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Abstract - High performances was achieved on
AlGaN/GaN HEMTs based on Si(111). Devices with 0.17-
µm and 0.3-µm gate lengths are fabricated on two different 
layer growth at TIGER laboratory. RF noise and power
performances are carried out on these transistors. The 0.17

 100 µm2 devices exhibit a unity current gain cutoff
frequency (ft) of 46 GHz, and a maximum frequency (fmax)
of 92 GHz at VDS = 10 V. Also, a minimum noise figure
(NFmin) of 1.1 dB and an available associated gain (Gass) of
12 dB are obtained at VDS = 10 V and f = 10 GHz. The 0.3 
300 µm2 devices demonstrate a drain-to-source current
density Ids = 925 mA/mm at VGS = 0 V and a maximum
extrinsic transconductance (Gm) of 250 mS/mm. 
Furthermore, a high output power density of 1.9 W/mm
associated to a PAE of 18% and a linear gain of 16 dB are 
measured at f = 10 GHz and VDS = 30 V. These
performances are the best ever reported for AlGaN/GaN
HEMTs based on silicon substrates at this frequency.

I. INTRODUCTION

It was shown that AlGaN/GaN High-Electron Mobility
Transistors (HEMTs) constitute, at present, an excellent
candidate for telecommunication broadcasting in the
emission and reception chains. If higher power
capabilities are demonstrated since several years, more
recently, it was shown that the RF noise properties are
very close to those of GaAs based devices. Consequently,
AlGaN/GaN HEMTs may be now used for high power
amplifier (HPA) and low noise amplifier (LNA) making.
In the last case, the material properties make it possible to
simplify the circuit avoiding the limiter protection
circuitry to present damage to the high sensitivity receive 
chain.

Gaz

In this frame, AlGaN/GaN HEMTs grown on silicon
substrate constitute an interesting alternative for the
making of low cost modules.

In this paper, AlGaN/GaN HEMTs on silicon substrate
are developed in order to obtain high power operations
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od RF noise performance at high frequencies. The
ride wide bandgap material attracts much attention
e of its superior physical properties such as high
own electric field, high electron saturation velocity
cellent thermal conductivity. Significant progress 
ade in recent years in material growth and process
logy. These improvements are promising for 
 devices at S-band, X-band and K-band [1][2][3]
ow noise amplifiers (LNA). The increase of
tions such as satellite constellations as well as

e imaging systems needs the realization of high
ance low noise amplifiers [4][5]. AlGaN/GaN on

 substrates with its large area availability and its 
ost is an excellent candidate for the making of
 LNAs.
 study, the growth layer and the process device are
resented. Afterwards, the microwave performance
ribed in term of RF noise and power amplification.

II. DEVICE STRUCTURE AND FABRICATION

Fig. 1.  Device cross section 
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haracteristics of sample2 device is shown in Fig. 2 and 
the corresponding transfer characteristics are given in
Fig. 3 
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In our experiment, two similar epitaxial layers are used.
oth layers are obtained by Molecular Beam Epitaxy

BE) grown on Si(111).Device cross section is shown
 Fig. 1. The first epitaxial layer (sample1) stems from
RHEA laboratory and it consists of 50 nm of AlN
ucleation layer, 0.5 µm of GaN/AlN sequence, 1.5 µm
f GaN buffer, 30 nm of Al0.26Ga0.74N barrier and 1 nm of 
aN cap layer. Layers are undoped. The second epitaxial
yer (sample2) is made by Picogiga International
ompany. The epilayer contains 40 nm of AlN 
ucleation layer, 250 nm of GaN layer, 250 nm of AlN
yer, 2.5 µm of unintentionally doped GaN buffer, 25 
m of Al0.31Ga0.69N b tionally

ain current
 = 925 mA/mm is obtained at a gate bias of 0 V and a 
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Fig. 2.  Typical output characteristics of a 0.3
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substrates.

Device isolation is achieved by Reactive Ion Etching
(RIE) using a SiCl4 gas. Ohmic contacts are formed using
a Rapid Thermal Annealing (RTA) of evaporated
Ti/Al/Ni/Au (12/200/40/100 nm) metallization at 900°C
during 30s under nitrogen atmosphere. The gate to source
(Lgs) and the source to drain (Lgd) device spacing are 
respectively 1 µm and 1.5 µm. T-gates are made by using
a bilayer PMMA/MMA-MAA resist scheme and a
Pt/Ti/Pt/Au (25/25/25/300 nm) metallization.

III. RESULTS AND DISCUSSION

The DC characteristics measured on both samples using 
a HP4142B modular source and monitor, show good
static drain currents. Sample1 device (0.17  100 µm2)
gives a maximum drain current IDS = 550 mA/mm at VGS
= 1 V and VDS = 10 V. Pinch-off voltage is close to -6 V.
At 10 GHz, the intrinsic transconductance (gm) shows a
peak value of 215 mS/mm at VGS = -3.5 V and VDS = 10
V.

Regarding sample2 device, a maximum dr
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ximately 250 mS/mm is measu
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s noted that less current is measured on sample1
s due to poor ohmic contact resistance value (2 
) instead of 0.7 .mm on sample2 device. These
 are measured by the Transmission Line Method. 
mic contact scattering contitutes a difficulty in the
s of devices grown on silicon substrate.

-parameters are carried out using a HP8510C
rk analyzer connected to Picoprobe probes in the
50 GHz frequency range. The values of the unity
t gain cutoff frequency (ft) and the maximum
ncy of oscillation (fmax) are determined by the
olation of the |h21| and Mason’s gain using a -
decade regression (see Fig. 4). In Fig. 5, the f and
x on
1. In t biased at 

while the gate was biased between –3.4 V and 0.

Fig. 3.  Transfer characteristics of a 0.3  300 µm2

sample2 device on a silicon substrate 

easurement is performed on both epitaxial layers.
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ig. 4.  Short circuit current gain (|h21|) and maximum
available gain (MAG) of 0.17×100µm2 AlGaN/GaN 

HEMT on Si(111)
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he intrinsic ft, and fmax values are respectively 46 GHz
and 92 GHz at VDS = 10 V for the sample1 device, and 30
GHz, 72 GHz at VDS = 15 V for the sample2 device. It is
a good (fmax / ft) ratio in both cases.

The noise performance is measured on sample1 using a 
P8570B noise figure meter, a HP8970B noise figure
st set and a HP8510C Network Analyzer over 0.5 to 50
Hz frequency range.

e gate bias. At VDS = 10 V and VGS = - 4.1 V, a
inimum noise figure (NFmin) of 1.1 dB and an available

ssociated gain (Gass) of 12 dB are measured at 10 GHz.
Fig. 7. Shows NFmin and Gass as a function of frequency.
he straight line in this figure is a linear fit to the
inimum noise figures measurements. For these
easurements, devices were biased at VDS = 10 V and IDS
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Fig. 6.  Minimum noise figure and associated gain against
gate bias for a 0.17  100 µm2 sample1 device 

Fig. 5. ft and fmax progression versus drain current on 
the sample1 device
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e signal power measurements are also performed at 
z on sample2, using on wafer load-pull and

ated load-pull station with computer controlled
nical tuners from Focus Microwaves.
drain voltage of 25 V and a gate voltage of –3 V 
onding to AB operating mode, an output power

mm was achieved at maximum PAE of
ssociated to a linear gain of 13.7 dB.(see Fig. 8).

ces were then measured at VDS = 30 V and VGS = -
nder class AB operation too. Devices show good
mance. An output power density of 1.9 W/mm
ated to a maximum power-added efficiency (PAE)
, a linear gain of 16 dB and a power gain of 10 dB
asured. Fig. 9 shows the large signal performance
0.3  300 µm2 sample2 device at 10 GHz. To our

E
(%

s could present a NFmin close to 0.8-dB at 10 GHz.
r knowledge, these results are the best NFmin

ated to the highest Gass for AlGaN/GaN HEMTs on
 substrate.

  of 1.7 W/

. 7.  Minimum noise figure and associated gain at 10 GHz 
ersus frequency for a typical 0.17×100 µm2 AlGaN/GaN 

HEMT

Fig. 8.  HEMT power characteristics at 10 GHz for
VDS = 25 V (sample2) 
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IV. CONCLUSION

Low RF noise and high power performances are
chieved on AlGaN/GaN HEMTs on silicon substrate.

This
O/1-

ork h
e F
URO

] L
o
S

] W
S
S

] W

Fig. 10.  Output power density at peak PAE as a 
function of drain bias measured at 10 GHz 

k
e
substrates at this frequency.

As shown in Fig. 10, the saturated output power (Pout)
increases gradually as a function of VDS to 1,9 W/mm at 
VDS = 30 V and f = 10 GHz.

Fig. 9.  HEMT power characteristics showing 1.9 W/mm 
at 10 GHz for a sample2 device. 
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We want to emphasize that it is possible to obtain high
performance on silicon substrate which is not naturally
resistive. It is an interesting point because the silicon
substrate is cheaper than SiC and Al2O3 substrates. 
Further improvements will lead to obtain these
performances on the same device. Then, these
AlGaN/GaN HEMTs will be excellent candidates for
high power amplification and high sensibility low noise
receivers in hard environment. Silicon substrates MMICs 
can be also investigated for the fabrication of HPA and
LNA working in K-band.
 work is contract n° 
3916/01/NL/CK and by the french MOD (DGA)

 ( CNRS laboratory ). This
as been also labelized by RNRT and financed by

rench Ministry of Research, and within the
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