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Abstract

This paper considers a partitioned population and develops a decomposition of the Gini index in two

components, which measure the within and the between groups inequality. Differently from the most

widespread inequality measure decompositions, having a between component that compares the means

of the groups, ours informs about the distance between their entire distributions. This makes the decom-

position helpful in several frameworks, such as in the measurement of spatial concentration A Monte

Carlo experiment supports the appropriateness of our components highlighting that they strongly corre-

late with two axiomatically derived benchmarks. The presentation of a case study concerning the income

distribution in the Italian provinces concludes the work and stresses the informativeness of the proposed

decomposition.

JEL classification: D31; D63; O15; R10; R12
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Non technical summary

In this paper we consider the Gini index and propose a within-between decomposition that nests consid-

erable information on both inequality and its spatial distribution. The decomposition proposal deals with

partitioned population and only consists of the two intra and inter groups inequality components.

All the well known decompositions of the Gini index possess three components, and the between com-

ponent only accounts for the variability of the means of the groups. This may be an oversimplification

when the interest lies on the overall distance between distributions. Thanks to a crucial property, the

between component from our proposal solves this potential drawback and further issues that may arise

employing any Gini index decomposition in the spatial context. The availability of a decomposition com-

posed by only-two highly informative terms also provides relevant advantages in a descriptive context or

a regression task, in terms of both interpretability and parsimony.

We demonstrate that both our components are highly informative because - as we support by em-

ploying a Monte Carlo procedure - they strongly and positively correlate with two benchmarks. The two

benchmarks which have been considered are derived from literature and follow an axiomatic approach.

Hence, the introduced components approximately provide all the information contained in the bench-

marks and observe their axiomatically derived properties, despite the fact that they are derived with a

decomposition boundary - and not independently as for the benchmarks.

In addition, we prove that the same levels of correlation also hold in a real data analysis. We apply

the proposed decomposition to the Italian municipality based Income and principal Irpef variables statis-

tical data. In the Monte Carlo procedure, correlation values are calculated simulating from independent

scenarios. In the real data analysis we complement the Monte Carlo results calculating correlations over

time - our analysis ranges from 2000 to 2017 - and over different territorial aggregation. This strengthens

the evidence on the informativeness of the components.

With the same data - focusing on the income distribution of Italian provinces - we highlight the advan-

tages of the proposed between component share in assessing spatial distribution of inequality and we

discuss the interpretative benefits that a two-component decomposition ensures in empirical contexts.

In fact, the decomposition is inspired by the spatial framework. Nonetheless, several applications of

our decomposition are also meaningful and convenient outside of this context: groups could be defined

by several factors such as gender, education level, occupation, race, age, or other criteria.
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1 Introduction

The presence of severe inequality and territorial disparities in several countries facilitates the emergence

of challenging socioeconomic issues (see e.g. Rodrı́guez-Pose, 2018). In the last two decades an in-

creasing effort has been paid to the study of between territories inequality and its socioeconomic effects.

Driven by the attention in territorial inequality and, more in general, on the effects of spatial concentra-

tion - which accounts for both inequality and its spatial distribution - a particular new emphasis has to be

also devoted to the ability of effectively measuring these phenomena.

This paper develops a novel within-between decomposition of the Gini index and presents its nu-

merous advantages. Focusing on geographical partitions, we argue that our proposal is well-suited to

measure spatial concentration. In particular, it improves upon several decompositions currently em-

ployed by researchers for the same purpose, solving two critical issues that those methods may suffer of,

and that we refer to as the oversimplification and the overestimation issue.

Decomposing an inequality index to measure spatial concentration is a meritorious idea introduced

by Shorrocks and Wan (2005). They discuss the existing subgroup decompositions of inequality mea-

sures, and suggest to employ them in the spatial context. This means partitioning the population into

geographical regions, and decomposing an inequality index to obtain a within and a between component

measuring, respectively, the intra- and the inter-territories inequality. The idea is to assess spatial con-

centration by jointly considering the inequality index and its between component. In this manner, both

inequality and its spatial distribution - the key features of spatial concentration - should be under control.

In the conception of Shorrocks and Wan, and in accordance to the conventional literature about inequal-

ity decomposition, the between component has to compare the means of the regions, resulting to be zero

if the means are the same. As Ebert (2010) effectively points out, restricting the attention to the first

moment of the distributions constitute a serious oversimplification issue, indeed it could associate the

same value of between inequality to alternative situations despite different skewness of the distributions.

More recently, Rey and Smith (2013) have introduced a within-between decomposition of the Gini index

arguing that it nests sufficient information on both inequality and its spatial distribution. In particular,

they decompose the Gini index according to a matrix defining pairs of neighbours and non-neighbours.

The differences among pairs of neighbours constitute the within component, while the others sum up

to the between term. Evidently, their between component does not depend on the means of the groups

but on the pairwise differences among non-neighbours, thus solving the oversimplification issue. How-

ever, it is not suited to deal with mutually exclusive groups, such as geographical partitions. When it is

the case, their between component overestimates between groups inequality. As a clear example of the
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overestimation issue, their between component is positive even if the groups have the same distribution.

Our proposal overcomes both the discussed issues thanks to important properties. First, our between

component is zero if and only if the groups have the same distribution. This property is a necessary

condition to avoid both the oversimplification and the overestimation issues. In addition, both our within

and between components are strongly correlated with two benchmarks, which are inspired by literature

and axiomatically derived to measure within and between inequality. Hence, our between component

measures between groups inequality as its benchmark does, namely looking at the distance between the

entire distributions of the groups. Recommending to measure spatial concentration by the Gini index and

our between component comes naturally at this point, and enhances the proposal of Shorrocks and Wan

thanks to the advantages of our decomposition.

In fact, this paper considers income and draws inspiration from the spatial framework: the groups of

the partition could be regions in a country, or countries in a confederation, and we often refer to the within

and the between components as to the spatial components. Nonetheless, we stress that our decomposition

is meaningful and convenient in several applications outside of this context. To give some examples, the

focus may be in well-being, occupation or export rate, and groups could be defined by factors such as:

gender, occupation, race, age, education level or other criteria for individuals; industrial sector or other

relevant dimension for firms.

The paper unfolds as follows. Section 2 introduces the decomposition methodology, presenting the

decomposition rationale and its formalisation for a population partitioned in equal-sized groups. Section

3 explores the properties and the advantages of our decomposition, and discusses the possibility of our

two-component decomposition to exist. Section 4 generalises our proposal to the different-sized groups

case. In Section 5 a Monte Carlo algorithm proves the informativeness of the components showing that

they are strongly correlated with the two benchmarks. Section 6 shows that the same levels of correlation

hold with real data, strengthening the Monte Carlo results. The same data also highlight the advantages

of our decomposition in assessing spatial distribution of inequality, and more generally emphasise the

interpretative benefits that a two-component decomposition ensures in empirical analysis. Section 7 gives

conclusive remarks.

2 The decomposition proposal

Consider a population of N individuals. We denote by xi the income of the generic individual i = 1, . . . ,N

and by µ = ∑
N
1 xi/N the average income in the population. Among the many different formulations of

the Gini index (see Ceriani and Verme, 2015 and Ceriani and Verme, 2012), we consider the following:
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G =
1

2µN2

N

∑
i=1

N

∑
j=1

∣∣xi − x j
∣∣= g

2µN2 (1)

The numerator g is the sum of all the pairwise absolute1 differences between individual incomes. It is

standardised by the factor (2µN2)−1, so that G is scale invariant and G ∈ [0,1] if all the xi ≥ 0.

Consider the population as partitioned in K equal-sized groups; define n to be their size and xk
i to be

the i-th element in the group k ordered (descending) vector of incomes xk = (xk
1, . . . ,x

k
n). All the infor-

mation concerning with the spatial distribution of inequality is within g, which can be written as:

g =
N

∑
i=1

N

∑
j=1

∣∣xi − x j
∣∣= K

∑
k=1

K

∑
h=1

n

∑
i=1

n

∑
j=1

∣∣xk
i − xh

j

∣∣ (2)

A new insight. The assumption of equal-sized groups might appear as extremely simplistic but, as

we show in Section 4, it is not a limit in the applicability of our proposal. Conversely, it provides an

innovative insight into the structure of the Gini index. Look at Figure 1, which illustrates a two-group-

(a) Pairwise differences composing g (b) Decomposition in the non-trivial case

Figure 1: A two-group-two-individual illustration

two-individual situation. Figure 1a highlights all the pairwise differences between units, considered twice

so that they constitute g if they are summed up. As the scheme suggests, with equal-sized groups we

can distinguish three kind of differences: vertical, horizontal and diagonal ones. The vertical differences

involve same-group pairs of elements. The horizontal differences involve same-rank pairs from different

groups. The diagonal differences involve different-rank pairs from different groups.

As an intuitive point of departure, we address the vertical and the horizontal differences to the within

and the between component, respectively. The diagonal differences involve different-group pairs. De-

spite this, they partly reflect the vertical (same-group) differences and are not entirely addressable to the

1If not differently specified, in the remainder we always refer to absolute differences.
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between groups inequality. For example, imagine to replace the values in the scheme so that the groups

are identical: pose xh
1 = xk

1 = 8 and xh
2 = xk

2 = 3. The values of the diagonal differences - 5 - equal the

vertical ones and should not contribute to the (absent) between groups inequality at all.

At this stage, the diagonal differences may be instinctively thought as the addenda of a residual term aris-

ing from the decomposition. However, one effective paradigm exists to disentangle from this residual

two informative contributions to the within and the between components.

The decomposition paradigm. The two black diagonals in Figure 1a are decomposable with a straight-

forward strategy. For example, looking at the solid black diagonal line and moving along the legs of the

solid black triangle in the scheme: the difference between the richest of group k and the poorest of group

h is 6 since the former is 5 units richer than her group poorest individual, who is 1 unit richer than her

counterpart in group h (6 = 5+ 1). A similar argument holds from the opposite point of view, which

is looking at the dashed black diagonal line representing the difference between the poorest of group h

and the richest of group k (6 = 4+2). The two black diagonal differences are predominantly due to and

reflect the within inequality of the two groups. Accordingly, we suggest to split their contribution to g

(6+6 = 12) assigning 5+4 = 9 to the within component and 1+2 = 3 to the between one.

This strategy is not viable in the other half of the diagonals, which are the focus of Figure 1b. Here,

the three values involved in the path along the grey legs do not increase or decrease monotonically as for

the black lines, namely the product between the horizontal and the vertical signed differences is nega-

tive. In such cases we should subtract the horizontal value from the vertical one to obtain the value of

the difference along the diagonal. However, it would be paradoxical to decrease the between component

by the horizontal value, i.e. by 1 in the case of the solid grey lines2.

As Figure 1b illustrates, to overcome this issue we suggest to split each diagonal difference proportion-

ally to the vertical and the horizontal ones and to assign these two (positive) values to the within and

the between component, respectively. From the other perspective, we propose to rescale both the ver-

tical and the horizontal values to make the summation of the two contributions equal to the diagonal

difference: the vertical and the horizontal values are divided by their sum and multiplied by the diagonal

difference. Thanks to this solution we preserve both reasonable proportions3 between the values added

to the components and the Gini index compliance, i.e. the possibility to have a two-component decom-

position. With this overall strategy, the contributions to within and between inequality from the diagonal

2To see the paradox, imagine to replace the poorest individual of group h with a poorer one. Subtracting 3− (2− ε) > 1
would produce a lower value of the between component, though the intuition suggests that between inequality is now higher
because the poor group is poorer.

3These proportions observe the black diagonals decomposition argument.
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differences mimic to the utmost the vertical and the horizontal ones. This is the key that makes the two

resulting components extremely informative.

Formalisation. We have just presented the intuition grounding the decomposition proposal. We now

generalise this strategy, formalise the decomposition and deliver the two spatial components.

For each difference |xk
i −xh

j |> 0, we define Lkh
i j = |xk

i −xk
j|+ |xk

j −xh
j | and ckh

i j = (xk
i −xk

j)(x
k
j −xh

j), where

the equal-sized groups hypothesis guarantees the element xk
j to exists. We can write4:

∣∣∣xk
i − xh

j

∣∣∣= ∣∣∣xk
i − xh

j

∣∣∣
∣∣∣xk

i − xk
j

∣∣∣+ ∣∣∣xk
j − xh

j

∣∣∣∣∣∣xk
i − xk

j

∣∣∣+ ∣∣∣xk
j − xh

j

∣∣∣ =
∣∣∣xk

i − xh
j

∣∣∣
∣∣∣xk

i − xk
j

∣∣∣
Lkh

i j
+
∣∣∣xk

i − xh
j

∣∣∣
∣∣∣xk

j − xh
j

∣∣∣
Lkh

i j
=

=



∣∣∣xk
i − xk

j

∣∣∣+ ∣∣∣xk
j − xh

j

∣∣∣ if ckh
i j ≥ 0

∣∣∣xk
i − xk

j

∣∣∣ |xk
i − xh

j |
Lkh

i j
+
∣∣∣xk

j − xh
j

∣∣∣ |xk
i − xh

j |
Lkh

i j
if ckh

i j < 0

(3)

where to obtain the first equation we use ckh
i j ≥ 0⇒|xk

i −xh
j |= |xk

i −xk
j +xk

j −xh
j |= Lkh

i j . The first equation

fills all the trivial-case decompositions: the vertical differences (k = h), the horizontal differences (i = j)

and the black diagonal differences kind (k ̸= h, i ̸= j and ckh
i j ≥ 0). The second equation stands for situa-

tions as the two sketched by the grey diagonals (k ̸= h, i ̸= j and ckh
i j < 0). Following the decomposition

paradigm we assign the first and the second addenda of the final expressions in eq. (3) to the within and

the between components, respectively.

To simplify the notation in eq. (3) we define5 wkh
i j = |xk

i − xh
j |/Lkh

i j and obtain:

∣∣xk
i − xh

j

∣∣= ∣∣xk
i − xk

j

∣∣wkh
i j +

∣∣xk
j − xh

j

∣∣wkh
i j (4)

As in eq. (3), |xk
i − xk

j|wkh
i j and |xk

j − xh
j |wkh

i j are interpretable, respectively, as the contributions from the

difference |xk
i − xh

j | to the within and the between groups inequality; and wkh
i j as the vertical and the

horizontal differences rescaling factor.

By definition wkh
i j ∈ [0,1], and wkh

i j = 1 iff ckh
i j ≥ 0. The rescaling factor wkh

i j can be lower than one due

to the possibility of a proportional reduction of the horizontal and the vertical values: as in the grey

diagonals of Figure 1, the difference |xk
i − xh

j | can be less than |xk
i − xk

j|+ |xk
j − xh

j |, so we have to rescale

the two addenda by the factor wkh
i j ≤ 1 before assigning them to the spatial components. This ensures

4Notice that considering xk
j or xh

i in eq. (3) is not an issue because the Gini index counts each difference twice by inverting
the indices of the summations.

5We set wkh
i j to zero a priori if |xk

i − xh
j |= 0, i.e. when there is nothing to decompose.
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that the proportion of the two contributions follows the ratio between the vertical and the horizontal

differences. This is crucial for the informativeness of the components.

The Gini index decomposition follows by substituting eq. (4) into eq. (2). Denoting ∑
K
h=1 wkh

i j = wk
i j

and ∑
n
i=1 wkh

i j = wkh
j , we have:

g =
K

∑
k=1

n

∑
i=1

n

∑
j=1

∣∣xk
i − xk

j

∣∣wk
i j +

K

∑
k=1

K

∑
h=1

n

∑
j=1

∣∣xk
j − xh

j

∣∣wkh
j = gw +gb (5)

and

G = Gw +Gb =
gw

2µN2 +
gb

2µN2

The Gini index appears composed by two terms. We propose to interpret Gw as the within component of

inequality, because it depends on the contributions from the same-group pairwise differences, i.e. the ver-

tical differences multiplied by the weights wk
i j; and Gb as the between component of inequality, because

it depends on the contributions from the same-rank pairwise differences, i.e. the horizontal differences

multiplied by the weights wkh
j .

Notice that the within and the between components involve, respectively, the weights wk
i j and wkh

j , which

do not exclusively depend on the two individuals involved in the difference that they multiply. This

feature allows each same-group (same-rank) difference to contribute to within (between) inequality ac-

cording to how much it affects the diagonal ones. For example, if a vertical difference increases, and this

enlarges some of the grey-like kind diagonal differences, then the related rescaling factors consistently

increase and inflate the weight wk
i j.

3 Properties

As it is well known, the Gini index does not observe important properties designed in the inequality

decomposition literature. Thus, many researchers prefer to employ the decomposition of alternative in-

equality measures to obtain information about the contributions to inequality from within and between

groups disparities. In this section, we firstly examine these properties and explain in what contexts we

believe that they are not appropriate. Then, we present the properties and the advantages of our decom-

position. They are relevant and strongly revive the motivations to employ the Gini index to decompose

inequality in a within-between fashion.

The class and the properties of the additively decomposable and of the path independent inequal-
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ity measures are presented in Bourguignon (1979), Shorrocks (1980), Shorrocks (1984) and Foster and

Shneyerov (2000). The Gini index is not additively decomposable in the sense intended by these authors,

which partition the population and require the index to be expressed as the summation of two terms: a

weighted average of the inequality values within each group and a contribution arising from the variabil-

ity in the means of the groups. Path independence is similar, but allows the second term to depend on a

more general class of representative income functions. To decompose the Gini index obtaining two terms

of this kind implies a residual component. Consequently, the Gini index is not subgroup consistent, nei-

ther. Indeed, even if the mean income in each group stays constant, an increase in the inequality within

some groups can be accompanied, due to the residual term, by a decrease of the Gini index (Cowell,

1988). This is not allowed by subgroup consistency (Shorrocks and Wan, 2005, p. 63).

We highlight that these three central properties of the inequality decomposition literature have a com-

mon perspective: they conceive the between component as exclusively linked to the variability (among

groups) of some representative income function, generally the mean. This is desirable only if there

are reasons to believe that comparing the first moment of the distributions effectively informs about

the distance of the groups, e.g. when the distributions have similar higher order moments or when the

population is partitioned by non overlapping6 groups. Differently, our proposal determines a between

component that is explicitly dependent on the pairwise differences between individuals. Together with

the new insight in the Gini structure, this allows the two-term decomposition to exist and to deliver a

between component that carries precious information when the distributions of the groups overlap and

their moments differ.

It is straightforward to verify that wkk
i j = 1, wkh

j j = 1 and wkh
i j ≥ 0 ∀ i, j,k,h. This implies wk

i j ≥ 1 ∀k, i, j

and wkh
j ≥ 1 ∀ j,k,h. Hence, the following properties hold:

Gw = 0 ⇐⇒ |xk
i − xk

j|= 0 ∀ i, j,k (i)

Gb = 0 ⇐⇒ |xk
j − xh

j |= 0 ∀ j,k,h (ii)

The first relation ensures that the within component is zero iff all the same-group differences are zero,

i.e. all the individuals equal their group mean. The second condition guarantees that the between com-

ponent is zero iff all the same-rank differences are zero, i.e. all the individuals equal their rank mean (the

groups have the same distribution).

Properties (i)-(ii) are evidently symmetric. All the decompositions considered in the introduction have

a within component that observes property (i), but only our between component observes property (ii).

6A set of distributions has no overlapping if the intervals where the distributions take values from have empty intersection.
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The benefits for our between component are relevant: the sufficiency of property (ii) - groups with the

same distribution imply that the between component is zero - solves the overestimation issue of the de-

composition by Rey and Smith, while its necessity - the between component is zero only if groups have

the same distribution - solves the oversimplification of the between components based on the means of

the groups.

As stressed before, the weights wk
i j and wkh

j do not only depend on the two individuals involved in

the difference that they multiply. Unfortunately, this compromises the mathematical tractability of the

components and hinders the analytical derivation of additional properties. We exploit an alternative route

to corroborate the appropriateness of the two components. Before presenting it, we stress that an index is

an inequality measure if it observes a rigorous axiomatic approach (for an effective overview see Allison,

1978). We believe that a similar approach is desirable to evaluate the components of an inequality

index decomposition. Coherently, in Section 5 we show that our components are strongly correlated

with two benchmarks, which independently measure within and between inequality and are derived

from literature following an axiomatic approach. Properties (i)-(ii) state that our components have a

correct starting point - zero - and we demonstrate that they strongly correlate with the axiomatically

derived benchmarks. This has a remarkable consequence: our components approximately provide all the

information contained in the benchmarks and observe their axiomatically derived properties; correlation

coefficients close to 1 imply that the extent of the approximation is negligible.

As a two-component decomposition our proposal has a further advantage: the inequality index and

the two components are collinear. All the information about the inequality index and its decomposition

can be provided by specifying the value of the index and its between (within) component. Relevant

advantages in descriptive or regression tasks in terms of both interpretability and parsimony directly

follow. To the best of our knowledge, our decomposition is the first to possess both the advantages

of a two-component decomposition and a between component that properly informs about the distance

between the entire distributions of the groups.

4 The different-sized groups extension

In this section we show that the equal-sized groups hypothesis is not binding. It was necessary to under-

stand the decomposition arguments, but the proposal can be easily extended to cope with more general

situations in which the K groups are different-sized. Denote the vector of the sizes with n = (n1, . . .nK),

where ∑
K
k=1 nk = N. Eq. (2) has to be reformulated as:
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g =
N

∑
i=1

N

∑
j=1

∣∣xi − x j
∣∣= K

∑
k=1

K

∑
h=1

nk

∑
i=1

nh

∑
j=1

∣∣xk
i − xh

j

∣∣
and a way to guarantee the element xk

j to exist is needed to employ the decomposition proposal. We

propose two distinct solutions. The first allows to evaluate the two exact components but necessitates po-

tentially unaffordable computations. The second drastically reduces computational requirements paying

the cost of a negligible approximation.

The exact approach. It considers a new common size n = mcm(n) and the resampling weights pk =

nk/n, so to build the vectors yk = (yk
1, . . . ,y

k
n) = (xk

1 . . .x
k
1︸ ︷︷ ︸

p−1
k

, . . .xk
nk
. . .xk

nk︸ ︷︷ ︸
p−1

k

). Defining li
mk

= p−1
k (i−1)+mk,

by construction we have xk
i = yk

li
mk

, ∀ i = 1, . . .nk and ∀ mk = 1, . . . , p−1
k . Therefore ∀ (k,h)∈ {1, . . . ,K}×

{1, . . . ,K} the following holds:
nk

∑
i=1

nh

∑
j=1

∣∣xk
i − xh

j

∣∣= n

∑
i=1

n

∑
j=1

pk ph
∣∣yk

i − yh
j

∣∣ (6)

Proof.

n

∑
i=1

n

∑
j=1

pk ph
∣∣yk

i − yh
j

∣∣= nk

∑
i=1

nh

∑
j=1

p−1
k

∑
mk=1

p−1
h

∑
mh=1

pk ph

∣∣∣∣yk
li
mk
− yh

l j
mh

∣∣∣∣= nk

∑
i=1

nh

∑
j=1

p−1
k

∑
mk=1

p−1
h

∑
mh=1

pk ph
∣∣xk

i − xh
j

∣∣=
=

nk

∑
i=1

nh

∑
j=1

pk ph p−1
k p−1

h

∣∣xk
i − xh

j

∣∣= nk

∑
i=1

nh

∑
j=1

∣∣xk
i − xh

j

∣∣

We provide an example which should give the intuition of what we formally wrote. Imagine two groups

composed, respectively, of two and three individuals, as the ones reported in the left rectangle of Figure

2. Replace them with those in the right rectangle. By the Principle of Population, xk and yk (as well as

Figure 2: Exact approach: a two-group illustration

xh and yh) are identical from the within inequality point of view. In addition, the empirical cumulative

distribution functions of the two groups are the same, before and after the replacement: also the distance

between the two groups is unvaried. However, each couple difference in the left scheme appears in the
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right scheme 9 times if the couple belongs to yk, 4 times if it belongs to yh and 6 times if the two units

belong to different groups. The pk and ph in eq. (6) adjust for this effect multiplying the three kinds of

differences, respectively, by 1/9, 1/4 and 1/6. In this way, equal-sized groups are obtained preserving

the correspondence with the Gini index and with the original distributions of the groups.

The Gini index numerator can be decomposed with an analogous technique to the one employed deriving

eq. (5). The following is obtained:

g =
N

∑
i=1

N

∑
j=1

∣∣xi − x j
∣∣= K

∑
k=1

K

∑
h=1

nk

∑
i=1

nh

∑
j=1

∣∣xk
i − xh

j

∣∣= K

∑
k=1

K

∑
h=1

n

∑
i=1

n

∑
j=1

pk ph
∣∣yk

i − yh
j

∣∣=
=

K

∑
k=1

n

∑
i=1

n

∑
j=1

∣∣yk
i − yk

j

∣∣wk
i j +

K

∑
k=1

K

∑
h=1

n

∑
j=1

∣∣yk
j − yh

j

∣∣wkh
j = gw +gb

(7)

The only difference w.r.t. eq. (5) is in the new weights wk
i j = ∑

K
h=1 pk phwkh

i j and wkh
j = ∑

n
i=1 pk phwkh

i j .

They are the general case of the previously defined weights and incorporate the information needed to

preserve the original impact of each couple.

In most cases this approach requires an unaffordable computational effort because of the potentially-

huge magnitude of the minimum common multiple. To reduce computational requirements, we present

an alternative procedure that we refer to as quantilisation.

Quantilisation. We propose to consider a lower value of n and to calculate differently each yk: for

each group we select a vector composed by n quantiles from the income vector of the group. As for

the resampling weights, their calculation is the same employed in the exact approach, but now nothing

constrains n ≥ nk, so it can be pk > 1. The decomposition proposal has the same form of eq. (7) but G,

Gw and Gb now incur in some approximation.

To employ this method there are the definition of quantile and the value of n to be selected. As for

the former, we advise the Definition 7 reported in Hyndman and Fan (1996), which is also the default

definition adopted by the quantile() function in the statistical software R. Given each vector xk ∈ Rnk ,

accordingly to this definition and in order to minimise the approximation of the quantilisation results, we

suggest to interpolate linearly the vertices
(
(i−1)/(nk −1),xk

i
)

where i = 1, . . . ,nk, and then to estimate

the n quantiles - i.e. to determine the vector yk - by the values associated to the probabilities

prob j =
j−1
n−1

j = 1, . . . ,n (8)

on the resulting piecewise linear curve. As for the latter, we define wk = nk/∑
K
k=1 nk and advise the value:
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n =
K

∑
k=1

wknk =
∑

K
k=1 n2

k

∑
K
k=1 nk

(9)

which determines n as the average of the nk, each weighted by its own share of population wk.

The decisions proposed both for the quantile definition and for the value of n are motivated in the ap-

pendix. Here we only inform that, if they are employed, the approximation that the quantilisation pro-

cedure copes with is negligible. However, when min(n) is high and a computational cost saving choice

is required, it could be also acceptable - in terms of the magnitude of the approximation - to choose

n << min(n).

Before concluding this section, we suggest how to overcome the issue of the approximation in the

absolute value of the components due to the quantilisation procedure. As we show in the appendix, the

suggested strategy for the selection of quantiles ensures that the shares of the components for quantile-

transformed data are consistent for the shares obtained by the exact approach. Hence, to obtain two

consistent estimates of the exact components that sum up to the Gini index of the original data, it is

sufficient to multiply the shares of the components (obtained by quantilisation) with the value of the

index.

We finally observe that a generalised version of the quantilisation procedure may be wanted to cope

with weighted data, i.e. to consider the weights of the observations. We suggest to employ functions

which account for the sample weights in returning quantiles (as the R function wtd.quantile()) in place

of a standard quantile function (as the R function quantile()). This is equivalent to apply a standard

quantile function to vectors repeating the income of each unit as many times as the value of its weight

states. As for the choice of n, we advise - but other choices that we do not discuss here can be suitable -

to replace the wk in eq. (9) with the cumulated relative weights of each group. This is how we proceed

in Section 6.

In the next section a Monte Carlo experiment exhibits that each component of the introduced decom-

position is strongly correlated with an axiomatically derived benchmark. In the Monte Carlo simulations

each group k is replaced by n quantiles selected from xk; the value of n is determined by eq. (9); the

Definition 7 from Hyndman and Fan (1996) and eq. (8) are employed to select the quantiles.

5 Correlation with benchmarks

Benchmarks. The two benchmarks which we consider are developed ex ante to measure within and

between inequality. They are derived from literature and observe an axiomatic approach. Let Gk be the
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value of the Gini index in group k; µk its mean and nk its dimension. The within benchmark is:

Wr =
K

∑
k=1

nk

N
µk

µ
Gk =

K

∑
k=1

skGk

where sk is the share of income possessed by group k. Every Gk observes the axioms and the properties

of the Gini index. Thus, the global properties of Wr incorporate them by a weighted mean, which in this

case assigns a greater weight to the inequality of the groups possessing the biggest shares of income.

As for the between benchmark, we employ the following index:

Br =
K

∑
k=1

K

∑
h=1

nknh

N2 Ebkh

where Ebkh is the diversity measure between two groups (k and h) proposed by Ebert (1984). Actually,

Ebert proposes a general class of measures dependent on a parameter r. Here, Ebkh is the measure cor-

responding to r = 1. A slight modification - we standardise the incomes dividing by their average µ -

is introduced to observe the scale invariance criterion in addition to the other properties which the index

already observes. The measure is defined as:

Ebkh =
1

mµ

m

∑
i=1

∣∣xk
i − xh

i

∣∣
where m = min(nk,nh) and xk

i is the i-th of the m quantiles selected from the income vector of group k.

A preceding proposal by Dagum (1980) had already developed a measure of economic distance between

two income distributions, but it has been criticized by Shorrocks (1982) because of its asymmetric nature.

Ebert proposal, instead, presents all the properties of a distance and observes a more general axiomatic

approach. In addition, it perfectly reflects our idea that a measure of inequality between groups has to

compare their entire distributions. Br inherits these properties: it depends on them and on the aggregating

consequences of the weighted mean. In this case, the weights are proportional to the share of couples

in each group pair, in accordance with the weights of the “intercountry terms” calculated by Milanovic

(2011) (p. 88-89).

Competitors. As anticipated, a Monte Carlo algorithm is employed to evaluate the extent of the cor-

relation between the spatial components of our decomposition and the benchmarks. To outline the ad-

vantages of our proposal, we also compare the benchmarks with the components of the most widespread

subgroup decompositions of the Gini index. Comprehensive outlines of these decompositions are pro-
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vided in Giorgi (2011) and Radaelli (2010). This variety of decompositions originates by alternative

formulations of the Gini index and by different approaches, but the resulting proposals are ascribable to

two main representative strands.

Aiming for tractability, in presenting their characteristics we restrict the attention to the decompositions

presented in Yitzhaki and Lerman (1991) and in Bhattacharya and Mahalanobis (1967). They both rely

on a partitioned population and exhibit the two components measuring within and between groups in-

equality, plus a third term. We can write their general structure as:

G = GY L
w +GY L

b +RY L (10)

G = GBM
w +GBM

b +RBM (11)

where the apices Y L and BM identify the two proposals.

The within components GY L
w and GBM

w measure the intra-territories inequality by two differently-weighted

averages of the Gini index in each group. The within component from eq. (10) coincides with the mea-

sure that we selected as within benchmark:

GY L
w =

K

∑
k=1

nk

N
µk

µ
Gk =

K

∑
k=1

skGk (12)

where each weight sk is immediately interpretable as the group k income share. Differently, in the weights

of the within component from eq. (11) the population shares multiply the sk, and GBM
w reads:

GBM
w =

K

∑
k=1

(nk

N

)2 µk

µ
Gk =

K

∑
k=1

nk

N
skGk (13)

The distance among GY L
w and GBM

w only depends on the sizes of the population shares, which enter lin-

early in eq. (12) and quadratically in eq. (13). The choice to select GY L
w as the within benchmark is due

to the immediate interpretability of its weights.

As for the two between components, they also depend on the decomposition choice. The between com-

ponent in eq. (10) is defined as:

GY L
b =

2
µ

Cov

(
µk,

1
nk

∑
nk
i=1 Rik

N

)
(14)

where Rik is the rank of the unit i from the group k in the overall population. The between component in

eq. (11) reads:
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GBM
b =

1
2µ

K

∑
k=1

K

∑
h=1

nknh

N2 |µk −µh| (15)

The two components in eq. (14)-(15) appear very different but, as the between component of every

subgroup decompositions of inequality measures, they are both based on the means of the groups: the

discussed oversimplification issue evidently appears in the results of this section.

As for the third components RY L and RBM - which are non-negative and disappear if the distributions of

the groups do not overlap - they have initially remained uninterpreted and just considered as a residual.

Thereafter, Yitzhaki and Lerman (1991), Yitzhaki (1994) and Dagum (1997) have proposed interesting

interpretations - which are beyond the scope of this paper - in terms of overlapping, stratification and

transvariation, making all the components in eq. (10)-(11) informative. However, there is no way to

extract information on within and between inequality from RY L and RBM, as we do with our residual (the

sum of the diagonal differences).

The Monte Carlo experiment. The algorithm works with three predetermined parameters: the number

of groups, the parameter(s) of the distribution of n and the coefficient of variation between the averages

of the groups (CV [E[x̄k]]). It is schematised in Figure 3 and can be summarised as follows:

Figure 3: The Monte Carlo algorithm

Step I. With K, (n,r) and CV [E[x̄k]] fixed, generate the vector n: each nk is drawn from a uniform

[n,(1+ r) ·n], where 100 · r is the maximum percentage deviation from the minimum n.

Step II. Generate the incomes from lognormal distribution 50 times, each time evaluating all the involved

indices. This allows to estimate the following two triples of correlation estimates:


cor
(
GA

w,Wr
)

cor
(
GY L

w ,Wr
)

cor
(
GBM

w ,Wr
)
 ;


cor
(
GA

b ,Br
)

cor
(
GY L

b ,Br
)

cor
(
GBM

b ,Br
)

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where the superscripts A, YL and BM identify the three alternative decompositions.

Step III. Repeat Step II for different values of CV [E[x̄k]].

The algorithm runs Step I-III 20 times and delivers, for each value of CV [E[x̄k]], 20 replicates of the

triples defined in Step II. More details about the income simulation procedure and its theoretical founda-

tions can be found in the Appendix. Here we only stress that the parameters of the lognormal distribution

are micro-founded. Indeed, as it is detailed in the second part of the Appendix, they are chosen sampling

from the parameters estimated in Bandourian et al. (2002) using real data along different countries and

periods. This should guarantee robust results with respect to real income distributions, as also confirmed

by the results obtained in the next section using real data.

Look at the diagrams reported in Figure 4. Eight values of CV [E[x̄k]] are used to obtain the eight triples

of boxplots. For each value of CV [E[x̄k]], the three kinds of boxplots in Figure 4a (4b) are built by the 20

replicates of the triples: black, grey and white boxplots describe the distribution of the correlation that

the within (between) benchmark has, respectively, with the within (between) components proposed in

this work, in Yitzhaki and Lerman (1991) and in Bhattacharya and Mahalanobis (1967). Figure 4 reports

the values obtained simulating with K = 30 and n ∼ U
(
[100,500]K

)
.

The eight values of CV [E[x̄k]] allow to evaluate correlation in contexts characterised by increasing vari-

ability in the means of the groups. This highlights the advantages of our between component, which are

striking in situations where the variability in the means of the groups is not large. As for the within com-

ponent, GY L
w presents by definition a perfect correlation with Wr. However, better than GBM

w , GA
w always

reports extremely high correlation with Wr.

Results. The correlation values are studied by the same algorithm in multiple contexts by varying the

number of groups and the distribution of n. Table 1 reports the results for representative parameters.

It summarises the 20 replicates produced to estimate each correlation distribution by their average and

standard deviation
(
µ,sd

)
. These pairs are evaluated for the eight values of CV [E[x̄k]] and are averaged

pairwise determining four pairs
(
µ,sd

)
. The pairs correspond to low, medium-low, medium-high and

high levels of CV [E[x̄k]] and are available for both the within and the between components.

The results about our decomposition are remarkable. The correlations of the proposed components only

marginally depend on the specification of the parameters. We only notify the most relevant variations

in the table. Higher values of K negatively influence all the µ related to our within component, but an

increase of the values in n absorbs this small effect. The values of µ also decrease for higher level of

CV [E[x̄k]], while the values of sd tend to increase. However, all the µ referred to our within component
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(a) Within components (b) Between components

Figure 4: Correlations between the benchmarks and the components from three Gini index decomposi-
tions: A, YL and BM in the legend identify the decomposition proposed in this work, in Yitzhaki and
Lerman (1991) and in Bhattacharya and Mahalanobis (1967), respectively. The reported correlations are
obtained simulating with K = 30 and n ∼ U

(
[100,500]K

)
for different values of CV [E[x̄k]].

are never below 0.92 and the maximum of the sd is 2.8 · 10−2. As for our between component, its µ

slightly decreases and shows higher sd when the variability in n gets higher and the values in n and K

are small.

Despite these details, Table 1 strengthens the conclusions drawn looking at Figure 4: the correlation

estimates for our components always7 maintain the described advantages.

6 Validation on real data and the Italian provincial-based evidence

Data. In this section we apply the proposed decomposition to the municipality based Income and prin-

cipal Irpef variables statistical data, which are available among the Open-Source Data released by the

Italian Ministry of Economy and Finance. They annually collect - our analysis ranges from 2000 to

7The only exception occurs when the variability in n is low: in this case the results for the within component from eq. (13) are
enhanced. Indeed, it perfectly correlates with the within component from eq. (12) when the groups are equal-sized. However,
the correlation rapidly decreases when the variability in n increases, so this aspect is negligible.
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2017 - data from the tax declarations of the whole set of Italian taxpayers and report several variables

on a municipality base; we consider the variable total income. For each municipality, the available in-

formation refers to eight classes: (−∞,0], (0,10000], (10000,15000], (15000,26000], (26000,55000],

(55000,75000], (75000,120000], (120000,∞). The frequency of the taxpayers and the total amount pos-

sessed in each class are provided. Hence, up to eight observations for each municipality8 are available:

the average income of each class with an attached weight given by the frequency in that class. We group

them on provincial, regional and territorial (NUTS 1) base obtaining three different areal-unit partitions.

Validation. In the previous section, the correlation values were calculated simulating from independent

scenarios. Here we complement the analysis evaluating the benchmarks and the components in each

of the 18 years, and calculating their correlations over time. We apply this procedure to the whole

dataset (Italy) and to five independent subsets identified by NUTS-1. For each subset, we group the

data according to different administrative borders: provinces, regions and, exclusively for the analysis on

the whole dataset, NUTS-1. The results reported in Table 2 confirm the very high correlations between

the benchmarks and the proposed components. Despite the difference in the derivation, all the reported

correlation estimates are definitely compatible with the findings in Table 1 and strengthen the consistency

of the conclusions driven by the Monte Carlo experiment: the two components are appropriate to measure

within and between inequality. But do they really show something interesting and new?

Provincial-based evidence. In Figure 5 we consider the provincial-based aggregation and investigate

the consequences of the decomposition choice on the between component share trajectory, which is

central in the strategy proposed by Shorrocks and Wan (2005) to assess spatial concentration. The three

time series range in different intervals. To better underline their relative evolution, we rescaled them

dividing by their own initial value. The between component share from the proposed decomposition

presents an initial marked decreasing path followed by an inversion started during the years in which the

financial crisis affected Italy. The trajectories from the other decompositions appear quite similar in their

shapes until the years of the financial crisis, then the component from Bhattacharya and Mahalanobis

(1967) moves more similarly to ours. However, they both vary irregularly during the first ten years and

do not unambiguously capture the decreasing path followed by the introduced between component. This

confirms that the variability in the means is not always able to exhaustively inform about the economic

distance between groups and about spatial patterns in the income distribution. The introduced between

component can better assess spatial concentration.

8They are less for the municipalities with classes containing less than four units.
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Figure 5: Time series of the shares
over the Gini index of the between
components from the three consid-
ered Gini index decompositions. In
the legend A, YL and BM stand
for the decomposition proposed in
this work, in Yitzhaki and Lerman
(1991) and in Bhattacharya and Ma-
halanobis (1967), respectively. Each
series is rescaled dividing by its own
initial value.

We now present further advantages from our proposal that arise in this simple descriptive context.

These are general traits which are discernible whenever a two-component decomposition is employed.

Indeed, every two-component decomposition of an inequality index allows for the considerations which

follow, but their reliability depends on both the appropriateness of the components and the index in-

volved. As for the former, we have already justified both the components. As for the index to decompose,

the Gini index is the most used inequality measure; and we have now the opportunity to decompose it in

two components while considering a partitioned population.

We still consider the provincial-based aggregation. Thus, the Gini index measures the inequality in the

municipal per-class income distribution; and the within and the between component shares represent the

contributions of the within and between provinces differences to the overall inequality. The values of

Figure 6: Gini index trajectory of the
municipal per-classes income distri-
bution - left scale. Time series of the
proposed between component share
over the Gini index - right scale.
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the share of our between component on the Gini index are plotted in Figure 6 - right scale. The Gini

index is reported too - left scale. The latter varies quite irregularly during the considered period, with a

sudden increase in the last year. The former shows an initial marked decreasing trend followed by a light

recovery; the converse holds for the within component share, which can be easily derived by a reflection

and a one-unit-long vertical translation of the between share path.

It is also possible to effectively inform about the contributions that the two components provide to the

Gini index percentage variation. The Gini index yearly percentage variations are reported in Figure 7,

along with the contributions to them from the changes in the between component. Despite the between

component has a minority share over the Gini index at this aggregation level (Figure 6), its influence to

the Gini index path is relevant. In the first years of the period, the changes in the between inequality have

mainly acted restraining the effects of the within inequality on the Gini index path. Conversely, the two

components have affected the overall inequality in the same direction since 2010. As before, interesting

conclusions on the within term can be evinced from the results about the between component.

Figure 7: Gini index yearly percent-
age variation and between compo-
nent change contribution.

7 Conclusions

A recent line of research convincingly considers the decomposition of inequality measures as a source to

effectively evaluate spatial concentration.

The most widespread decompositions of the Gini index consider a partitioned population, and consist of

three components: a residual term augments the sum of two (spatial) components measuring within and

between groups inequality. The resulting between component is always such that groups with similar

means present low levels of territorial inequality. However, when the distributions of the groups overlap,
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further characteristics of the distributions are relevant to assess between inequality. The decomposition

developed in this paper fills this gap.

Exploiting a new insight into the Gini index, we extract crucial information from our residual term,

disentangling two contributions to within and between inequality and delivering a decomposition that is

exactly composed by the two spatial components. As far as we know, this is the first Gini index decompo-

sition to deal with a partitioned population and to avoid the residual. In addition, its between component

compares the entire distributions of the groups and not only their first moment. The importance of these

aspects is highlighted in our empirical analysis: unlike the existing measures of between groups in-

equality, our decomposition is able to capture a decreasing path in the income inequality between Italian

provinces.

As we have discussed, focusing on the geographical framework, the advantages of our proposal

makes it well-suited to measure spatial concentration and can be helpful to design and to evaluate place-

based policies. However, our Gini index decomposition can be applied to any kind of partition, providing

two informative measures of within and between groups inequality. We strongly believe that the impor-

tance of the Gini index for within-between decomposition of inequality should be reconsidered in the

light of the introduced decomposition and of the novelty of its characteristics, which open new opportu-

nities in the analysis of inequality and related fields.
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Appendix

On the quantilisation procedure

The first section of this appendix is aimed at analysing the quantilisation procedure, namely to identify

the optimal definition of quantile and the optimal value of n, to explain the reason behind their optimality

and to quantify the magnitude of the approximation incurred.

Defining w = (w1, . . .wK) we can rewrite the suggested value of n as n = wn⊺. This expression

(a) MSE (left scale) and MAE (right scale) of the 150
relative differences in Sb for different choices of n.

(b) Boxplots of the 150 relative differences in Sb for
different choices of n.

Figure 8: Between component share relative approximation for different choices of n. The approximation
is evaluated considering the 150 values of the relative difference in the between share obtained by the
quantilisation procedure w.r.t. the one obtainable employing the exact approach.

determines n as the average of the nk, each weighted by the share of population wk. The performance

of this value is firstly shown in Figure 8, where approximation is evaluated looking at the relative dis-

crepancy between the two values of Gb/G obtained employing the exact and the quantilisation method.

Precisely, define Sb = Gb/G as the between component share obtained by the quantilisation method

and Se
b = Ge

b/Ge as the same share obtained by the exact approach. The relative discrepancy is mea-

sured by the Mean and the Absolute Squared Error of Sb/Se
b w.r.t. 1 = Se

b/Se
b. They are obtained run-

ning 150 simulations and evaluating the empirical counterpart of MSE
(
Sb/Se

b

)
= E[

(
Sb/Se

b −1
)2
] and

MAE
(
Sb/Se

b

)
= E[

∣∣Sb/Se
b −1

∣∣].
The simulation procedure flows as follow. In each running lognormal-distributed incomes with a

vector of sizes n are drawn as described in the second section of this Appendix. We compare alternative
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choices of n, which are the minimum and the maximum of n, its deciles and the value obtained by eq. (9).

The vector n is also drawn, but some constraints on its elements are imposed to ensure affordable values

for mcm(n). To be specific, the algorithm firstly specifies K (= 5, 10 or 20). Then it builds a vector mul

composed by the divisors of 24335 belonging to an interval [min,max]. The min (= 36 or 72) and the max

(= 360 or 720) are both included in n. The other K − 2 values are sampled with repetition from mul.

With this choice the mcm cannot exceed the value 2160 and the computations are affordable. Figure 8

represents the results for K = 20, min = 72 and max = 720.

As shown in Figure 8a the proposed value of n - represented by the solid indicators - minimizes (or

reach a value very close to the minimum of) the approximation that this method copes with, both for

the MSE (left scale) and the MAE (right scale). This result is achieved thank to a vanished distortion

and a variance reduction, as Figure 8b shows. We stress the irrelevance of the approximation when that

value of n is employed: the correspondent MAE measures for Sb a mean absolute percentage error of the

0.22%.

Obviously, the magnitude of the between component share percentage approximation depends on the

simulation parameters, as Table 3 points out. It reports the MAE9 - multiplied by 102 to express the

relative discrepancy in percentage points - of the between component share obtained by the described

procedure for different choices of n, K and of the interval [min,max].

Results are really encouraging. The values of the MAE are below the percentage point approximately in

half of the analysed contexts and always when the suggested choice of n is employed. In addition, the

dependence of results on the employed parameters - which is described just below - could further ensure

a reduction in the approximation in many realistic contexts where the parameters are presumably more

conducive.

For each choice of n, when the ratio max/min decreases - i.e. if the variability in n decreases - the approx-

imation reduces, too. If that ratio stays constant, the MAE informs about better performance for higher

min and max. Results are enhanced when n is selected by eq. (9) and the number of groups is high. The

described dependence of the MAE on the values of n, K and of the interval [min,max] can be considered

as a kind of consistency for our procedure.

Furthermore, the suggested choice of n almost always guarantees a relevant reduction in the computa-

tional cost which the procedure would incur in choosing n = max(n). This reduction is not negligible in

our simulations: p̄ is the average of the probabilities corresponding to the values of n selected by eq. (9)

in the 150 simulations. It is reported in the last column of the table. Its values range from 0.69 to 0.84

and a clear dependence from the distribution of n is highlighted in the table. However, as supported

9We prefer it because of its interpretability as average absolute percentage error.
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by the values in the third column of the table - which decrease when min(n) increase - it could be also

acceptable to choose a value n << min(n) if min(n) is high and a computational cost saving choice is

required.

We now present the assessment procedure which leads to the selection of the quantile definition

employed in the analysis. We evaluate the impact of several quantile definitions on the approximation

that the quantilisation procedure copes with. Figure 9 compares the approximations achieved iterating

the same procedure which generates Figure 8a using the nine different quantile definitions presented in

Hyndman and Fan (1996). The Definition 7 essentially presents the lowest MSE (and MAE) for each

Figure 9: Between component share
approximations - measured by the
MSE and through the same proce-
dure which produced Figure 8 - ob-
tained employing the 9 quantile def-
initions presented in Hyndman and
Fan (1996). Using the software R,
each definition can be selected by
the option type of the function quan-
tile(). Here, Tj: j = 1, . . . ,9 stands
for selecting the option type = j.

choice of n and it ensures computational advantages because the MSE approaches 0 for smaller n.

The better performance resulting from the definitions 1 and 2 when the selected probability is close to

1 are exceptions. Both the definitions rely on a stepwise cumulative probability function which selects

the quantiles in the set of the values in the starting vector. Thus, if p = 1 and max(n) = mcm(n), the

vector of quantiles corresponds to the yk of the exact approach: no approximation is encountered. The

approximation is negligible if max(n) close to mcm(n) and p approaching 1, i.e. n close to max(n). In

Figure 9 this is evident from p = 0.8. Nonetheless, in the vast majority of real applications, the vector n

is much more variable than the bounded vectors used in these simulations. Hence mcm(n) is generally

far from max(n) and the Definition 7 from Hyndman and Fan (1996) is definitely recommended.

Actually, the optimal performance associated to the suggested quantiles selection strategy should not

come as a surprise. Its outstanding results have a twofold explanation. First, the performance of the

proposed choice of n directly derives from its consistency with the exact-approach weighting system.

This choice assigns greater weights wk to the sizes of the most sized groups, which is desirable because

these are the groups with the biggest associated values of pk. It is reasonable to preserve their information
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choosing a large n and resampling the smaller groups taking their quantiles. But if many small groups are

present, n is attracted towards their small size. Here the quantilisation of big groups and the related loss

of information are preferred to the approximation which would be incurred resampling the many small

groups. The second explanation for the optimal performance of the suggested strategy is the following.

Eq. (8) selects the values prob j so to partition the interval [0,1] in n − 1 equal parts, with 0 and 1

two of the n vertices of the partition. It is straightforward to verify that, when the discussed quantiles

selection procedure is employed, then min(xk) and max(xk) are preserved for each n and k. Moreover,

if nk = n ∀ k, then the vectors xk are entirely preserved, too. Both this properties hold at the same time

only employing the Definition 7 from Hyndman and Fan (1996) and the discussed choice of the values

prob j. They ensure robustness to the quantilisation procedure w.r.t. outliers and contribute to explain the

negligible approximation which is incurred.

The income simulation algorithm

A Monte Carlo algorithm is employed to evaluate the approximation of the quantilisation procedure

and to estimate the correlation between the two benchmarks and the components from the alternative

decompositions. This section of the appendix provides with the theoretical foundations of the income

simulation procedure which feeds both these algorithms.

The distribution of n is a K-variate uniform, where the number of groups K and the extremes of

the distribution are determined ex-ante. A uniform distribution is also exploited to draw the expected

average income of each group: E
[
x̄k
]
∼ Unif(m,M). The minimum m of this distribution is set to 104.

As for the maximum M, it is fixed to 5 ·104 in the simulations which generated the results of the first part

of this appendix. Differently, in the analysis described in Section 5, M is varied to highlight the impact

of the variability in the means of the groups on the investigated correlations. This is possible because a

modification of M directly affects CV [E[x̄k]]. For the uniform distribution Eu
[
E
[
x̄k
]]

= (M+m)/2 and

Varu
[
E
[
x̄k
]]

= (M−m)2/12, therefore the coefficient of variation of E
[
x̄k
]

is

CV
[
E
[
x̄k
]]

=

√
Vu [E [x̄k]]

Eu [E [x̄k]]
=

1√
3
(M−m)

(M+m)
∈
[

0,
1√
3

]

and, with m fixed, it only depends on the value of M. In Figure 4, the interval
[
0,1/

√
3
]

and the values of

CV [E[x̄k]] are rescaled to the interval [0,1] by a simple scale transformation. This is not an issue because

CV [E[x̄k]] is not directly comparable with values of x̄k coming from a non-uniform distribution.

The values of M are selected so that the coefficient of variation divides the interval in S equal parts.
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Denote by M(s), s = 1 . . .S the different values required for this scope. The values M(s) satisfy:

M(s)−m
M(s)+m

− M(s−1)−m
M(s−1)+m

= c

with M(0) = m and c = 1/
(√

3S
)
. With easy calculations the following holds:

M(s) =
m(cM(s−1)+ cm+2M(s−1))

(2m− cM(s−1)− cm)

and the M(s) can be calculated iteratively.

Once that all the parameters are fixed, the incomes of each group k are drawn from a lognormal

distribution with expected value E
[
x̄k
]
∼ Unif(m,M). The last requirement is to define a meaningful

way to determine the two parameters µ and σ2 of the distribution. As it is well known, for a lognormal

distribution the following holds:

E
[
x̄k
]
= eµk+

σ2
k
2 (16)

This equation allows to design an effective way to split E
[
x̄k
]

in the two elements µk e σk which are

required to draw from the distribution - in a manner that the lognormal is a plausible income distribution.

Starting from eq. (16) it is possible to write

lnE
[
x̄k
]
= µk +

σ2
k

2

and to split linearly lnE
[
x̄k
]

in µk and σ2
k :

µk = αk lnE
[
x̄k
]

(17)

σ
2
k = 2(1−αk) lnE

[
x̄k
]

(18)

Their ratio is

ck =
σ2

k
µk

=
2(1−αk) lnE

[
x̄k
]

αk lnE [x̄k]
=

2(1−αk)

αk

At this point, we consider the 82 couples of lognormal parameters estimated in Bandourian et al. (2002)

using 82 real income distributions from 23 countries over several years (from the end of sixties to the
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end of nineties). We evaluate the ci = σ2
i /µi, i = 1, . . . ,82 corresponding to each couple.

Verisimilar values for αk can be obtained sampling a value of i for each group and posing ck = ci. Finally,

solve the following equation:

ci = ck =
2(1−αk)

αk
=⇒ αk =

2
ci +2

(19)

Therefore µk and σ2
k are determined - taking E[x̄k] as known - by eq. (17)-(19).

The appropriateness of the last step - i.e. sampling a value of i for each group and using the correspondent

ci - is justified by the fact that the 82 values of α in Bandourian et al. (2002) do not appear to be influenced

by the associated E[x̄k]: a simple linear regression reports an approximately null coefficient (5.6 ·10−4)

and a large p-value (0.65) for the regressor E[x̄k]. Consequently, 82 possible proportions to split E[x̄k] in

a likely way in the two addenda µk and σ2
k /2 are available. We exploit them to simulate income.
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cor (Gw,Wr) cor (Gb,Br)

Aggregation K A YL BM A YL BM

It
al

y Provinces 107 .968 1 .887 .998 .630 .768
Regions 20 .988 1 .963 .993 .778 .880
NUTS-1 5 .970 1 .987 .997 .677 .781

IT
C Provinces 25 .871 1 .868 .998 .121 .663

Regions 4 .825 1 .846 .997 .170 .733

IT
F Provinces 24 .995 1 .994 .985 .640 .548

Regions 6 .990 1 .992 .961 .650 .744

IT
G Provinces 14 .997 1 .981 .992 .562 .016

Regions 2 .992 1 .986 .990 .422 .943

IT
H Provinces 22 .981 1 .983 .998 .779 .822

Regions 4 .973 1 .988 .994 .552 .638

IT
I Provinces 22 .994 1 .937 .990 -.218 .734

Regions 4 .974 1 .921 .967 .473 -.106

Table 2: Correlations over time
between the components from the
three considered decompositions
and the discussed benchmarks. Al-
ternative subsets of the data - Italy
as a whole and the five independent
NUTS-1 territories - are analysed
separately to increase robustness of
the results. Correlations are evalu-
ated over different aggregations.

Probability associated to the deciles n = wn⊺

K [min,max] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 n p̄

5

[36,360] 6.12 4.88 4.14 3.20 2.53 2.17 1.42 1.20 1.00 0.92 0.90 0.94 0.78
[36,720] 8.28 6.41 5.45 4.13 3.26 2.79 1.71 1.44 1.05 0.91 0.86 0.91 0.83
[72,360] 2.66 2.19 1.93 1.52 1.18 1.01 0.76 0.69 0.61 0.57 0.58 0.60 0.73
[72,720] 4.07 3.24 2.79 2.14 1.70 1.45 1.00 0.86 0.69 0.61 0.59 0.64 0.79

10

[36,360] 4.72 3.90 2.97 2.23 1.61 1.14 0.86 0.65 0.55 0.56 0.60 0.53 0.77
[36,720] 5.44 4.42 3.35 2.56 1.94 1.43 0.99 0.69 0.52 0.45 0.47 0.45 0.84
[72,360] 2.11 1.76 1.41 1.11 0.87 0.65 0.49 0.38 0.34 0.33 0.35 0.35 0.71
[72,720] 3.17 2.66 2.13 1.63 1.20 0.85 0.61 0.47 0.38 0.32 0.32 0.34 0.78

20

[36,360] 3.72 2.94 2.26 1.77 1.26 0.83 0.54 0.37 0.31 0.36 0.42 0.30 0.75
[36,720] 4.85 3.81 2.93 2.20 1.55 1.08 0.67 0.43 0.29 0.25 0.30 0.24 0.82
[72,360] 1.78 1.53 1.17 0.89 0.64 0.44 0.29 0.22 0.21 0.23 0.26 0.21 0.69
[72,720] 2.68 2.20 1.66 1.26 0.89 0.61 0.43 0.29 0.24 0.26 0.32 0.22 0.78

Table 3: Percentage between component share approximation generated by the quantilisation procedure.
It is evaluated by the algorithm described in this section for different choices of n, K and of the interval
[min,max]. The approximation is measured by the MAE. The last column represents the average fraction
of elements in the vector n which are lower than the suggested n.
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