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ABSTRACT 
 
Reduction of False Positive signals (FPR) is a fundamental, yet awkward, step in computer aided mass detection schemes. 
This paper describes preliminary results of a filtering approach to FPR based on Support Vector Regression (SVR), a machine 
learning algorithm arising from a well-founded theoretical framework, the Statistical Learning Theory, which has recently 
proved to be superior to the conventional Neural Network framework for both classification and regression tasks: indeed, the 
proposed filtering method belongs to the family of neural filters. 
The SVR filter is forced to associate subregions extracted from input images, masses and non-masses, to continuous output 
values ranging from 0 to 1 representing a measure of the presence in the subregion of a mass. A weighted sum of outputs over 
each image is used to accomplish the FPR task. In the test phase, this approach reached promising results, retaining 87% of 
masses while reducing False Positives to 62%. 
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ABSTRACT 
 
Reduction of False Positive signals (FPR) is a 
fundamental, yet awkward, step in computer aided mass 
detection schemes. This paper describes preliminary 
results of a filtering approach to FPR based on Support 
Vector Regression (SVR), a machine learning algorithm 
arising from a well-founded theoretical framework, the 
Statistical Learning Theory, which has recently proved to 
be superior to the conventional Neural Network 
framework for both classification and regression tasks: 
indeed, the proposed filtering method belongs to the 
family of neural filters. 
The SVR filter is forced to associate subregions extracted 
from input images, masses and non-masses, to continuous 
output values ranging from 0 to 1 representing a measure 
of the presence in the subregion of a mass. A weighted 
sum of outputs over each image is used to accomplish the 
FPR task. In the test phase, this approach reached 
promising results, retaining 87% of masses while reducing 
False Positives to 62%. 

 

1. INTRODUCTION 
 
Breast cancer is the most widespread form of cancer 
among women in many countries. Computer Aided 
Detection (CAD) schemes have been developed by many 
authors over the years to help radiologists to improve the 
detection rate of cancer lesions - microcalcifications and 
masses - in mammograms [1][2][3]. In particular, mass 
detection has been shown to be extremely difficult, due to 
the great variety in shape, size, texture and subtlety. An 
essential step in CAD systems is False Positive Reduction 
(FPR): elimination of signals erroneously detected by the 
system. 

In this paper we introduce a Support Vector 
Regression filtering approach to FPR in an automated 
mass detection system. The proposed approach consist of 
two steps: the first one belongs to the family of neural 
filters [4][5], but is based on Support Vector Machine 

(SVM), a class of learning algorithm which has proved in 
recent years to be superior to the conventional Neural 
Network method for both classification and regression 
tasks [6][7], hence its application to neural-like image 
processing looks very appealing. The second step is a 
simple way to take into account information given by SVR 
filter, in order to decide whether the analyzed signal is a 
False Positive (FP) or not. 
 

2. MATERIALS 
 
2.1. The mass detection system 
 
The CAD system we have applied FPR to is described in 
[3]. Essentially, it considers mass detection in 
mammograms as a two-class pattern recognition problem. 
The detection procedure is the following: firstly the 
segmented mammogram is scanned with smaller 
overlapping windows of various sizes, secondly the 
information in each of these crops is codified by means of 
an overcomplete wavelet representation, and finally this 
great amount of information is given to a Support Vector 
Machine (SVM) classifier, which is devoted to separate 
crops with masses from those without. All crops, taken at 
various sizes, are resampled to be 64 pixels in side, before 
being codified through wavelet transform and passed to 
the classification step. The SVM classifier is trained with 
mass crops (namely, ground truth crops), whose size and 
position are given by radiologists, and non-mass crops, 
taken at random from within the breast area. The system at 
this stage analyses approximately 105 crops per image on 
average, and about 0.05 ÷ 0.1% of them are approximately 
classified as Positive, that is, contain a mass. Most of them 
are simply FPs, and need to be eliminated as much as 
possible, a task that is accomplished via a cascaded SVM 
classifier.  

The complete CAD scheme comprises a final step, 
which consists of an ensemble of experts judging 
candidates from at least three systems as that described 
above, only different in some parameters. Anyway, here 
we consider the SVR filtering approach to FPR as an 
alternative for the cascaded classifier in a single system. 
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2.2. The database of mammograms 
 
The data set used consists of 69 mammograms with 
dimensions 2816 x 2048, pixel size 85 µm and bitdepth 
13, contains 69 ground truth regions and was acquired 
with the Full Field Digital Mammography apparatus 
(FFDM) Giotto Image MD (IMS srl, Bologna, Italy). First 
stage of CAD processing (described in section 2.1) of this 
data set gives about 8000 crops classified as masses, of 
which only about 900 can be considered containing a true 
mass, the rest being False Positives. This high number of 
Positive Crops is due to the fact that at this stage of 
analysis redundant crops, that is, showing the same signal, 
are not yet clustered together (see [3]). This redundancy 
comes from the use of many different window sizes (from 
8 to 40 mm in side) to scan the mammogram. For the same 
reason, the 69 ground truth regions give rise to 349 ground 
truth crops. 
 

3. SUPPORT VECTOR REGRESSION 
 
Support Vector Machine is a class of supervised learning 
algorithms for nonlinear classification and regression, 
deep-rooted in the Statistical Learning Theory [6], and at 
present considered the state-of-art in the machine learning 
field: indeed, it exhibits many useful properties that make 
it a suitable candidate for neural filtering. Among these 
properties are: 1) the training process is made by solving a 
quadratic optimization problem, hence no local minima 
trapping is ever encountered; 2) the architecture of the 
machine is automatically set by the solution of the 
optimization problem, which makes the training be quite 
easy, and, moreover, allows for a very low risk of poor 
generalization. These properties guarantee in general a 
learning procedure simpler and faster than that conveyed 
with a conventional multilayer Artificial Neural Network, 
or with an RBF. 

ν-Support Vector Regression (ν-SVR) [8] is the SVM 
algorithm for regression estimation considered here. Given 
the vector data set ( )l

iii y 1, =x , in the linear case this 

algorithm seeks to estimate 
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by making use of the so-called ε-insensitive loss function: 
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The algorithm consists in the solution of the following 
constrained quadratic optimization problem: 
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At each point xi the maximum allowed error is ε: 
every higher error goes into slack variables (*)

iξ  and is 

penalized trough constant C, chosen a priori. The other 
parameter to choose a priori is ν, which is bounded 
between 0 and 1 and governs the trade off between good 
fitting of data and smoothness of solution, which is 
directly linked to generalization ability. The usual way to 
solve the SVM optimization problem is to transform its 
Lagrangian formulation into the corresponding Wolfe dual 
form [6]. The regression estimate, which depends via the 
Lagrange multipliers α and α* on a subset of training 
vectors called Support Vectors, is: 
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The general case of non-linear regression can be very 
easily handled by substituting a kernel k(xi,xj) to the dot 
product in the dual formulation and consequently in (5). It 
is worth noting that kernel functions, which correspond to 
dot product in a feature space given by a nonlinear 
transformation φ of the data vectors in the input space, 
 ))()((),( jijik xxxx φφ ⋅=  (6) 

show a large variety of forms: polynomial, RBF, sparse 
polynomial, neural network, string kernel, etc [7]. 
 

4. FPR VIA SVR FILTERING 
 
4.1. SVR filtering 
 
The SVR learning algorithm acts as a filter because it is 
able to associate to each input crop an output image, 
which is subsequently used to determine if the crop 
contains or not a mass.  

The algorithm is trained with a set of positive and 
negative samples. The positive ones are associated to a 
teacher image containing a 2 dimensional Gaussian 
function, whilst the negatives are associated to an image of 
zeros. Overlapping subcrops are extracted from each crop 
by scanning it with a square window of size Rx, along rows 
and columns, by moving the center of Rx by a certain 
amount of pixels P at a time, without letting the window 
go out of the crop. At the same time, the same window 
scans the teacher image, and the center pixel value of this 
subimage is retained (see Fig. 1). Subcrops and their 
coupled teacher image values are then used for SVR 
training, in which the regression algorithm is forced to 
associate the corresponding value y to every given crop 
pattern x of length Rx

2. The 2 dimensional Gaussian 
teacher image values range from 0 to 1, and can be 
considered as a measure of “how much” of a mass is 
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enclosed by the scanning window: indeed, the mass is 
positioned in the middle of each training crop, covering 
about 20÷25% of crop area, and the Gaussian as well is 
centered in the middle of the teacher image (see Fig. 1). 
The number of subcrops extracted from each crop, 
depending on the size of Rx and on the value of P, increase 
when Rx or P decrease. 

During test phase, from each scanned crop an output 
image is created: every pixel in it contains the “opinion” 
of SVR about the presence of a mass, or a part of it, in the 
corresponding analyzed subcrop. 
 
4.2. Scoring and thresholding 
 
To obtain a single measure M(ci) of the presence of a mass 
in the crop ci, the output image values yi are put together 
using a Gaussian weighted sum, so that higher measures 
can be achieved by positive crops whose outputs are in 
good agreement with the Gaussian teacher image (high 
values in the middle getting lower towards borders): 
 .)()( ,, mng
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The weight w(σg) represents the Gaussian image with 
sigma σg. 

Typically, the distribution of measures M obtained 
from a group of positive and negative crops overlap, but 
shows two peaks: the rightmost is related to mass crops, 
the other to non-mass crops. By putting a threshold on M 
it is possible to distinguish, to a certain degree, the two 
kinds of crops. The optimal value of the threshold is 
determined during the training phase. 
 

5. RESULTS 
 
All a-priori parameters have been chosen through a Cross–
Validation (CV) procedure, and test phase has been 
performed afterward on different independent sets. 
Training set was given 26 ground truth crops and a 
maximum of 104 randomly chosen non-mass crops. 
 
5.1. Cross-Validation training 
 
We opted for CV because of the low number of ground 
truth crops at disposal: in particular we performed M-Fold 
CV with M = 13, putting 2 positive crops in each fold. The 
number of negatives varied from 26 to 104, which gave us 
the best performances. Due to the high demand in 
computational resources we decided to train each fold 
alone, instead than M - 1 together as in usual M-Fold CV, 
and then calculate the mean result of the M - 1 trained 
SVRs over the Mth, iteratively for the M folds, to obtain 
the CV results: this procedure belongs to the ensemble 
methods of machine learning [9]. 

 

Fig. 1. The action of the filter over the analyzed crop: a) as 
the Rx window scans the crop, creating subcrops, b) a value y 
is associated to each subcrop: this value y is drawn from the 
teacher image in the training phase, and is produced by SVR 
in the test phase. In c) it is shown a positive sample from the 
training set: the mass is clearly visible in the center of the 
crop. In d) there is depicted, as a gray level image, the 2 
dimensional Gaussian function used in the training phase as 
teacher image for positive crops. 

We used SVR implementation in Spider package 
(http://www.kyb.tuebingen.mpg.de/bs/people/spider/). 

We obtained the best performances with these 
parameters: Rx 17 pixels in side, resulting in 172 = 289 
dimensions for vector x, P equal to 4, resulting in a gain of 
only 144 vectors per crop, the teacher image containing 
the Gaussian function until ±4 sigma. In addition, SVR 
parameters were: RBF kernel with sigma equal to 3, C = 
1000, and ν = 0.4, but varying almost in its entire range 
without affecting the results. As usual in SVM algorithms, 
data vectors underwent a whitening procedure [10]. 
Training time was 260 sec on average for each fold on a 
2.6 GHz Pentium Xeon with 2Gb RAM running Linux. 

The FPR procedure obtained very good CV results: it 
could be able to reduce FPs to 65±10% and 36±10% while 
retaining at the same time 95±5% and 88±12% of Positive 
crops, at two different threshold values on M, respectively. 
Uncertainties over these results were calculated with a 
95% binomial confidence interval estimation [11]. 
 
5.1. Test 
 
Test was performed on crops coming from the 43 images 
(with 43 ground truth regions) that were not used in the 
CV training phase. 
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The first test set consisted of 205 ground truth crops, 
extracted at all the scales used by the system, and 510 non-
mass crops randomly chosen from the FPs given in output 
by the CAD after scanning the 43 images. For the same 
threshold values considered before, 94±3% and 81±5% of 
mass crops and 82±3% and 62±4% of FP crops were 
retained. It is worth noting that the positive crops 
considered here are different from those used in training, 
showing in general a very different mass-area/crop-area 
ratio, because of the many scales they were acquired at. 
Anyway, the sensitivity over positives is almost the same 
as that found in CV, which means this ratio is not a critical 
parameter of the approach. On the other side the 
percentage of FPs does not drop as quick as expected from 
CV results. The main cause of this fact should be found in 
the low number of training samples: the negative ones 
present a great variability, which has probably not been 
captured by the small training set of only 104 randomly 
chosen negatives; besides, also the 26 positives considered 
for training could hardly be considered representative of 
their class, which anyway shows less variability. The 
optimal number of training samples is an important, yet 
open, question: more data are necessary to obtain an 
answer. 

The second test set consisted of the same FPs and of 
546 crops classified as containing a mass by the CAD 
scheme: these are the usual data that should undergo FPR. 
At the same values of FPs as before, 96±2% and 87±3% 
of mass crops survived the thresholding phase. These 
percentages agree with the previous ones. 
 

6. CONCLUSIONS AND FUTURE WORK 
 
The proposed two-step method reached promising results 
as an FPR stage in a CAD scheme for mass detection, 
being able to eliminate about 38% of FPs at a cost of only 
13% of mass crops. This rate of reduction of FP signals is 
at present no better than that used in the CAD scheme in 
[3], and further work needs to be done. Anyway, the 
method has proved to be valuable: in particular its core, 
SVR filtering, has showed to be an effective and easy-to-
train way to extract the information concerning the kind of 
tissue in the crop, and should be pursued further. The 
second and final step, on the other side, is the one that 
needs more improvements: indeed, instead of weighted 
scoring, a more advanced method able to effectively deal 
with the information carried by the filtered images - such 
as a multidimensional classifier like SVM - should be 
taken into account. In addition, the question of the optimal 
number of samples in training is a relevant issue, as it is in 
general for machine learning based approaches, and 
should also be tackled. 

Future work should involve: 1) the assessment of the 
performances of the proposed approach at varying number 
of training samples, and 2) the devising of more effective 
methods to deal with SVR filtering outputs. 
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