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Abstract

We examine, both from an analytical and numerical viewpoint, the uncertain volatility
model by Hobson-Rogers in the framework of degenerate parabolic PDEs of Kolmogorov
type.

1 Introduction

Several extensions of the Black-Scholes model [3] have appeared in literature (see, for a sur-
vey, Epps [5]) aiming to capture the characteristic observed patterns of the implied volatility
given by the market. Here we are concerned with the seemingly promising model proposed
by Hobson and Rogers [6] who assume that the volatility is a deterministic function of the
history of the spot process. The merit of the model is twofold: first, it is potentially capable
to reproduce smiles, skews of different directions and volatility terms structures. Second, it
preserves the completeness of the market since no exogenous source of risk is added, so that
the classical arbitrage pricing and hedging theory applies. In particular, there are unique
preference-independent prices for claims given in terms of the expectation under an equiva-
lent martingale measure or as solutions to a PDE in three variables. Indeed incorporating
the dependence on past prices enters an additional state variable on which the derivative’s
price depends: then, as in the case of Asian or look-back options, the associated PDE is of
degenerate parabolic type.

In this paper we focus on the analytical and numerical treatment of the Hobson-Rogers
model in the framework of Kolmogorov PDEs. Degenerate equations of Kolmogorov type
naturally arise in the problem of pricing path dependent contingent claims. The simplest
significant example is given by Asian-style derivatives: if we assume that the stock price St

is a standard geometric Brownian motion with volatility σ, then the price U of a geometric
average Asian option is a solution to the equation

∂tU + rS∂SU +
1

2
σ2S2∂SSU + log(S)∂AU = rU, (1.1)
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where “A” denotes the path-dependent variable and r is the risk-free rate (see, for instance,
[16] and [2]). By an elementary change of variables, (1.1) can be reduced to the following
PDE in R

3

Ku := ∂xxu + x∂yu − ∂tu = 0. (1.2)

Although (1.2) is strongly degenerate due to the lack of diffusion in the y-direction, Kol-
mogorov [7] constructed an explicit fundamental solution to (1.2) of Gaussian type, which is
a C∞ function outside the diagonal (cf. (2.9)). Consequently equation (1.2) has a closed form
solution and is hypoelliptic, that is every distributional solution to (1.2) is a C∞ function.

In this paper we briefly introduce to the theory of Kolmogorov PDEs and describe their
link with uncertain volatility models. Then we consider the numerical solution to the option
pricing problem in the Hobson-Rogers model by finite-differences schemes: our main goal is to
provide some new non-Euclidean schemes which seem to be particularly efficient if compared
with the classical ones. In the last part of this note we present some empirical results.

2 Hobson-Rogers model and Kolmogorov equations

Hobson and Rogers propose in [6] a complete-market model with uncertain volatility. Fixed
a maturity T and a probability space (Ω,F , P ) with one-dimensional Brownian motion (Bt),
we denote by St the underlying price and by Dt the deviation of prices from the trend, defined
by

Dt = Zt −
∫ +∞

0
λe−λτZt−τdτ, λ > 0, (2.1)

where Zt = log(e−rtSt) is the discounted log-price. In (2.1), the parameter λ amounts to the
rate at which past prices are discounted. Hobson and Rogers assume that St is an Ito process
satisfying

dSt = µ(Dt)Stdt + σ(Dt)StdBt, (2.2)

where µ and σ are deterministic functions and σ is positive. Existence and uniqueness of
the solution (St,Dt) to the system of SDEs (2.2)-(2.1) are guaranteed by the usual Lipschitz
assumptions on µ and σ.

The main advantage of the Hobson-Rogers model is that no exogenous source of risk
has been included. Then the complete market setting is preserved and usual no-arbitrage
arguments provide unique option prices. In particular the derivative’s price can be represented
as the conditional expectation of the payoff under the (unique) P -equivalent risk-neutral
measure. On the other hand, the deviation (2.1) enters as an additional state variable on
which the option price depends. Then the drawback is that the augmented PDE associated
to the model is of degenerate type. Indeed, let

UT−t = f(St,Dt, t)

denote the price of a contingent claim at time T − t. By the Feynman-Kac formula the
function f satisfies the PDE in R

3:

σ2(D)

2
(S2∂SSf + ∂DDf + 2S∂DSf − ∂Df) + rS∂Sf − λD∂Df − ∂tf = rf. (2.3)
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In the case of an European Put option with strike K, we also have the condition

f(S,D, 0) = (K − S)+. (2.4)

Equation (2.3) is of degenerate type since the quadratic form associated to its second order
part is represented by the singular matrix

σ2

2

(
S2 S
S 1

)
.

Nevertheless Hobson and Rogers remark that, under the further hypothesis that σ is a smooth
(C∞) function, then Hörmander’s Theorem on hypoelliptic PDEs applies and problem (2.3)-
(2.4) has a classical solution.

Here we make the additional remark that (2.3) belongs to the noteworthy subclass of
Hörmander PDEs today called of Kolmogorov or Ornstein-Uhlenbeck type. For this class a
very satisfactory theory has been developed and many sharp results are available even under
few regularity assumptions (see [8] for an exhaustive survey on this topic). We aim to show
that the theory of Kolmogorov PDEs provides the natural framework for the study of the
Hobson-Rogers model both from an analytical and a numerical viewpoint.

For what follows, it is convenient to rewrite equation (2.3) in the following form:

a(∂xxu − ∂xu) + x∂yu − ∂τu = 0 (2.5)

where u = u(x, y, τ) is determined by the transformation

f(S,D, t) = Ke−rtu

(
log

(
S

K

)
+ rt, e−λt

(
log

(
S

K

)
+ rt − D

)
, 1 − e−λt

)
, (2.6)

and we have set

a(x, y, τ) =
σ2
(
x − y

1−τ

)

2λ(1 − τ)
, τ ∈ [0, 1 − e−λT ]. (2.7)

By this change of variables, problem (2.3)-(2.4) is equivalent to the forward Cauchy problem
for (2.5) in the strip R

2 × [0, 1 − e−λT ] with initial condition

u(x, y, 0) = (1 − ex)+, (x, y) ∈ R
2. (2.8)

Transformation (2.6) seems to be more convenient than the one proposed by Hobson and
Rogers (cf. Sec.4.2 in [6]). This will be apparent in the next section where we investigate
the numerical approximation. From a qualitative viewpoint, we note that the derivative ∂xu
in (2.5) does not affect the main properties of the equation since it is, roughly speaking,
“dominated” by the second order part ∂xxu. Then we may consider equation (2.5) as a
perturbation of the Kolmogorov type equation (1.2) with constant diffusion term. We recall
that Kolmogorov [7] constructed explicitly a fundamental solution to (1.2). Precisely, we
have that

ΓK(z; ζ) =

√
3

2π(t − τ)2
exp

(
−(x − ξ)2

4(t − τ)
− 3

(t − τ)3

(
y − η − t − τ

2
(x + ξ)

)2
)

, (2.9)

3



for t > τ and ΓK(z; ζ) = 0 for t ≤ τ is the fundamental solution to K with pole at ζ = (ξ, η, τ)
and evaluated in z = (x, y, t). We also recall that operator K has the remarkable property of
being invariant with respect to the non-Euclidean left translations in the law

(x, y, t) ∗ (ξ, η, τ) = (x + ξ, y + η − xτ, t + τ), (2.10)

and homogeneous of degree two with respect to the dilations

δs(x, y, t) = (sx, s3y, s2t), s > 0, (2.11)

in the sense that
K(u ◦ δs) = s2(Ku) ◦ δs.

Then it is natural to introduce in R
3 the δs-homogeneous norm

‖(x, y, t)‖ =
(
x6 + y2 + |t|3

) 1

6 ,

and the following notion of K-Hölder continuity. Let α ∈]0, 1[ and Q be an open subset of R
3;

we say that a function u : Q −→ R is K-Hölder continuous of order α (in short, u ∈ Cα
K(Q))

if

|u|α,Q := sup
Q

|u| + sup
z,ζ∈Q
z 6=ζ

|u(z) − u(ζ)|
‖ζ−1 ∗ z‖α

is finite. We remark explicitly that

Cα(Q) ⊆ Cα
K(Q) ⊆ C

α
3 (Q)

where Cα(Q) denotes the space of Hölder continuous functions in the usual sense (see, for
instance, [9]). Moreover we say that u ∈ C2+α

K (Q) if u ∈ Cα
K(Q) and

sup
Q

|∂xu| + |∂xxu|α,Q + |Y u|α,Q < ∞

where Y u = x∂yu − ∂tu is the first order part of equation (1.2).

Remark 2.1 Roughly speaking, one should consider ∂x and Y respectively as a first and
second order derivative intrinsic to K. These are the main directional derivatives of the
degenerate equation (1.2) in the sense that they allow to recover the other lacking directions.
For instance, ∂y can be obtained as the commutator of ∂x and Y :

∂y = ∂xY − Y ∂x,

therefore it should be considered as a third order derivative in the intrinsic sense.

In some way K plays for (2.5) a role analogous to that of constant-coefficients operators in
the classical theory of elliptic or parabolic PDEs (actually, a constant coefficient operator
is nothing more than a translation-invariant operator). Then many results can be extended
from (1.2) to (2.5) by perturbation arguments. In particular the next theorem, proved in [13],
ensures the existence of a unique classical solution to the Cauchy problem for (2.5) under
minimal regularity assumptions.
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Theorem 2.2 Assume that a ∈ Cα
K(R2×]0, T [) for some α ∈]0, 1[, T > 0 and a ≥ c for some

positive constant c. Then equation (2.5) has a fundamental solution Γ and for every bounded
ϕ ∈ C(R2), the function

u(x, y, t) =

∫

R2

Γ(x, y, t; ξ, η, 0)ϕ(ξ, η)dξdη (2.12)

belongs to C2+α
K (R2×]0, T [) and is the unique bounded, classical solution to the Cauchy prob-

lem for (2.5) with initial condition u(x, y, 0) = ϕ(x, y).

We also recall that global estimates of Γ (and its derivatives) in terms of ΓK are proved in [14]
and [10]; then sharp estimates of the solution u in (2.12) and of its derivatives are available.
In particular we recall the following Gaussian type estimate of Γ:

Γ(z; ζ) ≤ C Γc
K(z; ζ), ∀z, ζ ∈ R

3, (2.13)

where C, c are a positive constants and Γc
K denotes the (explicitly known) fundamental solu-

tion to the Kolmogorov operator c∂xxu + x∂yu − ∂tu.
The non-Euclidean differential-geometrical structure naturally associated to the Kol-

mogorov equation (1.2) also gives some insight for the numerical approximation of the solu-
tion. We recall that in the paper by Barucci, Polidoro and Vespri [2] the price of a geometric
average Asian option is represented in terms of the solution to the Kolmogorov equation (1.2)
and the non-Euclidean finite differences scheme proposed in [15] is used for the numerical so-
lution. In the next section we adapt this approach to the Hobson-Rogers model and perform
a comparison among different numerical methods.

We close this section recalling that nonlinear Kolmogorov equations have been considered
for pricing options with memory feedback by Peszek [12] and for a stochastic differential
utility problem by Antonelli and Pascucci [1], Pascucci and Polidoro [11].

3 Finite-difference schemes for the Hobson-Rogers model

We consider the numerical solution of the option pricing PDE (2.3) by finite-difference me-
thods. By simplicity we assume r = 0. A standard approach consists in approximating
the derivatives ∂S , ∂D and ∂t by finite differences: we refer to this as an Euclidean finite-
difference scheme. In view of Remark 2.1, it seems very natural to study the Kolmogorov
equation (2.5) by approximating its main directional derivatives ∂x and Y = x∂x − ∂t rather
than the usual Euclidean derivatives: we call this a Kolmogorov finite-difference scheme. It
turns out that this last scheme allows a better comprehension of the discrete structure of
the equation and provides very efficient approximations: we refer to the next section for a
comparison of numerical methods. We recall that Kolmogorov finite-difference schemes for
(1.2) were first proposed by Mogavero and Polidoro in [15] and applied to the Hobson-Rogers
model by Di Francesco and Pascucci in [4] .

Solving options pricing PDEs by finite-difference methods requires the discretization of
the equation in a bounded region. Therefore a primary question arises about the choice of
the initial-boundary conditions. This specification seems to be unavoidable in the case of an
Euclidean finite-difference scheme and it is usually made relying upon financial considerations.
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On the contrary, as we shall see in Subsection 3.1, it is possible to derive boundary conditions
for Kolmogorov schemes in bounded domains by purely analytical considerations. This is the
first apparent advantage of Kolmogorov on Euclidean schemes.

3.1 An Euclidean finite-difference scheme.

We consider problem (2.3)-(2.4) for the price an European Put option with strike K. We
solve (2.3) in the bounded cylinder

]Ke−µ,Keµ[×] − ν, ν[×]0, T [, (3.1)

for some µ, ν > 0, subject to the following set of initial-boundary conditions: if f denotes the
solution, we obviously impose the initial condition

f(S,D, 0) = (K − S)+, for (S,D) ∈]Ke−µ,Keµ[×] − ν, ν[. (3.2)

Moreover we assume

f(Ke−µ,D, t) = K and f(Keµ,D, t) = 0, for (D, t) ∈] − ν, ν[×]0, T [. (3.3)

Finally, let pBS(S, σ, T − t,K) denote the Black-Scholes price of a Put option with time to
expiry T − t, strike K, underlying price S and volatility σ; we assume that

f(S,±ν, t) = pBS(S, σ(±ν), T − t,K) for (S, t) ∈]Ke−µ,Keµ[×]0, T [. (3.4)

We consider the following transformation which slightly simplifies the problem:

f(S,D, t) = Ku (log (S/K) ,D, λt) . (3.5)

Then equation (2.3) (for r = 0) becomes

Lu :=
σ2(y)

2λ
(∂θθu − ∂θu) − y∂yu − ∂tu = 0, (3.6)

for u = u(x, y, t) defined in the cylinder

Q =] − µ, µ[×] − ν, ν[×]0, λT [. (3.7)

In (3.6) ∂θu = ∂xu + ∂yu denotes the directional derivative of u with respect to θ = (1, 1, 0).
The initial-boundary conditions for u read as follows: the initial condition (3.2) corre-

sponds to
u(x, y, 0) = (1 − ex)+, (x, y) ∈ [−µ, µ] × [−ν, ν]. (3.8)

Condition (3.3) becomes

u(−µ, y, t) = 1, u(µ, y, t) = 0, (y, t) ∈] − ν, ν[×]0, λT [. (3.9)

Moreover, in view of the classical Black-Scholes formula, (3.4) corresponds to

u(x,±ν, t) = Φ

(
σ2(±ν)t/(2λ) − x

σ(±ν)
√

t/λ

)
− exΦ

(
−σ2(±ν)t/(2λ) − x

σ(±ν)
√

t/λ

)
, (3.10)
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for (x, t) ∈] − µ, µ[×]0, λT [, where Φ(·) is the standard normal cumulative distribution func-
tion. We explicitly remark that the function u is independent of K, therefore by (3.5) it
provides option prices for different strikes.

We consider an explicit finite-differences scheme on the uniform grid

G = {(i4x, k4y, n4t) | i, k, n ∈ Z},

and we approximate L in (3.6) by the following discrete operator

LGu(z) =
σ2(y)

2λ

(
D2

θ,4x
u(z) − Dθ,4x

u(z)
)
− yDy,4x

u(z) − Dt,4t
u(z), (3.11)

where z = (x, y, t) and

D2
θ,4x

u(z) =
u(x + 4x, y + 4x, t) − 2u(z) + u(x −4x, y −4x, t)

42
x

,

Dθ,4x
u(z) =

u(x + 4x, y + 4x, t) − u(x −4x, y −4x, t)

24x
,

Dy,4x
u(z) =

u(z) − u(x, y − sign(y)4x, t)

sign(y)4x
,

Dt,4t
u(z) =

u(x, y, t + 4t) − u(z)

4t
.

Operator LG is well-defined on the grid G with 4x = 4y and approximates L in the sense
that

‖Lu − LGu‖L∞(Q∩G) ≤ C(4x + 4t),

for some positive constant C depending on the L∞-norms of σ, ∂3
θu, ∂4

θu, ∂2
yu and ∂2

t u on Q.
Note that, in view of Remark 2.1, ∂4

θ has to be considered as a derivative of order twelve (in
the intrinsic sense) whose existence is guaranteed assuming that σ has derivatives of order
ten K-Hölder continuous.

By standard arguments, we can prove the following convergence result.

Theorem 3.1 Let u be the solution to the Cauchy-Dirichlet problem for (3.6) in the cylinder
Q subject to conditions (3.8)-(3.9)-(3.10). Let uG denote the solution to the correspondent
discrete problem for LG in Q∩G with the same initial-boundary conditions. Assume ∆x ≤ 2
and the following stability condition:

4t ≤
λ

λη∆x + supσ2
42

x. (3.12)

Then
‖u − uG‖L∞(Q∩G) = O(4x), as 4x −→ 0+.

Remark 3.2 An implicit method can be developed by using the backward differences

u(z) − u(x, y, t −4t)

4t
(3.13)
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instead of the forward differences Dt,4t
u(z) in LG. Even if this approach has the advantage of

being unconditionally stable (i.e. the time-step 4t can be chosen independently of 4x), how-
ever it is very computationally expensive. Indeed the numerical computation of uG requires,
at each time-step, the solution of a linear system of order (2I + 1)2, where I = 2µ/4x. This
becomes onerous in term of memory and computational time when the spatial grid spacing
diminishes.

3.2 An explicit Kolmogorov finite-difference scheme.

We approximate problem (2.5)-(2.8) by a Cauchy-Dirichlet problem for

Lu := a(∂xxu − ∂xu) + x∂yu − ∂τu = 0 (3.14)

with a defined in (2.7), in the cylinder

Q = {(x, y, τ) | |x| < µ, |y| < ν and 0 < τ < τ0}, (3.15)

where µ, ν > 0 and τ0 = 1 − e−λT . By transformation (2.6), this corresponds to the initial-
boundary value problem for (2.3) in the twisted region

{(S,D, t) | Ke−µ < S < Keµ, 0 < t < T and − νeλt < D − log(S/K) < νeλt}.

In the sequel we denote by

∂P Q = ∂Q ∩ {(x, y, τ) | τ < τ0}

the parabolic boundary of Q.
We consider an explicit Kolmogorov scheme on the uniform grid

G = {(i4x, k4y, n4τ ) | i, k, n ∈ Z}, (3.16)

and we discretize L in (3.14) by approximating the main directional derivatives as follows

∂xxu(z) ∼ D2
4x

u(z) =
u(x + 4x, y, t) − 2u(z) + u(x −4x, y, τ)

42
x

, (3.17a)

∂xu(z) ∼ D4x
u(z) =

u(x + 4x, y, τ) − u(x −4x, y, τ)

24x
, (3.17b)

Y u(z) ∼ Y4τ
u(z) =

u(z) − u(x, y − x4τ , τ + 4τ )

4τ
. (3.17c)

Position (3.17c) forces to set
4y = 4x4τ , (3.18)

since in this case the discrete operator defined by

LGu = a(D2
4x

u − D4x
u) + Y4τ

u = 0 (3.19)

is well-defined on the grid G. Moreover LG approximates L in the sense that

‖Lu −LGu‖L∞(Q∩G) ≤ C(42
x + 4τ ), (3.20)
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for some positive constant C depending on the L∞-norms of a, ∂3
xu, ∂4

xu and Y 2u on Q.
Therefore estimate (3.20) involves the intrinsic derivatives of u up to the fourth order: this
should be compared with the analogous result for the Euclidean scheme in the previous
subsection.

We first show a general result about the convergence of the scheme (3.17) and then address
the problem of the specification of the initial-boundary conditions for (3.14). By Remark 3.5
below, it is possible to assume that the vertices (±µ,±ν, 0) belong to the grid G so that the
discrete Cauchy-Dirichlet problem is well-posed. Following [15], we prove the following

Lemma 3.3 (Maximum principle) Assume ∆x ≤ 2 and the stability condition

4τ ≤ 42
x

2 sup a
. (3.21)

Let v be defined in G ∩ Q be such that

LGv ≥ 0, in G ∩ Q, (3.22)

v ≤ 0, in G ∩ ∂P Q. (3.23)

Then v ≤ 0 in G ∩ Q.

Proof. Denoting
vn
i,k = v(i4x, k4y, n4τ ),

we have that (3.22) is equivalent to

vn
i,k ≤ vn−1

i,k+i

(
1 − 2an−1

i,k+i

4τ

42
x

)
+ an−1

i,k+i

4τ

42
x

(
(1 −4x/2)vn−1

i+1,k+i + (1 + 4x/2)v
n−1
i−1,k+i

)
.

(3.24)
The thesis follows by an elementary inductive argument. �

By means of the maximum principle it is standard to prove the following convergence
result.

Theorem 3.4 Let u (resp. uG) denote the solution to the (discrete) Cauchy-Dirichlet prob-
lem for (3.14) (resp. (3.19)) in Q (resp. Q ∩ G) with given initial-boundary conditions.
Assume the stability condition (3.21). Then

‖u − uG‖L∞(Q∩G) = O(42
x), as 4x −→ 0+.

Remark 3.5 It is easy to choose µ, ν, τ0 and a grid G such that conditions (3.18) and (3.21)
hold and the vertices (±µ,±ν, 0) belong to G. Suppose that µ and τ0 are given: we fix a
natural number m and set ν = mµτ0. Moreover we put 4x = µ/I and 4τ = τ0/N where
I,N ∈ N and N ≥ 2τ0 sup a

42
x

so that the stability condition holds. Finally, we set 4y = 4x4τ .

Then we have

G ∩ Q = {(i4x, k4y, n4τ ) | |i| ≤ I, |k| ≤ mNI and 0 ≤ n ≤ N}. (3.25)
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We now consider the problem of the specification of the initial-boundary conditions.
Clearly we impose the initial condition

u(x, y, 0) = (1 − ex)+, for x ∈ [−µ, µ], y ∈ [−ν, ν]. (3.26)

Moreover we set

u(−µ, y, τ) = 1 and u(µ, y, τ) = 0, for y ∈] − ν, ν[, τ ∈ ]0, τ0[. (3.27)

A reason for conditions (3.27) is given by the following proposition whose proof is postponed
to the end of the subsection.

Proposition 3.6 Let u be the bounded solution to the Cauchy problem (2.5)-(2.8). Then

lim
x→−∞

u(x, y, τ) = 1 and lim
x→+∞

u(x, y, τ) = 0,

uniformly in (y, τ) ∈ R × [0, τ0].

Finally we show a simple way to avoid giving conditions on the lateral boundary {y = ±ν}
of Q. Let us consider the grid in (3.25). We first remark that for a solution v to LGv = 0 in
G ∩ Q, the value vn

i,k only depends on vn−1
i,k+i and vn−1

i±1,k+i (see (3.24)). More generally, it is
straightforward to determine the domain of dependence of the set of values

Vm = {vN
i,k | |i| ≤ I, |k| ≤ (m − 1)NI} :

indeed, if we put
k(n) = max{|k| | Vm depends on vn

i,k},
then, by (3.24), we have

k(n) = k(n+1) + I = · · · = k(N) + (N − n)I = I(mN − n).

In particular k(0) = mNI, therefore Vm is independent on the value of v at the lateral
boundary y = ±ν. Let us note that this is true for every refinement of the grid, that is for
every choice of N and I. In view of these remarks, in order to approximate the solution
u(x, y, τ0) for |y| ≤ (m−1)µτ0, conditions on the lateral boundary {y = ±ν} are superfluous.
Alternatively, one can solve (3.14) in the prism

{(x, y, τ) | |x| < µ, 0 < τ < τ0 and |y| < µ(mτ0 − τ)}, (3.28)

rather than in the whole cylinder Q.

Remark 3.7 Although attractive from an analytical viewpoint, the explicit Kolmogorov sche-
me has a high computational cost. Indeed the stability condition (3.21) combined with as-
sumption (3.18) implies 4y = O(43

x) as 4x −→ 0. Thus, for instance, in a grid with 102

4x−nodes we have about 104 4τ−nodes and 106 4y−nodes. For this reason, in the next sub-
section, we propose a first order implicit scheme which combines the fine analytical properties
of Kolmogorov schemes with the numerical efficiency.
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Let us recall that an explicit Kolmogorov difference scheme for the Hobson-Rogers model
was first proposed in [4]. The starting point was the following PDE given in Sect.4.3 in [6]:

σ2(x − y)

2
(∂xxu − ∂xu) + (x − y)∂yu − ∂tu = 0. (3.29)

Following the same approach used in [4], one may approximate the first order term ∂θu, where
θ = (0, x − y,−1), by the difference

u(z) − u(z + ∆tθ)

∆t
.

This approach has the drawback that the two points z and z + ∆tθ cannot belong both to a
uniform grid G like in (3.16): this is essentially due to the lack of a homogeneous structure
for (3.29) analogous to that of the Kolmogorov equation (1.2). To overcome this problem,
Di Francesco and Pascucci propose to approximate ∂θu by the “corrected difference”

ỸGu(x, y, t) =
u(x, y, t) − u(x, y + ∆t(x − ∆x[y/∆x]), t − ∆t)

∆t
. (3.30)

It is shown in Lemma 3.1 of [4] that ỸG is well defined on G when ∆y = ∆x∆t. On the other
hand, the “correction” introduces an additional error of order ∆x. Specifically, they show
that

|∂θu(x, y, t) − ỸGu(x, y, t)| ≤ ∆x‖uy‖∞ + ∆t‖Y 2u‖∞.

Here, since transformation (2.6) leads to a homogeneous Kolmogorov equation, we consider-
ably improve the results in [4].

We close this subsection by proving Proposition 3.6.
Proof of Proposition 3.6. We only study the first limit, the second one being analogous.
We note that for every ε > 0 there exists a positive constant R = R(ε, τ0) such that

+∞∫

−δ

∫

R

Γ(x, y, τ ; ξ, η, 0)dηdξ ≤ ε, (3.31)

for every δ > 0, x ≤ −δ − R and (y, τ) ∈ R × [0, τ0]. Indeed, by estimate (2.13), we have

+∞∫

−δ

∫

R

Γ(x, y, τ ; ξ, η, 0)dηdξ ≤ C

+∞∫

−δ

∫

R

Γc
K(x, y, τ ; ξ, η, 0)dηdξ

(integrating in the variable η over R and denoting by Γc the fundamental solution of the heat
equation c∂xx − ∂τ )

= C

+∞∫

−δ

Γc(x, τ ; ξ, 0)dη ≤ ε

if x ≤ −δ − R and R is suitably large. This proves (3.31).
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The thesis is a simple consequence of (3.31) and the fact that, by Theorem 2.2,

∫∫

R2

Γ(x, y, τ ; ξ, η, 0)dξdη = 1, ∀x, y ∈ R, τ > 0. (3.32)

Indeed, by the representation formula (2.12) and by (3.32), we have

1 ≥ u(z) =

∫∫

R2

Γ(z; ξ, η, 0)(1 − ξ)+dηdξ ≥

(if δ is suitably large)

≥ (1 − ε)

−δ∫

−∞

∫

R

Γ(z; ξ, η, 0)dηdξ ≥ (1 − ε)2,

by (3.32) and (3.31) if x ≤ −δ − R. �

3.3 An implicit Kolmogorov finite-difference scheme.

In view of the previous subsection, it is quite simple to derive an implicit Kolmogorov finite-
difference scheme for equation (3.14). We set Q as in (3.15) and consider a grid as in Remark
3.5. Then using the same notations of Subsection 3.2, the discrete operator

L̂Gvn
i,k = an

i,k

(
vn
i+1,k − 2vn

i,k + vn
i−1,k

42
x

−
vn
i+1,k − vn

i−1,k

24x

)
+

vn−1
i,k+i − vn

i,k

4τ
(3.33)

is well-defined on G (remember that 4y = 4x4τ ) and approximates L in that

‖Lu −LGu‖L∞(Q∩G) ≤ C(4x + 4τ ).

We may consider the same set of initial-boundary conditions used in the previous subsection:
in particular it is straightforward to show that conditions at the lateral boundary {y = ±ν}
do not affect the value of the solution in the prism (3.28).

Finally, by means of the following maximum principle it is not difficult to prove a conver-
gence result for L̂ analogous to Theorem 3.4.

Lemma 3.8 (Maximum principle) Suppose that

L̂Gv ≥ 0, in G ∩ Q, (3.34)

v ≤ 0, in G ∩ ∂P Q. (3.35)

Then v ≤ 0 in G ∩ Q.
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Proof. By contradiction, suppose that M = maxG∩Q v = vn
i,k > 0. Then denoting

An
i,k = 1 + 2an

i,k

4τ

42
x

,

by (3.34), we have

MAn
i,k = vn

i,kA
n
i,k ≤ vn−1

i,k+i + an
i,k

4τ

42
x

(
(1 −4x/2)v

n
i+1,k + (1 + 4x/2)vn

i−1,k

)
≤

(since vn
i,k is a maximum of v)

≤ MAn
i,k,

and we deduce that vn−1
i,k+i = vn

i+1,k = vn
i−1,k = M . If necessary, we repeat this argument until

we reach a point belonging to the parabolic boundary: then we clearly have a contradiction
and the lemma is proved. �

Remark 3.9 Notice that (vn
i,k)|i|≤I can be computed independently for different values of k.

Indeed, by (3.33), only points on the same line y = k4x are related by the operator L̂G at
time t = n4τ . Thus, the computation of vn

i,k, for |i| ≤ I and |k| ≤ J , reduces to the solution
of 2J + 1 independent tridiagonal linear systems of order 2I + 1 and it allows for a highly
efficient implementation (see also Remark 3.2).

4 Comparison of numerical approximations

We consider and compare the numerical performances of the finite-difference schemes intro-
duced in the previous section. Specifically we consider the explicit Euclidean and implicit
Kolmogorov schemes introduced in Sections 3.1 and 3.3, respectively.

In all the experiments, we have chosen

σ(D) = η
√

1 + εD2 ∧ M

as proposed in [6], where the parameters have been fixed to ε = 5, and λ = 1. Furthermore,
we have chosen a unit strike K = 1, a zero interest rate r = 0 and a domain as in (3.1) with
µ = 2.0. For the Euclidean method, the time step length is chosen to ensure stability, while
for the Kolmogorov scheme we have found experimentally that a number of steps N = 50 is
good compromise between precision and execution speed.

Tables 1-4 report numerical results for the prices of Standard and Digital European Put
options computed by the two methods when S0 = K = 1.0 (at the money) and D0 = 0.1. The
values computed by the Euclidean and the Kolmogorov methods are shown in the second and
fifth columns, respectively. The execution times in seconds of the two methods are reported
in the fourth and last columns and refers to experiments performed on an Intel Pentium IV
single CPU of 1.80Ghz of clock.

Values computed by a Monte-Carlo method are reported in the captions of the tables.
In order to produce figures stable up to the fourth significant digit, 3 · 107 replications have
been performed and this took about 34 minutes of cpu time. Relative percentage errors of
the results produced by the two finite difference methods are shown in columns 3 and 6.
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Euclidean Kolmogorov
I Price Err % Exec. time Price Err % Exec. time

50 0.0406 0.00 0.2 0.0399 1.72 4.9
100 0.0409 0.73 1.6 0.0406 0.00 19.5
150 0.0409 0.73 7.0 0.0406 0.00 43.8
200 0.0409 0.73 19.6 0.0407 0.24 81.8
250 0.0409 0.73 93.7 0.0407 0.24 134.3

Table 1: Price of a European Put Option, with S0 = K = 1.0, D0 = 0.1, T = 0.25 and
η = 0.2. Reference value: 0.0406

Euclidean Kolmogorov
I Price Err % Exec. time Price Err % Exec. time

50 0.2699 1.62 5.1 0.2657 0.03 4.9
100 0.2690 1.28 52.2 0.2658 0.07 19.5
150 0.2687 1.17 230.8 0.2659 0.11 43.8
200 0.2686 1.13 706.7 0.2659 0.11 81.8
250 0.2685 1.09 1635.5 0.2659 0.11 134.3

Table 2: Price of a European Put Option, with S0 = K = 1.0, D0 = 0.1, T = 0.75 and
η = 0.7. Reference value: 0.2656

Tables 1 and 3 report prices of options with small volatility and short time to maturity,
that is η = 0.2 and T = 0.25. We also tested the robustness of the methods by considering
the more computationally cumbersome problem of high volatility (µ = 0.7) and a bigger time
to maturity (T = 0.75): the results are showed in Tables 2 and 4.

Euclidean Kolmogorov
I Price Err % Exec. time price Err % Exec. time

50 0.5520 4.56 0.2 0.4460 15.51 4.9
100 0.5116 3.08 1.6 0.4879 7.57 19.5
150 0.4983 5.60 7.0 0.5013 5.03 43.8
200 0.4917 6.85 19.6 0.5081 3.75 81.8
250 0.4878 7.59 93.7 0.5121 2.99 134.3

Table 3: Price of a European Digital Put Option, with S0 = K = 1.0, D0 = 0.1, T = 0.25
and η = 0.2. Reference value: 0.5279

The data presented in the tables confirm the theoretical results presented in the previous
sections. In particular, notice that in the experiments with discontinuous payoff reported in
Tables 3 and 4, the Euclidean method do not converge to the correct price due to the influence
of the boundary data. As opposite, the Kolmogorov scheme demonstrates its robustness
converging, even if not rapidly, to the solution.

Regards to the computational cost of the methods, it should be noticed that the number
of steps (and thus the computational cost) required by the Euclidean scheme depends on
the volatility as well as on the time to expiration. Then, for simple problems like the one
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Euclidean Kolmogorov
I Price Err % Exec. time Price Err % Exec. time

50 0.4678 28.60 5.1 0.6409 2.18 5.1
100 0.4640 29.18 60.6 0.6485 1.02 20.8
150 0.4628 29.36 243.5 0.6510 0.64 47.2
200 0.4622 29.45 706.7 0.6522 0.45 84.9
250 0.4619 29.50 1635.5 0.6530 0.33 148.5

Table 4: Price of a European Digital Put Option, with S0 = K = 1.0, D0 = 0.1, T = 0.75
and η = 0.7. Reference value: 0.6552

reported in Table 1, an Euclidean scheme is quite acceptable (even if it should be noted that,
by reducing the grid spacing, we do not obtain any significant improvement of precision).
On the contrary, the other examples show that the Euclidean scheme is more computa-
tionally expensive than the Implicit Kolmogorov and not reliable (let us also recall Remark
3.2 and that Implicit schemes of Euclidean type are particularly onerous). This is particularly
apparent in Table 4 which shows a persistent error of nearly 30% in the Euclidean scheme,
in addition to a high computational cost. This example enlightens the advantage of the
Kolmogorov scheme in not requiring the boundary conditions on the lateral boundary {y =
±ν}. Experiments on a Crank-Nicholson method based on the Kolmgorov scheme have also
been performed, but are not here reported because of its numerical unreliability when dealing
with discontinuous payoff.
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