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Abstract

The paper targets the estimation of the poverty rate at the upazila level in
Bangladesh through the use of Demographic and Health Survey (DHS) data. Up-
azilas are administrative regions equivalent to counties or boroughs whose sample
sizes are not large enough to provide reliable estimates or are even absent. We tackle
this issue by proposing a small area estimation model complementing survey data
with remote sensing information at the area level. We specify an Extended Beta
mixed regression model within the Bayesian framework, allowing it to accommodate
the peculiarities of sample data and to predict out-of-sample rates. In particular,
it enables to include estimates equal to either 0 or 1 and to model the strong intra-
cluster correlation. We aim at proposing a method that can be implemented by
statistical offices as a routine. In this spirit, we consider a regularizing prior for
coefficients rather than a model selection approach, to deal with a large number
of auxiliary variables. We compare our methods with existing alternatives using
a design-based simulation exercise and illustrate its potential with the motivating
application.

Keywords: Demographic Health Survey, Hierarchical Bayes, Shrinkage priors, Small area
estimation

1 Introduction

There is a growing interest in the study of geographical distribution of extreme poverty,
with a particular focus on developing countries, due to the relevance of place-based policies
implementation and monitoring (Duranton and Venables, 2021). In most countries, the
parameters usually adopted to describe poverty and social exclusion are estimated using
sample surveys, providing reliable estimates for the country as a whole, for large regions,
or for other large subsets of the population. Nonetheless, the availability of estimates
for small geographical regions or other small subsets of the population, usually labelled
as small areas or domains, is particularly useful. When the domain-specific sample sizes
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are too small, the precision of survey estimates is not adequate. Small area estimation
(SAE) models aim at improving the precision of area-specific survey estimates (known
as direct estimates) by integrating survey samples with different data sources that can
provide indirect useful information.

In this article, we aim at mapping poverty in Bangladesh at a great level of dis-
aggregation using data from the Bangladesh Demographic and Health Surveys (DHS).
Specifically, we consider as target areas the upazilas, i.e. administrative sub-districts
comparable with counties or boroughs. The need for SAE techniques emerges since sam-
ples available at the upazila level are often very small and, for more than 30% of the
areas, no observations are recorded.

As poverty measure, we consider the proportion of people in the first quintile of the
national distribution of the Wealth Index (WI), as defined by the DHS program (Corsi
et al., 2012). The WI is a composite measure that summarizes the living conditions of
an household and can be read as a measure of socioeconomic status (Poirier et al., 2020).
Such indicator is more closely related to permanent than to current income, being less
reactive to changes in income or consumption than other poverty measures, as noted
by Steele et al. (2017) for the Bangladesh case. We remark that surveys implemented
by the DHS program constitute a valuable data source, being collected with similar
methodologies in many developing countries.

Due to the lack of reliable and standardized data sources released by national insti-
tutions, the DHS program promotes the incorporation of geo-referenced data (Burgert
et al., 2013). In this spirit, we integrate auxiliary information taken from remote sensing
(RS), as has already been considered for poverty mapping in previous researches (En-
gstrom et al., 2017; Masaki et al., 2020; Steele et al., 2017). Differently from Schmid
et al. (2017) and Steele et al. (2021), we do not make use of mobile operator call detail
records (CDR) or other big data sources. However, Steele et al. (2017) note that, when
estimating WI-based poverty in Bangladesh, the CDR explanatory variables do not add
valuable information with respect to those provided by RS regressors. The set of variables
we identify covers different determinants of poverty such as the population structure and
density, along with geographical, land use, social and economic features.

The areal nature of auxiliary information drives our choice to a model defined at the
area level, relating area-specific survey estimates to auxiliary information available at
the same level of aggregation. The alternative unit-level models (see, e.g., Molina et al.,
2014) exploit auxiliary variables specified at the unit or household level for the whole
population, not available in this case.

We remark that the target measure is a proportion and it is defined on the unit
interval. In this respect, the area level literature relies on two main approaches: linear
mixed models (Marhuenda et al., 2013), possibly specified on arc-sine transformations
(Casas-Cordero Valencia et al., 2016; Schmid et al., 2017), or Beta mixed models. In
this paper, we opt for the latter approach as the Beta distribution is intrinsically defined
on the (0, 1) interval and allows for asymmetric sampling distributions, common when
estimating rates in small samples. The inferential setting we adopt is the Bayesian one;
among earlier contributions relevant to our research we mention Fabrizi et al. (2011);
Janicki (2020); Liu et al. (2007). Adopting a Hierarchical Bayes (HB) approach has
several benefits in the small area estimation context (Rao and Molina, 2015, Chapter
10), especially those of easily managing non-Gaussian distributional assumptions and
fully capturing the uncertainty around target parameters.
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The framework described so far comprises some methodological issues. Firstly, when
estimating proportions from samples with small sizes, the possibility to observe all 0 or 1
values cannot be ruled out. This may impact the way of modelling direct estimators since
the Beta model does not handle such values. Ad-hoc solutions for this issue have been
proposed, e.g., by Wieczorek and Hawala (2011), Fabrizi et al. (2016) and Fabrizi et al.
(2020). Secondly, the DHS data are characterized by strong intra-cluster correlation, as
already pointed out by Schmid et al. (2017) for Senegal DHS. This makes direct estimators
less efficient and increases the probability of observing proportions equal to either 0 or
1. Thirdly, the potentially large number of covariates to be included in the model poses
a problem of variable selection. Eventually, the high level of spatial disaggregation leads
to possible areas without observations for which we need to provide reliable predictions.

Our proposal contributes to the literature in different directions. We started from
Fabrizi et al. (2016), extending their model to account for the observation of 1 values.
In doing this, we keep their assumption that direct estimates equal to either 0 or 1 are
due to a censoring process, namely, such limit values are only observed because of re-
duced area-specific sample sizes. The true population values may be very close but not
exactly equal to either 0 or 1. Nonetheless, we face the strong clustering effect charac-
terizing survey data by providing a substantial model generalization that relaxes their
independence assumption in modelling the probability of observing 0 and 1 values. We
explicitly include an additional parameter that manages such dependency in an intuitive
and explicable way. Moreover, the model selection step is automatically performed by
using regularized horseshoe priors (Piironen and Vehtari, 2017) for regression coefficients,
sidestepping manual variables selection and dimension reduction techniques. To the best
of our knowledge, this constitutes a novelty in the small area framework. With the spirit
of providing a method that can be widely applied by final users, we implement a set of
flexible prior choices that do not need fine tuning interventions. In this line, the use of
the horseshoe prior for regression coefficients is complemented by a type of spike-and-slab
prior for the random effects (Fabrizi et al., 2018; Tang et al., 2018). Lastly, we propose a
new methodology for out-of-sample predictions that propagates the related uncertainty.

We assess the frequentist properties of the proposed predictor using a design-based
simulation in comparison with existing models in the literature, namely the Fay-Herriot
with arc-sine transformation and, among those relying on the Beta likelihood, the one by
Fabrizi et al. (2016). We find that the proposed predictors are very effective in improving
the precision of direct estimates, having good coverage properties in terms of posterior
probability intervals for both in-sample and out-of-sample areas.

The paper is organized as follows. In Section 2, the DHS survey and auxiliary variables
are presented. The direct estimation of proportions is set out in Section 3, together with
a particular focus on the methodology of uncertainty estimation that has been adopted.
The small area models are introduced in Section 4, deepening the proposed Extended Beta
model. Section 5 deals with a design-based simulation study, whereas an application on
Bangladesh DHS data is illustrated in Section 6. Section 7 offers some concluding remarks
and directions for future research.
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2 The data

We aim at estimating the proportion of people living in households below the 20th
percentile of the WI national distribution at the Administrative Level 3 (upazilas) in
Bangladesh. To obtain these estimates, we combine DHS survey data, described in Sec-
tion 2.1, with remote sensing and geographical data (Section 2.2) obtained from a variety
of open sources and processed at the upazila level.

2.1 The Bangladesh DHS

The DHS survey targets the entire Bangladeshi population residing in non-institutional
dwelling units. Bangladesh is divided into seven administrative divisions; each division
into zilas and each zila into upazilas. The national territory is also classified distinguish-
ing among rural areas, city corporations and other urban areas. The survey is based
on a two-stage stratified sample of households and relates to 2014. In the first stage,
600 Enumeration areas (EAs) are selected with probability proportional to the EA size
within 20 strata, obtained as the combination of administrative divisions and territorial
classification (originally, 21 strata were planned, but the city corporation and other urban
areas of the Rangpur division were merged). Each EA is defined to contain on average
120 households, and 30 households are drawn from every sampled EA with equal proba-
bility. Of the 600 EAs in the sample, 207 are in urban areas or city corporations and the
remaining 393 are in rural areas. With this design, the survey selects 18,000 residential
households. Survey weights, accounting also for non-responses, are published with survey
data (NIPORT and Mitra andAssociates and ICF International, 2016, for more details).
We have 365 upazilas that include at least one sampled cluster out of a total of 544.

The WI computed using DHS data is constructed from a set of questions on household
durable assets and housing characteristics such as floor type and ceiling material, toilet
or latrine access, phone ownership and others. Given the set of basic indicators, the
construction of the index proceeds by extracting a common factor explaining the largest
percentage of the total variance using principal component analysis and then adjusting
for differences in urban and rural strata. Households with a WI included in the first
quintile are labeled as poor, defining a dichotomous response variable denoted with y.
In line with literature on poverty measurement, we target our analysis at the individual
level: as a consequence, all individuals belonging to the same household are assumed to
share the same WI score. The individual data is characterized by an overall sample size
of 81,624, while the upazila-level sample sizes span from 16 to 1884 (median: 160).

2.2 Remote sensing covariates

According to WorldBank (2008), Khudri et al. (2013) and Islam et al. (2017), the main
determinants of poverty relate to socio-demographic and educational aspects, economic
development and the so-called “location effect”. The latter is associated with connectivity
to markets and infrastructures (for rural communities), area-specific risk of natural disas-
ters and lean seasons related to area-specific crops. With the exclusion of the education
level, not considered due to the non-availability of data, we incorporate all those aspects
through selected covariates, described in the following. In particular, location-specific
issues have been captured with the aid of land-use and bio-climatic variables.
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We have chosen a set of auxiliary variables, aggregated at the area level from raster
files available in different open sources. A total of p = 46 covariates are included in the
application. All the covariate values at the area level are retrieved by cutting the raster
with the Bangladesh upazila shapefile first, and then simply aggregating the pixels inside
each area. Usually, the arithmetic mean is considered, but different summaries, that
are meaningful for specific indicators, are described later. We remark that this proce-
dure allows producing area level covariates starting from open resources. To improve the
strength of the linear correlation between each covariate and the transformed proportion
(i.e. logit or arc-sine), some data transformations are considered (identity, logarithm,
squared root and inverse functions) choosing the one that maximizes Pearson’s correla-
tion. Lastly, the obtained covariates are standardised. The raster related to population
density has a resolution of approximately one pixel per km2, while the others have a
resolution of approximately one pixel per hectare.

2.2.1 Demographic variables

The demographic structure of the areas is described by the population density and its
composition by age and sex, retrieved from the rasters available on the WorldPop website
(https://www.worldpop.org/, Tatem, 2017). Regarding the density, the estimate of
the count of People-per-km2 is available and it has been summarized in each area by the
average and the standard deviation. On the other hand, the population structure by age
and sex is available as rasters reporting the counts of People-per-hectare, for each of the
following age classes: [0; 1), [1; 5), [5; 10), [10; 15), . . . , [75; 80), [80;+∞), and stratified
by gender (see Pezzulo et al., 2017, for the methodology). Let us define PG,A as the
population count pertaining to gender G and age class A. By summing each count within
the target administrative areas, we produce the following demographic ratios: human sex
ratio PM,•/PF,•, human sex ratio in productive age PM,14−64/PF,15−64, total dependency
ratio, i.e., (P•,0−14 + P•,65+)/P•,15−64, child dependency ratio, i.e., P•,0−14/P•,15−64, aged
dependency ratio, i.e., P•,65+/P•,15−64 and woman-child ratio PF,15−49/P•,0−4.

2.2.2 Development variables

As an indicator of the area urbanization, the nighttime light radiance (from WorldPop) is
adopted, measured by Visible Infrared Imaging Radiometer Suit (VIIRS, nanoWatts/cm2/sr)
and being acknowledged to be a proxy of economic development (Masaki et al., 2020; Zhou
et al., 2015). Further information on the development of an area is retrieved from the
distances to facilities and main infrastructures. More in detail, we considered the distance
in km to important road intersections, roads, waterways (from WorldPop) and the time
required to access the city and the nearest healthcare site, coming from the Malaria At-
las Project (https://malariaatlas.org/explorer/, Hay and Snow, 2006). Note that,
since these quantities are strictly related to people living in the area, the average was
computed by weighting each pixel with the corresponding population density. To do this,
the rasters with a resolution of one hectare need to be up-scaled and aligned to the raster
of the population density.
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2.2.3 Land-use variables

Another important aspect to take into account is the kind of use that a territory has.
To this aim, we consider again rasters from WorldPop, including the average distance
of each pixel from areas with a determined classification of use (cultivated, woody-tree,
shrub, herbaceous, sparse vegetation, aquatic vegetation, artificial surface, bare area,
nature reserves, open-water coastline). To complete the physical characterization of the
territory, the elevation above sea level and the topographic slope are averaged within
each area.

2.2.4 Bio-climatic variables

Such covariates are useful to account for the weather conditions that affect the areas.
They constitute a set of 19 variables, available in the WorldClim repository (https:
//www.worldclim.org/data/bioclim.html, O’Donnell and Ignizio, 2012) that is built in
order to summarise the overall and seasonal behaviours of temperature and rainfall (e.g.,
annual mean, standard deviation and temperature diurnal range). The available rasters
contain the averaged values over the period 1970-2000, providing a static characterization
of climatic features. However, given that the agricultural sector employs a large fraction
of the workforce in Bangladesh and constitutes a driving force for its economic growth
(Rahman et al., 2017), such features may be helpful in characterising the productivity of
the area.

3 Poverty estimator

In this section, we introduce the direct estimator ˆ̄Yd of the head-count poverty rate θd
for the upazila d, based on a complex survey sample of nd individuals clustered in md

households. The individual sample size is obtained as nd =
∑md

h=1 kdh where kdh is the
number of components in household h in area d. The estimator also considers the sample
weights wdh and the value of the target variable ydh, i.e. an indicator variable denoting
the poverty status. We employ an Hájek-type estimator (Hájek, 1971) defined as

ˆ̄Yd =

∑md

h=1 kdhwdhydh∑md

h=1 kdhwdh

, d ∈ 1, . . . Ds (1)

with Ds being the number of in-sample upazilas. The estimator ˆ̄Yd, suitable for the
estimation of the mean in unplanned domains, is asymptotically unbiased.

3.1 Uncertainty associated to direct estimators

The small-area models that we are going to discuss in Section 4 require a dispersion
parameter to be known which can be expressed as a function of the effective individual
sample size ñd. Such quantity corresponds to the virtual size of a simple random sample
producing a direct estimate with a standard error equal to the one obtained under the
actual design. It can be characterized as ñd = nd/DEffd where DEffd denotes the design
effect, i.e. the ratio between the design-based variance of a generic estimator and the
simple random sampling variance. It measures the possible amount of variance inflation
induced by clustering caused by the complex selection process and has to be estimated.
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Stratum Type Average
√
DEffs Average ρs

Rural 4.75 0.18
Other Urban 6.07 0.28
City Corp. 2.93 0.02

Table 1: Arithmetic mean of DEffs and harmonic mean of ρs within strata types.

In principle, the sampling variance of (1) under complex two-stage sampling designs
is estimated through the Ultimate Cluster technique (Kalton, 1979), where variability
among clusters plays a central role. In practice, for many areas, such estimates are
unstable or even impossible to be obtained as a low number of clusters (often only one)
is available. To circumvent this problem, we obtain reliable estimates of design effects at
a higher level of aggregation, subsequently assigning them at the upazila level.

Specifically, our proposal is to consider the 21 strata of the sampling design to estimate
the design effect for each stratum s = 1, . . . , 21. At the stratum level, the features to be
accounted for in the computation of the design effects are the unequal sampling weights
and clustering (Chen and Rust, 2017). For this reason, we decide to adopt the formula
by Kish (1987) within each stratum, blending weights and clustering components. The
formula has been adapted by Gabler et al. (1999) and adjusted by Lynn et al. (2006). It
is defined as

DEffs =
[
1 + cv2(ws)

]
[1 + (n∗

s − 1)ρs] , (2)

where cv(ws) is the coefficient of variation of the vector ws of weights associated with
individuals in stratum s, inheriting the weight from the household they belong to; ρs is
the intra-cluster correlation coefficient and

n∗
s =

∑cs
i=1

(∑ni

j=1wij

)2∑cs
i=1

∑ni

j=1w
2
ij

,

with cs being the number of clusters in s, ni the units within cluster i, and wij the
individual weight.

The intra-cluster correlation coefficient is estimated through an ANOVA-based esti-
mator among those proposed by Ridout et al. (1999), suitable for the analysis of binary
data. Table 1 summarizes the main results of the estimation of DEffs in different types of
strata according to the habitation type (see Section 2.1). Rural and Other Urban strata
show particularly high ICCs and, consequently, high estimates of DEffs. On the other
hand, City Corp. strata have lower design effects in view of their lower ICCs. In three
City Corp. strata, ρs cannot be computed due to the absence of poor households in the
observed sample: in these cases, we impute the harmonic mean of ICCs pertaining to City
Corp. strata (see Table 1). Once the DEffs are available, standard errors are computed
using:

ŜEcs

[
ˆ̄Yd

]
=

√
ˆ̄Yd(1− ˆ̄Yd)

nd

DEffs. (3)

To validate the procedure, we remark that the linear correlation between standard
errors as in (3) and the Ultimate Cluster estimates at the strata level is 0.93. At this
level, the Ultimate Cluster technique is reliable due to a large number of clusters in each
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stratum. This comparison shows that both strategies provide similar results, leading us
to consider DEff estimates as reliable.

4 The models

The model strategy we propose, which constitutes an extension of the one proposed by
Fabrizi et al. (2016), is fully described in Section 4.1. An alternative approach relying on
the classical Fay-Herriot model with the arc-sine transformation of the direct estimates
(Schmid et al., 2017) is presented in Section 4.2.

4.1 The Extended Beta Model

Let us consider the mean-precision parametrization of the Beta random variable (Ferrari
and Cribari-Neto, 2004): if Y ∼ Beta(µϕ, (1− µ)ϕ), then

fB(y;µ, ϕ) =
Γ (ϕ)

Γ (µϕ) Γ ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1, y ∈ (0, 1),

where µ ∈ (0, 1) is the expectation and ϕ ∈ (0,+∞) is a dispersion parameter as V(y) =
µ(1−µ)(ϕ+1)−1. For this reason, when modelling proportions, ϕ+1 can be interpreted as
an equivalent sample size. In SAE context, the Beta regression area level model (Janicki,
2020) is usually specified as

ˆ̄Yd|µd, ϕd
ind∼ Beta (µdϕd, (1− µd)ϕd) ,

logit (µd) = xT
dβ + vd, d = 1, . . . , D,

with xd being a set of p area-specific covariates, β the vector of regression coefficients,
vd an area-specific random effect and ϕd the area-specific dispersion parameter, usually
assumed to be known for guaranteeing identifiability such as in this case.

In order to allow direct estimates to be equal to 0 and 1, the standard Beta model has
to be extended. We start by considering the following three-components mixture model,
consistently with Wieczorek and Hawala (2011):

ˆ̄Yd|µd, π0d, π1d
ind∼ π0d × 1{ ˆ̄Yd = 0}+

+ (1− π0d − π1d)× Beta (µdϕd, (1− µd)ϕd)1{ ˆ̄Yd ∈ (0, 1)}+

+ π1d × 1{ ˆ̄Yd = 1}, d = 1, . . . , D

logit (µd) = xT
dβ + vd.

(4)

with π0d and π1d denoting the probabilities of observing 0 and 1 values in area d. The way
we model such probabilities is the main point of divergence with Wieczorek and Hawala
(2011): while they define π0d and π1d as the result of two logistic regressions, requiring
a reasonable amount of information, we decide to adopt a more parsimonious approach.
In this way, our model can be estimated even when boundaries values are sparse.

The basic idea is to assume that possible direct estimates equal to 0 or 1 are the
output of a censoring process, i.e. the actual population value θd cannot be exactly 0 or
1. This assumption leads to the following definition of the parameters π0d and π1d:

π0d = P[ ˆ̄Yd = 0|θd ∈ (0, 1)], π1d = P[ ˆ̄Yd = 1|θd ∈ (0, 1)].
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To express them in a parsimonious way, we decided to define them as a combination of
sample characteristics and probabilistic assumptions.

Let us recall that estimator (1) is based on the sequence of observation yd1, . . . , ydmd

denoting the household poverty status. This can be seen as a sequence of Bernoulli trials
with a probability of success P[ydh = 1|θd ∈ (0, 1)] = µd, ∀h, since µd may be seen as the
poverty rate of non-censored observations. Such an approach for modelling π0d and π1d
resembles the one of Fabrizi et al. (2016), but it extends it in different ways. First, we
introduce the possibility of observing also direct estimates equal to 1. Secondly, we relax
their assumptions of independence across household observations, which is inconsistent
with the evidence of a strong clustering effect.

The sequence of observations incorporates a complex dependency structure which
results to be challenging to model. For this reason, we opt for a simple and general
assumption: the dependency across observations boils down to a pairwise dependency,
which is constant across pairs and areas, not depending on their order, namely

P[ydi = 1|yd1 = 1, . . . , yd(i−1) = 1, yd(i+1) = 1, . . . , ydmd
= 1] = P[ydi = 1|ydh = 1] = λ,

where h ̸= i picks a generic observation. This assumption can be seen as a generalization
of Markov dependence in which the ordering does not play a role and allows for exchange-
ability of the conditional probabilities. In this context, following Klotz (1973), we can
formalize π1d as

π1d = P[yd1 = 1, . . . , ydmd
= 1|θd ∈ (0, 1)] = µdλ

md−1, (5)

i.e. the probability of jointly observe a sequence of md ones. Furthermore, in view of

P[ydi = 0|ydh = 0, θd ∈ (0, 1)] =
1 + µd(λ− 2)

1− µd

,

we can also define

π0d = P[yd1 = 0, . . . , ydmd
= 0|θd ∈ (0, 1)] =

[1 + µd(λ− 2)]md−1

(1− µd)md−2
. (6)

Note that the additional parameter λ can be interpreted as a proxy of the correlation
between household observations and has a bounded support:

λL = max

{
0,max

d

2µd − 1

µd

}
≤ λ ≤ 1.

For a specific area d, if µd < λ ≤ 1 holds, a positive correlation across observations is
present, since observing a success makes more likely the occurrence of another success.
On the other hand, λL ≤ λ < µd implies a negative correlation, while λ = µd implies no
correlation. In the latter case, note that π0d = (1−µd)

md and π1d = µmd
d as in Fabrizi et al.

(2016). Generally speaking, λ has an interpretation also when the pairwise dependency
assumptions are relaxed. In this case, π1d can be written as:

µdλ
md−1 = P[yd1 = 1, . . . , ydmd

= 1|θd ∈ (0, 1)]

= P[yd1 = 1|θd ∈ (0, 1)]

md∏
i=2

P[ydi = 1|yd(i−1) = 1, . . . , yd1 = 1, θd ∈ (0, 1)],
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leading to

λ =

( md∏
i=2

P[ydi = 1|yd(i−1) = 1, . . . , yd1 = 1, θd ∈ (0, 1)]

) 1
md−1

.

As a consequence, the additional parameter λ is nothing more than the geometric mean
of the md − 1 conditional probabilities of success, assumed to be constant across areas.
Indeed, we explicitly incorporate dependency in a simple and easy-to-interpret way.

Under model (4) and relations (5) and (6), it is possible to express the population
proportion θd in terms of λ as

θd =

[
1− µdλ

md−1 − [1 + µd(λ− 2)]md−1

(1− µd)md−2

]
µd + µdλ

md−1. (7)

This implies that θd depends on the (inverse logit-transformed) linear predictor itself,
which is updated with sample features and λ, a parameter describing the censoring pro-
cess. Lastly, the conditional variance is defined as

V
[
ˆ̄Yd|µd, π0d, π1d

]
=(1− π0d − π1d)

µd(1− µd)

ϕd + 1
+ π1d(1− π1d)+

+ (1− π0d − π1d)µ
2
d

[
π0d + π1d − 2

π1d
µd

]
.

(8)

Before we turn to prior specification, we note that the parameter ϕd is assumed known,
in line with many small area estimation applications. For this reason, in what follows, it
will be replaced by Fd = ñd − 1 that is intuitively grounded in the interpretation of the

re-parametrized Beta. Note from (8) that V
[
ˆ̄Yd|µd, π0d, π1d

]
depends on Fd only through

the first addend related to the occurrence ˆ̄Yd ∈ (0, 1).

4.1.1 Prior specification

The following prior distributions complete the model. Let us start from λ, for which we
opt for a non-informative approach by adopting a Uniform distribution on its support:

λ|µ1, . . . , µD ∼ Unif

[
max

{
0,max

d

2µd − 1

µd

}
; 1

]
.

As regards the regression slopes, since we are dealing with a very large number of
covariates, a shrinking prior on regression coefficients may be appealing to regularize
the problem and avoid a formal step of variable selection or reduction of the predictors
space. Specifically, the regularized horseshoe prior proposed by Piironen and Vehtari
(2017) is considered, whose basic rationale is that of coercing to 0 the coefficients related
to negligible covariates. It is defined by the following mixture:

βj|ζj, τ, ι ∼ N
(
0, τ 2ζ̃2j

)
, ζ̃j

2
=

ι2ζ2j
ι2 + τ 2ζ2j

, j = 1, . . . , p;

ζj ∼ Half-Cauchy(0, 1), j = 1, . . . , p;

ι2 ∼ Inverse-Gamma
(νslab

2
,
νslab
2
s2slab

)
;

τ ∼ Half-Cauchy(0, τ0).

(9)
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In order to complete the prior specification, some hyperparameters need to be set: νslab
and sslab can be interpreted, respectively, as the degrees of freedom and scale of a Stu-
dent’s t prior assumed on coefficients far from zero. We decided to set sslab = 1, νslab = 5,
in order to facilitate the convergence of the MCMC algorithm. Eventually, τ0 repre-
sents an important parameter to set; Piironen and Vehtari (2017) proposed the following
expression:

τ0 =
p0σ̃

(p− p0)
√
D
,

where p0 is an initial guess of the number of non-zero coefficients (i.e. specific of the
application) and σ̃2 is the pseudo-variance of a generic observation under the assumed
model. To elicit a value for σ̃2 under the Beta model, we exploit a result by Ferrari
and Cribari-Neto (2004). They define the logit transformations of the responses: z =

{logit( ˆ̄Yd)}, d ∈ Ds and note that, under the logit link, the unconditional variance of the
data can be approximated by:

σ̃2 =

∑
d∈Ds

(zd − z̄)2

Ds − 1

1

µ̄2(1− µ̄)2
, (10)

where

µ̄ =
ez̄

1 + ez̄
.

When direct estimates are very imprecise and/or the predictive power of predictors is
relevant, most of the random effects can be very small with possibly few exceptions (Datta
et al., 2011). In this line, we propose the variance gamma shrinkage prior introduced by
Brown and Griffin (2010) and implemented in a small area application by Fabrizi et al.
(2018) as a prior choice for vd. It is a global-local shrinkage prior also mentioned among
those explored by Tang et al. (2018), enabling for shrinking to 0 the random effects related
to a subset of the areas by mimicking the behaviour of a spike-and-slab prior. More in
detail, we specify:

vd|ψd, ξ
ind∼ N

(
0, ψdξ

2
)
, d = 1, . . . , D;

ψd
ind∼ Gamma(0.5, 1), d = 1, . . . , D;

ξ ∼ Half-N (0, 1).

(11)

It can be noted that ξ is a global scale hyperparameter, whereas the independent ψd

are local scales. The latter ones have Gamma priors with shape parameter 0.5, such
value is associated with a more peaked distribution with respect to the Bayesian lasso,
encouraging a stronger shrinkage towards 0.

4.1.2 Posterior inference

Markov Chain Monte Carlo (MCMC) techniques are particularly suitable for posterior
exploration. Specifically, we carry out the fitting by implementing the no-U-turn sampler,
an adaptive variant of Hamiltonian Monte Carlo (HMC) algorithm via Stan language
(Carpenter et al., 2017). We performed estimation by using 4 chains, each with 2,000
iterations, discarding the first 1,000 as warm-up.

Within the HB framework, we assume a quadratic loss and define its posterior expec-
tation as point predictor of θd, namely

θ̂HB
d = E[θd|data] ∀d, (12)
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hereafter named model-based estimator. The posterior standard deviation of the target
parameter is used to describe its uncertainty.

Users require small area estimates to be robust with respect to model failures. The
predictor associated with the popular Fay-Herriot model enjoys an important property
in this sense, known as design consistency. Intuitively, it is about the convergence of
the model-based predictor to the direct estimator when the area-specific sample size
grows large (for a formal definition see Fuller, 2011, p. 41). It can be shown that, when
adopting our extended Beta model, θ̂HB

d is also design-consistent; specifically, conditioning

on higher level parameters, we have that θ̂HB
d

p→ ˆ̄Yd. In practice, this implies that the
difference between the (reliable) direct estimate and the model-based one is negligible in
areas with large sample sizes.

4.1.3 Prediction of out-of-sample areas

Under the Extended Beta model we propose in Section 4.1, for the areas that are not
included in the sample, the prediction is carried out considering the functional:

θOOS
d = µd = logit−1

(
xT
dβ + vd

)
.

To obtain a draw from the posterior θOOS
d , we need one from the distribution β|data

along with one from vd|data. As vd constitutes a random effect from an unobserved area.
Having the b-th Monte Carlo replicate from the posterior distribution ξ|data, i.e. ξ̃(b) we
obtain a draw ṽ

(b)
d exploiting its hierarchical definition (11):

1. Generate ψ̃d
(b)

from the prior: ψd ∼ Gamma(0.5, 1);

2. Generate ṽ
(b)
d from vd|ψ̃d

(b)
, ξ̃(b) ∼ N

(
0, ψ̃d

(b)
/ξ̃(b)

)
.

4.2 The arc-sine model

For comparison purposes, we consider an alternative model, commonly used in the case
of small area estimation of ratios and proportions, and namely the Fay-Herriot model
with arc-sine square root transformation. This model is adopted by Raghunathan et al.
(2007), Casas-Cordero Valencia et al. (2016) in the context of poverty mapping, and by
Schmid et al. (2017) among others. Frequentist prediction is implemented in the emdi

R package (Kreutzmann et al., 2019). By using the previous notation, the model can be
outlined as follows:

sin−1
(
ˆ̄Y

1
2
d

)
|β, vd

ind∼ N (ηd, S
2
d),

ηd = xT
dβ + vd, d = 1, . . . , D;

with S2
d being a variance parameter generally assumed to be known. This transformation

has a twofold motivation: in the first place, it guarantees that the back-transformed
predictor lies in the appropriate proportion range 0 ≤ E[sin2(ηd|data)] ≤ 1, once the
domain of the linear predictor is truncated to the interval ηd ∈ [0; π/2]. Moreover, it
has also the advantage of variance stabilization: the sampling variances for the inverse
sine transformed can be approximated by a parameter-free function of the (equivalent)
sample size, i.e. S2

d
∼= 1/(4ñd) (Efron and Morris, 1975).
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We propose a HB approach for estimating the arc-sine square root model as in Raghu-
nathan et al. (2007), but with a different prior specification for the unknown parameters
to parallel that defined in Subsection 4.1.1. The regularized horseshoe prior for β in (9)
has been considered with the sole difference of replacing the pseudo variance in (10) with

σ̃2 =

∑
d∈Ds

(zd − z̄)2

Ds − 1
,

where zd = sin−1
(
ˆ̄Y

1
2
d

)
. While the global-local shrinkage prior for vd has been defined

exactly in the same way as in (11). Posterior inference on the target parameter is based
on back-transformation. Therefore the HB estimator on the original scale is a result of
a proper back-transformation as θ̂HB

d = E[sin2(ηd|data)]. The transformation, applied
directly on posterior draws, avoids bias issues related to the back-transformation that
are common in the frequentist framework (Sugasawa and Kubokawa, 2017). The model
estimation has been carried out in line with Section 4.1.2, while estimates for out-of-
sample areas consider the functional:

θOOS
d = sin2

(
xT
dβ + vd

)
,

with draws from the posterior obtained following the steps defined in Section 4.1.3.

5 Design-based simulation

In this section, we introduce a design-based simulation to assess the frequentist properties
of model-based estimates obtained under Extended Beta (EB) and Arc-Sine (AS) models.
We also introduce in the comparison the model by Fabrizi et al. (2016) (FFT model), in
order to measure the impact of relaxing the independence assumption. The simulation
study is design-based to avoid data generation under specific model assumptions; we
rather try to reproduce a framework that is as close as possible to real poverty data.

We assume the DHS sample as a synthetic population and the 64 zilas as domains.
Then B = 1000 samples are drawn from the synthetic population by mimicking the DHS
design, including stratification and multi-stage selection. We draw samples made of 114
clusters stratifying by zilas in order to control for the domain-specific sample sizes; 10
zilas with 3 or fewer clusters in the synthetic population are considered out-of-sample
areas. From each cluster, 25% of households are randomly selected. This implies samples
of different sizes at each iteration: on average, 5.84% of the population is sampled at each
iteration, with domain sample sizes ranging from 27.94 to 260.09, with a mean of 73.22.
For each sample, direct estimates are computed and used as input for the four small
area models involved in the simulation study. They provide the following model-based
estimators:

1. The empirical best linear predictor (EBLUP) under the FH model with arc-sine
transformation (EBLUP-AS) provided by the package emdi;

2. The Hierarchical Bayes (HB) estimator under FH model with arc-sine transforma-
tion (HB-AS);

3. The HB estimator under the Extended Beta model (HB-EB);
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In-Sample areas

Direct Est. EBLUP-AS HB-AS HB-EB HB-FFT

RMSE 0.142 0.086 0.078 0.071 0.076
BIAS 0.000 -0.010 -0.021 -0.009 0.004
90% Cov. - - 0.893 0.933 0.911

Out-of-Sample areas

Direct Est. EBLUP-AS HB-AS HB-EB HB-FFT
RMSE - 0.154 0.110 0.118 0.123
BIAS - 0.058 -0.043 0.030 0.028
90% Cov. - - 0.978 0.930 0.933

Table 2: Median Bias, RMSE and frequentist coverage for the different estimation meth-
ods considered, distinguishing between sampled areas and out-of-sample.

4. The HB estimator under the FFT model (HB-FFT).

We exploit the Monte Carlo variances of estimators to compute the area-specific effec-
tive sample sizes and the spatial covariates at zila level are obtained following the same
methodology of Section 2.2. The whole set of available covariates is provided as input
to models HB-AS, HB-EB and HB-FFT, whereas a preliminary model selection step is
required for EBLUP-AS, in order to obtain an optimal subset. The frequentist procedure
would not simply work with the large number of covariates we computed. Specifically,
we carry out the selection by fitting the model with the synthetic population data and
using AIC as the selection criterion. Clearly, in this way, the EBLUP-AS strategy relies
on different modelling conditions and it is not directly comparable to the Bayesian pro-
cedures, automatically incorporating the model selection step. The uncertainty involved
in the regressors selection step is overlooked.

Let us denote with θ̂db the model-based estimate for domain d at iteration b with
population value θd; we consider bias, root mean squared error (RMSE) and frequen-
tist coverage of the 90% credible intervals to compare estimators performances. Such
quantities are defined as:

Bias
(
θ̂d

)
=

1

B

B∑
b=1

(
θ̂db − θd

)
, MSE

(
θ̂d

)
=

1

B

B∑
b=1

(
θ̂db − θd

)2

,

Coverage90(θ̂d) =
1

B

B∑
b=1

1 {θd ∈ [Q0.05(θdb|data), Q0.95(θdb|data)]} ,

where Qα(θdb|data) denotes the posterior quantile of order α of θdb.
In Table 2, the medians of area-specific biases and RMSEs are reported, including

also the performances of the direct estimator as a benchmark. The considered small-area
models behave rather similarly. As expected, the direct estimator is unbiased, and a slight
negative median bias is registered for the HB-AS model. Focusing on the RMSE, we can
first note the remarkable decrease yielded by the use of small area models with respect
to direct estimation. On median, the HB-EB model shows a lower RMSE compared to
other models; specifically, the HB-EB model has a smaller RMSE with respect to HB-
AS and HB-FFT in approximately 7 out of 10 areas (70.3%). The left plot of Figure 1
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Figure 1: Behaviour of RMSE and frequentist coverage with respect to the area sample
size nd.

shows the behaviour of RMSEs with respect to the log of the average area sample size:
the LOESS smoothing line related to the HB-EB model is systematically below the ones
related to the AS-EB and HB-FFT models, which surprisingly behave similarly. Table 2
also reports the results concerning out-of-sample areas. Comparable results are obtained,
we note that the EBLUP-AS model shows a higher RMSE and positive bias, making it
less reliable in case of out-of-sample prediction.

Focusing on the frequentist coverage for the 90% credible interval, we note how the
median coverage, reported in Table 2, is satisfactory for all the Bayesian methods as they
reach the nominal level, with a slight tendency to over-coverage of HB-EB. For details
about the area-specific coverages with respect to the sample size, see the right plot of
Figure 1. We note that the coverage is occasionally very low, especially for areas with
tiny samples; this is due to the strong synthetic component of the predictors and the
somewhat deviant behaviour of these areas. Similar coverage values are obtained for
the out-of-sample areas which represent a valuable result, confirming that the procedure
described in Section 4.1.3 propagates uncertainty successfully. Lastly, the HB-AS method
shows a marked tendency to overshoot the nominal coverage level.

A possible limitation of our simulation is that being fully based on DHS data as those
of our application, comparisons should not be as general or conclusive. Nonetheless, the
HB-EB model seems to work slightly better in this context. A first possible motivation is
that the Beta likelihood accommodates the potential skewness of sampling distribution
better than a Gaussian approximation of the transformation. A second possible motiva-
tion is that the arc-sine models use a variance approximation on the transformed scale
which is known to fail when true probabilities are very close to 0 (Efron and Morris,
1975), as it is often the case in our setting.
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EB Model FFT Model

Post. Mean Post. SD Q0.025 Q0.975 Post. Mean Post. SD Q0.025 Q0.975

ζ 0.13 0.10 0.01 0.36 0.99 0.13 0.74 1.27
λ 0.80 0.02 0.75 0.84 - - - -

LOOIC (SE) -118.9 (34.1) -14.7 (44.2)

Table 3: Posterior summaries of parameters ζ and λ and LOOIC.
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Figure 2: Empirical cumulative distribution functions (ECDF) of the posterior predictive
distributions under models EB and FFT.

6 Application on Bangladesh DHS data

In this section, we map poverty in the Bangladeshi upazilas by integrating the DHS data
and remote sensing covariates described in Section 2. We remark that the DHS dataset
is composed of 365 in-sample areas with direct estimates ranging from 0 to 0.96 (median:
0.16), with 66 zero values, while 179 areas are out-of-sample.

We carry on estimation only on EB and FFT models. This is mainly due to the nested
assumptions characterising the two models, which allows for the employment of model
selection tools able to drive a clear comparison. The arc-sine model is ruled out from the
analysis since simulation results do not point out higher performances. Furthermore, the
different likelihood assumptions and link functions would compound the model compari-
son. The Beta-based models offer the additional pro of favouring the interpretability of
regression coefficients: they are on the logit scale and, once exponentiated, they can be
read in terms of probability odds.

The horseshoe priors described in Section 4.1.1 needs to be completed with additional
hyperparameters settings. Specifically, the expected number of relevant coefficients has
been set to p0 = 10, according to the results of a preliminary regressors selection exercise.
Lastly, the data pseudo-variance resulted to be σ̃2 = 1.51 by applying (10).

As regards model comparison, both the leave-one-out information criteria (LOOIC,
Vehtari et al., 2017) and the posterior predictive checks (Gabry et al., 2019) point out
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EB and FFT compared to the standard errors of Direct estimates.

Covariate Transformation E [βj|data] Odds Ratio Importance

VIIRS Square root -1.23 0.29 1.00
Woman/Child Identity -0.32 0.73 0.98

Distance from woody areas Log 0.05 1.05 0.80
Time to access the nearest city Square root 0.80 2.22 0.80

Slope Inverse 0.05 1.05 0.80
Distance from Coastline Identity 0.04 1.04 0.71

Distance from vegetation areas Square root -0.02 0.98 0.71
Male/Female Identity 0.06 1.06 0.71

Table 4: Posterior summaries of the regression coefficients βj

that the introduction of the correlation parameter λ substantially improves model per-
formances. In detail, Table 3 shows lower values of LOOIC concerning the EB model. In
Figure 2, we compare the empirical cumulative distribution function (ECDF) related to
the original sample (in black) and the ones related to samples generated under the models
(in grey). This posterior predictive check highlights the inability of FFT to model the
probabilities of the censored values, leading to a systematic underestimation. Focusing on
small area diagnostics, the standard deviations of model-based estimators are remarkably
lower than those related to direct estimators (Figure 3). Specifically, the EB model ones
are more reliable than the FFT ones.

By considering the posterior summaries in Table 3, we note that the misspecification
in modeling censored values probabilities induces an increase in random effect variability.
Indeed, the global scale parameter ξ of the variance gamma prior is estimated ten times
larger in the FFT model. Focusing on the correlation parameter λ, we observe that
is well identified by the data, having a posterior mean equal to 0.80. Note that the
biggest E[µd|data] reaches 0.58, being E[µd|data] < E[λ|data] < 1, ∀d. This confirms the
presence of a strong positive correlation among sampled households as already observed
by intra-cluster correlation estimates of Section 3.1.

Table 4 reports the posterior summaries of regression coefficients for the most impor-

17



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Direct Est.

E
B

 M
od

el
 E

st
.

Not zero
Zero

0.0

0.1

0.2

0 50 100
Effective Sample Size

E
B

 M
od

el
 E

st
.

Figure 4: Left plot: comparison between EB model estimates and direct estimates (linear
regression line reported). Right plot: focus on areas with 0 direct estimates, comparing
model-based estimates to the effective sample size.

tant covariates, i.e. those with high Importance, that we define as

max(P[βj < 0|data],P[βj > 0|data]).

The VIIRS covariate has the greatest importance with an expected negative sign, as
the most enlightened areas during nighttime are characterized by smaller poverty rates.
Among the demographic covariates, the most relevant one is the woman/child dependency
ratios, being inversely proportional to the probability of being poor, as expected. Among
other covariates in the top list of importance, we note Time to access the nearest city. As
already discussed in the literature (Iimi et al., 2016; Islam et al., 2017), remoteness and
exclusion from the national labour and goods market represent one of the main drivers
of poverty in the community level in Bangladesh.

The amount of shrinkage induced by the model is described in the left panel of Figure
4, i.e. direct estimates versus EB-based ones; it is strong as expected, given the low
precision of direct estimates. Zero estimates (highlighted in golden) are clearly shrunk
towards the center of the distribution. The right panel of Figure 4 displays how zero-
valued direct estimates are spread by the model with respect to the effective sample sizes.
Note that the impact model has on zero estimates is mainly restricted to extremely small
sizes. We remark the presence of a subset of upazilas with very small poverty rates,
which are mostly located in urban districts. The urban-rural divide is still an important
catalyst for poverty differences (Islam et al., 2017; Khudri et al., 2013) as far as wealth
indicators are concerned.

A map of poverty estimates at the upazila level can be found in Figure 5 as regards
both direct and model-based methods. If we look at the map, we see how model pre-
dictions fill the many gray areas (out-of-sample), especially in peripheral regions. It is
important to note that the maps share the same gradient scale, highlighting the shrinking
process induced by the model from a spatial viewpoint. Nonetheless, some gaps among
regions are clearly noticeable. For instance, the metropolitan regions of Dhaka and Chat-
togram retain the lowest poverty levels, while those far from cities, coastlines and roads
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Figure 5: Map with direct estimates and model-based estimates for the Bangladesh up-
azilas.

have the highest, e.g. the easternmost upazilas near the Indian/Burma border. A cluster
of upazilas characterized by high poverty rates shows up in the North-East (Sylhet basin
lowlands): they are particularly exposed to climate change effects and floodings (Haque
and Jahan, 2015). We have no clear evidence of the East-West divide (WorldBank, 2008),
in line with recent literature highlighting its decreasing relevance (Rahman et al., 2017).

Figure 6 displays the map of the posterior standard deviation on the right panel
compared with the standard error of direct estimates on the left one. Note that the
posterior standard error is not only lighter but also more homogeneous since small area
predictors are dominated by the synthetic part.

7 Conclusions and directions for further research

The applied problem of mapping poverty in Bangladesh by integrating a survey sample
and remote sensing data drove us to set up a novel hierarchical Bayesian model based
on the Beta likelihood. We did this in the line of small area literature relying on area-
level models. Our purpose was to provide a more general tool for poverty mapping in
developing countries with respect to existing alternatives, ensuring a convenient imple-
mentation that requires no auxiliary variable selection and minimal intervention in prior
specification. Indeed, the latter aspect has often represented a limit to the widespread
use of Bayesian methods among practitioners. Furthermore, our methodology is going to
be released in the R tipsae package (De Nicolò and Gardini, 2022), complementing the
set of tools for Bayesian small area estimation of proportions and indicators in the unit
interval.

From a methodological point of view, we specified an Extended Beta mixed regression
model. We extended the proposal of Fabrizi et al. (2016) to more effectively handle data
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Figure 6: Standard error of direct estimates and posterior standard deviation of model-
based estimates.

features as the presence of estimates equal to either 0 or 1 and the strong intra-cluster
correlation of observations. The simulation and application results underline the im-
portance of the additional correlation parameter, sensibly improving goodness-of-fit and
leading to more precise estimates. Moreover, the explicit probabilistic formulation placed
on the occurrence of observing zero/one values makes the EB model more interpretable
with respect to other proposals (Warton and Hui, 2011).

Our research is not over. If we consider administrative units larger than upazilas, we
expect direct estimates to gain precision and remote sensing predictors to lose predictive
power, being averaged on a wider area. This may impact small area results raising up
the need to combine different information layers at once.
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