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Abstract

In this paper we analyze the consequences of model overidentification
on testing exogeneity, when maximum likelihood techniques for estimation
and inference are used. This situation is viewed as a particular
case of the more general problem of considering how restrictions
on "nuisance" parameters could help in making inference on the parame-
ters of interest. At first a general model is considered. A suitable
likelihood function factorization is used which permits to easily
derive the information matrix and other tools useful for constructing
joint tests for exogeneity and overidentifying restrictions both
of Wald and Lagrange Multiplier type. The asymptotic local power
of the exogeneity test in the justidentified model is compared with
that of the overidentified one, when we assume that this last is
the true model. Then the pseudolikelihood framework is proposed for
appreciating the consequences of working with a model where overidenti-
fying restrictions are erroneously imposed. The inconsistency introduced
by imposing false restrictions is analysed and the consequences of
the misspecification on the exogeneity test are carefully examined.
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1. Introduction

In a strategy for model specification from the general
to the particular, it seems very natural, with the aim of minimizing
the risks of misspecification, to consider as a starting point of
the analysis a model with a number of structural equations lower
than the number of endogenous variables (see Hendry(1985)) and to
complete the model, subsequently, with the addition of non constrained
(i.e. Jjustidentified) reduced form equations. Then successive data
compatible reductions are operated on the model, in order to get
a more parsimonious specification and, possibly, an improvement in
the quality of the estimates of the parameters of interest.

These reductions may be fulfilled, among others, both
by reducing the number of equations, i.e. moving some endogenous
variables into the set of the exogenous ones, and by imposing overiden-
tifying restrictions. An example of this specification procedure
may be found in Richard(1984) where a seguence of assumptions is
proposed and, at first, the overidentifying restrictions and then
the exogeneity assumptions are tested, the statistic for these tests
being the 1likelihood ratio test. 1In empirical econometrics, after
all, it is very frequent to work with overidentified models. This
is obvious when one considers the number of instruments used in the
estimation of structural equations and the number of variables that
appear in the chosen specification. Increasing the number of excluded
variables means rising the number of overidentifying restrictions
imposed without statistical control, and consequently the risk of
misspecification, whatever the estimation technique adopted.

In view of testing exogeneity we follow a specification
testing strategy, i.e. tests on "nuisance" parameters, in order to
analyse the consequences, on the test, of imposing overidentifying
restrictions. More precisely, the idea we want to pursue in this
work is trying to evaluate the influence that restrictions concerning
some nuisance parameters may have on the inference concerning the
other parameters of the model.

Our analysis considers two possible situations of misspeci-
fication. At first we analyze an overparametrized model, i.e. a model

where true overidentifying restrictions are not imposed. This framework



permits us both of building up joint tests of exogeneity and overidenti-
fying restrictions, and of studying the consequences of overparametriza-
tion on the power of the exogeneity test. As a second situation we
study the consequences arising from an underparametrized model on
the exogeneity test. To that end we bursue our analysis in the context
of the pseudo-likelihood framework, since this approach permits to
find analitically the pseudo true value to which the statistic maximi-
zing the pseudo-likelihood function converges. By assuming that the
true model is the just-identified one, it is possible to write down
the analytic expression for the true model parameter function to
which the pseudo maximum likelihood estimator converges. It appears
that the exogeneity test done in the wrongly overidentified model
cannot be interpreted either as an exogeneity test or as a Jjoint
test of exogeneity and overidentifying restrictions in the true model,
except for a few particular situations.

In section two we present the general model and a likelihood
function factorization which is helpful for deriving the information
matrix and the other tools which are required for the formulation
of the tests. In the third section we study the asymptotic local
power of the exogeneity test for the overparametrized model while
in the fourth section we consider the wrongly overidentified model,
along with the pseudo likelihood function and the pseudo true values
for the parameters. Some concluding remarks can be found in the final

section.

2. The general model

. +1 . . s
Let us consider a vector yte R(n ) ; which is partitioned
L L 3 n k
as Y, = ( ytl yt2 ) ' with ytle R and ytze,R i and a victor XtEkR '
rtiti d = ! ! ' )', with R, R"2, €RrR ®
partitioned as xt ( xtl Xt2 Xt3) wi the xtze xt3

k =(k; + k, + k,), t=1,...,T.

From now on we assume that, conditionally on the variables
( xl "'Xt"'XT ), the random vectors (yl...yt ...yT) are independent
and their conditional distribution is normal with conditional expecta-

tion being a linear function of X, only and variance-covariance matrix

costant over time, i.e.:



Y, | X, v a IN(I'x 5 @), t=1,..,T (2.1)

t t

where the parameter vector completely characterizes the conditional
distribution (2.1). These assumptions imply both a sequential cut
and an initial cut, according to Florens and Mouchart (1985), assuming
that the parameters in y and the parameters characterizing the marginal
distribution of the xt's are variation free. It follows that the
¥.), conditional on (x X 4.

SRS | 17770 T
.oy XT) is obtainable as the product of (2.1) by t. Consequently, by de-

joint distribution of (yl,..., y

fining the matrices

we can write

Y | X, ¢ v~ MN (xn;IT®sz) (2.2)

Tx (n+1)
Sometimes one may prefer to work with the distribution of the unobserva-
ble random vector ut derived as the residual from the approximation

of given by its regression function, i.e.:
Yo Y

e TY T xo =y T gy (2.3)
where

gt = B[ Yo | X b ] = 1 X, (2.4)

ul v v (O ;@) (2.5)

and u_ 11 x4 v

The distribution (2.2) represents the classical multivariate
regression model with uncostrained coefficient matrix. Then, conditio-
nally on x_ , the conditional expectation vector gt may be any point in
R(n+l). Economic t£heory may provide constraints on gt; we assume that gt

along with a subset of variables which are in Xt' namely zt, are limited

by an exact linear and constant relationship of the type:



o't - B'z =0 (2.6)

where & and B are vectors of unknown parameters. We assume, moreover,
that the only constraint on these parameters is represented by the
normalization which affects the first element of the vector & : & =(1 ~a')
The "structural" parameters ¢ and g in the subsequent will be denoted
as "parameters of interest".

According to the adopted normalization rule and (2.3),

the definition (2.6) may be rewritten in terms of observables, by

. . - — [ ¥ 3 .
partitioning ut ( utl ut2 y', 1.e.:
- - v - - v —
(¥ep “9y) —o' vy, mu,) -8z =0
from which
- - Q! = .7
Y1 a'y,, ] z, ¢ (2.7)

The so-called "structural residual" is defined as:

e, =u, _ - qa'u (2.8)
and is normally distributed with zero mean and constant variance:
€. | v ~ IN( O jo,,) (2.9)

and moreover

e LLx, 1w (2.10)

By referring to the following partition of § , coherent with that of yt



we can write the variance of the structural residual as:

0y, T w7 2a'Q,, +a'Q,, o (2.11)

The structural equation (2.7) does not permit to write
down directly the 1likelihood function in terms of the parameters
of interest. A useful way to complete the model is to specify directly
the equation for yt2 as its data generation process, namely in the
uncostrained reduced form (see Florens, Mouchart and Richard((1979),
(1986)) and Richard(1984) for a deeper discussion on this View of
model completion).

The complete model can be written as

l - v - v Ol
* Y1 g “t
+ = 2.12
X, ( )
- v
L0 | [ Ye2 T T2
_ ' ' ' (- ' ' ' s s : : :

where X, ( X1 %o Xt3) ( zf Xt3) . The joint distribution for the

error term of (2.12) is

t
v IN( O ; z) (2.13)
Yeo |
where
1 -a' 1 o'
Z = Q
0] I - I
n_| n
Cyll Z212
Z:21 Z:22
As one can see in the complete model specification (2.12),
the parameters characterizing the marginal expectation of yt2 , hamely

H;xt , enter Y. 's conditional expectation only through the vector

1

ut2' It follows that a sufficient condition for yt2 being (weakly)



exogenous w.r.t. a's and g8's 1is z 0, according to Florens, Mouchart

21

and Richard (1979) and Engle, Hendry e Richard (1983).

Consistent estimation of model (2.12) requires that the
identifying restrictions are satisfied, i.e. k, 2 n. Furthermore the
partition of the exogenous variables into zt and xt3 is arbitrary.

Clearly, when k, = n (2.12) is just-identified.

2.1 The likelihood function factorization

The model (2.12) is easily analyzed when residuals are
trasformed permitting to get equations with independent random errors.
To this end the joint distribution (2.13) may be factorized into

the product of the two distributions:

€ v IN(CO; o,.,) (2.14)
Ui, | e INC Nel i Top., ) (2.15)

where

Among the two possible factorizations of (2.13) we prefer the (2.14)-(2.
15) since it is more general for our purposes of testing exogeneity. In
fact if one wants to build up an exogeneity test on a subvector of

Yy ; this test will be a simple test of equality to zero for the

t2
corresponding subvector of )\ (see Holly(l1985) for the other factoriza-
tion).

On the grounds of the factorization (2.14)-(2.15) the

model (2.12) can be written in the form:

tl
(2.16)

t2 27t t t



where

Ve = (u - he JVINCO ; 3,,., ) (2.17)

and, moreover, Ve 11 €, -
Model (2.16) permits to factorize its log-likelihood function
into the sum of two components, where the so-called "nuisance” parameters

appear only in one of them. More precisely

1L(e,¢) =1 o (80, +1 T A,.00 0 Ty dy L,,.0) (2.18)
T T T
where
o=l o' 8 ]'=[a i8] =[6] 6]
q):[oll HZAZZZL]
2
2 =- 14%n 27 -1 4%nogo,, - 1 € (2.19)
1t - = t
2 2 2 0,,
— - l_l
Lo == ln2m = 1 4n [I,,.,| -1 Vi Loz v (2.20)
2 2 2

The score vector relative to the likelihood function (2.18) 1is given

by
_ — — -1 -
3L 1 W'e = W'V £,,.,\
30 o,
oL -1 T + 1 €'e
30, 2 0y, 207,
-1
1 3L =1 vec[X' V £,,., ] (2.21)
T am, T
-1
.& Z:22'1 v'f‘:
IA
-1 -1 -1
oL D' vec[- T %,,.,+ Z,,.,V'VL,,.,]
30,,., 2 J
— - —
where W = | Y2 zZ |, m, = vec m, + 0,,-, 1is the (% n(ntl)x 1) vector

containing the lower triangular part of L,,-, and D 1is the duplication

matrix such that D'o“.l =vec ( I,,.,) (see Magnus and Neudecker{1980)).



The information matrix, J, computed as the negative value of the

"plim" of the hessian matrix obtained from (2.18) 1is

e J,
A Ja1 I3,
J= o, |Jd5,0 I, (2.22)
L, J,, O 0 Ty
G23.1 [LJsy O 0 0 Jss |

Detailed computations are given in appendix A; below we report the final

results for each non zero block of the matrix:

Iyplim X'X M+ o, ,AX"+ Z,,.,

T
-1 ..-1
Ji T Jee = (011+Xf222.ll)
plim 2'X 1, plim 2'Z
_l .
Jor =3, = [« I = 01,Z,,-,A") 0]
-1
Jop = JXX = 0, I5-,
e e [ A 0 ]
11 011
Jyy =7 = 1
011011 2 ofl
-1 ) . : \
Jor =90 = ~(Z5,) ® [ plim X'X I, plim X'Z ])
2 T T
_l s .
Juy =3I = (I,,., ®plim X'X )
22 T
-1
J = J = - D' . I 0
51 0'22.19 ( 2:22 l@ [ n ])
] -1
Jss = Jo o = 1D (Z%,,.,®2%,,.,) D
22*1Y22*1 2

Given the structure of the information matrix (2.22), its inverse is
straightforwardly obtainable by the rule of the partitioned inverse

and by taking care of some recurrence. Again detailed computations



are omitted and only final results are vreported. The first block

of the inverse is given by:

J -
11

o
}—J
}—J
1}
i %)
M
o
o
)
}.—l
o
)
}—J
1}
&
)
}—J

Blocks belonging to the first column of the inverse may be written

compactly as

ii il

Blocks on the main diagonal of the inverse are given by:

gt o e T BTt R
i1 1111 1i7i1
-1 -1 -1
= J - J. + J J . . . =2, .,
= U s Of 13735 i ) Iy ) for i 5

Finally the remaining blocks of the inverse, always 1in a compact

form, are:

S s g Sl for i =0 .
= Y51 Y41 1k “kk OF 12y
k=2,..,5

i#k

2.2 Joint test of exogeneity and overidentifying restrictions

Partitioning B8 into two coefficient subvectors Bl and

82, related respectively to the variables X1 and Xpo s the system

of hypotheses to consider, in order to test Jjointly the exogeneity

of Yo w.r.t. 8. = ( a' Bi ) and the overidentifying restrictions indu-

1

ced by the exclusion of x from the structural equation, is given

t2
by H :x = 0 and B8_ = 0. Obviously this test is conditionally on the

0 2
assumption made relatively to the variables omitted from the structural
equation. It results that the variables in Xt are not treated simmetri-
cally along with the involved overidentifying restrictions. Although
loss of simmetry is not desiderable theoretically, it is not clear,

in practice, whether the condition of symmetry is a strict requirement

for a test ( see Hwang(1980) for a similar treatment of an overidenti-
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Mult

oD

22

and

_lo_

g restriction test).
In the model (2.16) the general fo
iplier (hereafter LM) test for H, is:
S - 1 X!
58282 GBar || L%
~ ~ /\_l 011
1 [_ 1 oe'x, 2108,
T g iy A alaa
11 Jo 2 Jo ZZZV'E

- Y ~ - o~
Y 2% T AB)
_l ~ g
=T e'e
v, - x1f,
= (X'X) "X'Y
=7t g
"8,B TBLA . TaB
J02 2 , J02 ( = ( Jo 2

)') and g2

rm of the

Lagrange

(2.23)

are the relevant blocks of the

inverse of the information matrix evaluated under H_, which is given by:

Jo

The

Jo

aQ

Je Je

B,a BB,

Je Jo Jo

B,a B,B, B,B,

Je 0 0 Je

Aa AA
0

block diagonal structure

JO

O'220722

(2.24)

of J° permits to neglect the lower block of

the matrix in buiding up the IM test. Then (2.23) can be written as:



— -1
0., o'
M =[0" 0 E'xzé'?']- .
0 g,
_ o - -1 — T
A A I 0
ol% W'W 01% W'X2 l nI
1o ] r -1 0
o o' ~
~1 o, A1 . 11 . X!'2 (2.25)
W X! o 2
0., X2 o, 2X2 0 0 £,
~ -1 v'e
[In 0] 0 Ollgzz - i
Since E'Xz = 0, E'Yz = 0 and Yé? = 9'0, (2.25), after some manipulations,
can also be written as:
—_ __._l —_ —_
W'W W'X2 W'v W'
o= 5 e wx ¥ X'W o X'X. 0 X! e (2.26)
11 2 2 22 .
A AA FaY
A 0 V'V | v

L . . 2 . . ~
This 1is precisely T times the R~ of the regression of OLS residuals €

upon €, X, Y + X,. In other words, this is the LM test statistic for

2 2 1
the problem of testing B, =0 and 6§ = 0 in the "expanded regression"
Yo + X8, + X Gs + 2.27
= + .
YT e T B 2Bz 8 +e ( )

(see Engle(1982)).
The Wald test for H_ in the model (2.16) can be easily derived
by using the blocks of the inverse of matrix J previously obtained. Its

general formulation is:

—58282 "‘82)\

(2.28)

FAB2 A

where the superscript " " denotes the maximum likelihood estimates in

(2.16).
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3. The asymptotic local power of the exogeneity test

When the failure to reject a null hypothesis is used
to claim that data support the null hypothesis, it must be shown
that candidate alternatives would have been detected with a reasonably
high probability. Moreover it is always interesting to compute the
power of a statistical test when possible. This is true not only
when two different statistics are used for testing the same hypothesis
but also in the case of only one statistic employed in two different
models to test the same null hypothesis. Clearly, in order that the
results have some sense, the two models must be comparable. In particu-
lar they must be based on the same distributional assumptions.

In this section we compare the power of an exXogeneity

test made in two models. The first one is the just-identified version

of model (2.16), i.e. n = k3 . The second one 1is the overidentified
version of (2.16) obtained by imposing 3, = 0, 1i.e. by excluding
Xt2 from the structural equation. The comparison between the +two

resulting statistics is possible if we suppose that this restriction
is data coherent. Behind the two models there is the same distributional
assumption (2.1), the difference being the structure of matrix n.
In fact we compare the exogeneity test made in an overparametrized
model with the exogeneity test conducted in the correctly parametrized
model.

It is well known that a problem encountered in deriving
asymptotic approximations to the distribution of test statistics
is that if the model is misspecified the test will often reject the
null hypothesis with probability one as the sample size increases.
The solution which is often proposed to this problem 1s to use a
sequence of local alternatives which converges to the model cpecified
under H_ . Here we shall consider the "asvmptotic local power" method
developed by Pitman (1949) (see also Serfling (1980)).

For testing the exogeneity of Yin w.r.t. g, . the null
hyvothesis is Hy: X = 0, which is the same under the two models for
the remarks made above. In order to derive the asymptotic local power

of the test procedure we consider a sequence of local alternatives



of the form

A = T Y (3.1}

where y 1is a fixed vector of dimension n. Under gquite general regularity
conditions( see Holly(1986)), the asymptotic distribution of any
of the three ‘"classical test statistiecs™, namely Wald, Likelihood
Ratio and Lagrange Multiplier tests, is a non central chi-square
with n degrees of freedom - the dimension of A - and non centrality

parameter given bhy:

L= t J. .2
My Yo i ) Y (3.2)
where with i = 1 we indicate the overparametrized model ( 8, # 0)
and with i = 2 we indicate the correctly varametrized model ( B,=0).

From the blocks of the inverse of the information matrix given previously
we have that
Ax, -1 -1 -1

) = J =J,. (%, +J, J JoL) J, (3.3)

CJy AN Al i ir Tan Tad ix

where 1 = 1 indicates 6 and (3.3} is derived from the overparametrized
model, while i = 2 indicates 6, and (3.3) is obtained from the correctly
parametrized model. After some algebra it is possible to show
that for the overparametrized model the non centrality parameter
is given by:

1 —l 1 1 —l A
M SO0 Y I,y - y'AT [ +b Q] Tay (3.4)

where

— 1 —l
A = In = O AT B,
Q= (Z,+, = 020" )
-1 -1
b= (0,) = A'Z,,,12 )
—l 1 3 1
CZ = o,, I, plim (X MZX/T) I,
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and the non centrality parameter for the well parametrized model is given

by:
L _l L L _l
Wyo= 9y YZZZ.IY—YA[cl+bQ 17 ay (3.5)
where
—_ _l Hl T L H
Cl = 0,7 II'Y plim (X MlX/T) 2
-1
- -— L L
Ml IT Xl(Xle) Xl

Hannan(1956) showed that Pitman's asymptotic relative
efficiency is equal to the ratio of the non centrality parameters.
When two test statistics have the same distribution with the same
number of degrees of freedom andwhen the same size of the first type
error is assumed, the test statistic with greater non centrality
parameter is the most powerful w.r.t. the adopted sequence of 1local
alternatives.

In our case it is easy to show that u2 z ul if Cl z CZ, i.e.
~ ~N

if

I} plim (X' ( M. =~ MZ) X/T) I

1 0 (3.6)

>
2
<

The sign of (3.6) is determined by the sign of the difference (M1 - MZ);

this difference may be written in the form:

-M =P -P =F
Ml Z Z 1
where P_ = 2(2'2) '2' and P. = X (X'X.) 'X'. Since P and P are idempo-
Z 1 1 11 1 z 1
tent matrices, their difference is idempotent if PlPZ = PZPl = Pl. It is

easy to show that F is idempotent and that its rank is equal to 1<T,

than F is P.S.D.S., implying Wy, 2 Uy . The main consequence of thig



result is that a classical exogeneity test is more powerful in the
correctly parametrized model then in the overparametrized one. In
other words, if the overidentifying restrictions, implied by the
exclusion of some instrumental variables from the structural equation,
are data coherent, the misspecification due to an overparametrization
of the structural equation implies a loss of power of a <classical
exogeneity test. This seems to suggest that a good strategy for testing
should be at first testing the overidentifying restrictions and after
the exogeneity hypothesis.

In the next section we consider the reverse situation,
i.e. testing exogeneity in an overidentified model, when the overidenti-

fying restrictions are not consistent with the data.

4. The overidentified model as a pseudo true model

In this section we analyze the consequences on the exoge-—
neity test, when it is performed in a misspecified model. We try
to evaluate the inconsistency and investigate the relantionship between
the parameters of the misspecified model and those of the correct
model. In particular we want to know the influence that overidentifying
restrictions, non data coherent but mantained in the model, have
on testing exogeneity.

Imposing the restriction B, = 0 in the justidentified (true)

model (2.16) we get an overidentified model which is:

tl
(4.1)

1
=)

yt2 2 7t t t

This is the so called pseudo true model, i.e. the model that is effecti-
vely used for estimating parameters. In this case the criterion function
to be maximized is a pseudo likelihood function, i.e. the likelihood
given by the misspecified model (4.1). Similarly with (2.18) the

pseudo likelihood function is factorized as the sum of two terms:
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_l _l -
T "L*( 6,, ¢) =T E lIt( 0,, 0,,) + T E lzt(el, Tyo o 2,5, ) (4.2)
where:
2
g*¥ = -1 4n 27 - 1 gn ¢ - 1 e* (4.3)
1t = - 11 t
2 2 2 0,,
* = -1 2n - 1 gn]| | -1 wrg s * (4.4)
9’2t_ L 4n 2x La4njzi,, ., = t£22.1 Vt -
2 2 2

In this case the pseudo true model is nested into the true (justidenti-
fied model) since (4.1) 1is a particular case of (2.16) obtained by
constraining g, = 0 and then excluding xt2 from the structural equation.
The effect of excluding relevant exogenous variables from a structural
equation causes inconsistency with respect to all parameters.

It has be noticed that the misspecification B, = 0 implies
that all the coefficient estimates, and not only those belonging
to the considered equation, loose the property of consistency. This
is one of the main reasons which is in favour of the way (2.12) we
adopt for completing the model against the complete structural model
specification ( see Florens, Mouchart e Richard (1986)).

The asymptotic distribution of maximum likelihood estimators
in the incorrectly specified model has been worked out by White(1982).
The maximization of the criterion function (4.2) provides the so
called pseudo maximum likelihood estimators that under standard regula-
rity conditions, converge in probability to a vector ( ¥’ o*')!
which can be considered as the true parameter vector of the misspecified
model . According to Sawa(l978) the parameter vector ( o,*"' o*") !
is defined as the pseudo true value of ( 6! ¢')'. It can be shown
that the almost sure limits of the parameter estimates of the misspeci-
fied model are given so as to minimize the Kullback-Leibler Information
Criterion, namely the loss with respect to the true model. This assures
that we minimize our ignorance about the true structure; White calls
it the "minimum ignorance estimator®.

The problem we want to investigate at this point is trying
to approximate the effect of misspecification on the probability

limits of the parameter estimates. In particular we are interested
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to the effects of a misspecification due to not true overidentification
restrictions on the ) estimate, since this is the parameter on which
any exogeneity test is based.

For the model (4.1) it is possible to obtain an analytical
expression for the pseudo true value * . As in Richard(1984) for
a given ¢, the model (4.1) can be considered as a multivariate regres-
sion model in (n+1l) dependent variables, subject to a set of exclusion

restrictions:

= -t - at = ok
Ve 08,00 = Oy —aly ) = Bixy) = ef
(4.6)
= ' + * 4 *
Yeg T ¥ T oAeg ¥ VY

Since the residuals of the two equations, e; and vz , are assumed
independent, they may be analysed indipendently of each other. For
a given §l . the parameters of the equation for yt2 in (4.6) can

be estimated by OLS. In particular for ) we have

-1 -1

X = (€*Me*) " Y'Mg*=h N (4.7
X 2 x
where
~x o _ _ ~
€T T Yy T Yya T X8,
= XZB2 +t e - Y2( a - a) - Xl( g, - B, ) (4.8)
a and g, being estimates of 4 and B, - Given (4.8) the denominator
h of (4.7) can be written as:
h =¢' - ' a - + (q - 'Y'M a - .
e'Me 2 ¢ MXY2( a " a) (a~-a) Y2 XY2( a " a) (4.9)
where (4.9) is obtained using the fact that X'M = 0 for 1 = 1, 2.
ix

Taking the probability limit of (4.9) we obtain:
. -1 - -1 .
plim T "h = ¢ , - 20, A'Plim T "(3 - o ) +

N B
) (Plim T " (q - a ))
(4.10)

. -1 .
+ (pllmT (0.—0.))' (222.1 +Ull)\)\
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The numerator N of (4.7) can be written as

= y! -y & - 4.1
N YzMxe 2MXY2(OL a ) ( 1)

and its plim is given by

~

. -1 . -1
plim T "N = o6, X = (Z,,,, *o,, A\") plim T "( a - a ) (4.12)
Then the pseudo true value of X is :
* ’ ; -1 . : -1 . ' [
A* = [ 0,,720, X(plim T ~ (3-a)) + (plim T ~(G-a)) (Z,, 10 A0")
N -1 , R I
* plim T ~ (a~a) ] (0,347 (E,,,,%t0,,Ax") plim T ~ (a-a)) (4.13)

From the point of view of estimation, data are analyzed with the
purpose of obtaining, among other things, a good estimate of ) ; in
particular we hope that an estimator X be consistent for ). Under
the (false) overidentified model specification X will not be consistent
for x , as it results from (4.13), so that-it becomes important to
have an evaluation of the inconsistency. This one depends on the
incosistency of a: X is consistent for » if and only if g4 1is a
consistent estimate of g . Otherwise X will be inconsistent. If
a 1s estimated, for istance, by the instrumental variables method,
the pseudo true value of & is given by

1 . -1
I,(plim T "X'M_X_) B8, (4.14)

. -1
a* =a + ( Eyplim T X'MlX n, ) 1%

A sufficient condition for the consistency of g ( and consequently of X)

is represented by

Yoo AL oxy Ixps v (4.15)

for each ¢t =1,...,T. (4.15) means that if xt2 is a vector of irrelevant
regressors for yt2 given Xt , 1ts inclusion or exclusion from the
structural equation does not affect the estimation of g . Expression
(4.15) 1is the analogue of the orthogonality condition which ensures

the consistency of OLS estimates in a multiple regression model when
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relevant regressors are omitted from the model.

It has be noticed that the inconsistency of X does not
permit to discover the exogeneity of yt2 w.r.t. 6, , since even
if A= 0 in the true model, A* still will be different from =zero.
The only possibility of detecting the exogeneity of Yo w.r.t.

8, by using a misspecified model occurs when the true parameter values

| x) = ( Z,,,,t0,;, A X ') are near to =zero.

f both d v
o oth g, an ar ( yt2 ¢

In this case the difference between )* and ) became negligible and
right conclusions about the exogeneity may be drawn on the basis
of a misspecified model. In all other situations we have to cope
with the inconsistency of X .

A practical suggestion would be to reduce as much as

possible the conditional variance of yt by choosing an optimal set

2

of instruments (Sargan(1958)).

5. Some concluding remarks

At first we considered the general model along its comple-
tion and a likelihood function factorization we prefer for our
analysis. For the Jjustidentified version of the model we derived
the joint test of exogeneity and overidentifying restrictions of
Lagrange Multiplier type and its version as T time the R2 obtained
from an appropriate auxiliary regression.

With reference to the exogeneity test we studied the
consequences deriving from two different kinds of misspecification.

The former is encountered when one does not impose true overidentifi-



cation restrictions. In this case , as for estimation there is a
loss of efficiency, we showed that for the exogeneity test there
is a loss in power. The latter case of model misspecification is
given when one imposes false overidentifying vrestrictions. In such
a situation the (pseudo) maximum likelihood estimator is inconsistent
and we give the expression for the pseudo true value to which the
estimator converges. This is a function of the parameters of the
true model. On these grounds it has been possible to evaluate the
consequences of misspecification on the exogeneity test.

As a practical result it seems that in the specification
search it is advantageous to start by specifying a justidentified
model. In fact both for estimation and for testing the worst conse-
quences are encountered when one imposes false overidentifying restri-
ctions.

Furthermore, on the basis of our results, the most apt
sequence of tests seems to be that of testing at first the exclusion
of conditioning variables from the structural equation, and then the
exogeneity of the variables that one would like to consider as conditio-
ning.

Definitely testing the overidentifying restrictions should

be an integrated part of the model specification search.
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Appendix

From the score vector (2.21) the second derivatives of

the loglikelihood function (2.18) w.r.t. the parameters are:

T aZL -1 -1 W'
3650 " =- (0, * >"222.1>\) _—T—— (A.1)
-1
T 2L -2 W'e
11 (A.2)
a6a0 T
T L W'y -1 e -1
30an' 1 Ieaan T AIany, (A.3)
T alL 1 W'y
Geanr = (M @ ) (A.4)
Tt a2 - Wwv -1
3030, (A2, 5 %22, ) D (A.5)
22,
T—l 2L 1 -2 -3 e'e
= 5— 011 011 ——"T (A.6)
3 0.,
YY) -1 X'x
M a.nl = - ( 222.1® T ) (A.7)
2 2
T 8L -1 Kre
51, an' = - { 222'1®_——T ) (A.8)
2
T et -1 X'v -1
Am, 305, = 222.1® T L,,,,) D (A.9)
2 .
-1
T 32]'_, -1 e'e
aran - Faaa T3 (A.10)
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e'v -1 -1
= (=5 I, ® ., ) D (A.11)
1 - -1
=7 U (2,0 ®%,,,,) D +

1 -1 -1 -1
- 5 D'{[(Zzz.l (V'v/T) Z:22.1) Z:22.1(V'V/T) ] C)

-1 -1
®I[z,,,, v'v/T) Z,,,1] } D+
1 [] [] . -1
+ 35D {z,,,, V'V iz,,.,] ®
-1 -1 -1
O [, (V'V/T) 72,550 Taay (VWD ]} D
(A.12)

To obtain the information matrix (2.22), computed as minus the limit in -

probability of the hessian matrix, the following plim's are useful:

T 1o

plim 3

plim T © v'v
plim T—l
plim T—l
X'v

. -1
plim T

-1
plim T Y'Y

plim T—lYéZ

Th&n:

plim(W'W/T)

€

; -1
plim T "~ ( XI, +e X' + V) ' ( X, + ex' + V)

Iy plim (X'X/T) 1, + o, A\ + I,, ,

I, plim (X'Z/T)

I, plim (X'X/T) M, +o, A" +3I,, ,

plim (Z'X/T) n, plim(Z'z/T)
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plim T T e'w = [o, 2 0]
. -1
plim T ©~ v'Ww = [ z£,, , 0]

-1 -1 |
plim T = X'W = [ plim T ~ X'X 1, plim T X'z]



