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Abstract  —  This paper presents an overview of activities 
on RF non-linear modeling of power devices and amplifiers
throughout Europe.

I. INTRODUCTION

The background of having an extensive modeling
activity within the TARGET NoE [1] is the observation
that in most papers, researchers show what they would 
like to show when they compare their model with 
measurements, which could mislead the reader when
ignoring other significant measurements. Several efforts
to validate and compare models in a systematic way were 
initiated [2]-[6], but those methodologies are not well-
founded and incomplete. Based on this motivation, the
development of a modeling validation and comparison
framework is undertaken within TARGET.

To make this approach as general as possible, several
modeling techniques on both the device and circuit level
are taking part in this activity. Table 2 presents an
overview of the transistor modeling expertise across the
TARGET partners. Table 3 presents the corresponding
overview of expertise on circuit-level modeling across 
the TARGET partners. Modeling approaches range from
physical based methods ([14]-[16]), ([29]), equivalent
circuit-based and empirical methods ([17]-[25]), ([30]-
[32]) to behavioral modeling methods ([24]-[28]), ([33]-
[34], [13]) for devices and circuits modeling,
respectively.

In this paper, we pick-out three of these modeling
techniques to present a flavor of the recent developments
in this field. Sections II and III cover examples of 
transistor modeling techniques, i.e., equivalent circuit
and behavioral modeling, while Section IV presents a 
case of behavioral amplifier modeling.

II. TRANSISTOR EQUIVALENT CIRCUIT MODELING

Due to the requirements imposed by the new 
communication systems, conventional electrical
equivalent circuit modeling schemes must go further and
should be able to describe accurately not only harmonic
content but also IMD distortion, spectral re-growth
(ACPR, NPR), sweet-spot evolution, thermal dependence
and self-heating, LF dispersion, optical interaction, etc.

Successive differentiation of I/V and S-parameter
measurements can lead [7] to erroneous derivations of
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Fig.2 Output QPSK spectrum 
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III. TRANSISTOR BEHAVIORAL MODELING

The state-space behavioral modeling approach aims to 
identify a black-box dynamical description of a 
microwave device. The method is measurement based 
and makes use of large-signal vector measurements. The
basic principle of the modeling method involves that the
considered two-port microwave devices can be described
by equations of the form:
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with I1(t) and I2(t) the terminal currents, V1(t) and V2(t)
the terminal voltages, and the superscript dots
representing the (higher order) time derivatives. The 
objective of the modeling technique is to find the number
of independent or state variables, and consequently to
determine the functional relationships f1(.) and f2(.) by
fitting the measured currents to the measured state 
variables.
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This technique was first successfully applied to low-
power devices, such as diodes, HEMTs, and amplifiers.
In Ref. [9], we studied a SiGe HBT and found that the
self-heating could not be neglected. We included the
dissipated power as additional independent variable in
the model description and, when using an artificial neural
network as fitting function, the training error had reduced
by a factor of ten. In Ref. [10], we built a model for GaN 
HEMTs in order to have a model that is suitable for PA 
designs. The model was constructed from load-pull
measurements. To collect data near the optimal load in an
efficient way, we combined passive and active load-pull
in our measurement set-up. A passive tuner was used to
apply a high load (which is an optimal load condition for
these devices), and excursions from this position were 
realized using active injection. In this way, we obtained a 
model that is accurate when being evaluated at loads not 
part of the data set for model training.
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Fig. 3 Measured (‘x’) and state-space model simulated (circles)
b2 (=Pout) at f1 (top) and b2 at 2f1-f0 (bottom) for a three-tone 
excitation around 3 GHz. 
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excitation around 3 GHz. 
  

So far, this state-space modeling approach was based 
on single-tone measurements, which is in contrast to the
actual signal types being present in telecommunication
systems. Therefore, we adopted the modeling procedure
to be able to deal with multi-sine excitations. It is known 
that device characteristics may vary as function of tone
spacing due to slow-memory effects. To take this into
account, the model equations (1) are expanded by adding
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a(t) represents the input signal complex envelope.
function H in (2) describes the non-linear
ryless contribution in the PA envelope response,
 corresponds to the quasi-static AM/AM-AM/PM
teristics. According to the more general approach
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 model (2) was characterized and identified for a
ended PHEMT amplifier operating at 2 GHz. 

precisely, in order to validate the behavioral model,
tual measurements to be carried out for the
ier characterization were numerically simulated at 
vice-level by using the commercial CAD tool ADS.
tions in accordance with (2) were compared to
obtained on the basis of conventional quasi-static

M-AM/PM characteristics and also to accurate 
 simulations using device-level models of the same
ier. Some of the preliminary results presented in
e here also shown in Table 1. 



Two Tone Test Output Spectrum 
Simulation Tones

-50MHz 50MHz
AM/AM-AM/PM Behav. Mod. 10.8 dBm 10.8 dBm 
Device-level Mod. (Circ. Sim.) 12.4 dBm 8.9 dBm 

Nonlinear Dynamic Behav. Mod. 12.4 dBm 9.2 dBm 

Table 1 – Intermodulation distortion prediction ([13]). 

V. CONCLUSION

This overview demonstrates the diversity in modeling 
approaches and the high expertise of European research 
groups in the field of nonlinear microwave modeling. 
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Partners Modeling Focus 
TUWien - Physical modeling of HEMT's, HBT's, and MOSFET's, with the simulation modes: DC, S-

parameter, large-signal transient, and thermal interaction (2D and 3D). 
NTUA [14] - Device models based on electromagnetic simulations 

Univ. Ferrara [15] - Models for low-frequency dispersion: Back gating and equivalent voltage approaches. 
- Distributed models based on electromagnetic simulations 

INT [16] - Direct extraction based modeling techniques for FETs, with special attention to low-frequency 
dispersion effects, self-heating in case of high-power devices, e.g., GaN HEMTs, and scalability 

- Model parameters are physical based, such that model is attractive not only for circuit design 
engineers, but also for the scientists involved into the technology optimization 

Univ. Cardiff [17] - Table-based models employing single-tone large-signal measurements including harmonic load-
pull, and two-tone large-signal measurements, including load-pull at IF frequencies 

IEMN - Equivalent circuit modeling using pulsed DC and S-par. meas., to be well correlated with 
devices’ technology (small and large band gap devices) 

IRCOM - Modeling using pulsed large-signal measurements 
- Modeling of non-linear stability 

LAAS [18] - Low-frequency noise and high frequency noise modeling (with electrical small-signal 
parameters) used for process improvement and (non-)linear circuit design (narrow and wide band 
gap devices) 

Chalmers Univ.[19] - Empirical large-signal and thermal noise modeling of MOSFETs, HEMTs, and HBTs 
Cantabria Univ. 

[20] 
- Empirical and Neural based large-signal modeling of FETs, HEMTs with focus on IMD behavior 

from DC, S, Pulsed I/V and High Order Derivatives Measurements 
IMST - Equivalent circuit based modeling, with focus to power measurements 

MIDRA [21] - Nonlinear device models combining electrical, thermal and electromagnetic simulations 
Univ. Malaga [22] - Distributed and scalable models 

- Models paying special attention to: non-quasi-static effects 
Univ. Vigo [23] - Table-based non-quasi-static non-linear FET modeling from DC & S-parameter measurements up 

to 120 GHz, and from large signal waveform measurements
- Small- and large-signal modeling of HBTs 

Univ. Aveiro [24] - Compact models supported by nonlinear equivalent circuits  
- Volterra series based models 

K.U.Leuven [25] - Equivalent circuit based modeling
- State-space modeling using large-signal vector measurements 

Univ. Bologna [26] - Non-linear discrete-convolution models 
- General-purpose multi-bias parasitic identification 

Tor Vergata [27] - Device modeling using artificial neural networks, with special attention to the higher-order 
derivatives of the current 

Univ. Limerick - Device Instantaneous Fourier series and complex Bessel function series approximation models 
- Extraction of behavioral characteristics under specific system and signal configurations 

Univ. Crete [28] - Electro-thermal modeling for power transistors 
Table 2: Overview of device-level modeling approaches at European Institutes. 

Partners Modeling Focus 
TUWien - Mixed mode analysis based on physical models and (external) compact models with the 

simulation modes: DC, S-parameter, large-signal transient, and thermal interaction (2D and 3D). 
NTUA [29] - Amplifier models making use of electromagnetic simulations 
LAAS [30] - Low-frequency noise modeling, phase noise modeling for non-linear low phase noise 

applications (MIC or MMIC VCOs, …) + low-noise amplifiers design 
Chalmers Univ. - Volterra-series based modeling for distortion and low frequency dispersion 
Cantabria Univ. 

[31] 
- Modeling of distortion and low-frequency dispersion by large-signal measurements. 
- Empirical large-signal modeling. 

Univ. Crete [32] - Electro-thermal modeling for amplifiers 
INT  - Direct extraction based modeling techniques, with special attention to self-biasing, dynamic 

breakdown voltage, and possible deviations between optimum load conditions deduced from 
static measurements and dynamic ones. Also, thermal effects and packaging aspects. 

- Modeling using large-signal measurements. 
Univ. Aveiro - Volterra series based modeling 

K.U.Leuven [33] - Behavioral modeling using large-signal vector measurements 
Univ. Cardiff - Modeling using harmonic-load pull large-signal measurements 
MIDRA [34] - Modeling of distortion and low-frequency dispersion by large-signal measurements 

- Modeling of large-signal stability 
Univ. Malaga - Modeling developments related to harmonic-balance based simulation techniques 
Tor Vergata - Behavioral modeling using power measurements 

Univ. Limerick - Amplifier instantaneous Fourier series and complex Bessel function series approximation models 
- Extraction of behavioral characteristics under specific system and signal configurations 

Univ. Bologna [13] - Behavioral modeling by means of Volterra-like integral approaches 
Table 3: Overview of circuit-level modeling approaches at European Institutes. 
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