ox;(t)  Ok;(t) Oxi(t) Ot

plus the initial conditions z;(0) = ;0 and the transversality condition A; (T') =
0, which entails \;; (T') S [z; (T')] = 0.

To prove the Lemma, it suffices to observe that (al) does not contain the

state variables. Therefore, its solution with respect to k;(t) yields kf(t) =
[Aii(t) — Aij(t)s] /e, from which we immediately obtain

= —ck;(t) + Xii(t) — Nij(t)s =0 (al)

— pi(t) Vi, j (a2)

Ok; (t)
Oz (1)

=0. (a3)

This shows that (i) the solution \;;(t) = 0 is admissible; accordingly (ii) the
open-loop solution is a degenerate closed-loop solution. W

Proof of Proposition 2. The relevant dynamic equations are:

2 i (t) — shy() — 8() (ad)
Pl = < fe(p+ 8) () - ) (@)

and the stability properties of the system (a4-a5) depend upon the sign of
the trace and determinant of the following Jacobian matrix:

0 x; 0 z;
= 6%'. =0 3]% =1
Oki Oki
Ox; =0 Ok; =Pt zt K}

with Tr (2) = p > 0 and A (E) = =6 (p+ 6) < 0. Since the determinant is
everywhere positive, {z}, k!} is a saddle point. B
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Proof of Lemma 2. The closed-loop Hamiltonian of party i is:

Hi(t) = e * {ﬁixi(t)—E[ki(t)]zjt)\ii(t) ki(t)—skj(t)—éxi(t)}

2
() [ k(1) — ska(t) — m(t}]} (a6)
and the first order condition on k; () is:
oHt) ) sl -

Oki(t) 2, [ka(t) — sk;(t)  24/k;(t) — skq(t)
Now, from (a7) it is immediate to establish that
O?H,(t)

which proves the Lemma. H

=0Vi,j (a8)

Proof of Proposition 6. Having imposed symmetry, the relevant dynamic
equations are:

52_9 —i— \JR(E) (1= s) — 62(t) (a9)
Ok(t) . [40 (6+p)E() (1 —s) — ﬂ} k(t) (1—s)
ot =h= c(l—ys) (al0)

and the stability properties of the system (a9-al0) depend upon the sign of
the trace and determinant of the following Jacobian matrix:
Bk 0 1—

_ _5 - 8

ox Ok 2 [k(t) (1—s)

a/;;_o 9 ki BykE) (1 =)

(1]
I

B e G g vyl |
with
k(t)(1—s
Tr(Z)=0+2p— ic(l(t—) i) k(t)) (all)
1—s
AE)==6(2(p+9) icl?i)k 0 (al2)

which, evaluated at {z*, k*} ,yield Tr (Z) = p > 0and A (Z) = =6 (p+0) <
0. Since the determinant is everywhere positive, {z*, k*} is a saddle point. B
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