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Abstract

This work addresses a two–class classification problem related to one of the lead-
ing cause of death among women worldwide, namely breast cancer. The two
classes to separate are tumoral masses and normal breast tissue.

The proposed approach does not rely on any feature extraction step aimed at
finding few measurable quantities characterizing masses. On the contrary, the
mammographic regions of interest are passed to the classifier—a Support Vector
Machine (SVM)—in their raw form, for instance as vectors of gray–level values.
In this sense, the approach adopted is a featureless approach, since no feature is
extracted from the region of interest, but its image representation embodies itself
all the features to classify.

In order to find the optimal image representation, several ones are evaluated by
means of Receiver Operating Characteristic (ROC) curve analysis. Image repre-
sentations explored include pixel–based, wavelet–based, steer–based and ranklet–
based ones. In particular, results demonstrate that the best classification perfor-
mances are achieved by the ranklet–based image representation. Due to its good
results, its performances are further explored by applying SVM Recursive Fea-
ture Elimination (SVM–RFE), namely recursively eliminating some of the less
discriminant ranklets coefficients according to the cost function of SVM. Experi-
ments show good classification performances even after a significant reduction of
the number of ranklet coefficients.

Finally, the ranklet–based and wavelet–based image representations are prac-
tically applied to a real–time working Computer–Aided Detection (CAD) system
developed by our group for tumoral mass detection. The classification perfor-
mances achieved by the proposed algorithm are interesting, with a false–positive
rate of 0.5 marks per–image and 77% of cancers marked per–case.
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Introduction

Overview And Motivation
Suppose you are willing to find a bunch of influent features—or properties—
which are well suited to separate—let say—a group of men from a group of
women. It is evident that the height and weight of those people should prove
more discriminant than—for example—the length and thickness of their hairs.
The evidence with which this can be affirmed is mainly due the the simplicity of
the problem. However, finding features which characterize well the classes under
study is not always as straightforward and effective, but could sometimes require
much deeper investigations. This is the case of the two–class classification prob-
lem faced here.

In this work, the demanding problem to address is concerned with one of the
major cause of death among women, namely breast cancer. The two classes to
separate are tumoral masses—thickenings of the breast tissue with size ranging
from 3 mm to 30 mm—and normal breast tissue. To this aim, each X–ray image
of the breast under study—namely mammogram—is scanned at all the possible
locations with the passage of a window. A corresponding crop of the mammo-
graphic image is therefore extracted. Successively, each extracted crop is classi-
fied by means of a Support Vector Machine (SVM) classifier as belonging to the
class of tumoral masses or to the class of normal breast tissue. Differently from
the most part of the algorithms dealing with this problem, the novel approach
adopted herein does not rely on any feature extraction step aimed at finding few
measurable quantities which characterize tumoral masses and differentiate them
from normal breast tissue. On the contrary, it is rather a featureless approach in
which crops are classified as they are, namely as vectors of gray–level values.
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In order to explore the possibility of improving the classification performan-
ces, several image representations of the crops are evaluated by means of ROC
curve analysis. Starting from the simplest one—namely the pixel–based image
representation—other image representations are tested, such as the wavelet–based
and the steer–based one, respectively based on the transformation of the crops by
means of the multi–resolution wavelet transform and the multi–resolution steer-
able pyramid. In these last two cases, evidently, the features classified by SVM
are represented by the coefficients obtained applying those transforms to the mam-
mographic crops under study.

A further and novel image representation is then developed and optimized
specifically for this problem. This image representation—referred to as ranklet–
based—is based on the application of a new rank–based technique introduced
for the first time in 2002 for face detection problems. In particular, this very
promising technique—never been applied to imaging problems different from face
detection, such as for instance medical imaging—is known as ranklet transform.
The performances of this ranklet–based image representation are also explored by
means of a technique known as SVM Recursive Feature Elimination (SVM–RFE),
namely recursively eliminating some of the less discriminant ranklets coefficients
according to the cost function of SVM.

Experiments show that the ranklet–based image representation achieves the
best classification results. Good results are achieved as well by the pixel–based
and wavelet–based image representations, the latter used in its overcomplete—or
redundant—version. The tests performed by using SVM–RFE on the ranklet–
based image representation show that—with this method—the number of ranklet
coefficients presented to SVM can be sensibly reduced without affecting the clas-
sification performances. Furthermore, an accurate analysis of the most discrimi-
nant ranklet coefficients gives interesting suggestions about which coefficients are
important for classification purposes.

Finally, the ranklet–based and the wavelet–based image representations pre-
viously tested are implemented into a real–time working Computer–Aided De-
tection (CAD) system, specifically designed for mass detection. The motivation
for choosing those image representations is twofold. First, they prove to obtain
excellent classification performances. Second, their computational times are def-
initely acceptable. Here, the two image representations are used as independent
detectors whose opinions on each crop—mass or normal breast tissue—are com-
bined by performing a logical AND. This strategy results particularly effective
and allows the proposed CAD system to achieve good performances.
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Notice, finally, that the experimental part of this work—namely Section 4 and
Section 5—together with some of the theoretical details discussed in Section 3.4
concerning the ranklet transform, walk mainly along the road traced by some
recent work developed by our group. In particular, the evaluation of the pixel–
based and wavelet–based image representations is mainly discussed in (Angelini
et al., 2004), some theoretical aspects about the ranklet transform together with
its evaluation are discussed in (Masotti, 2004), whereas the application of SVM–
RFE to the ranklet coefficients is described in (Masotti, 2005). Furthermore, an
earlier version of the real–time working CAD system—where the ranklet–based
and wavelet–based were not yet implemented—is described in (Campanini et al.,
2002, 2004c,a).

Thesis Contributions

The contributions of this work are mainly related to the featureless approach
adopted, to the evaluation of several image representations, to the classifier used,
to the development and optimization of a novel image representation based on the
ranklet transform, to the application of SVM–RFE to the ranklet coefficients and,
finally, to the implementation of the best image representations into a real–time
working CAD system. In the following they will be discussed in just a little more
detail.

Featureless approach Due to the great variety of tumoral masses, it is ex-
tremely difficult to get a common set of few measurable quantities effective for
every kind of masses. In order to virtually detect all kind of masses—thus avoid-
ing to concentrate only to a restricted family for which those quantities are easily
individuated—the featureless approach previously described is adopted. Except
for some of our past works (Campanini et al., 2002, 2004c,a), this approach has
never been used in mammographic mass detection applications. However, a simi-
lar technique has been proposed for face, people and car detection in some works
developed at the MIT Artificial Intelligence Laboratory, namely (Papageorgiou,
1997; Oren et al., 1997; Papageorgiou et al., 1998a,b; Papageorgiou & Poggio,
1999a,b).
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Image representations evaluation In order to find the optimal image repre-
sentation—namely that achieving the best classification performances—several
tests are performed. In particular—as previously discussed—the pixel–based, the
wavelet–based, the steer–based and, finally, the ranklet–based image representa-
tion are evaluated. Except for the steer–based image representation—which has
been evaluated similarly in (Sajda et al., 2002)—all these image representations
represent a novel approach to mammographic mass detection.

Classifier Traditional classification techniques—such as the multilayer percep-
trons—use empirical risk minimization and only guarantee minimum error over
the training set. These techniques can result in overfitting of the training data and
therefore poor generalization performance. In this work, a relatively new pattern
classification technique is used—SVM—that has recently received a great deal of
attention in the literature. The number of applications of SVM is still quite small,
thus the presentation of SVM as the core learning machine represents a significant
advancement of the technique in the context of practical applications.

Ranklet–based image representation and SVM–RFE With the fundamental
aim of improving the classification performances, a novel image representation—
namely ranklet–based image representation—is evaluated. Moreover—due to its
good classification results—its performances are explored by means of SVM–
RFE, namely recursively eliminating some of the less discriminant ranklet coef-
ficients according to the cost function of an SVM. Except for some applications
mainly focused on faced detection—namely (Smeraldi, 2002, 2003a; Smeraldi &
Rob, 2003; Smeraldi, 2003b)—ranklets have never been applied to image classi-
fication. For this reason, their application to medical imaging—and in particular
to mammographic mass detection—together with their submission to SVM–RFE,
represents a significant contribution of this work, probably the most innovative.

Real–time working CAD system This work presents a practical application of
the best image representations found—namely the ranklet–based and the wavelet–
based—into a real–time working CAD system developed by our group and specif-
ically suited for mass detection. This system is currently deployed at three hospi-
tals worldwide in its prototype version.
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Outline
The rest of this work is organized as follows.

Chapter 1 In Chapter 1, an overview of digital mammography will be given,
together with some introductory elements concerning the most common breast
abnormalities, such as tumoral masses and micro–calcifications. Some details
about screening mammography and CAD systems will be also outlined.

Chapter 2 In Chapter 2, some basic knowledge concerning machine learning
will be provided, with particular emphasis on the classification techniques used in
this work, namely SVM and SVM–RFE.

Chapter 3 Chapter 3 is intended to provide the reader with a clearer picture
of the imaging techniques that will be adopted in this work. To this aim, it will
discuss in great detail the pixel–based image representation of an image, together
with the multi–resolution wavelet transform, the multi–resolution steerable pyra-
mid and the multi–resolution ranklet transform.

Chapter 4 The approaches adopted in order to evaluate the different image rep-
resentations and their classification results are discussed and presented in Chapter
4. Here—in particular—the performances achieved by the pixel–based, wavelet–
based, steer–based and ranklet–based image representations will be discussed in
detail. Furthermore, the application of SVM–RFE to the ranklet coefficients will
be described and some discussion about the most influent ranklet coefficients for
classification purposes will be given.

Chapter 5 In Chapter 5, a practical implementation into a real–time working
CAD system of the ranklet–based and wavelet–based image representations eval-
uated is described in detail. Tests are performed and the very good classification
performances achieved are presented and discussed.

5



I

6



Chapter 1
Digital Mammography

In this Chapter, an introduction to digital mammography will be given. Several
aspects will be treated, starting from some simple considerations concerning the
breast anatomy, passing by a description of the most common breast abnormalities
and finishing with some considerations about the screening techniques adopted to
face breast cancer incidence, for instance Computer–Aided Detection (CAD). In
particular, in Section 1.1 breast cancer will be examined and a detailed discussion
of its—tremendous—incidence statistics expected for year 2005 will be given. Sec-
tion 1.2 will present a very simple description of the gross anatomy of the breast,
with particular attention to the regions where usually breast cancer forms, namely
the so–called Terminal Duct Lobular Units (TDLU). In Section 1.3, the most im-
portant breast abnormalities will be analyzed. In particular, tumoral masses will
be considered, together with calcifications and other less common abnormalities,
such as dilated lactiferous ducts, areas of asymmetry or architectural distortion
and, finally, thickening or retraction of the skin. Notice, specifically, that in this
work the attention will be mainly devoted to tumoral masses, namely thickenings
of the breast tissue with size ranging from 3 mm to 30 mm. The importance of
screening mammography for an early detection of breast cancer will be discussed
in Section 1.4. Here, the correspondence between an earlier detection of breast
cancer and higher likelihood that treatments will be successful—namely higher
chances of survival for the patient—will be also stressed. Finally, in Section 1.5
CAD systems for the automatic detection of lesions in X–ray breast images will be
introduced.
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1.1 Breast Cancer

Cancer develops when cells in a specific part of the body begin to grow out of
control. Typically, normal body cells grow, divide and die in an orderly fashion.
In particular, during the early years of an individual’s life, normal cells divide
more rapidly until the individual becomes an adult. After that, cells in most parts
of the body divide only to replace worn–out or dying cells and to repair injuries.
Differently, cancer cells grow and divide indefinitely. Instead of dying, in fact,
they outlive normal cells and continue to form new abnormal cells.

Cancer usually forms as a tumor, namely as an abnormal growth of tissue.
The most dangerous form of tumor is the malignant tumor which is comprised
of cancer cells that invade neighboring tissues, where they begin to grow and
replace normal tissue. This process is called metastasis. Regardless of where
a cancer may spread, it is always named for the place it began. For instance,
breast cancer that spreads to the liver is still called breast cancer, not liver cancer.
Fortunately, not all tumors are malignant, or cancerous. Benign tumors do not
invade neighboring tissues and do not seed metastases, but may locally grow to
great size. They usually do not return after surgical removal and—with very rare
exceptions—are not life threatening.

Breast cancer is a malignant tumor that has developed from cells of the breast.
It represents the second leading cause of cancer death in women, exceeded only
by lung cancer. Although lung cancer has a lower incidence than breast cancer, in
fact, more women die each year of the former. Nevertheless, the majority of deaths
from lung cancer can be attributed to smoking, thus breast cancer continues to be
the leading cause of non–preventable cancer death. According to the World Health
Organization, more than 1.3 million people will be diagnosed with breast cancer
in 2005 worldwide. In (American Cancer Society, 2005) the American Cancer
Society estimates that in 2005 approximately 211240 women in the United States
will be diagnosed invasive breast cancer. Another 58490 women will diagnosed
with in situ breast cancer, a very early form of the disease. Though much less
common, breast cancer also occurs in men. An estimated 1690 cases will be
diagnosed in men in 2005. It is also estimated that 40410 women and 460 men will
die from breast cancer in the United States this year. Although those estimations
are tremendously high, it must be noticed that mortality rates declined by 2.3% per
year from 1990 to 2001 in all women, with larger decreases in younger—namely
less than 50 years old—women. Medical experts attribute this decline to increased
awareness, earlier detection through screening and more effective treatments.
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As regards the geographical distribution of breast cancer, this disease has a
higher incidence in Europe—especially Western Europe—and North America. In
the Far East and parts of Africa, the mortality rate due to breast cancer is much
lower, with an incidence about 5 times smaller than in the West. This is mainly
due to the lack of information on this subject from under–developed and develop-
ing countries. Nevertheless, there has been a substantial increase in the number of
new cases. During the last few years, Japan has witnessed a growth of 10 times in
the number of breast cancers. In the Western world, recent results show that breast
cancer accounts for a high percentage of the overall cancer incidence in women,
approximately 32% of all cancer cases. According to (Ferlay et al., 2004), around
the world there are approximately 1151000 new cases of breast cancer every year,
of which the more developed regions account for approximately 636000 and the
European Community for approximately 261000. Amongst the developed coun-
tries, Italy is rated as one of the regions with the highest incidence in breast cancer,
since approximately 36000 new cases occur and 11000 women die each year.

Researchers have tried to trace both environmental and genetic causes that
lead to developing the disease. Still, there is so far insufficient evidence to support
theories that attribute unhealthy food, alcohol, genetic mutations, pollution—and
others—as major factors in the expansion of the disease. Many attribute that 70%
of cancers have their origins in the foods eaten. As discussed in (American Can-
cer Society, 2005), obesity has been found to be a breast cancer risk in all studies,
especially for women after menopause. Although ovaries produce most of estro-
gen, fat tissue produces a small amount of estrogen. Having more fat tissue can
increase the estrogen levels, thus increase the likelihood of developing breast can-
cer. Most studies found also that breast cancer is less common in countries where
the typical diet is low in total fat, low in polyunsaturated fat and low in saturated
fat. Alcohol is linked as well to a slightly increased risk of developing breast can-
cer. Compared with nondrinkers, women who consume one alcoholic drink a day
have a very small increase in risk, whereas those who have 2 to 5 drinks daily
have about one and a half times the risk of women who drink no alcohol. Alcohol
is also known to increase the risk of developing cancers of the mouth, throat and
esophagus. On the other hand, recent studies have shown that about 5% to 10%
of breast cancer cases are hereditary as a result of gene mutations. The most com-
mon gene changes are those of the BRCA1 and BRCA2 genes. Normally, these
genes help to prevent cancer by making proteins that keep cells from growing ab-
normally. Finally, other well–established factors refer to pollution, family history,
ethnic background, absence of childbirth and others.
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Figure 1.1: Gross anatomy of normal breast. Shown are the lobules, the lactif-
erous ducts, the nipple, the sub–cutaneous and inter–parenchymal fat
and the skin.

1.2 Brief Anatomy Of The Breast

For a better understanding of the subject, an overview of the breast anatomy be-
comes necessary. The breast—or mammary gland—is a modified sweat gland
with the specific function of milk production. The development of the breast be-
gins in the embryo in the 5th week with the formation of the primitive milk streak
from the axilla to the groin. Once adult, the breast lies on the pectoralis major
muscle, which crosses the chest obliquely. It is composed of three basic struc-
tures, namely the skin, the sub–cutaneous and parenchymal fat and, finally, the
inner breast tissue including the lobules, see Fig. 1.1. In particular, this inner part
is contained by superficial and deep fascial layers drained by lactiferous ducts
which converge beneath the nipple and empty as five to eight collecting ducts on
its surface.
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Figure 1.2: Basic histopathologic unit of the breast, namely Terminal Duct Lob-
ular Unit (TDLU). Shown are the inner branches of the lactiferous
ducts, namely the extralobular terminal duct, the intralobular termi-
nal duct and the blindly ending ductules.

The micro–anatomy of the breast has been mainly described by Wellings in
(Wellings et al., 1975). He identified the basic histopathologic unit of the breast
as the Terminal Duct Lobular Unit (TDLU). This basic unit is composed of the
inner branches of the lactiferous ducts, namely the extralobular terminal duct,
the intralobular terminal duct and the blindly ending ductules, see Fig. 1.2. The
TDLU is important physiologically because it is the site of milk production. It
is also the site of development of most benign and malignant breast lesions. An
understanding of this anatomic structure is thus important in the correlation of
mammographic and pathologic findings. The majority of ductal carcinomas are
thought to develop in the terminal duct branches and the calcifications associated
with these lesions tend to have a linear, branching orientation or configuration,
corresponding to the duct lumen. Lobular processes often are benign, and in-
clude many forms of fibrocystic changes, namely adenosis, sclerosing adenosis,
cystic hyperplasia. Associated calcifications are more smoothly marginated and
rounded, conforming to the configuration of the ductules.
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Figure 1.3: Tumoral masses. Well—circumscribed mass (left). Spiculated mass
(right).

1.3 Types Of Breast Abnormalities
The lesions which may be detected on X–ray breast images are related to the local
manifestations of an ever–increasing number of neoplastic cells. Abnormalities
that may be seen include masses, calcifications, areas with asymmetric densities
or architectural distortions, prominent lactiferous ducts, skin or nipple thickening
and/or retraction, see (Shaw de Paredes, 1993).

The assessment of these abnormalities is critical in tailoring further evaluation
of the lesion and its management. The X–ray images of the two breasts—namely
mammograms—are placed as mirror images to allow for careful comparison of the
tissue patterns and to assess for symmetry. Correlation with the patient’s history
and findings at clinical examination are important in determining the role of other
procedures and in further defining the feasible causes of the particular abnormality
identified. In order to stress the importance of recognizing these abnormalities,
some of the most common will be discussed in the following.

1.3.1 Masses

Evaluating a tumoral mass—namely a thickening of the breast tissue with size
ranging from 3 to 30 mm—involves assessment of the shape and margination of
the lesion. It involves also assessment of the presence of a fatty halo together with
the presence of other associated findings. In particular—as described in (Sickles,
1989)—a mass is for instance classified with respect to its margination, namely
according to its being relatively well circumscribed or spiculated, see Fig. 1.3.
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Benign lesions tend to be well circumscribed with a fatty halo surrounding the
margin and are of medium to low density. Well–circumscribed masses may be, in
fact, classified into four groups, namely radiolucent, mixed fat and soft tissue den-
sity, medium density and high density. Although a good indication of benignancy,
the halo sign is not infallible. In fact, even though well–circumscribed masses
are most likely benign, some cancers also may be well defined. In particular, as
discussed in (Marsteller & Shaw de Paredes, 1989), the majority of breast cancers
that appear as relatively well–defined lesions are infiltrating ductal carcinomas.

A poorly defined or spiculated lesion is more likely to be malignant than is a
well–circumscribed mass. If no appropriate history suggests that a spiculated le-
sion may be benign, biopsy may be necessary to confirm or exclude malignancy.
The classic appearance of a primary infiltrating breast carcinoma is, in fact, that
of a spiculated mass. Infiltrating ductal carcinomas—which account for 70−80%
of breast malignancies—tend to present spiculated lesions with or without associ-
ated micro–calcifications. The center of the lesion is of medium to high density in
comparison with the surrounding tissue and fine tendrils surround the tumor mass.
This appearance is produced by the infiltration of the tumor into the breast and by
the desmoplastic reaction associated with these lesions. Occasionally, the tumor
will diffusely infiltrate the breast without producing a central tumor mass and the
mammographic findings are much more subtle. On the other hand, infiltrating
lobular carcinoma accounts for 3 − 4% of breast malignancies and is character-
ized at pathologic examination by a linear arrangement of tumor cells throughout
the tissue. Bi–laterality and multi–centricity are more frequently associated with
infiltrating lobular rather than infiltrating ductal carcinoma. There is a tendency
for infiltrating lobular carcinoma to grow in a diffuse manner, manifesting itself
as a poorly defined opacity or an architectural distortion.

1.3.2 Calcifications

Calcifications of some type are identified on the majority of mammograms. Many
of those calcifications are clearly benign and need no further evaluation. Their
analysis is based on assessment from prior mammograms of morphologic fea-
tures, size, distribution, location, variability and stability. Features of breast calci-
fications suggesting a benign cause are their being macro–calcifications, their hav-
ing smooth margination or their being diffusely scattered micro–calcifications in
both breasts. Features suggesting a malignant process are focal clustered micro–
calcifications of variable size and shape with irregular margination, see Fig. 1.4.
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Figure 1.4: Micro–calcifications.

Since they can represent a potential malignant process, an understanding of the
anatomy and histopathologic features is important in correlating mammographic
findings of micro–calcifications and what they may potentially represent. For in-
stance, they may be divided into two types based on their site of origin. Lobular
calcifications occur in the terminal ductules within the lobule and have a smooth
rounded configuration conforming to the internal contour of the ductule. These
calcifications tend to be similar in size, shape and density. Lobular–type micro–
calcifications scattered in both breasts usually are benign and can be followed up
with mammography. In particular, they tend to be focal and may be located at
pathologic examination within the lobules containing lobular carcinoma in situ
or in adjacent benign lobules. On the other hand, ductal micro–calcifications of-
ten form in the terminal ducts and are considered a more suspect mammographic
finding than are lobular micro–calcifications. The mammographic appearance of
ductal calcifications is of small irregular mixed–morphologic calcifications that
may be oriented in a linear arrangement. They can occur in benign conditions,
including ductal hyperplasia and atypical ductal hyperplasia. However, these cal-
cifications are generally not highly irregular or branching. When ductal micro–
calcifications are present, intraductal carcinoma must be considered. Malignant
ductal calcifications usually are small, namely 0.1 − 0.3 mm in diameter. Com-
binations of forms, including rod–shaped, punctate, comma–shaped, branching
and lacy calcifications, may occur together and are highly suspicious for carci-
noma. The greater the number of calcifications within an area, the more suspicion
(Wolfe, 1977). Malignant calcifications tend to occur in tight clusters of 1 cm
diameter or less.
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1.3.3 Others
Other less common mammographic signs of carcinoma include dilated lactiferous
ducts, focal areas of asymmetry or architectural distortion and, finally, thicken-
ing or retraction of the skin. As with the signs already discussed, history and
clinical examination play important roles in the decision of how to manage these
abnormalities. The lactiferous ducts may be dilated, however, if the dilated ducts
are quite asymmetric or if a solitary dilated duct is present, ductal malignancy
must be considered. Focally asymmetric glandular tissue commonly is seen at
mammography and is benign. However, if asymmetry is present and has a simi-
lar shape on two views, is highly opaque, is associated with other findings, or is
palpable, biopsy must be considered. Architectural distortion usually is seen as a
disturbance of the normal orientation of tissue to the nipple. A secondary sign of
breast cancer is focal skin thickening or retraction. The tumor may extend along
the Cooper ligaments, retracting them and therefore also retracting the skin. The
tumor may also extend directly to the skin, causing skin thickening or ulceration.

1.4 Screening Mammography
As already anticipated, X–ray imaging is the technique commonly used for breast
cancer investigation. In particular, screening mammography is the periodical low–
dose X–ray examination of the breast that is performed on women with no com-
plaints or symptoms of breast cancer—in other words—asymptomatic. The main
objective is to detect breast cancer when it is still too small to be palpated by a
physician or by the patient herself by means of self–breast examinations. If a ra-
diographic image of the breast presents any features that seem suspicious to the
radiologist, the patient will be asked to attend an assessment clinic where more
investigations are performed by means of medical imaging and consulting.

Early detection is crucial in screening mammography. In fact, breast cancers
that are detected due to their symptoms tend to be larger and are more likely to
have spread beyond the breast. In contrast, breast cancers found during screening
examinations are more likely to be small and still confined to the breast. This is the
reason why finding a breast cancer as early as possible improves the likelihood that
treatments will be successful. At the same time, this represents the reason why the
size of a breast cancer—and how far it has spread—are the most important factors
in predicting the prognosis—namely the outlook for chances of survival—of a
woman with this disease.
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It is worth noticing that detecting breast cancer in its earlier stage is not as
straightforward, even though screening programmes possess several advanced
techniques available. The main reason is that the signs of breast cancer that appear
in X–ray mammograms present a significant challenge to radiologists and they
are generally difficult to distinguish in the highly textured breast anatomy. Nev-
ertheless, from the first trials in USA and Canada in the sixties and its very first
implementation in the seventies in Sweden, screening programmes proved to be
fundamental, reducing the mortality caused by breast cancer in women by nearly
30%, as demonstrated in (Thurfjell & Lindgren, 1996). Furthermore, according
to optimistic statements, screening mammography almost doubles the chances of
survival in women that develop breast cancer.

1.5 Computer–Aided Detection

Although screening mammography is considered the most effective method for
early detection of breast cancers, it is well known that radiologists may miss
15−30% of breast lesions. Missed detections may be due to the subtle nature of the
radiographic findings, poor image quality, eye fatigue or oversight by the radiolo-
gists. In order to face this problem, it has been suggested that double reading—by
two radiologists—may increase sensitivity, see (Thurfjell et al., 1994).

The aim of Computer–Aided Detection (CAD) systems is to increase the effi-
ciency and effectiveness of screening procedures by using a computer system as
a second reader. The main idea is to indicate locations of suspicious abnormal-
ities in mammograms as an aid to the radiologist, but leaving the final decision
regarding the likelihood of the presence of a cancer to him. The computer output
indicating the potential sites of lesions may be useful to assist the radiologists in
interpreting mammograms, especially in mass screening, where the majority of
cases are normal and only a small fraction are breast cancers. In particular, it has
been reported that 30 − 50% of breast carcinomas detected mammographically
demonstrate clustered micro–calcifications, with about 80% of breast carcinomas
revealing micro–calcifications upon microscopic examination, see (Sickles, 1982;
Murphy & DeSchryver-Kecskemeti, 1978). Additionally, studies indicate that
26% of non–palpable cancers present mammographically as masses while 18%
present as a mass with micro–calcifications, see (Sickles, 1986). With the above
statistics in mind, most computerized schemes are being developed for the detec-
tion of both mass lesions and clustered micro–calcifications.
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There is a strong evidence of the potential benefit of CAD in the detection and
characterization of some lesions in mammography. However, it is important to
be cautious about potential pitfalls associated with the use of the computer out-
put. Advances in science and technology can bring many benefits, but also can be
harmful if not used properly. Potential pitfalls of CAD can occur for all the four
possible outcomes of the automatic detection, namely, false positives and false
negatives and even with true positives and true negatives. As it will be discussed
in much more detail in Section 2.1.4, false positives represent non–lesions clas-
sified as lesions, false negatives represent lesions classified as non–lesions, true
positives represent lesions classified as lesions and, finally, true negatives repre-
sent non–lesions classified as non–lesions. In particular, there has been a general
concern that false positives determined by computer may increase the number of
unnecessary biopsies in mammographic screening. However, because many com-
puter false positives are different from radiologists false positives, it is unlikely
to produce a large increase in biopsy and call–back rate. In fact, two studies of
CAD in mammography—namely (Nishikawa et al., 1995; Roehrig et al., 1998)—
produced similar outcomes. That is, there was no increase in the call–back rate for
additional examinations when CAD was implemented. On the other hand, if ra-
diologists are strongly influenced by the computer output—and/or for some other
reasons in determining a threshold level on decision–making such as biopsy ver-
sus non–biopsy—there will be a danger of unnecessary biopsies. False negatives
identified by computer can cause a problem as well, in particular with missing
obvious and detectable lesions if the computer output is trusted excessively and
if radiologists curtail their usual effort in searching for lesions. Therefore, radi-
ologists expertise and conscientious efforts will remain critically needed. At the
same time, radiologists may face difficult situations when they disagree with true
positives and true negatives obtained by computer, even when the final decisions
are made conscientiously with their best effort.

Computerized schemes for CAD generally include three basic components
which are based on three different technologies. The first component is image
processing for enhancement and extraction of lesions. It is important to notice
that the image processing involved in CAD schemes is aimed at facilitating the
computer—rather than the human observer—to pick up the initial candidates of
lesions and suspicious patterns. Various image–processing techniques have been
employed for different types of lesions. Some of the most commonly used tech-
niques include filtering based on Fourier analysis, wavelet transform, morpholog-
ical filtering and so forth.
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The second component is the extraction of image features such as size, con-
trast and shape of the candidates selected in the first step. It is possible to define
numerous features based on some mathematical formula that may not be easily
understood by the human observer. However, it is generally useful to define—at
least at the initial phase of CAD development—image features that have already
been recognized and described subjectively by radiologists. The reason is that ra-
diologists’ knowledge is based on their observations of numerous cases over the
years and their diagnostic accuracy is generally very high and reliable. In this
sense, one of the most important factors in the development of CAD schemes is
to find unique features that can distinguish reliably between a lesion and normal
anatomic structures.

Finally, the third component is data processing for distinction between nor-
mal and abnormal patterns, based on the features obtained from the second step.
A simple and common approach employed in this step is a rule–based method,
which may be established based on the understanding of lesions and other normal
patterns. Therefore, it is important to note that the rule–based method may pro-
vide useful information for improving the CAD schemes. Other techniques used
include discriminant analysis, Artificial Neural Networks (ANNs) or decision–
tree methods.
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Chapter 2
Pattern Classification

An overview of pattern classification will be given in this Chapter, with particular
emphasis on a specific classifier—known as Support Vector Machine (SVM)—
which will be used intensively in the rest of this work. In Section 2.1, some intro-
ductory notions about learning machines, together with some remarks on how to
validate and successively present their classification performance, will be given.
Section 2.2 will introduce some fundamental concepts of statistical learning the-
ory, a mathematical formulation developed by V. Vapnik which describes the sta-
tistical aspects of automated learning. Furthermore, it will discuss the mathemat-
ical details of SVM. Finally, in Section 2.3, a recent feature reduction technique—
known as Recursive Feature Elimination (RFE)—will be presented and its imple-
mentation by using SVM will be explained in detail.

2.1 Machine Learning

2.1.1 The act of learning

In humans the act of learning is namely the process of gaining knowledge or skill
in something by experience. Common and apparently simple human processes as
recognizing a landscape, understanding spoken words, reading handwritten char-
acters or identifying an object by touching it, they all belie the act of learning. In
fact, the condition for a landscape to be recognized, spoken words to be under-
stood, handwritten characters to be read and objects to be identified, is that the
human brain has been previously trained in order to do that, namely it has learnt
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how to do that. This is why it is necessary to admire a landscape several times
before recognizing it from a slightly different view, or to hear an unknown foreign
word more than once before becoming familiar with it.

From the examples discussed above, it is evident that the act of learning plays
a crucial role in all those processes requiring the solution of a pattern recogni-
tion task, thus all those processes in which the human brain is required to take
an action based on the class of the data it has acquired. For example, hearing a
voice and deciding whether it is a male or a female voice, reading a handwritten
character and deciding whether it is anA or a B, touching an object and guessing
its temperature, those are typical pattern recognition problems. Notice that this
kind of processes represents almost the totality of the processes a human being
has to deal with. Finding them a solution has been crucial for humans to sur-
vive. For that reason, highly sophisticated neural and cognitive systems have been
evolved for such tasks over the past tens of millions of years. The scheme used
by the human brain to address pattern recognition tasks is based on two separate
phases, namely a training phase and a test phase. In the training phase the human
brain gets experienced by dealing with patterns taken from the same population,
as landscapes, spoken words, handwritten characters. Then, in the test phase, it
applies to patterns of the same population—but previously unseen—what it has
learnt during the training phase. In this sense, admiring a known landscape sev-
eral times—trying to identify its characteristics—represents the training phase,
whereas recognizing it from a slightly different view represents the test phase.

As regards machines, the act of learning refers to artificial intelligences—
for instance computer programs—which are able to recursively change their own
internal structures in response to input patterns in such a manner that their per-
formance in recognizing previously unseen patterns improves. In this context,
machine learning is an area of artificial intelligence concerned with the develop-
ment of techniques which allow machines to learn how to solve pattern recognition
problems, whereas learning machines are automata which solve pattern recogni-
tion problems. In a similar way to what happens for the human brain, the solution
of a pattern recognition problem initially involves the collection of a data set of
training patterns. The learning machine structure is then adapted so as to create a
mapping from the input patterns to its output values, such that the latter approx-
imate the attended values as closely as possible over the whole training patterns.
The recognition performance of the trained learning machine is then evaluated on
a data set of test patterns, namely patterns which were not part of the training data
set, but which were taken from the same population.
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The success of machine learning—since 1960s up to nowadays—is twofold.
First, it is evident that implementing learning processes by using machines is fun-
damental in order to automatically address pattern recognition problems which—
due to their complexity—are almost impossible for a human brain to solve. For
example, challenging pattern recognition tasks as speech recognition, fingerprint
identification, optical character recognition, DNA sequence identification, video
surveillance—and much more—can be easily and automatically addressed by
means of learning machines. Second, by trying to give answers and explanations
to the numerous questions and doubts arising when implementing such automatic
learning systems, a deeper understanding of the processes governing human learn-
ing is gained. In fact, many techniques in machine learning derive from the efforts
gone in order to make more precise the theories of human learning through com-
putational models. At the same time, it seems likely also that the concepts being
explored by researchers in machine learning may illuminate certain aspects of
biological learning.

Before proceeding, it is well worth specifying in more detail the significance of
pattern recognition problems from a more technical perspective, see (Tarassenko,
1998). As already discussed, all those problems requiring a human or an artifi-
cial intelligence to take an action based on the data acquired, are formally defined
as pattern recognition problems. That family of problems can be further divided
into families of sub–problems. The most common and important ones are pattern
classification problems, regression problems and time–series prediction problems.
Pattern classification problems are those in which the learner is required to learn
how to separate the input patterns into two or more classes. A typical pattern
classification problem could require—for example—a human brain or a learning
machine to separate into two classes the handwrittenAs and Bs taken from a data
set of handwritten characters. When the problem do not require to associate the
class of membership to an input pattern, but rather to associate a continuous value,
a regression problem is faced. A typical regression problem could require a hu-
man brain or a learning machine to associate an age to input patterns represented
by pictures of human faces. Finally, time–series prediction problems, in which a
learning machine is trained to predict the (n+1)th sample in a time series from the
previous n samples, is a special case of a regression problem but which assumes
that the underlying data generator is stationary, namely its statistical properties are
time–independent. In this work, the whole attention will be concentrated on pat-
tern classification, which is actually the most common type of pattern recognition
problem.
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2.1.2 Learning pattern classification
Specific details about learning pattern classification—namely the way in which
learning machines address pattern classification tasks—will be given in this Sec-
tion. In particular, two important aspects of learning machines will be discussed.
First, how they learn directly from data, thus without using any a priori assump-
tion on the classification problem they are facing. Second, how the supervised and
unsupervised learning paradigms are implemented in order to practically solve
pattern classification problems.

Learning from data

One of the most important characteristic of learning machines is that they are
not programmed by using some a priori knowledge on the probability structure
of the data set considered, but—as anticipated in Section 2.1.1—they are rather
trained by being repeatedly shown large numbers of examples for the problem un-
der consideration. In a sense, they learn directly from the data how to separate the
different existing classes. This approach determines some important peculiarities
of learning machines. First, they are particularly suited for complex classifica-
tion problems whose solution is difficult to specify a priori. Second, after being
trained, they are able to classify data previously not encountered. This is of-
ten referred to as the generalization ability of learning machines. Finally, since
they learn directly from data, then the effective classification solution can be con-
structed far more quickly than using traditional approaches entirely reliant on a
deep knowledge and experience in the particular field to which data refer. In order
to stress the importance of an approach purely based on learning from data—in
particular when a dynamical model of what is happening behind the scenes does
not exist or whenever the underlying dynamics is too complicated—let us mention
one enlightening example borrowed from (Schölkopf, 1997):

When a human writer decides to write a letter, for example the
letter A, the actual outcome is the result of a series of complicated
processes which cannot be modeled comprehensively in their entirety.
The intensity of the lines depends on chemical properties of ink and
paper, their shape on the friction between pencil and paper, on the
dynamics of the writer’s joints and on motor programmes initiated
in the brain, these in turn are based on what the writer has learnt at
school. The chain could be continued ad infinitum.
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It is evident that, in such a situation, it is nearly impossible to address a classifica-
tion task which is required to separate different handwritten characters—such as
for exampleAs and Bs—by modeling the way in which they are written by hand.
For this reason, an approach purely based on learning from data is probably the
most appropriate solution.

Nevertheless, some approaches in which the probability structure underlying
the classes of the data set is known perfectly—or at most its general form—do
exist. For example, as described in (Duda et al., 2000), Bayesian decision theory
is a fundamental statistical approach to the problem of pattern classification. It
makes the assumption that the decision problem is posed in probabilistic terms
and that all the relevant probability values are known. In particular, it is based on
quantifying the trade offs between various classification decisions using the prob-
ability and the costs that accompany such decisions. Unfortunately, for the most
part of the applications, the probabilistic structure of the problem is unknown. At
most, only some vague and general knowledge about the situation, together with
a number of training data representative of the patterns to classify, do exist. The
problem is then to find some way to use this information in order to design the
classifier. One approach is to use the training patterns for estimating the unknown
probabilities and probability densities and to use the resulting estimates as if they
were the true values. Let us quote a further example borrowed from (Schölkopf,
1997):

Suppose, for example, that some temporal sequences of detailed
observations of double star systems were given and that the problem
is to predict whether, eventually, one of the stars will collapse into a
black hole. Given a small set of observations of different double star
systems, including target values indicating the eventual outcome, an
approach purely based on learning from data would probably have
difficulties extracting the desired dependency. A physicist, on the
other hand, would infer the star masses from the spectra’s periodicity
and Doppler shifts, and use the theory of general relativity to predict
the eventual fate of the stars.

In this example—differently from the previous one—modeling the stars collapsing
into black holes is probably more straightforward, owing to the deep knowledge of
those phenomena. For that reason, here it could be more appropriate and effective
to address the classification task with a modeling approach rather than with an
approach purely based on learning from data.
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Supervised and unsupervised learning

The machine learning scheme can be implemented in two different ways, literally
as a supervised or as an unsupervised scheme. In the former, the input patterns
used to train the learning machine are labeled, in other words they are patterns
whose class membership is known. In the latter, they are unlabeled, namely their
class membership is unknown.

In order to implement the supervised learning scheme, a labeled data set of
training patterns must be provided. To this purpose, the training patterns:

(x1, . . . , xl) with xi ∈ R
n ∀i = 1, . . . , l (2.1)

are needed, as well as the associated labels indicating their class membership:

(y1, . . . , yl) with yi = ±1 ∀i = 1, . . . , l (2.2)

Each training pattern i is thus represented by a vector xi of n features, namely the
individual measurable heuristic properties of the phenomena being observed. Fur-
thermore, it is associated to a specific value of the label yi, which takes values +1
or −1 according to its class membership. For example, in a pattern classification
problem in which digital images representing the handwritten charactersA and B
are required to be separated, the pixel values of each image could be used as clas-
sification features. In alternative, some specific measurements on each image—as
luminosity, gradient, and so on—could be used as well. As regards the labels,
all the patterns belonging to the class of As could be associated to the label +1,
whereas those belonging to the class of Bs could be associated to the label −1.

During the training phase of the supervised learning scheme, the learning ma-
chine adjust its internal parameters by being shown the features xi of patterns
taken from class +1 and those of patterns taken from class −1. Once the training
phase is terminated, then the learning machine is supposed to have learnt how to
recognize features belonging to the class +1 and features belonging to the class
−1. In particular, it is supposed to have learnt how to correctly separate the two
different classes in the n–dimensional feature space, as shown in Fig. 2.1. At the
end, its generalization performance is tested on a new set of labeled data which
was not part of the training set. Typical learning machines which implement the
supervised learning scheme in order to solve pattern classification problems are
perceptrons and neural networks, whose structures will be outlined in Section
2.1.5, and SVM, which will be discussed in detail in Section 2.2.
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Figure 2.1: Supervised learning scheme.

As regards the unsupervised learning scheme, there are three main reasons for
being interested in that procedure. First, for many real–world problems the data
set does not have labels. This means that only the training patterns:

(x1, . . . , xl) with xi ∈ R
n ∀i = 1, . . . , l (2.3)

are given and that no class membership is associated to them. The collection and
labeling of a large number of patterns is—in fact—a costly and time–consuming
exercise. Often, only a small proportion of the total number of training patterns
has been assigned a class membership, whereas the great majority has not. For ex-
ample, speech recording is quite an easy task, but accurately labeling the speech—
namely marking what word or phoneme is being uttered at each instant—can be
very expensive and time consuming. In this sense, if a classifier can be crudely
designed by using a restricted set of labeled patterns—and then tuned up by al-
lowing it to run without supervision on a large unlabeled data set—much time
and trouble can be saved. The second reason for being interested in unsupervised
learning is that, in the early stages of an investigation, it may be valuable to gain
some insight into the nature or structure of the data set without making any a pri-
ori assumption. The discovery of distinct sub–classes or major departures from
expected characteristics may in fact significantly alter the approach to designing
the classifier. Lastly, unsupervised methods can be used to find features that will
then be useful for categorization. There are in fact unsupervised methods that
represent a form of actual data–dependent preprocessing or feature extraction.
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Figure 2.2: Unsupervised learning scheme.

Now, is there anything that can be done when all one has is a collection of
training patterns without being told their class membership? The answer is yes,
namely cluster analysis or clustering, a form of unsupervised learning which at-
tempts to discover any underlying structure in the data. Clusters are regions in a
hyperspace comprised of a number of similar input vectors grouped together. In
a pattern classification problem, each training pattern xi is constituted by the n
features characteristic of that specific pattern, thus a cluster can be described as
a region in a n–dimensional space containing a relatively high density of points,
separated from other clusters by regions containing a relatively low density of
points. Notice that in order to identify clusters, the key issue is to specify a sim-
ilarity measure. The most obvious measure of similarity between two patterns
is the distance between them. For that reason, a simple form of cluster analysis
might involve computing the matrix of distances between all pairs of patterns in
the data set. The distance between patterns in the same cluster should then be
much less than the distance between pattern in different clusters.

During the training phase of the unsupervised learning scheme, the learning
machine is thus provided with a similarity measure—for example the above dis-
cussed distance—that measures the clustering quality of any feasible partition of
the unlabeled data. Then—as shown in Fig. 2.2—it finds the partition that extrem-
izes that similarity measure, namely finds a clusterization of the n–dimensional
space. Typical clustering methods are the k–means algorithm, introduced for the
first time in (Lloyd, 1982), the Mahalanobis algorithm, discussed in (Mao & Jain,
1996), and the hierarchical algorithm, described in (Day & Edelsbrunner, 1984)
and (Kaufman & Rousseeuw, 1990).
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Figure 2.3: Feature extraction. The classification problem is more easily separa-
ble using the pair of features f3 and f4 (right) than using f1 and f2
(left).

Pattern classification sub–issues

In order to improve the classification performance of learning machines, it may
be usually convenient to submit data to some pre–processing techniques whose
final aim is to elaborate the data so that the classification task could result easier
for the learning machine. Even though those pre–processing techniques are not
an integral part of the classification task, they play a fundamental role in it. For
that reason, they are usually considered as sub–issues of the pattern classification
problem. For a more complete discussion of those sub–issues, see (Duda et al.,
2000) and (Tarassenko, 1998).

When dealing with pattern classification problems, the first important step
must be taken in the direction of choosing the most appropriate features. This
literally means selecting the measurable properties of the phenomena under con-
sideration which can be the most discriminant ones for the specific pattern classifi-
cation problem faced. For example—as depicted in Fig. 2.3—it could happen that
the choice of a pair of features, let us say f3 and f4, makes the classification task
more easily separable than using a different pair of features, namely f1 and f2. It is
evident that extracting the most discriminant features is a problem–dependent task
which requires an—even small—a priori knowledge of the data. Notice, further-
more, that the conceptual boundary between feature extraction and classification
proper is somewhat arbitrary. An ideal feature extractor—in fact—would yield a
representation that makes the classification trivial. On the other hand, a powerful
classifier would not need the help of a sophisticated feature extractor.
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The second pre–processing step consists in removing the noise characterizing
the data. The definition of noise is very general. Any property of the sensed
patterns which is due to randomness in the world or in the sensors, rather than
to the true underlying model of the data, can be considered as noise. All non–
trivial decision and pattern classification problems involve noise in some form,
since all real–world data are transduced from sensors into digital data. It is thus
unavoidable that they suffer from the specific noise of the experimental set up.
Typical examples are visual noise in video cameras, background noise in audio
registrations and so on. Notice that a fundamental task in this context is being able
to understand somehow whether the variation in data is due to noise or instead to
the complexity underlying the problem under consideration.

2.1.3 Validation techniques

The introduction of the so–called validation techniques is motivated by the will-
ingness of finding a solution to two fundamental problems in pattern classification,
namely the selection of the learning machine’s model and the estimation—and
validation—of its classification performance.

Almost invariably, all learning machines have one or more free parameters
which can be tuned up in order to adapt them to each specific classification prob-
lem. For example—as it will be briefly discussed in Section 2.1.5—the free para-
meters of neural networks are represented by the number of layers in the network
and by the weights linking each input pattern to each perceptron. When a pat-
tern classification problem is addressed by using learning machines, the typical
approach consists in choosing a specific configurations of the free parameters—
namely choosing a specific model for the learning machine—and then in esti-
mating its classification performance. The classification performance is usually
estimated by the so–called true error rate, literally the learning machine’s error
rate on the entire population under exam. The configuration of the free parame-
ters for which the true error rate is minimum corresponds to the optimal learning
machine’s model for that particular problem.

It is evident that, in the ideal and unrealistic situation in which the data set
is comprised of an unlimited number of patterns, the straightforward solution to
the problem would be first choosing the learning machine’s model that provides
the lowest error rate on the entire data set and therefore considering that error
rate as the true error rate. Obviously, in real–world applications, only finite data
sets are available and typically they are smaller than what it would be desirable.
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Entire data set

Training set Test set

Figure 2.4: Holdout method.

In this case, one very crude approach would be to use the entire data set to train
the learning machine, to select the model and to estimate the error rate. However
that approach suffers from two fundamental drawbacks. First, the final model
will normally overfit the training data. This basically means that the learning
machine results excessively optimized on the training data, thus—following all
the small details in them—it looses in generalization performance and gives very
poor interpolation on a different data set. Second, the error rate estimate is overly
optimistic, typically lower than the true error rate. It is in fact not uncommon to
have 100% correct classification on training data.

In order to overcome the above discussed drawbacks, some more sophisticated
validation techniques are introduced, namely the holdout, cross–validation and
leave–one–out methods.

Holdout method

An interesting approach consists in splitting the data set into two disjoint subsets,
thus applying the so–called holdout validation technique. The holdout method—
sometimes called test sample estimation—partitions the data into two mutually
exclusive subsets called training set and test set, in analogy to what discussed in
the previous Sections. It is common to designate 2/3 of the data set as the training
set and the remaining 1/3 as the test set, as depicted in Fig. 2.4. The training set is
used to train the learning machine and the trained learning machine is then tested
on the test set.

This method suffers from two important drawbacks as well. First, assuming
that the learning machine’s classification performance increases as more patterns
are seen, the holdout method is a pessimistic estimator because only a portion of
the data is given to the learning machine for the training phase. Second, since
it is a single train–and–test experiment, its estimate of the error rate could be
misleading if it happens to get an unfortunate split, namely if it occurs that the test
set is composed by all the most difficult patterns of the entire data set.
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Figure 2.5: k–fold cross–validation method.

Cross–validation and leave–one–out methods

A feasible way to overcome those pitfalls is k–fold cross–validation—known also
as rotation estimation—a technique in which the data set D is randomly split
into k mutually exclusive folds F1,F2, . . . ,Fk of approximately equal size. In a
specific case, know as stratified cross–validation, the folds are stratified so that
they contain approximately the same proportions of labels as the original data set.
Here the learning machine is trained and tested k times, namely for each time
t ∈ {1, 2, . . . , k} it is trained onD \Dt and tested onDt, as shown in Fig. 2.5.

The major advantage of this technique with respect to the holdout method is
that all the patterns in the data set are used for both training and testing. At the
same time, the true error is estimated as the average error rate on test patterns,
thus preventing the problems arising from unfortunate splits of the data set:

e =
1
k

k∑
i=1

ei (2.4)

It is worth noticing that the estimate in Eq. 2.4 is a number that depends on the
division into folds. In (Kohavi, 1995), some interesting considerations concerning
the choice of the correct number of folds k are drawn. First, if the number of folds
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Figure 2.6: Leave–one–out method.

k is large, the bias of the true error estimate is generally small, thus the estima-
tor may be considered very accurate. Unfortunately—due to the large number of
iterations—the variance of the true error rate estimator as well as the computa-
tional times are expected to be large. Second, if the number of folds k is reduced,
the bias of the true error estimate is generally large, thus the estimator may be
considered conservative or higher than the true error rate. In that case—due to the
reduced number of iterations—the variance of the true error rate estimator as well
as the computational times are typically small.

In practice, the choice of the number of folds strongly depends on the size of
the data set. For large data sets, even a 3–fold cross–validation could be quite
accurate. For sparse data sets, it may be necessary to partition the data set in
a larger number of folds in order to train on as many patterns as possible. A
common choice for k–fold cross validation is k = 10. Finally, for very sparse data
sets, a leave–one–out validation technique may be implemented. This approach
is analogous to that of cross–validation. The only difference here is that—if N is
the number of patterns in the data set—the learning machine is trained N times.
In particular, for each time, N − 1 patterns are used for training and the remaining
for testing, as shown in Fig. 2.6. As for the cross–validation technique, the true
error is estimated as the average error rate on test patterns.
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2.1.4 Performance visualization

Receiver Operating Characteristic (ROC) and Free–response Receiver Operating
Characteristic (FROC) curves are advanced techniques for visualizing the perfor-
mance of a learning machine on a given pattern classification problem. In recent
years they have seen an increasing popularity in the machine learning community
and in this work they will be used in order to visualize several classification results
as well. For that reason, some introductory concepts will be given in the following
Section.

As already discussed, a learning machine’s model corresponds to a specific
configuration of its free parameters. In a pattern classification problem—once
the learning machine’s model is fixed—an unambiguous mapping from the input
pattern to its predicted class does exist. In order to distinguish between the actual
positive or negative class membership of the input pattern and that of the predicted
one, the labels {pa, na} are used for the former, whereas the labels {pp, np} for the
latter. For each input pattern there are thus four possible outcomes. If the attended
class membership of the input pattern is positive (pa) and the predicted one is
positive (pp) then it is counted as a true positive. If the predicted class member-
ship is negative (np) then it is counted as a false negative. If the attended class
membership of the input pattern is negative (na) and the predicted one is negative
(np) then it is counted as a true negative. If the predicted class membership is
positive (pp) then it is counted as a false positive. Thus, given a learning machine
and a set of patterns, a two–by–two confusion matrix—also called contingency ta-
ble—representing the dispositions of the set of patterns can be built, as shown in
Fig. 2.7. In particular, the numbers along the major diagonal represent the correct
decisions made, whereas the numbers off this diagonal represent the errors or the
confusion between the classes.

The confusion matrix forms the basis for some important metrics. First, the
True Positive Fraction (T PF) of a learning machine is defined as:

T PF =
Positives correctly classified

Total positives
(2.5)

Analogously, the False Positive Fraction (FPF) is defined as:

FPF =
Negatives incorrectly classified

Total negatives
(2.6)
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Figure 2.7: Confusion matrix.

Two further metrics strictly associated to those discussed above are the sensitivity,
which corresponds to T PF:

sensitivity = T PF (2.7)

and the specificity, which is given by:

specificity =
True negatives

False positives + True negatives
= 1 − FPF (2.8)

Those metrics are fundamental in order to define ROC and FROC curves and
to understand how they can be used as visualization tools for the classification
performance of learning machines.

ROC curve

ROC curves are two–dimensional graphs which represent the relative trade off be-
tween the sensitivity and the specificity of a learning machine applied to a pattern
classification problem. The reason is that on the y axis of a ROC curve the value
T PF obtained by the classifying learning machine is plotted, whereas on the x
axis the value FPF, as shown in Fig. 2.8.
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What happens in the typical solution of a pattern classification problem, is
that a trained learning machine is tested on a test set, thus predicting a single class
membership—pp or np—for each input pattern. From the considerations drawn
above, it is evident that this yields a single confusion matrix, which in turn corre-
sponds to one single ROC point, as the point A in Fig. 2.8. In order to generate a
full ROC curve instead of just a single point, the most common technique consists
in varying the free parameters of the learning machine, thus altering the values of
T PF and FPF on the same test set. Varying those free parameters, an ROC curve
can be generated which shows the trade off between T PF and FPF associated
with the different values that the parameters may assume. It would then be possi-
ble to trade a lower—or higher—FPF value for a higher—or lower—T PF value
by choosing appropriate values for the free parameters in question.

Several points in ROC space deserve some deeper considerations. The lower
left point (0, 0) represents a learning machine which is unable of issuing a positive
classification. Such learning machine commits in fact no false positive errors but
also gains no true positives. The upper right point (1, 1) represents the opposite,
namely a learning machine which unconditionally issues positive classifications.
Such learning machine classifies incorrectly all the negative patterns but correctly
all the positive ones. Finally, the point (0, 1) represents a learning machine which
is able of perfect classification. Such learning machine classifies correctly all the
positive patterns without false positive errors.
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Reasoning informally as in (Fawcett, 2004), one point in ROC space is better
than another if it is to the northwest of the first. This in fact means a higher T PF
and a lower FPF. Learning machines appearing on the left hand–side of an ROC
graph, near the x axis, may be thought of as conservative. They make positive
classifications only with strong evidence so they make few false positive errors,
but they often have low true positive fractions as well. On the contrary, learning
machines on the upper right–hand side of an ROC graph may be thought of as
liberal. They make positive classifications with weak evidence so they classify
nearly all positives correctly, but they often have high false positive fractions.

Being such a useful performance graphing method, ROC curves have been
rapidly extended to several research areas, such as medical decision making, ma-
chine learning and data mining. In particular, they have long been used in sig-
nal detection theory to depict the trade off between benefits—true positives—and
costs—false positives—of learning machines, see (Egan, 1975). ROC analysis has
been furthermore extended to the medical decision making community for use in
visualizing the behavior of diagnostic systems, as described in (Swets, 1988). Re-
cently, (Spackman, 1989) adopted ROC curves in machine learning demonstrating
their value in evaluating and comparing algorithms, whereas (Swets et al., 2000)
brought ROC curves to the attention of the wider public with a Scientific Ameri-
can article.

FROC curve

For a specific family of pattern classification problems such as target detection in
digital images—where targets can be faces, pedestrians, tumoral masses, geomor-
phological features and so forth—ROC curves prove to be not very useful. Those
systems are in fact typically based on a trained learning machine which is required
to recognize specific targets—as the ones mentioned above—by classifying dif-
ferent sub–regions of the digital images under consideration. In such a situation,
therefore, what does interest is not the false positive fraction FPF given a specific
true positive fraction T PF, but rather the average number of false positive errors
per–image given such a true positive fraction T PF.

In order to deal with that family of pattern recognition problems, FROC curves
have thus been introduced, namely plots of the true positive fraction T PF versus
the average number of false positive errors per–image.
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2.1.5 Historical perspective

Before proceeding with the discussion of a specific learning machine such as
SVM, it may be useful to have a wider picture of machine learning by review-
ing its history and major results. Three periods are particularly relevant:

• 1960s and 1970s: the first learning machine is introduced (known as the
Rosenblatt’s perceptron) and the fundamentals of learning theory are posed

• 1980s: Neural networks are introduced

• 1990s: Alternatives to neural networks start being explored

1960s and 1970s

The starting point for the mathematical analysis of learning processes dates back
to approximately 40 years ago, when F. Rosenblatt introduced the first model
of a learning machine, namely the perceptron (Rosenblatt, 1962). In a sense,
Rosenblatt’s perceptron was not new, in fact this model had been discussed in
the neurophysiologic literature for many years. However, the unusual aspect was
that he described this model as a program for computers and demonstrated that
it solves pattern recognition problems using given examples. To construct such
a learning rule, the perceptron uses adaptive properties of the simplest neuron
model, the so–called McCullogh–Pitts model, as shown in Fig. 2.9. According to
that model, the neuron has an input x = (x1, . . . , xn) ∈ Rn, one output y ∈ {−1,+1}
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and n weights w = (w1, . . . , wn) ∈ Rn linking the input to the neuron. The output
is connected with the inputs by the functional dependence:

y = sign(w · x + b) (2.9)

where · is the dot product of two vectors, b is a threshold value and sign(u) = +1 if
u > 0 and sign(u) = −1 if u ≤ 0. Geometrically speaking, the neuron divides the
n–dimensional hyperspace into two regions, a region where the output y takes the
value +1 and a region where the output y takes the value −1. Those two regions
are separated by the hyperplane:

w · x + b = 0 (2.10)

where the vector w and the scalar b determine the position of the separating hy-
perplane, as shown in Fig. 2.10. This means that the neuron assigns input patterns
represented by the vector of numbers x = (x1, . . . , xn), either to one class or to the
other class according to the output value of y.

In the specific context of the Rosenblatt’s perceptron, learning consists of ad-
justing the w weights so that the neuron performs the classification task correctly,
or as close as possible to it. In order to arrive at a weight set which solves the
problem, an error feedback is used to adjust the weights during the training phase.
The idea is to measure an error E at the output of the neuron and then to mini-
mize it by gradient descent. Starting with an arbitrarily chosen weight vector w(0)
and computing the gradient of the error with respect to each weight—for exam-
ple ∂E/∂wi for weight wi—the next vector w(1) is obtained by moving a small
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distance in the direction of the steepest descent, namely along the negative of the
gradient. For an individual weight wi in the weight vector w(0), the weight update
∆wi is thus given by:

∆wi = −η
∂E
∂wi (2.11)

where η is a small parameter which sets the step size. In order to specify a suitable
error function E, consider that for input patterns x taken from one class:

y = sign(w · x + b) = +1 ⇔ w · x + b > 0 (2.12)

whereas for input patterns x taken from the other class:

y = sign(w · x + b) = −1 ⇔ w · x + b ≤ 0 (2.13)

This means that, for all input patterns x, it results that:

(w · x + b)a > 0 (2.14)

where a is the attended value for that particular pattern, namely +1 for the first
class and −1 for the second class. It is thus reasonable to define the following
error function:

E = −
∑
x∈M

(w · x + b)a (2.15)

whereM is the set of input patterns x which are misclassified by the current set
of weights w. Eq. 2.15 is also known as the perceptron criterion. Learning is thus
an iterative process whereby all the training patterns are presented in turn several
times and, for each pattern presentation, Eq. 2.11 is applied to each weight:

∆wi = −η
∂E
∂wi = −η

∂

∂wi

−∑
x∈M

(w · x + b)a

 = ηxia (2.16)

Very small changes of weights are repeatedly made until a set of weights is ob-
tained which minimizes the error function E over all the patterns in the training
set. For any data set which is linearly separable, it can be guaranteed to find a
solution in a finite number of steps.
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Except for the introduction of the Rosenblatt’s perceptron, nothing extraordi-
nary happened as regards the applied analysis of the learning processes during the
time between 1960 and 1980. On the contrary, those years were extremely fruit-
ful for the development of the statistical learning theory. In 1962, A. Novikoff
proved the first theorem about the perceptron (Novikoff, 1962). This theorem
actually started the learning theory, connecting the cause of the generalization
ability of a learning machine—namely its ability in recognizing new patterns—
with the principle of minimizing the number of errors on the training set. Then,
from 1968, the complete framework of statistical learning theory started being de-
veloped. First, the essential concepts of the emerging theory, as the VC entropy
and the VC dimension, were discovered and introduced for the pattern recogni-
tion problem. Using these concepts, then, the bounds for the rate of convergence
of a learning machine were obtained, as discussed in (Vapnik & Chervonenkis,
1968). Moreover, the obtained bounds made the introduction of a novel inductive
principle possible, namely the Structural Risk Minimization, thus completing the
development of the statistical pattern recognition learning theory (Vapnik & Cher-
vonenkis, 1974). Finally, between 1976 and 1981, the results originally obtained
were then generalized for the set of real functions (Vapnik, 1979).

1980s

The main drawback for the Rosenblatt’s perceptron is that it is unable to cope
with data sets which are not linearly separable. It is evident that this is a great
problem, since real–world data are intrinsically noisy, in other words there are
always regions of overlap in the input space such that some of the patterns end up
on the wrong side of the decision boundary. In the late 1960s, it was recognized
that a way to overcome that problem is the multi–layered perceptron, namely an
architecture with several layers of neurons, as depicted in Fig. 2.11. However,
no further progress was possible at that time, since no learning rule existed for
adjusting the weights of the first layer on the basis of the error at the output of the
second layer.

In 1986 several authors independently proposed a method for simultaneously
updating the weights of a multi–layered perceptron, namely the back–propagation
method (LeCun, 1986) and (Rumelhart et al., 1986). Multi–layered perceptrons
trained with this method were renamed neural networks, see (Bishop, 1995) and
(Haykin, 1999). The idea of this method is rather simple. First, in order to deal
with non linearly separable data, the sum–of–squares error function is introduced
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as the criterion to minimize:

E =
P∑

p=1

(yp − ap)2 (2.17)

where yp is the single output of the multi–layer perceptron for pattern p and ap is
the corresponding attended value. Second, in order to minimize E using gradient
descent as described in 2.11, the error function must be differentiable with respect
to every weight in the network. For this reason, instead of the McCullogh–Pitts
model of the neuron, a slightly modified model is considered, where the discontin-
uous function sign(w ·x+b) is replaced by the continuous sigmoid approximation:

y = S (w · x + b) = tanh(w · x + b) (2.18)

thus by a monotonic function which, as shown in Fig. 2.12, has the properties:

S (−∞) = −1 (2.19)
S (+∞) = +1 (2.20)

Provided that the error function is defined as in Eq. 2.17 and the model adopted
is the sigmoid one as described in Eq. 2.18, it is easy to demonstrate that the
minimization of E using gradient descent results in the propagation of errors from
the layers near the output of the network backwards to the layers near the input of
the network. This gives rise to the name of the algorithm.
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Figure 2.12: The discontinuous function sign(u) = ±1 is approximated by the
smooth function tanh(u).

1990s

The approach to machine learning has changed in the last years, since more at-
tention is now focused on the alternatives of neural networks. Statistical learning
theory is nowadays more popular and attractive for researchers than in the early
1960s. In addition, it now plays a more active role rather than covering only the
theoretical and formal aspects of machine learning. In fact, after the completion of
the general analysis of learning processes, the research in the area of the synthesis
of optimal algorithms, which possess the highest level of generalization ability
for any number of observations, was started. Thus, in the last decade, many ideas
have appeared in the machine learning community deeply inspired by statistical
learning theory. On the contrary to previous ideas of developing learning algo-
rithms inspired by the biological learning process, the new ideas were inspired by
attempts to minimize theoretical bounds on the error rate obtained as a results of
formal analysis of the learning processes. These ideas—often contradicting the
biological paradigm—result in algorithms having nice mathematical properties
(such as uniqueness of the solution, simple method of treating a large number of
examples, independence of dimensionality of the input space) and excellent per-
formance. In particular, they outperform the state–of–the–art solutions obtained
by the old methods.

41



P C

2.2 Support Vector Machine
SVM is one of the shining peaks among the many learning algorithms deeply
inspired by statistical learning theory and appeared in the machine learning com-
munity in the last decades. Its original formulation is quite recent and is mainly
due to (Vapnik & Chervonenkis, 1974; Boser et al., 1992; Guyon et al., 1993;
Cortes & Vapnik, 1995; Vapnik, 1995, 1998).

As previously discussed, during the 1990s many learning algorithms arose
contradicting the biological paradigm, since more inspired by the minimization
of theoretical bounds on the error rate. SVM is not an exception in that. As
described in (Burges, 1988), in fact, for a given learning task and with a finite
amount of training patterns, SVM is a learning machine which achieves its best
generalization performance by finding the right balance between the accuracy ob-
tained on that particular training set and the complexity of the machine, namely
its ability in learning any training set without error.

In the next Section, some introductory notions on statistical learning theory
will be given, in order to demonstrate that finding the right balance between accu-
racy and capacity is equivalent to find the minimum of a theoretical bound on the
error rate. Then, the mathematical details of SVM will be discussed.

2.2.1 Statistical learning theory
Suppose that l training patterns are given:

(x1, . . . , xl) with xi ∈ R
n ∀i = 1, . . . , l (2.21)

together with the associated labels representing the attended class membership:

(y1, . . . , yl) with yi = ±1 ∀i = 1, . . . , l (2.22)

Assume also that patterns are generated i.i.d (independently and identically dis-
tributed) according to an unknown probability distribution function P(x, y). As
already known, learning machines address the task of pattern classification by
finding a rule which assigns to each input pattern a class membership. In par-
ticular, during the training phase, a mapping f : Rn → {±1} is created between
input patterns and labels, such that the learning machine is expected to correctly
classify unseen test examples (x, y). Now, the best mapping f that one can obtain
is the one minimizing the expected error or expected risk:

R
[
f
]
=

∫
1
2
|y − f (x)| dP(x, y) (2.23)
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Figure 2.13: Overfitting phenomenon. The more complex function obtains a
smaller training error than the linear function (left). But only with
a larger data set it is possible to decide whether the more complex
function really performs better (middle) or overfits (right).

where the function 1
2 |y − f (x)| is called the loss function. A further common loss

function is for example (y − f (x))2, also known as squared loss function
Unfortunately, the expected error cannot be directly minimized, in fact the

probability distribution function P(x, y)—from which data are generated—is un-
known. In order to estimate a function f that is close to the optimal one, an in-
duction principle for risk minimization is therefore necessary. The most straight-
forward way is probably to approximate the minimum of the risk discussed in
Eq. 2.23 by the minimum of the so–called empirical risk, namely the measured
mean error rate on the training set:

Remp
[
f
]
=

1
l

l∑
i=1

1
2
|y − f (xi)| (2.24)

Notice that no probability distribution function P(x, y) appears here and that for
l→ +∞ the empirical risk will converge toward the expected risk.

However, a small error on the training set does not necessarily imply a high
generalization ability, namely a small error on an independent test set. As al-
ready anticipated in Section 2.1.3, this phenomenon is known as overfitting. In
particular—as described in (Müller et al., 2001)—given a small training data set
as the one on the left example of Fig. 2.13, functions f with higher degrees of
complexity may result in a smaller training error. Nevertheless, only with a larger
data set—as the ones on the middle and right examples of Fig. 2.13—it is possible
to understand which decision reflects the true distribution more closely and does
not overfit. One way to avoid this problem is generally to restrict the complexity
of the function f . The idea is that a simple function as a linear function, explain-
ing most of the data, is preferable to a complex one. These considerations, in turn,
give raise to the problem of how to find the optimal complexity of the function.
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A specific way of controlling the complexity of a function is given by the
Structural Risk Minimization (SRM) principle, see (Vapnik, 1979). In order to
understand how it works, it is first necessary to introduce a non–negative integer
h, called Vapnik–Chervonenkis dimension or VC–dimension, which describes the
complexity of a class of functions. In particular, it measures how many training
points can be separated for all possible labellings using functions of that class.
Once the concept of VC–dimension is introduced, a nested family of function
classes must be constructed:

F1 ⊂ F2 ⊂ . . . ⊂ Fk (2.25)

whose VC–dimension satisfy:

h1 ≤ h2 ≤ . . . ≤ hk (2.26)

Then suppose that the solutions of the empirical risk minimization problem of
Eq. 2.24:

f1 ≤ f2 ≤ . . . ≤ fk (2.27)

respectively belong to the function classes Fi, i = 1, . . . , k. In that context, the
SRM principle chooses the function fi in the class Fi such that the right–hand side
of the following bound on the generalization error is minimized:

R
[
f
]
≤ Remp

[
f
]
+

√√√h
(
log2l

h + 1
)
− log

(
η

4

)
l

 (2.28)

Here h is the VC–dimension of the function class under consideration, the square
root term is called confidence term and the bound holds with probability 1− η, for
any 0 ≤ η ≤ 1.

Three aspects are of great interest in the above bound. First, it is independent
of P(x, y). It assumes only that the entire data set—thus both training and test
set—is drawn independently according to some P(x, y). Second, it is usually not
possible to compute the left–hand side, namely the expected risk. Third, known
the VC–dimension h, the right–hand side is easily computable. This means that,
the selection of the learning machine which maps the input patterns to their class
memberships by the function f : Rn → {±1} and minimizes the right–hand side
of Eq. 2.28, actually corresponds to the selection of the learning machine which
gives the lowest upper bound on the expected risk.
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f
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.

Notice that minimizing the expected risk R
[
f
]

can be achieved by obtaining
a small training error Remp

[
f
]

while keeping the function class as small as pos-
sible. However, two extreme situations may arose. A very small function class
gives a vanishing square root term, but a large training error. On the other hand,
a huge function class gives a vanishing empirical error, but a large square root
term. Nevertheless, from those considerations, it is evident that the best solution
of the problem is usually in between, as shown in Fig. 2.14. In other words, find-
ing the minimum of the expected error, actually means finding the right trade off
between the accuracy obtained on that particular training set and complexity of
the mapping created by the learning machine. Notice furthermore that the bound
of Eq. 2.28 is not unique and similar formulations are available for different loss
functions and complexity measures.

In practical problems the bound on the expected error discussed in Eq. 2.28
is neither easily computable nor very helpful. Typical problems are that the VC–
dimension of the function class under consideration is unknown or infinite, in
which case an infinite number of training data would be necessary. Nevertheless,
the existence of bounds is important from a theoretical point of view, since it offers
some deeper insights into the nature of learning algorithms.
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2.2.2 Linking statistical learning theory to SVM
Linear learning machines such as the perceptronand SVM—as it will be clarified
in the next Section—use hyperplanes to separate classes in the feature space, see
Fig. 2.15, namely functions of the form:

y = sign (w · x + b) (2.29)

In (Vapnik & Chervonenkis, 1974; Vapnik, 1995) it has been demonstrated that for
the class of hyperplanes, the VC–dimension itself can be bounded in terms of an-
other quantity called margin, namely the minimal distance of patterns from the hy-
perplane. In Fig. 2.15 the margin corresponds to the dashed lines. In particular, by
rescaling w and b such that the points closest to the hyperplane satisfy |w · x + b| =
1—namely transforming the hyperplane to its canonical representation—it is pos-
sible to measure directly the margin as a function of w. Consider, in fact, two
patterns x1 and x2 belonging to two different classes and such that w · x1 + b = +1
and w · x2 + b = −1. Then the margin can be calculated as the distance between
those two points along the perpendicular, namely as:

w

‖w‖
(x1 − x2) =

2
‖w‖

(2.30)

Now, it could be demonstrated that the inequality which links the VC–dimension
of the class of separating hyperplanes to the margin is the following:

h ≤ Λ2R2 + 1 and ‖w‖ ≤ Λ (2.31)
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where R is the radius of the smallest ball around the data. Notice that, due to the
inverse proportionality between the margin and ‖w‖, Eq. 2.31 essentially states
that a small VC–dimension is obtained by requiring a large margin. On the other
hand, a high VC–dimension is obtained by requiring a small margin. Recall-
ing that the bound described by Eq. 2.28 demonstrates that in order to achieve a
small expected error it is necessary to keep small both the training error and the
VC–dimension, then—when working with linear learning machines—separating
hyperplanes could be constructed such that they maximize the margin and sepa-
rate the training patterns with as few errors as possible. As it will be demonstrated
in the next Section, this result forms the basis of the SVM learning algorithm.

2.2.3 Linear SVM
The separable case

In order to introduce the SVM learning algorithm, the simplest case to deal with
is the so–called separable case in which data are linearly separable. As it will
be discussed in the following Section, the most general case—namely non–linear
SVM trained on non–separable data—results in a similar solution.

Suppose again that l training patterns are given:

(x1, . . . , xl) with xi ∈ R
n ∀i = 1, . . . , l (2.32)

together with the associated labels representing the attended class membership:

(y1, . . . , yl) with yi = ±1 ∀i = 1, . . . , l (2.33)

Assume also that they are linearly separable, namely they could be separated by an
hyperplane y = sign (w · x + b) as the one shown in Fig. 2.15. For such a learning
machine, the conditions for classification without training error are:

yi (wi · xi + b) ≥ 1 i = 1, . . . , l (2.34)

The final aim of learning is thus finding w and b such that the expected risk is
minimized. According to Eq. 2.28, one strategy is to keep the empirical risk
zero by forcing w and b to the perfect separation of the two classes, while at the
same time minimizing the complexity term which is a monotonically increasing
function of the VC–dimension h. Since for a linear learning machine the VC–
dimension h is bounded as described in Eq. 2.31, it is thus possible to minimize
the VC–dimension by minimizing ‖w‖2, namely by maximizing the margin.
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The linear learning machine which ensures the lowest expected risk is thus that
which gives an empirical risk zero, or perfect separation between the two classes:

yi (wi · xi + b) ≥ 1 i = 1, . . . , l (2.35)

and at the same time minimizes the VC–dimension, or maximize the margin be-
tween the two classes:

min
w,b

1
2
‖w‖2 (2.36)

In order to solve this convex optimization problem, it is preferable to introduce a
Lagrangian L:

L(w, b,α) =
1
2
‖w‖2 −

l∑
i=1

αi (yi (wi · xi + b) − 1) (2.37)

with the Lagrangian multipliers satisfying αi ≥ 0, i = 1, . . . , l. The Lagrangian
L has thus to be minimized with respect to w and b and to be maximized with
respect to αi. The condition that at the saddle points the derivatives vanish:

∂L(w, b,α)
∂b

= 0 (2.38)

∂L(w, b,α)
∂w

= 0 (2.39)

leads to:

l∑
i=1

αiyi = 0 (2.40)

w =
l∑

i=1

αiyixi (2.41)

By substituting Eq.2.41 in Eq.2.37, the dual quadratic optimization problem is
obtained:

max
α

l∑
i=1

αi −
1
2

l∑
i,k=1

αiα jyiy jxi · x j (2.42)
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subject to:

αi ≥ 0, i = 1, . . . , l (2.43)∑l
i=1 αiyi = 0 (2.44)

Thus, by solving the dual optimization problem, the lagrangian multipliers αi ≥ 0,
i = 1, . . . , l— needed to express the specific w which solves Eq. 2.36—are found.
In particular, for each input pattern x, the following decision function will be
applied:

f (x) = sign

 l∑
i=1

αiyix · xi + b

 (2.45)

The above hyperplane is also known as Maximal Margin Hyperplane (MMH).

The non–separable case

When dealing with noisy data, it could happen that they are not linearly separable.
In such a situation it is impossible to keep the empirical error zero, therefore it is
necessary to find the best trade off between the empirical risk and the complex-
ity term as discussed for Eq. 2.28. In order to relax hard–margin constraints—
thus allowing classification errors—slack variables are introduced as discussed in
(Cortes & Vapnik, 1995):

yi (wi · xi + b) ≥ 1 − ξi, ξi ≥ 0 i = 1, . . . , l (2.46)

In this case, the solution is found by minimizing the VC–dimension and an up-
per bound on the empirical risk, namely the number of training errors. Thus the
quantity to minimize is:

min
w,b,ξ

1
2
‖w‖2 +C

l∑
i=1

ξi (2.47)

In analogy to Eq. 2.36, finding a minimum of the first terms actually means min-
imizing the VC–dimension of the class of functions under consideration. On the
other hand, the second term

∑l
i=1 ξi is an upper bound on the number of the mis-

classifications on the training set, thus finding a minimum for it actually results in
minimizing the empirical risk. In this context, the regularization constant C > 0
determines the trade off between the complexity term and the empirical risk.
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As in the linearly separable case, the lagrangian multipliers are obtained by
solving the following quadratic problem:

max
α

l∑
i=1

αi −
1
2

l∑
i,k=1

αiα jyiy jxi · x j (2.48)

subject to:

0 ≤ αi ≤ C, i = 1, . . . , l (2.49)∑l
i=1 αiyi = 0 (2.50)

Thus the only difference from the separable case is that the lagrangian multipliers
are upper bounded by the constant C > 0.

According to the Karush–Kuhn–Tucker (KKT) conditions (Lasdon, 1970)—
which state necessary conditions for a set of variables to be optimal for an opti-
mization problem—only those lagrangian multipliers αi, i = 1, . . . , l correspond-
ing to a training pattern xi which is on the margin or inside the margin area are
non–zero. In fact they assert that:

αi = 0 ⇒ yi f (xi) ≥ 1 and ξi = 0 (2.51)
0 < αi < C ⇒ yi f (xi) = 1 and ξi = 0 (2.52)

αi = C ⇒ yi f (xi) ≤ 1 and ξi ≥ 0 (2.53)

These considerations reveals a fundamental property of SVM, namely that the so-
lution found is sparse in α. This is crucial for computational times, since sparsity
guarantees that the expansion discussed in Eq. 2.41 is calculated on the restricted
number of patterns xi corresponding to αi > 0, also known as support vectors.

The KKT conditions are also useful in order to compute the threshold b in
Eq. 2.45. In fact, from Eq. 2.52, it follows that:

yi

 l∑
j=1

α jy jxi · x j + b

 = 1 (2.54)

and by averaging on the training patterns it could be possible to extrapolate a
stable solution for b:

b =
1
|I|

∑
j∈I

yi −

l∑
i=1

α jy jxi · x j

 (2.55)

where I = {i : 0 < αi < C}
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Figure 2.16: Non–linearly separable patterns in two–dimensions (left). By re–
mapping them in the three–dimensional space of the second order
monomials (right) a linear hyperplane separating those patterns can
be found.

2.2.4 Non–linear SVM
SVM can afford more complex decision functions by re–mapping input patterns
onto a higher dimensional space in which the separation between the two classes
can be performed by a hyperplane:

Φ : Rn → H (2.56)
x → Φ(x) (2.57)

Suppose for example that some non–linearly separable patterns are given in two
dimensions, as shown on the left picture of Fig. 2.16. By re–mapping them onto
the three–dimensional space of the second order monomials:

Φ : R2 → R3 (2.58)(
x1, x2

)
→

((
x1
)2
,
√

2x1x2,
(
x2
)2)
=
(
z1, z2, z3

)
(2.59)

a linear hyperplane separating those patterns can be found, as shown on the right
picture of Fig. 2.16.

The SVM optimization problem involves only the dot products among the
training patterns xi, as it is evident from Eq. 2.45. Therefore, the non–linear
mapping Φ : Rn → H that maps the patterns xi onto the new space—generally
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an Hilbert space—does not need to be given explicitly. It is however necessary to
specify the dot product of any of the two images Φ (x) and Φ (y) in H through a
kernel function K defined over C×C, where C is a compact subset of Rn including
the training and test patterns:

K(x, y) ≡ Φ (x) · Φ (y) (2.60)

In order to assure that the above definition is well posed, K must satisfy the Mer-
cer’s conditions, see (Mercer, 1909). More specifically, K (x, y) must be symmet-
ric and continuous over C × C. Furthermore the integral operator over L2 (C):∫

C

K(x, y) f (x)dx (2.61)

must be positive, namely:∫
C×C

K(x, y) f (x) f (y)dxdy (2.62)

for all f ∈ C2. Once the conditions discussed above are satisfied, it is possible to
find a mapping Φ of the input patterns onto the Hilbert spaceH such that Eq. 2.60
defines a scalar product inH . The MMH inH can thus be written in terms of the
input patterns in Rn, giving the following expression for the decision function:

f (x) = sign

 l∑
i=1

αiyiK(x, xi) + b

 (2.63)

The only difference from the MMH described in Eq. 2.45 for the linear separable
case is that here the dot products x · xi in Rn are substituted by the value K(x, xi)
of the kernel function. Common kernel functions are:

• Polynomial kernel of degree d:

K(x, y) = (γx · y + r)d (2.64)

• Radial basis kernel:

K(x, y) = exp
(
−γ ‖x − y‖2

)
(2.65)

• Sigmoidal kernel:

K(x, y) = tanh (γx · y + r) (2.66)

where γ, r and d are kernel parameters selected by the user.
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2.3 Recursive Feature Elimination

A challenging task for pattern classification consists in trying to reduce the dimen-
sionality n of the feature space, by finding a restricted number of features yielding
good classification performances. A lot of work has been done in that direction
in the last years, as for example (Kohavi & John, 1997; Kearns et al., 1997). The
main reason is probably that feature elimination is fundamental in order to reduce
the computational times required to solve pattern classification problems and in
some cases also to improve the classification performances. The so–called curse
of dimensionality from statistics theory, in fact, asserts that the difficulty of an esti-
mation problem increases drastically with the dimension n of the space, since—in
principle—exponentially many patterns are required in order to sample the space
properly.

In the following, new aspects of the applicability of SVM in knowledge dis-
covery and data mining will be discussed. In Section 2.2, in fact, SVM was in-
troduced as a tool for the solution of pattern classification problems. Here it will
be demonstrated that SVM is also very effective for discovering informative at-
tributes of the data set, namely critically important features. To this purpose, first
an overview of some feature ranking methods—and in particular of the so–called
Optimal Brain Damage (OBD)—will be drawn. Feature ranking is, in fact, the
first task to be addressed toward the elimination of unimportant features and in
particular the OBD method forms the basis for using linear SVM in such a context.
Then, an introduction to feature elimination strategies and in particular to Recur-
sive Feature Elimination (RFE) will be outlined. Finally, it will be demonstrated
how RFE can be implemented by using SVM in its very general, non–linear for-
mulation. This algorithm is usually known as SVM–RFE algorithm. The notation
followed is mainly derived from (Guyon et al., 2002).

2.3.1 Feature–ranking

The main idea behind feature ranking methods is to define the importance of each
single feature according to its contribute to the learning machine predictive accu-
racy. The final aim is to obtain a ranked list of features, from which those having
an important contribute may be selected, whereas those having a small contribute
can be discarded. This permits to eliminate all those features which are useless
for discrimination purposes, or at least represent noise.
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Several methods evaluating how well an individual feature contributes to the
separation of the two classes have been described in literature. For example, in
(Golub et al., 1999) the following correlation coefficient has been used as ranking
criterion:

ri =
µi(pa) − µi(na)
σi(pa) + σi(na)

(2.67)

where µi and σi are respectively the mean and the standard deviation of the fea-
ture i for all the patterns whose attended class is positive (pa) or negative (na).
Large positive ri values indicate strong correlation with class pa, whereas large
negative ri values indicate strong correlation with class na. Then, by selecting
an equal number of features with positive and with negative correlation coeffi-
cients, it is possible to represent both the two classes. Other approaches—as the
one described in (Furey et al., 2000)—have used the absolute value

∣∣∣ri
∣∣∣, whereas

others—as the one described in (Pavlidis et al., 2001)—have used the coefficient:

ri =

(
µi(pa) − µi(na)

)2
(σi(pa) + σi(na))2 (2.68)

An important drawback characterizing all those kinds of feature ranking methods
based on correlation coefficients, however, rely on the implicit orthogonality as-
sumptions that they make. In fact, each correlation coefficient ri is computed by
using only the informations on that single feature, thus without taking into account
the mutual informations between features. This is, of course, one major problem,
since features are typically correlated.

In order to overcome that problem, it is necessary to work with multivariate
learning machines, namely learning machines which are optimized during the
training phase to handle multiple features simultaneously. SVM—for example—
is a typical multivariate learning machine. In the context of multivariate learning
machines, however, features are no more ranked according to simple coefficients
as the ones described above, but rather according to their influence on the change
of a cost function J. Here J is the function that the learning machine has to
minimize in order to solve the classification problem, see (Kohavi & John, 1997).
In the specific case of linear separable SVM, for example, the cost function J
which has to be minimized—under the conditions represented by Eq. 2.35—is:

J =
1
2
‖w‖2 (2.69)
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The main idea behind this technique is thus to compute the changes ∆Ji in the
cost function caused by removing each feature i = 1, . . . , n and then to rank all
the features accordingly. In particular, the smaller the change ∆Ji in the cost
function is, the lower the contribution of the feature i to the learning machine
predictive accuracy is. On the other hand, the larger the change ∆Ji is, the higher
its contribution is.

In order to calculate those changes in the cost function of linear discriminant
learning machines, (LeCun et al., 1990) suggests for example to approximate ∆Ji

by expanding it in Taylor series to the second order. At the optimum of J, the first
order term can be therefore discarded, thus obtaining:

∆Ji ≈
1
2
∂2J
∂(wi)2 (∆wi)2 (2.70)

where w = (w1, . . . , wn) is the n–dimensional vector of weights and the change
in weight ∆wi = wi corresponds to the removal of the feature i. This method—
also known as Optimum Brain Damage (OBD)—thus suggests that for linear dis-
criminant learning machines whose cost function J is a quadratic function of the
weights wi—such as linear SVM—features can be simply ranked according to the
value (wi)2.

2.3.2 Recursive elimination of ranked features
The criterion discussed in Eq. 2.70—and more in general the use of the change
∆Ji in the cost function as ranking criterion—are actually concerned with the
removal of one single feature at a time. However, in order to obtain a small subset
of relevant features—in particular when starting with a huge number of them—it
may be necessary to remove more that one feature at a time. This problem can
be overcome by using the following very general iterative procedure, known as
Recursive Feature Elimination (RFE):

1. Train the learning machine, namely optimize its weights wi by minimizing
the cost function J

2. Compute the ranking criterion ∆Ji for each feature i

3. Remove a subset of features characterized by the smallest ranking values
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It is evident that—with this approach—it is possible to quickly converge at a small
subset of relevant features by removing chunks of features each time and by re–
training the learning machine after each elimination. Notice that, in order to find
the best trade off between efficiency and preservation of classification accuracy, it
may be convenient to remove larger subsets of features during the first steps of the
iterative procedure, then recursively decreasing the dimensions of those chunks
down to one feature at a time for the last steps.

It is well worth noticing that if features are removed one at a time, there is
also a corresponding feature ranking. However, when removing chunks of fea-
tures, those that are top ranked—namely eliminated last—are not necessarily the
ones that are individually most relevant. Only taken together as a subset they are
optimal.

2.3.3 SVM–RFE
The method of recursively eliminating features on the basis of the smallest change
in cost function described above can be used in principle with every multivariate
learning machine. In particular, it can be used with linear SVM, by using the
OBD approximation previously sketched. However, it can be also extended to
non–linear SVM and to all kernel methods in general.

As already discussed, in fact, the cost function that non–linear SVM has to
minimize under specific conditions is:

J =
1
2
αT Hα − αT1 (2.71)

where H is the matrix with elements yiy jK(xi, x j) and 1 is an l–dimensional vector
of ones. In order to compute the change in the cost function by removing the
feature i, one has to compute the matrix H(−i), where the notation (−i) means that
the feature i has been removed. The variation in the cost function J is thus:

∆Ji =
1
2
αT Hα −

1
2
αT H(−i)α (2.72)

where no change in the value of α has been assumed. The feature—or chunk
of features—corresponding to the smallest ∆Ji is then removed, SVM is trained
once again with the new smaller set of features. The procedure can thus be iterated
feature after feature—or chunk after chunk—until a reasonable small number of
features survives or the performances of the classifier start degrading.
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Notice that, in the linear case, calculating the change in the cost function is
particularly straightforward. In fact, being:

K(xi, x j) = xi · x j (2.73)

and:

αT Hα = ‖w‖2 (2.74)

then from Eq. 2.72 it results that:

∆Ji =
1
2

(wi)2 (2.75)

This is exactly the results obtained in Eq.2.70 by the OBD method for the specific
case of linear SVM.
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Chapter 3
Image Representation

In this Chapter, an introduction to digital imaging—together with a detailed dis-
cussion of some advanced imaging techniques—will be given. The idea is to pro-
vide the reader with a clearer picture of the approaches that will be adopted in
this work. Specifically, with those adopted in order to find the crop’s image rep-
resentation which supplies the best classification performance. It is well worth
reminding, in fact, that the novel technique pursued in the experimental part of
this work consists of classifying the entire pixels of each mammographic crop—
or at least a transformed version of them—thus without extracting any a priori
information. In this sense, the classification features used here are different ac-
cording to the image representation chosen for the crop, as for example a raw
pixel–based representation or a transformed one. To this aim, Section 3.1 will
introduce some very basic aspects of digital image representation and enhance-
ment related to the pixel–based image representation of an image. Section 3.2
will deal with one of the most famous image processing techniques of the last
decades—namely the wavelet transform—which has in its multi–resolution nature
a powerful tool. In Section 3.3, a different multi–resolution technique—providing
also a very high orientation selectivity—will be discussed, namely steerable fil-
ters. Finally, in Section 3.4, a new born rank–based technique—introduced for
the first time in 2002 for face detection problems—will be discussed. This very
promising technique—never been applied to imaging problems different from face
detection, such as for instance medical imaging—is known as ranklet transform.
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3.1 Digital Image Representation Using Pixels
In this Section, a brief overview of the fundamental aspects of digital image rep-
resentation by means of pixels will be first given. Some considerations about well
known image processing techniques such as image resizing and histogram equal-
ization will be then drawn. Notice, in particular, that this does not want to be a
complete survey of digital imaging, but rather an overview of the specific tech-
niques that will be used in the rest of this work. (Gonzalez & Woods, 1992) will
be mainly followed.

3.1.1 Basic concepts
Images can be thought of as two–dimensional functions f (x, y), whose value or
intensity at spatial coordinates (x, y) is a positive scalar quantity proportional to
the energy radiated by its physical source. In particular, f (x, y) must be non–
zero and finite. Monochromatic images are those images whose values are said to
span the gray scale. Specifically, the intensity of a monochromatic image at any
coordinates (x, y) is referred to as the gray level of the image at that point, namely:

f (x, y) = l (3.1)

Being f (x, y) non–zero and finite, it turns out that the gray level l must lie in the
interval [Lmin, Lmax], also known as the gray scale:

Lmin ≤ l ≤ Lmax (3.2)

Typically, this interval is shifted to the interval [0, L−1], where l = 0 is considered
black and l = L − 1 is considered white on the gray scale. Intermediate values
represent all the shades of gray varying from black to white.

Images originally come as continuous functions of both coordinates and in-
tensity. In order to digitize them, they have to be sampled in both coordinates and
intensity. The former operation is usually referred to as sampling, whereas the
latter as quantization. In particular, in order to sample an image, equally samples
along both x and y axis must be taken. The set of the discrete locations thus ob-
tained represents the sampled function. Notice that sampling is determined by the
sensor arrangement used to generate the image. On the other hand, in order to
quantize an image, its intensity values must be converted into digital quantities.
This means that the gray scale must be divided into a finite number of gray–levels,
then each sampled discrete location is assigned a gray level according to its mean
intensity value.
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−→



75 97 . . . 0
75 81 . . . 0
87 81 . . . 0
...

...
...

...
147 171 . . . 237
152 205 . . . 237
152 225 . . . 232


Figure 3.1: A 256 × 256 pixels picture of R. Feynman (left). Some elements of

its matrix notation (right).

Sampling and quantization allow to represent digital images as matrices. This
is fundamental, since matrix notation forms the basis of the mathematical frame-
work describing the image processing theory. In particular, an M × N matrix can
be expressed in the following compact form:

f (x, y) =


f (0, 0) f (0, 1) . . . f (0,N − 1)
f (1, 0) f (1, 1) . . . f (0,N − 1)

...
...

...
f (M − 2, 0) f (M − 2, 1) . . . f (M − 2,N − 1)
f (M − 1, 0) f (M − 1, 1) . . . f (M − 1,N − 1)


(3.3)

In such a context, the right side of Eq. 3.3 is by definition a digital image, whereas
each one of its elements is called picture element or—more conventionally—pixel.
Fig. 3.1 shows an image and some elements of its matrix notation.

Sampling is the most important factor determining the spatial resolution of an
image, namely the smallest discernible spatial detail in an image. On the other
hand, quantization determines the gray–level resolution of an image, namely the
smallest discernible change in gray level. Notice that, in choosing the number of
samples used to generate the digital image, a considerable discretion there exists.
Contrarily, due to hardware considerations, the number of gray levels is usually
an integer power of 2. A typical number of gray levels is 8 bits, or at least 16 bits
for specific applications requiring high gray–level resolution. In such a context,
a digital image with L gray levels and size M × N is commonly referred to as a
digital image having spatial resolution of M × N pixels and gray–level resolution
of L levels.
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3.1.2 Image resizing
Image resizing is a technique which allows to manipulate images by changing
their size. It is mainly based on two separate steps. First, on the creation of new
pixel locations, by laying a new imaginary grid of pixels over the original im-
age. Second, on the assignment of gray levels to the new locations. The fastest
way to perform the gray levels assignment is the nearest neighbor—or linear—
interpolation. In practice, each new pixel in the grid is assigned the gray level of
the closest pixel in the original image. This approach has however the undesirable
characteristic of producing a checkerboard effect in the resized image. In order to
overcome this problem, bi–linear interpolation can be used, namely a more elab-
orated technique producing less evident artifacts than those of linear interpolation.
In particular, it uses the four nearest neighbors of the new pixel in the grid to de-
termine its gray level. Suppose for example that (x, y) represent the coordinates of
a point on the imaginary grid previously introduced and let v(x, y) denote the gray
level assigned to it. Bi–linear interpolation assigns the gray level in the following
way:

v(x, y) = ax + by + cxy + d (3.4)

Here the four coefficients a, b, c, d are determined from the four equations in four
unknowns that can be written using the four nearest neighbors of point (x, y).

Fig. 3.2 shows the effects of image resizing on the same R. Feynman’s pic-
ture previously depicted in Fig. 3.1. In particular, left column shows the original
256 × 256 pixels image resized by means of linear interpolation to 64 × 64 and
32 × 32 pixels. Although images b) and c) show the different dimensional pro-
portions with respect to the original image a), they do not give information about
the effects on the image quality resulting after the resizing step. To this aim, it
is necessary to bring the resized images up to the original 256 × 256 pixels size
by pixel replication. This means that, for example, in order to double the size
of an image each column is duplicated—thus doubling the horizontal direction—
then each row. The same procedure is used in order to enlarge the image by any
integer number of times, such as triple, quadruple and so forth. For example,
middle and right columns in Fig. 3.2 show the original 256× 256 pixels image re-
sized by means of—respectively—linear and bi–linear interpolation to 64×64 and
32 × 32 pixels, then rearranged by means of pixel replication. The improvements
in overall appearance are evident in the former case, in particular when comparing
images e) and h).
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256

a) d) g)

64

b)

e) h)

32
c)

f) i)

Figure 3.2: Image resizing from 256×256 down to 64×64 and 32×32. Left col-
umn: linear interpolation. Middle column: linear interpolation plus
pixel replication. Right column: bi–linear interpolation plus pixel
replication.
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3.1.3 Image histogram equalization
The histogram of an image with gray levels in the range [0, L − 1] is a discrete
function h(rk) = nk, where rk is the kth gray level and nk is the number of pixels
in the image having gray level rk. It is possible to notice that in a dark image
the components of the histogram are concentrated in the low—dark—side of the
gray scale. On the other hand, in a bright image those components are biased
toward the high—bright—side of the gray scale. See, as an example, images
and corresponding histograms of the first two rows in Fig. 3.3. It is possible
to notice also that an image with a low contrast has a histogram both narrow
and concentrated toward the middle of the gray scale. Conversely, in an image
with a high contrast the components of the histogram cover a broad range of the
gray scale and the distribution of the pixels is approximately uniform. See, as an
example, images and corresponding histograms of the last two rows in Fig. 3.3.

The above observations suggest that when dealing with an image whose pix-
els tend to occupy the entire range of possible gray levels and to be distributed
uniformly, it is reasonable to conclude that it will have an appearance of high con-
trast and will exhibit a large variety of gray tones. The net effect will be an image
showing a great deal of gray–level detail and having a high dynamic range. For
these reasons—and since the advantages of having gray–level values that cover
the entire gray scale are evident from Fig. 3.3—a transformation function that can
automatically achieve this effect has been developed.

In order to spread the histogram of the input image so that the levels of the
histogram–equalized image span a fuller range of gray scale, it can be demon-
strated that the following transform must be applied:

sk =

k∑
j=0

n j

n
k = 0, 1, 2, . . . , L − 1 (3.5)

where n is the total number of pixels in the image under consideration. The trans-
formed image is thus obtained by mapping each pixel with level rk in the input
image into a corresponding pixel with level sk in the output image via Eq. 3.5.
This transform is usually referred to as histogram equalization. Notice that the
method just derived is completely automatic, namely given an image the process
of histogram equalization consists simply of implementing Eq. 3.5 which is based
on information that can be extracted directly from the given image, thus without
any further parameter specifications. For more details on this topic see (Gonzalez
& Woods, 1992; Castleman, 1996).
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Figure 3.3: Dark image (first row). Bright image (second row). Low–contrast
image (third row). High–contrast image (fourth row).
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3.2 Wavelets

Although the Fourier transform has been the mainstay of transform–based im-
age processing since the late 1950s, the theory and applications of a more recent
transformation—known as wavelet transform—have undoubtedly dominated the
scientific publications in mathematical, engineering and related fields throughout
the last decades. In particular, the success of the wavelet transform in the image
processing community is mainly due to its efficiency and effectiveness in dealing
with almost the totality of the most important image processing tasks, such as for
example image analysis, compression, de–noising and so on.

The main difference between those two transformations relies on how they
represent the signals under analysis. The Fourier transform, in fact, expresses sig-
nals as a weighted sum of basic trigonometric functions, namely sinusoids. How-
ever, this representation has one major drawback. Sinusoids have perfect compact
support in frequency domain, but not in time domain. In particular, they stretch
out to infinity in time domain and therefore they cannot be used to approximate
non–stationary signals, namely those signals whose spectral content changes in
time. In this sense, the Fourier representation only provides the spectral content
of the signal, with no indication about the time localization of its spectral com-
ponents. Unfortunately, non–stationary features as drift, trends, abrupt changes
and so forth are present in almost all images, other than being generally the most
important features to characterize an image.

In order to overcome this problem, the wavelet transform uses compactly sup-
ported functions of limited duration in time and frequency. This allows the wavelet
transform to provide informations about both when and at what frequencies a spe-
cific event occurs. In particular, the precision for this information is limited by
the compact support of the wavelet functions used as basis. Other than the above
discussed capability of localize an event in both time and frequency, wavelets
are so popular also because they represent the foundation of a powerful approach
to signal processing called multi–resolution theory. This approach unifies differ-
ent techniques from various research fields, such as sub–band coding from signal
processing, quadrature mirror filters from digital speech recognition and pyrami-
dal image processing. In particular, the importance of this approach is concerned
with the possibility to analyze signals and images at different scales, thus allowing
to search for specific features at a specific resolution, namely from the finest to the
coarsest ones. This is also much more appreciable if considered that this approach
is easily and quickly implementable as a bank of digital filters.
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In the following, a description of the wavelet transform will be given. First, a
very brief overview of the historical genesis and development of wavelet theory
will be sketched. Second, the wavelet transform will be introduced in its filter
banks formulation for both the mono–dimensional and the bi–dimensional case.
Finally, the specific case of the Haar wavelet transform will be discussed in detail.
In particular, both the mono–dimensional and the bi–dimensional cases will be
described, together with its overcomplete formulation.

3.2.1 Historical perspective

Although the wavelet transform is quite a recently developed approach—and the
interest of the image processing community on this topic started only in the late
1980s—it is very difficult to keep up with the number of publications, theses and
books devoted to this subject and to its variegate applications. However it is worth
trying to individuate the works that most influenced its development.

The first wavelet basis functions were discovered by A. Haar, who introduced
in 1910 the functions that are now called Haar wavelets. These functions consist
simply of a short positive pulse followed by a short negative pulse, as discussed
in (Haar, 1910).

For many, however, the real starting point of the modern history of wavelets
coincides with the investigations conducted by J. Morlet and A. Grossman on the
analysis of seismic signals by means of small and oscillatory window functions
with compact support both in time and in frequency. In particular, in (Grossmann
& Morlet, 1984) they discussed the development of such functions and associated
to them the term wavelets. From the results obtained by J. Morlet and A. Gross-
man, Y. Meyer started later developing wavelets with better localization proper-
ties. In particular, in (Meyer, 1987) he described the construction of orthogonal
wavelet basis functions with very good time and frequency localization.

The transition from continuous to discrete signal analysis was mainly due to
I. Daubechies—a graduate student of A. Grossman—and S. Mallat who published
in the late 1980s two fundamental papers establishing a solid mathematical footing
for wavelet theory. In particular, I. Daubechies developed in (Daubechies, 1988)
the mathematical framework for discretization of time and scale parameters of
the wavelet transform. On the other hand, after one year S. Mallat discussed in
(Mallat, 1989) the idea of multi–resolution analysis for discrete wavelet transform
which turned out to be the corner stone of modern wavelet theory.
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The last years have seen an increasing comprehension and development of the
theoretical aspects underlying the wavelet mathematical framework, together with
an explosion of wavelet applications in both signal and image processing. In par-
ticular, from a more theoretical point of view, the last decades have assisted to
a repeated search for other wavelet basis functions with different properties and
modifications of the multi–resolution algorithms. On the other hand, from a more
experimental point of view, they have assisted a large number of wavelet appli-
cations coming up, such as image and signal analysis, compression, de–noising,
feature and self–similarity detection and much more. Interestingly, all those appli-
cations span over several different research fields such as mathematics, physics,
economics, seismology, medical imaging, computer graphics, neurophysiology
and so on.

3.2.2 Wavelets as filter banks

As already anticipated, wavelet theory unifies several research fields, such as sub–
band coding, quadrature mirror filters and image pyramids. This variety allows to
approach wavelet theory from different directions, in particular following a pure
mathematical path or walking along a more applicative way based on filter banks.

The former approach is generally more suited to appreciate the deep theoreti-
cal aspects underlying this transform and to recognize the efforts made in the years
in order to put in a rigorous mathematical form such an applicative technique.
In particular, this approach results really appropriate in order to understand how
the transition from the original continuous wavelet transform to its discretized
version—namely discrete wavelet transform—has been carried out, thus giving
the concrete opportunity to apply wavelet analysis to the solution of real–world
problems.

On the other hand, the applicative approach is definitely more suited when
dealing with wavelet applications in signal an image processing, as for the present
work. In fact, following the filter–based approach, the mathematical footing of
the wavelet transform can be almost by–passed, thus directly introducing the op-
erative definition of discrete wavelet transform as a bank of digital filters. This
approach is particularly appropriate in order to deal with the most important char-
acteristic of the wavelet transform, namely its multi–resolution implementation.
The multi–resolution wavelet transform, in fact, can be easily implemented by
means of a set of recursive nested filter banks, as it will be discussed in the fol-
lowing.
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Figure 3.4: Discrete wavelet analysis and synthesis in one dimension.

Typical pure mathematical approaches to wavelet theory are adopted for ex-
ample in (Daubechies, 1992; Meyer, 1992; Vidakovic, 1996; Mallat, 1998). On
the other hand, more applicative paths are followed for example by (Strang &
Nguyen, 1996; Hubbard, 1996; Stollnitz et al., 1996; Aldroubi & Unser, 1996).

Discrete wavelet transform in one dimension

The Discrete Wavelet Transform (DWT) in one dimension represents the first topic
to discuss in order to have an introductory idea of the wavelet transform. In partic-
ular, given a one–dimensional discrete–time signal p = (p1, . . . , pN), its discrete
wavelet transform—or wavelet analysis—is formed through the decomposition of
p into the signals a and d via analysis filters H0 and L0, as shown in Fig. 3.4. Here
H0 is a high–pass filter whose output signal d represents the high frequency or
detail part of the original signal p. On the other hand, filter L0 is a low–pass filter
whose output signal a represents the low frequency or approximation part of the
original signal p. Typically, the samples of the approximation a and detail d are
referred to as wavelet coefficients. All filtering is performed in the time domain
by convolving each filter’s input with its impulse response l0 and h0, namely its
response to a unit amplitude impulse function. Furthermore, in order not to wind
up with twice as much data as started, sub–sampling units are introduced at the
output of each filter. Throwing away every second data point, in fact, they allow
to end up with the same number of samples as for the original signal, even though
this introduces in the wavelet coefficients a type of error named aliasing. For more
informations on aliasing see (Strang & Nguyen, 1996).
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composition levels).

The process of assembling back the approximation a and the detail d is called
Inverse Discrete Wavelet Transform (IDWT) or wavelet synthesis. Here wavelet
coefficients are first processed by means of up–sampling units which lengthen
their input signals by inserting zeros between samples. This step is crucial in or-
der to reconstruct a signal with the same number of samples as the original one.
Subsequent recombination of the up–sampled signals via synthesis filters H̃0 and
L̃0 then yields the output signal p̃. In particular, it can be demonstrated that filters
H0, L0, H̃0 and L̃0 can be designed in such a way that the aliasing effects intro-
duced during the analysis phase cancel out and that no distortion is introduced. In
this way, it is possible to perfectly reconstruct the original signal, namely p = p̃.
The first set of filters satisfying these constraints were proposed by (Croisier et al.,
1976) and the resulting filter bank was called Quadrature Mirror Filters (QMF).
Later on, several families of filters were introduced, such as for example Conju-
gate Quadrature Filters (CQF), Orthonormal Filters (OF) and so on. An example
of CQF is given in (Smith & Barnwell, 1986), whereas examples of OF include
the Daubechies filters introduced in (Daubechies, 1988) and the Smith and Barn-
well filters introduced in (Smith & Barnwell, 1984). Notice, finally, that it can be
demonstrated that the convolution of a discrete signal with the impulse response
of a digital filter can be easily expressed in terms of matrix products. In particu-
lar, with such a choice of filters, the synthesis matrices result being the transposes
of the analysis matrices, namely the wavelet transform is self–inverting. This is
clearly a very appreciable property.

70



3.2 — Wavelets

~

a2

d
Detail

2

d
Detail

1

Approximation
a1

L 0

H00

0L

H
~

~

L 0

H00

0L

H
~

~

2

2

2

2

p

Approximation

Figure 3.6: Multi–resolution inverse discrete wavelet transform in one dimension
(2 decomposition levels).

Multi–resolution discrete wavelet transform in one dimension

As anticipated, the multi–resolution version of the discrete wavelet transform—
namely multi–resolution discrete wavelet transform—can be implemented by sim-
ply iterating the analysis filter bank shown in Fig. 3.4. This allows to create a
multi–level structure which enables for computing the wavelet transform at suc-
cessive resolutions, namely from the finest to the coarsest ones. Fig. 3.5, for ex-
ample, shows a two–level implementation of the multi–resolution discrete wavelet
transform. In particular, the first filter bank splits the original signal into a first–
level detail component d1 and into a first–level approximation component a1. The
second filter bank, then, splits the first–level approximation component a1 into a
second–level detail component d2 and into a second–level approximation compo-
nent a2.

Similarly to the single–resolution case, an inverse transform for the recon-
struction of the original signal can be formulated, see Fig. 3.6. In the specific
case of a two–level decomposition, it uses first the second–level approximation
a2 and detail d2 to reconstruct the first–level approximation a1. The signal is
then reconstructed by using the first–level approximation a1 and detail d1. As
one might expect, perfect reconstruction can be achieved by using a set of filters
which satisfy the constraints discussed above, namely requiring that the aliasing
effects introduced during the analysis phase cancel out and that no distortion is
introduced.
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It is evident that the two–level implementation discussed here can be easily
extended to any number L of decomposition levels, or at least until the approxima-
tion and detail components produced by the analysis consist of a single sample. In
particular, in the general case, the discrete wavelet transform of the original signal
p is comprised of a concatenation of the signals [aL, dL, dL−1, . . . , d2, d1], namely
a concatenation of the approximation component correspondent to the last decom-
position level and all the detail components at all levels. Remarkably, the number
of samples of the analyzed signal is equal to that of the original signal. Notice, in
particular, that this is due to the analysis at each level of a sub–sampled version of
the approximation component of the precedent level. The sub–sampling operator,
in fact, reduces the number of samples in the approximation component by half
level after level. Notice, furthermore, that this strategy is fundamental in order to
achieve multi–resolution. Following this way, in fact, at each level the wavelet
decomposition is performed on an approximation component whose number of
samples—namely resolution—is exactly half that of the precedent approximation
component.

Discrete wavelet transform in two dimensions

The one–dimensional filters discussed above can be used as two–dimensional sep-
arable filters for the processing of images. The idea behind this bi–dimensional
approach is to analyze an image p = p1, . . . , pN—where pj = (px

j , pyj) for all
j = 1, . . . ,N—by first applying the filters along one dimension—for example hor-
izontally, namely along rows—then along the other dimension—thus vertically,
namely along columns—as shown in Fig. 3.7. Notice that here the sub–sampling
operation is performed twice, namely after each filtering operation. The result-
ing filtered images—denoted as a, dV, dH, dD—are respectively referred to as the
approximation, vertical detail, horizontal detail and diagonal detail of the original
image. In particular, the approximation gives global informations about the image
under analysis, whereas the details measure its intensity variations along different
directions. For example, the horizontal detail dH measures variations along the
columns of the image—as for example horizontal edges—the vertical detail dV

along the rows—as for example vertical edges—whereas the diagonal detail dD

along diagonals.
Fig. 3.8 shows the synthesis filter bank reversing the analysis process in two

dimensions. As would be expected, the reconstruction algorithm is similar to the
one–dimensional case.
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Figure 3.9: Multi–resolution discrete wavelet transform in two dimensions (2 de-
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first decomposition level (middle). Analyzed image after the second
decomposition level (right).

Multi–resolution discrete wavelet transform in two dimensions

As for the mono–dimensional case, the transform can be performed at successive
resolutions by simply iteratively applying the analysis filter banks described above
to the approximations obtained at each level. In this way, the bi–dimensional
wavelet transform of the original image p is given by a concatenation of the im-
ages
[
aL, dV,H,D

L , dV,H,D
L−1 , . . . , dV,H,D

2 , dV,H,D
1

]
, namely the concatenation of the approxi-

mation component correspondent to the last decomposition level and all the detail
components at all the levels. The schematic result of a bi–dimensional wavelet
decomposition is shown in Fig. 3.9.

Notice that—due to the sub–sampling operators—also for the multi–resolution
discrete wavelet transform in two dimensions the number of pixels of the analyzed
image is equal to that of the original one. The inverse transform can be obtained
by tying several filter banks as the one shown in Fig. 3.8. Furthermore, it can be
demonstrated that—expressing all the procedure in matrix language—the synthe-
sis matrices result being the transposes of the analysis matrices, namely also the
bi–dimensional wavelet transform is self–inverting.

3.2.3 Haar wavelet transform

The importance of the Haar wavelet transform stems from the fact that its basis
functions are the oldest and simplest known orthonormal wavelets, see (Haar,
1910). Furthermore, it will be intensively used in the rest of this work.
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DWT
−→

Figure 3.10: A two–level discrete Haar wavelet transform in two dimensions ap-
plied to a fingerprint image.

Multi–resolution discrete Haar wavelet transform

The multi–resolution discrete Haar wavelet transform is performed by following
exactly the same considerations drawn for the general multi–resolution discrete
wavelet transform—both in one and two dimensions—but with the following spe-
cific choice for l0 and h0, namely the impulse responses of filters L0 and H0:

l0 =

[
+

1
√

2
,+

1
√

2

]
(3.6)

h0 =

[
+

1
√

2
,−

1
√

2

]
(3.7)

All filtering is thus performed by convolving the input signal—or image—with
the impulse responses just described. In particular, in order to perform the multi–
resolution discrete Haar wavelet transform in one dimension, the scheme de-
scribed in Fig. 3.5 will be followed, whereas in order to perform the multi–
resolution discrete Haar wavelet transform in two dimensions, that in Fig. 3.7.

As an example, Fig. 3.10 shows a one–level discrete Haar wavelet transform
in two dimensions of a fingerprint image. It is evident here that details account for
different structures of the image, namely horizontal, vertical and diagonal ridges.
Notice, furthermore, that the original image size is 296 × 296 pixels, whereas the
size of the approximation and details at first level is the half, namely 148 × 148
pixels. For this reason the transformed image has exactly the same size of the
original one.
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Before going on with the overcomplete case, it is important to stress an im-
portant feature of the multi–resolution discrete Haar wavelet transform, which
will be very useful when dealing with ranklets. As anticipated in the introductory
part of Section 3.2, a more purely mathematical approach considers the wavelet
transform as a weighted sum of compactly supported functions—also referred to
as wavelet basis functions—of limited duration in time and frequency. The re-
lationship between this more purely mathematical approach and the filter–based
approach discussed here is—very broadly—that the weights of the sum can be
thought of as the wavelet coefficients found by the analysis through the filter bank,
whereas the wavelet basis functions as a continuous version of the digital filters.
For a more rigorous approach, see (Mallat, 1989; Stollnitz et al., 1996).

In such a context, the wavelet basis functions of the Haar transform are quite
simple. In the one–dimensional case, they are two piecewise–constant functions:

φ(x) =
{
+ 1
√

2
0 ≤ x < 1

0 otherwise
ψ(x) =


+ 1
√

2
0 ≤ x < 1/2

− 1
√

2
1/2 ≤ x < 1

0 otherwise
(3.8)

In the two–dimensional case, they are the four tensor products of one–dimensional
wavelet basis functions, namely:

φφ(x, y) = φ(x)φ(y) Approximation (3.9)
φψ(x, y) = φ(x)ψ(y) Horizontal detail (3.10)
ψφ(x, y) = ψ(x)φ(y) Vertical detail (3.11)
ψψ(x, y) = ψ(x)ψ(y) Diagonal detail (3.12)

A pictorial representation of the two–dimensional Haar wavelet basis functions—
also referred to as Haar wavelet supports—is given in Fig. 3.19.

Multi–resolution overcomplete Haar wavelet transform

The overcomplete wavelet transform (OWT) removes the sub–sampling opera-
tion from the traditional discrete wavelet transform in order to produce a re-
dundant representation. Over the years, several appellations has been given to
it, including un–decimated discrete wavelet transform, stationary wavelet trans-
form and à trous algorithm. In particular, the multi–resolution overcomplete
Haar wavelet transform is an overcomplete wavelet transform which performs the
wavelet analysis by using the Haar filters described in Eq. 3.6 and Eq. 3.7.
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Figure 3.11: A two–level overcomplete Haar wavelet transform in two dimen-
sions applied to the same fingerprint image analyzed in Fig. 3.10.

This transform has two fundamental properties. First, since no sub–sampling
is applied, the number of samples in the transformed signal—or image—is much
higher than that of the original one, namely it is redundant. Second, the trans-
formed signal—or image—is aliasing–free.

As an example, Fig. 3.11 shows a one–level overcomplete Haar wavelet trans-
form in two dimensions of the same fingerprint image analyzed in Fig. 3.10. As
for the multi–resolution discrete Haar wavelet transform, details account differ-
ently for horizontal, vertical and diagonal ridges. On the other hand, differently
from the multi–resolution discrete Haar wavelet transform, the size of the approx-
imation and details at first level is equal to that of the original image, namely
296 × 296 pixels. This gives an idea of the high redundancy of this approach.
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3.3 Steerable Filters

Steerable filters belong to a family of recursive multi–resolution transforms—such
as wavelets—which in the last decades proved to be particularly useful in a wide
variety of image processing applications. The first works describing the theory
and implementations of this transform date back to the 1990s, as for example
(Freeman & Adelson, 1991; Simoncelli et al., 1992; Freeman, 1992; Simoncelli
& Freeman, 1995; Karasaridis & Simoncelli, 1996). In the following years, a lot of
publications came along dealing with several advanced applications of steerable
filters to image processing, such as orientation analysis, noise removal, image
enhancement, transient detection. However, out of the multitude of such works,
those which probably deserve a specific mention are (Simoncelli & Farid, 1996;
Simoncelli & Adelson, 1996; Simoncelli & Portilla, 1998; Portilla & Simoncelli,
2000; Portilla et al., 2003; Jacob & Unser, 2004).

Going into detail of such a technique, the steerable approach consists of a lin-
ear transform in which an image is decomposed into a collection of different sub–
bands localized both in resolution and orientation. The basis filters used for this
transform are directional derivative operators that come in different resolutions
and orientations. By changing the derivative order, the number of orientations may
be adjusted, for example first derivatives yield two orientations, whereas second
derivatives yield three orientations and so forth. In particular, the term steerable
refers to the possibility of synthesizing those filters at arbitrary orientations.

The analogies between the steerable and the wavelet transform are several.
First, the steerable transform is computed recursively using convolution and sub–
sampling operations exactly as for the wavelet transform. Second, the multi–
resolution scheme enabling to compute the two transforms at different resolutions
is analogous. Third, as for the wavelet transform, the steerable transform is self–
inverting, namely the matrix corresponding to the inverse transform is equal to the
transpose of the forward transform matrix. However, also important differences
there exist. The steerable representation of an image is translation–invariant,
namely the sub–bands are aliasing–free or equivariant with respect to transla-
tion. It is also rotation–invariant, in other words the sub–bands are steerable or
equivariant with respect to rotation. This proves to be very useful in applications
requiring that the position or orientation of the image structure is encoded in the
transformed image. At the same time, this represents also the primary drawback
for steerable representation, since in that way the representation is overcomplete
by a factor of 4k

3 , where k is the number of orientation bands.
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In the following, steerable filters will be carefully examined by walking mainly
along the road traced by (Freeman & Adelson, 1991). In particular, a very ex-
planatory example will be first given in order to get some familiarity with the
steerable philosophy. Second, some theoretical results concerning the condi-
tions for the steerability of continuous functions will be introduced, together with
their extension to discretely sampled functions. Third, the recursive application
of the steerable transform at different resolutions—namely the so–called multi–
resolution steerable pyramid—will be discussed. Finally, a very interesting and
useful family of asymmetric and steerable filters—known as wedge filters—will
be described.

3.3.1 An introductory example
A circularly symmetric Gaussian function with scaling and normalization con-
stants set to one can be written in Cartesian coordinates in the following way:

G(x, y) = e−(x2+y2) (3.13)

Let Gn be the nth derivative of a Gaussian along the x axis and θ the rotation
operator, such that for any function f (x, y), f (x, y)θ represents the function f (x, y)
rotated through an angle θ about the origin. With this in mind, the first derivative
of a Gaussian along the x axis is:

G0
1 =

∂

∂x
e−(x2+y2) = −2xe−(x2+y2) (3.14)

and its π–rotated version is:

Gπ
1 =

∂

∂y
e−(x2+y2) = −2ye−(x2+y2) (3.15)

Now, it can be easily demonstrated that a Gaussian Gθ
1 at an arbitrary orientation

θ can be expressed as a linear combination of G0
1 and Gπ

1, namely:

Gθ
1 = cos(θ)G0

1 + sin(θ)Gπ
1 (3.16)

In such a framework, G0
1 and Gπ

1 are called the basis filters for Gθ
1, whereas cos(θ)

and sin(θ) are known as the corresponding interpolation functions for those basis
filters. In particular, the derivative of Gaussian filters discussed above offer a very
simple idea of steerability, since they can be synthesized at arbitrary orientations
by means of a linear combination of the basis filters, see Fig. 3.12.
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Figure 3.12: First derivatives of Gaussians at different orientations. The first
derivative G0

1 of a Gaussian along the x axis is represented on the
left. Its π–rotated version Gπ

1 is represented on the middle. Formed
by a linear combination of the above linear filters, G2π/3

1 is repre-
sented on the right. Figure borrowed from (Freeman & Adelson,
1991).

3.3.2 Steerability
A lot of work has been done in order to find the theoretical conditions under which
a function f (x, y) steers, in other words it can be expressed as a linear combination
of rotated version of itself:

f θ(x, y) =
M∑
j=1

k j(θ) f θ j(x, y) (3.17)

In both (Freeman & Adelson, 1991; Simoncelli et al., 1992) a complete frame-
work of theorems and proofs dealing with that aspect is given. In particular, two
situations are considered, namely the case in which the function f can be ex-
panded in a Fourier series in polar angle φ and that in which it can be expressed
as polynomials in Cartesian coordinates x and y.

Suppose for instance that a function f which can be expanded in a Fourier
series in polar angle φ is given:

f (r, φ) =
+N∑

n=−N

an(r)einφ (3.18)

Suppose also that it has a finite number T of frequencies −N ≤ n ≤ +N for which
f (r, φ) has non–zero coefficients an(r), namely it is a band–limited function in
angular frequency. For example, the function cos(φ) = e+iφ+e−iφ

2 has T = 2. Under
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such conditions, it can be demonstrated that the function f (r, φ) can be steered in
the following way:

f θ(r, φ) =
M∑
j=1

k j(θ)g j(r, φ) (3.19)

where g j(r, φ) can be any set of functions. In particular, it can also be demonstrated
that the minimum number of basis functions required to steer f θ(r, φ) is exactly T .

Similar conditions are valid also for functions f which can be expressed as
polynomials in Cartesian coordinates x and y. Specifically, suppose that the func-
tion f can be written as:

f (x, y) = W(r)PN(x, y) (3.20)

where W(r) is an arbitrary windowing function and PN(x, y) is an N th order poly-
nomial in x and y. Then, it can be demonstrated that f (x, y) can be synthesized at
any orientation by linear combinations of 2N+1 basis functions. Notice, however,
that differently from the former situation, here the number of basis functions rep-
resents the number of sufficient basis functions needed to steer f (x, y), not their
minimum number.

Those results are quite interesting, since they state that steerability is a prop-
erty common to a wide variety of functions, namely to all functions which can be
written as Fourier series in polar angle φ or as a product of an arbitrary window-
ing function and a N th order polynomial in x and y. In particular, the derivatives
of a Gaussian function discussed in Section 3.3.1 are all steerable, since they are
obtained by means of the product of a radially symmetric window function and a
polynomial in x and y.

In designing steerable filters useful for image processing purposes, however, it
is necessary to fulfill some further requirements. First, when dealing with motion,
texture and orientation analysis, it may be helpful to synthesize filters of a given
frequency response with arbitrary phase. This allows to analyze spectral strength
independently of phase. In order to achieve that, it is necessary to express func-
tions f as a linear combination of steerable quadrature pair of filters, namely pair
of filters having the same frequency response but different in phase by π. The
same concept can be expressed by saying that they are the Hilbert transform of
each other. For example, the first and second rows of Fig. 3.13 show respectively
the second derivative G2 = (4x2 − 2)e−(x2+y2) of a Gaussian and an approximation
H2 to its Hilbert transform. In particular, by means of the seven basis filters of G2

and H2 shown, G2 can be shift arbitrarily in both phase and orientation.
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Figure 3.13: Quadrature filters. The second derivative G2 = (4x2 − 2)e−(x2+y2) of
a Gaussian is represented on first row. The approximation H2 to its
Hilbert transform is represented on second row. The x–y separable
basis sets for G2 and H2 are respectively shown on third and fourth
rows. Figure borrowed from (Freeman & Adelson, 1991).
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The second important aspect to consider—when designing steerable filters—is
their x–y separability. In fact, in all image processing applications a crucial point
is to to have a high computational efficiency and—to this purpose—separability
is fundamental. Fortunately, all functions f which can be written as an N th order
polynomial in x and y admit an x–y separable basis, even though the number of the
basis functions may prove to be large. In most cases, however, it is possible to find
an x–y separable basis which contains only the minimum number of basis filters.
For more details on this aspect, see (Freeman & Adelson, 1991). As an example,
the third and fourth rows of Fig. 3.13 show respectively the x–y separable basis
sets for G2 and H2.

Notice, finally, that the considerations drawn above for continuous functions
can be extended to discretely sampled functions. In fact, if a continuous function is
steerable, then its sampled version is steerable as well, since the order of sampling
and steering is interchangeable. In this sense, a digital steerable filter can be
obtained by sampling its continuous version.

3.3.3 Multi–resolution steerable pyramid

As already anticipated, one interesting application of steerable filters is in the
analysis of images by means of a multi–resolution and self–inverting approach
similar to that used by the wavelet transform. In particular—as for the wavelet
decomposition—the steerable pyramid algorithm is based on recursive application
of filtering and sub–sampling operations. The input image is partitioned into low–
pass and high–pass sub–bands using filters H0 and L0. The low–pass sub–band is
then further sub–sampled into low–pass and oriented band–pass sub–bands using
filters L1 and Bk, with k variable according to the derivative filters used. For
example, in Fig. 3.14 a single–stage of a first derivative steerable transform is
shown. Notice that the number of band–pass filters Bk is given by the derivative
order of the filters plus one. Then, the pyramid structure is achieved by applying
the single–stage transform recursively to the low–pass sub–band of the previous
single–stage transform. In Fig. 3.14 this is achieved by inserting the portion of the
diagram enclosed in the dashed box at the location of the filled circle. In order to
have a clearer idea of the practical results obtained by such a steerable transform,
in Fig. 3.15 a three–level steerable pyramid decomposition of a synthetic image
representing a disk is depicted. Shown are the band–pass images obtained at six
different orientations by using five order derivative filters. Shown is also the final
low–pass image, whereas the initial high–pass image is not.

83



I R

0

L 0 B 0

B 1

B 0

B 1

L 12,2 2,2

H0

L 0

L 1

H

Figure 3.14: System diagram for a first derivative steerable pyramid.

Figure 3.15: Steerable pyramid decomposition of the disk represented on top–
left. Five order derivative steerable filters have been used. Shown
are the six orientations at three different resolutions and the final
low–pass image.
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When dealing with steerable pyramids, it is well worth noticing that—in order
to produce a usable transform—the filters H, L and Bk are highly constrained. The
first family of constraints concerns the radial component of their Fourier trans-
forms which must guarantee perfect reconstruction. To this aim, the L1 filter
should be constrained to have a zero response for frequencies higher than π/2
in both ωx and ωy axis of the Fourier domain. This ensures the elimination of
aliasing. Then, the transfer function of the system should be equal to one, thus
avoiding amplitude distortions. Finally, the low–pass branch of the diagram must
be unaffected by insertion of the recursive portion of the system. On the other
hand, the second family of constraints concerns specifically the band–pass filters
Bk. In particular, the constraints are derived from imposing that their angular ori-
entation tuning is constrained by the properties of steerability discussed in Section
3.3.2. For more details on both these two families of constraints, see (Simoncelli
& Freeman, 1995; Karasaridis & Simoncelli, 1996). Notice also that unlike the
wavelet transform, the steerable pyramid is significantly overcomplete. In partic-
ular, there are 4k

3 times as many coefficients in the representation as in the original
image. This redundancy limits its efficiency in terms of computational times, but
sensibly increases its convenience for many image processing task for which ori-
entation analysis is important.

3.3.4 Steerable wedge filters

As already discussed, steerable filters can be obtained at any orientation by means
of linear combinations of directional derivatives of Gaussians, along with steer-
able approximations to their Hilbert transforms. Such basis, however, suffer from
one drawback, namely they are always either symmetric or anti–symmetric with
respect to the origin. In particular, an even–order derivative is always symmetric,
whereas an odd–order is always anti–symmetric, see Fig. 3.12 and Fig. 3.13. This
proves to be undesirable for many applications since in both symmetric and anti–
symmetric case this determines that their orientation energy—namely the sum of
their squared responses as a function of the orientation φ—is always symmetric.
In other words, their orientation map—namely the plot of the orientation energy
as a function of φ—is alway periodic with period π regardless of the image consid-
ered. For example, while the orientation maps corresponding to the vertical line
and cross in Fig. 3.16 are quite expected, those corresponding to the half–line and
corner are not. In order to overcome this problem, researchers started exploring
asymmetric filters for orientation analysis, see for example (Perona, 1992).
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Figure 3.16: Orientation maps computed by means of the set G4/H4 of steerable
filters described in (Freeman & Adelson, 1991). On the left, some
synthetic images. On the middle, corresponding orientation ener-
gies computed using filters centered on the image (φ ∈ [0, 2π]). On
the right, orientation maps of the corresponding energies. Notice
the symmetry also in the orientation maps of asymmetric images
such as the half–line and the corner, namely third and fourth rows.
Figure borrowed from (Simoncelli & Farid, 1995).

A class of both steerable and asymmetric filters suited for orientation analysis
is represented by wedge filters, see (Simoncelli & Farid, 1995, 1996). In Fig. 3.17,
for example, a set of ten steerable wedge basis filters is represented. As for the
steerable filters discussed above, a steerable wedge filter can be obtained at any
orientation from a linear combination of such basis filters. Other than the being
steerable and asymmetric, they are also designed to produce an optimally local-
ized oriented energy map. This proves to be crucial when dealing with images
characterized by asymmetric structures, such as line endings or corners. For ex-
ample, Fig. 3.18 shows orientation maps for a set of 18 steerable wedge filters.
It is evident here that—differently from the results obtained by the G4/H4 filter
set—steerable wedge filters respond as desired also to half–lines and corners.
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Figure 3.17: A set of ten steerable wedge basis filters. Figure borrowed from
(Simoncelli & Farid, 1996).

Figure 3.18: Orientation maps computed by means of the set of 18 steerable
wedge filters described here. On the left, some synthetic images.
On the middle, corresponding orientation energies computed using
filters centered on the image (φ ∈ [0, 2π]). On the right, orienta-
tion maps of the corresponding energies. Notice that the responses
match the underlying images. Figure borrowed from (Simoncelli &
Farid, 1995).
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3.4 Ranklets

Ranklets have been introduced for the first time in (Smeraldi, 2002) as a family
of non–parametric, orientation selective and multi–resolution features modeled
on Haar wavelets. At the beginning, they have been mainly applied to pattern
classification problems and in particular to face detection. For example, in both
(Smeraldi, 2003a) and (Franceschi et al., 2004) they have been used in order to
encode the appearance of image frames representing potential face candidates.
Later on, ranklets have been tested on the estimation of the 3D structure and mo-
tion of a deformable non–rigid object from a sequence of uncalibrated images, as
described in (Del Bue et al., 2004). Recently, an extension of the ranklet trans-
form to hexagonal pixel lattices has been discussed in (Smeraldi & Rob, 2003),
whereas a notion of completeness has been given in (Smeraldi, 2003b).

Since the beginning of 2004, ranklet–based techniques started being applied
also to pattern classification problems concerning the detection of tumoral masses
in digital mammograms. In particular, in (Masotti, 2004) ranklets have been used
as image representations encoding crops of mammographic digital images. Tests
demonstrated that ranklets perform definitely better than more traditional tech-
niques as the ones discussed in (Angelini et al., 2004), namely pixel–based and
wavelet–based image representations. Later on—in order to discover which ran-
klet features influence most the classification performance—Recursive Feature
Elimination (RFE) has been applied to the same problem, thus demonstrating that
important ranklet features are just a few, see (Masotti, 2005).

In the following, the ranklet transform and its properties will be discussed.
First, it will be shown that its non–parametric property derives from the fact that
it is based on non–parametric statistics, namely statistics dealing with the relative
order of pixels rather than with their intensity values. To this purpose, some in-
troductory details on non–parametric statistics will be given. Second, it will be
demonstrated that its orientation selective property derives from the fact that it is
modeled on bi–dimensional Haar wavelets. This means that—in analogy to the
wavelet transform—the vertical, horizontal and diagonal ranklet coefficients can
be computed for each image. Third, it will be shown that the multi–resolution
property derives from the fact that the ranklet transform can be calculated at dif-
ferent resolutions by means of a suitable stretch and shift of the Haar wavelet
supports. Finally, a notion of completeness will be introduced for the ranklet
transform, together with some considerations concerning the analogies existing
between ranklets and what happens in mammalian retinal coding scheme.
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3.4.1 Non–parametric statistics

Rank transform

Given a set of p1, . . . , pN pixels, the rank transform π substitutes each pixel in-
tensity value with its relative order—rank—among all the other pixels (Zabih &
Woodfill, 1994). Here it follows an example:

55 99 25 153
26 75 92 200
21 64 88 154
101 190 199 222

 π
→


4 9 2 11
3 6 8 15
1 5 7 12

10 13 14 16

 (3.21)

In case the set of p1, . . . , pN pixels contains pixels with equal intensity values,
mid–ranks are introduced. They are computed assigning to each group of pixels
with equal intensity values the average of the ranks they occupy, for example:

55 99 25 153
25 64 92 200
21 64 64 154

101 190 199 222

 π
→


4 9 2.5 11

2.5 6 8 15
1 6 6 12

10 13 14 16

 (3.22)

Wilcoxon test

The rank transform and the Wilcoxon test are strictly related. Given a set of
p1, . . . , pN pixels—in fact—suppose they are split into the two sub–sets T and
C, with n and m pixels each, so that n + m = N. In order to state whether the n
pixels in T have significantly higher intensity values than the m pixels in C, all the
pixels are ranked, then the Wilcoxon test WS is introduced (Lehmann, 1995) and
defined as the sum of the n ranks π(pi) in T:

WS =

n∑
i=1

π(pi) (3.23)

The n pixels in T are then judged to have significantly higher intensity values than
the m pixels in C if the Wilcoxon test is above a critical value τ, in other words
WS > τ. The value of τ determines the confidence level of the test.
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Mann–Whitney test

In order to deal with a test equivalent to the Wilcoxon test—but with an immedi-
ate interpretation in terms of pixels comparison—the Mann–Whitney test WXY is
introduced (Lehmann, 1995):

WXY = WS −
n(n + 1)

2
(3.24)

As can be easily demonstrated, the value of the Mann–Whitney test WXY is equal
to the number of pixel pairs (pm, pn), with pm ∈ T and pn ∈ C, such that the inten-
sity value of pm is higher than the intensity value of pn. Therefore, its values range
from 0 to the number of pairs (pm, pn) ∈ T × C, namely mn. Notice, however, that
in order to compute the value of WXY , these pairwise comparisons are never car-
ried out explicitly. This, in fact, would results in approximately O(N2) operations,
thus in huge computational times. On the contrary, its value is obtained by the
application of the rank transform to the set of pixels p1, . . . , pN , thus leading to
only NLogN operations.

3.4.2 Orientation selectivity
Haar wavelet supports

As it will be clarified in the following, the non–parametric property of the ran-
klet transform derives from the fact that it is based on non–parametric transforms
such as the rank transform and in particular on the Mann–Whitney test. Similarly,
its orientation selective property derives from the fact that it is manly modeled
on bi–dimensional Haar wavelets. Now, in order to arrive at the ranklet trans-
form definition—thus putting some light onto the above statements—the first step
consists of introducing the Haar wavelet supports.

Suppose that an image constituted by a set of p1, . . . , pN pixels is given. In
order to compute the Mann–Whitney test, a possible choice in splitting the N
pixels is to split them into two sub–sets T and C of size n = m = N/2, thus
assigning half of the pixels to the sub–set T and half to the sub–set C. With this in
mind, it is possible to define the two sub–sets T and C being inspired by the three
Haar wavelet supports, as shown in Fig. 3.19. In particular, for the vertical Haar
wavelet support—also referred to as hV—the two sub–sets TV and CV are defined.
Similarly, for the horizontal Haar wavelet support hH the two sub–sets TH and CH

are defined, whereas for the diagonal Haar wavelet support hD the two sub–sets
TD and CD are defined.
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Figure 3.19: The three Haar wavelet supports hV, hH and hD. From left to right,
the vertical, horizontal and diagonal Haar wavelet supports.

Notice that, the arbitrariness characterizing the selection of the two sub–sets T
and C is fundamental in order to be able to freely choose the two sub–sets based
on the Haar wavelet supports. In other words, the arbitrariness with which the two
sub–sets are chosen forms the basis for the orientation selective property of the
ranklet transform.

Ranklet coefficients

Once the rank transform, the Mann–Whitney test and the Haar wavelet supports
have been introduced, the definition of the ranklet transform is straightforward.
In fact, given an image constituted by a set of p1, . . . , pN pixels, the horizontal,
vertical and diagonal ranklet coefficients can be computed in the following way:

R j =
W j

XY

mn/2
− 1, j = V, H, D (3.25)

Here W j
XY is computed by splitting the N pixels into the two sub–sets T j and C j

differently for each j = V,H,D, as previously discussed for the Haar wavelet
supports.

The geometric interpretation of the ranklet coefficients R j—with j = V,H,D—
is quite simple, see Fig. 3.20. Suppose that the image we are dealing with is
characterized by a vertical edge with the darker side on the left, where CV is
located, and the brighter side on the right, where TV is located. Then RV will
be close to +1, as many pixels in TV will have higher intensity values than the
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pixels in CV. Conversely, RV will be close to −1 if the dark and bright side are
reversed. At the same time, horizontal edges or other patterns with no global left–
right variation of intensity will give a value close to 0. Analogous considerations
could be drawn for the other ranklet coefficients, namely RH and RD.

Notice that the definition given for the ranklet coefficients in Eq. 3.25 clarifies
the reasons for both the non–parametric and orientation selective properties of
the ranklet transform. In particular, the computation of the ranklet coefficients by
means of the Mann–Whitney test WXY determines the non–parametric properties
of the ranklet transform. On the other hand, the possibility to calculate them at
different orientations—namely vertical, horizontal and diagonal—by means of the
Haar wavelet supports, determines its orientation selective property.
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⇒ RV, H, D = [+0.59, 0, 0]
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⇒ RV, H, D = [−0.59, 0, 0]

Figure 3.20: Ranklet transform applied to some synthetic images.
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Figure 3.21: Multi–resolution ranklet transform at resolutions 16, 4 and 2 pixels,
of an image with pixel size 16 × 16.

3.4.3 The multi–resolution approach
From the considerations drawn above, it is evident what are the causes determin-
ing the non–parametric and orientation selective properties of the ranklet trans-
form. Analogously, it is possible to justify also its multi–resolution property. In
fact, the close correspondence between the Haar wavelet transform and the ran-
klet transform leads directly to the extension of the latter to its multi–resolution
formulation. Similarly to what is usually done for the Haar wavelet transform—
therefore—the ranklet coefficients at different resolutions can be computed simply
stretching and shifting the Haar wavelet supports. This means that the multi–
resolution ranklet transform of an image is a set of triplets of vertical, horizontal
and diagonal ranklet coefficients, each one corresponding to a specific resolution
and shift of the Haar wavelet supports.

For example, suppose that the multi–resolution ranklet transform of an image
with pixel size 16 × 16 is performed at resolutions 16, 4 and 2 pixels, namely
using Haar wavelet supports with pixel size 16× 16, 4× 4 and 2× 2, see Fig. 3.21.
This actually means that the ranklet transform of the image is computed at reso-
lution 16 pixels, by shifting the Haar wavelet support with linear dimensions 16
pixels, at resolution 4 pixels, by shifting that with linear dimensions 4 pixels and
at resolution 2 pixels, by shifting that with linear dimensions 2 pixels. Suppose
also that the horizontal and vertical shifts of the Haar wavelet supports along the
horizontal and vertical dimensions of the image are of 1 pixel. Then the multi–
resolution ranklet transform of the image is composed by 1 triplet RV,H,D of ranklet
coefficients deriving from the ranklet transform at resolution 16 pixels, 25 triplets
RV,H,D from that at resolution 4 pixels and 49 triplets RV,H,D from that at 2 pixels.
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Figure 3.22: Linear dimensions I and S respectively of the image and of the Haar
wavelet support.

Notice that—in order to generalize the above discussed calculation to what-
ever image size and resolution—the number nT of triplets RV,H,D at each resolution
is computed as:

nT = (I + 1 − S )2 (3.26)

Here I and S represent respectively the linear dimension of the image and that of
the Haar wavelet support, as shown in Fig. 3.22.

3.4.4 Completeness
Other than the above discussed orientation selectivity and multi–resolution, the
ranklet transform shares with the wavelet transform also a notion of completeness.
It is evident that, when dealing with ranklets, completeness does not refer to the
ability of exact image reconstruction as for wavelets. This could not be an issue
for the ranklet transform, since ranklets are defined in terms of the relative order
of the pixel values and—in particular—their values are disregarded during the
ranklet transform. In such a context—thus—completeness is rather intended in the
sense that a set of ranklets is complete if their value is sufficient to unambiguously
specify the order of the pixel values.
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This concept can be formalized by following (Smeraldi, 2003b). Suppose
that an image is constituted by a set of p1, . . . , pN pixels. As already discussed,
the pixel values can be substituted by their relative order among all the others.
This means that an image (p1, . . . , pN) ∈ RN can be identified with an element
(1, 2, . . . ,N) ∈ S N , namely the symmetric group of the permutations of N points.
Let now C = {W1,W2, . . . ,Wm} be a covering of (1, 2, . . . ,N). The ranklet decom-
position R is thus defined as the map:

R : S N → R
m (3.27)

that sends a permutation π ∈ S N into the vector R(π) = (Ri
W j

)∀i,∀ j obtained by
computing each admissible ranklet Ri depending on the dimensionality of the im-
age and on every window W j ∈ C. Now, the following definition can be stated:

Definition 1 The ranklet decomposition R is complete if it is invertible over its
range, i. e. if it is one–to–one.

In other words, the ranklet decomposition R is said complete if there exists a map:

R̃ : R(S N)→ S N (3.28)

such that for every image X:

R̃ (R(πX)) = πX (3.29)

where πX is the ranking of X. In this sense, the map R̃ is the closest analogue for
ranklets of the reconstruction operator previously discussed for the wavelet trans-
form. In particular, it can be demonstrated that for the ranklet transform such a
completeness holds. More details on the demonstrations proving the completeness
for ranklets are given in (Smeraldi, 2003b).

Notice that proving the completeness for ranklets has not an operative impor-
tance. As already discussed, in fact, exact image reconstruction is not an issue
for the ranklet transform, differently from the wavelet transform. However, the
completeness of ranklets has a theoretical significance itself. First, it shows that
the entire information available to rank features is effectively captured by ran-
klets. Second, it further clarifies the analogy between ranklet transform and Haar
wavelet transform. Finally, it is of great relevance for some computational models
of biological vision suggesting that temporal order retinal coding might form a
rank–based image representation in the visual cortex.
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3.4.5 Retinal coding toward the visual cortex

A reasonable explanation for the good results achieved by ranklets in visual pat-
tern classification problems—such as the above discussed face detection or tu-
moral mass detection in digital mammograms—can be traced in their being very
close to the real way in which retinal ganglion cells encode the visual informations
sent to the brain. Several works, in fact, suggest that retinal ganglion cells encode
the information sent to the visual cortex in the brain by mainly using a rank–based
coding scheme. In the following, some very general concepts on this topic will be
discussed.

It is generally assumed that the information transmitted from the retina to the
brain codes the intensity of the visual stimulus at every location in the visual field.
Although this strong statement can certainly be a simplification, it is clear that
the aim of retinal coding is to transmit enough information about the image on
the retina to allow objects and events to be identified. Studies on the speed of vi-
sual processing demonstrate that the time available for information transmission
through the visual system is severely limited. In particular, it appears that informa-
tion processing and transfer should be less than 50 ms between the retina and the
brain. Classically, ganglion cells are thought to encode their inputs in their output
firing frequency. The process of retinal spike train generation is supposed to be
stochastic, namely subject to a Poisson or pseudo–Poisson noise. In particular,
two implementations of rate coding are usually considered. One supposing that
significant informations are encoded on the number of spikes of ganglion cells,
the other on the mean inter–spike interval. Nevertheless, the firing frequency is
not the only option. In recent years, in fact, a strong debate has opposed works
suggesting that codes are embedded in the neurons mean firing rates and works in
favor of temporal codes, namely codes embedded in the precise temporal structure
of the spike train. The literature in this field is divided as well. Some publications
adopt the firing rate approach, such as (Warland et al., 1997). Other approaches
adopt the temporal approach, such as (Softky, 1995; Shadlen & Newsome, 1995,
1998; Gautrais & Thorpe, 1998).

However, another hypothesis concerning the temporal coding scheme suggests
that the retinal encoding could be based on the order—namely on the rank—of fir-
ing over a population of ganglion cells. The idea is that the most strongly activated
ganglion cells tend to fire first, whereas more weakly activated cells fire later or
not at all. In such a context, the relative timing in which the ganglion cells fire the
first spike of their spike train can be used as a rank code, see (Thorpe, 1990).
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In (Van Rullen & Thorpe, 2001), for example, this rank order encoding scheme
has been deeply tested and compared to a pair of encoding schemes respectively
based on the spike count and on the mean inter–spike interval. In particular, it
has been shown that this rank order coding outperforms the other two and that
can lead to a very good stimulus reconstruction. It has appeared also that the
very first spikes generated in the retina can carry sufficient information for further
cortical processing, thus assuring relatively short time periods for information
transmission through the visual system.
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Chapter 4
Exploring Image Representations
Performance

The following Chapter will be devoted to the discussion of the experiments per-
formed in order to find the crop’s image representation which provides the best
classification performance. As already anticipated, in fact, the novel technique
pursued in this work consists of classifying—by means of a Support Vector Ma-
chine (SVM)—the entire pixels of the crop, or at least a transformed version of
them, where transforms tested are the wavelet transform, the steerable pyramid
and the ranklet transform. To this aim, the Chapter will start with Section 4.1
by giving an overview of the research approach adopted and will continue by de-
scribing the data set and methods used. It will then go further by discussing the
simplest case, namely the choice of a pure pixel–based image representation. In
particular, Section 4.2 will review and discuss the results obtained for this case.
Section 4.3 will describe the experiments performed with a wavelet–based im-
age representation, namely the case in which crops are transformed by using the
multi–resolution discrete Haar wavelet transform and its overcomplete version.
Section 4.4 will discuss the results obtained by introducing a higher orientation
selectivity in the image representation, namely transforming the crops by means
of steerable pyramids. Finally, Section 4.5 will describe in detail a novel and very
promising approach based on ranklets. In particular, the performances of this
ranklet–based image representation will be explored by means of SVM Recursive
Feature Elimination (SVM–RFE), namely recursively eliminating some of the less
discriminant ranklets coefficients according to the cost function of SVM.
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4.1 The Research Approach Adopted

4.1.1 Overview

The primary objective of this work is to solve a two–class classification problem in
which the two classes are represented respectively by crops of tumoral masses and
crops of normal tissue, both collected from diagnosed digital mammograms. To
this aim, SVM is chosen as classifier—see Section 2.2—whereas different crop’s
image representations are singularly evaluated as classification features. In partic-
ular, in order to find the optimal solution for this two–class classification problem,
the different crop’s image representations are evaluated while SVM’s parameters
are tuned as to achieve the best possible classification performance. Notice that
this approach is novel as regards mammographic mass classification and can be
viewed as a sort of featureless approach, since no a priori information is extracted
from the crops themselves. The image representation is in fact submitted to the
classifier as it is. In particular—differently from what it is classically done when
dealing with such problems—no geometrical informations are extracted from the
crops, such as for example circularity, gradient and so forth.

As already anticipated, the image representations explored in this work are
traditional and variated versions of the pixel–based, wavelet–based, steer–based
and ranklet–based image representations introduced in Chapter 3. In the evalua-
tion of the pixel–based image representation, for example, the raw pixel values of
each crop—see Section 3.1.1—are used to train and test SVM. Some variations
on the pixel–based theme are also evaluated, namely resized and equalized crops,
see respectively Sections 3.1.2 and 3.1.3.

In exploring the wavelet–based image representation—see Section 3.2.3—the
wavelet coefficients obtained from the application of the multi–resolution Haar
discrete wavelet transform to the crop are presented to the classifier. An analo-
gous study is conducted also for the multi–resolution Haar overcomplete wavelet
transform.

As regards the steer–based image representation, the steerable pyramid dis-
cussed in Section 3.3.3 is applied to the crop and the resulting coefficients are then
considered as the classification features. A variation on the steer–based theme is
also considered, namely the application of wedge filters—see Section 3.3.4—in
order to find the angle at which the orientation energy is maximal. In this case,
the classifier is trained and tested with the coefficients obtained by applying to the
crop the steerable pyramid oriented at the maximal orientation energy angle.
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Figure 4.1: The two classes. Mass class (top row). Non–mass class (bottom row).

Finally, the ranklet–based image representation—see Section 3.4—is evalu-
ated. Here, the triplets of ranklet coefficients obtained by applying the multi–
resolution ranklet transform to the crop are presented to the classifier. Its classi-
fication performance is then further explored as the ranklet coefficients are elimi-
nated by means of the recursive feature elimination technique discussed in Section
2.3, namely SVM–RFE.

Notice that the approach discussed above—and the results that will be shown
in the following—walk mainly along the road traced by some recent work, namely
(Angelini et al., 2004) for the pixel–based and wavelet–based image represen-
tations, (Masotti, 2004) for the ranklet–based image representation and, finally,
(Masotti, 2005) for the application of SVM–RFE to ranklet coefficients.

4.1.2 Data set

The data set used to evaluate the different image representations is comprised of
6000 crops with pixel size 64 × 64 representing the two classes, namely tumoral
masses and normal tissue—or non–masses—as shown in Fig. 4.1. In particular,
the number of crops representing the mass class is 1000, whereas that of crops
representing the non–mass class is 5000. All the crops are extracted—and then
resized to pixel size 64×64—from the diagnosed mammographic images belong-
ing to the Digital Database for Screening Mammography (DDSM) collected by
the University of South Florida (USF), see (Heath et al., 2000).
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Figure 4.2: Four standard views of a mammographic case from the DDSM data-
base. Left and right medio–lateral oblique views (top row). Left and
right cranio–caudal views (bottom row). The suspicious region is
marked in both the two views of left breast. In this specific case, the
abnormality is a malignant spiculated mass with architectural distor-
tions.

In particular, the DDSM is a database of digitized film–screen mammograms
with associated ground truth and other information that was completed in the fall
of 1999. The purpose of this resource is to provide an on–line large set of mammo-
grams in a digital format usable by researchers in order to evaluate and compare
the performance of CAD algorithms.

It contains 2620, four–view mammography screening exams—also referred
to as cases—obtained from Massachusetts General Hospital, Wake Forest Uni-
versity School of Medicine, Sacred Heart Hospital and Washington University of
St. Louis School of Medicine. The four standard views—namely medio-lateral
oblique and cranio–caudal, one for each of the two breasts—are digitized with
Lumisys scanner at 50 µm or Howtek scanner at 43.5 µm pixel size, both with a
12–bit gray–level resolution, as shown for example in Fig. 4.2.
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Each case is diagnosed differently by the radiologist according to the severity
of the finding. Normal cases contain mammograms which are read as normal from
screening exams and have a normal screening exam four years later. Benign cases
contain cases in which something suspicious is found and the patient is recalled
for some additional work–up that resulted in a benign finding. Finally, cancer
cases are those in which a histologically proven cancer is found.

4.1.3 Methods

One of the most common problems one has to face—when dealing with a two–
class classification problem—is the lack of samples in order to train and test the
classifier. As already discussed in Section 2.1.3, cross–validation is a common
procedure used to handle classifiers when the dimensionality of the data set is
limited. In particular, given a n–dimensional data set D, first it is divided into k
homogeneous sub–sets F1,F2, . . . ,Fk, also known as folds. Then the classifier is
trained with the collection of the first k−1 folds— F1,F2, . . . ,Fk−1—and tested on
the fold left over, namely Fk. The procedure is thus permuted for each Fi, where
i = 1, . . . , k − 1.

As it is evident from the dimensions cited for the training and test sets in
Section 4.1.2, the data set used in this work does not represent an exception as
regards the lack of samples. In order to overcome the difficulties arising from that
restricted number of available crops, a 10–folds cross–validation procedure is thus
implemented. As discussed in Section 2.1.3, in fact, this number of folds is the
most reasonable choice for sparse data set. According to this choice, the data set is
therefore divided into 10 folds, each one containing 100 mass crops and 500 non–
mass crops. In this way, for each permutation of the cross–validation procedure,
SVM is trained with 900 mass crops and 4500 non–mass crops, whereas it is tested
on 100 mass crops and 500 non–mass crops.

As regards the classification performances of the different image representa-
tions, they are compared using ROC curves. Section 2.1.4—in fact—introduced
ROC curve analysis as a widely employed method in order to evaluate the perfor-
mance of a classifier used to separate two classes. Actually, they are particularly
suited for that kind of problems being plots of the classifier’s True Positive Frac-
tion (T PF) versus its False Positive Fraction (FPF), where the quantity T PF
is also known as the system sensitivity and the quantity 1 − FPF as the system
specificity. For more details, see Eq. 2.5, 2.6, 2.7 and 2.8.
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In this work, the quantity FPF is represented by the fraction of non–masses
that have been incorrectly classified as belonging to the mass class, whereas the
quantity T PF by the fraction of masses that have been correctly classified as be-
longing to the mass class. Furthermore, it has been already pointed out in Section
2.1.4 that in order to generate a full ROC curve instead of just a single point, it
will suffice varying the free parameters of the learning machine, thus altering the
values of T PF and FPF on the same test set. In this way, it is possible to trade
a lower—or higher—FPF value for a higher—or lower—T PF value by choos-
ing appropriate values for the free parameters under study. In the present work,
this is achieved by recursively changing the threshold b which represents the po-
sition in the feature space of the Maximal Margin Hyperplane found by SVM,
see Eq. 2.45. This actually corresponds to moving the hyperplane of the SVM
solution in the feature space. In particular, the fraction of true positives and false
negatives is then computed for each choice of the threshold b. Each single point
of the ROC curves is therefore obtained by averaging the results of the 10–folds
cross–validation technique applied to the entire data set.

In such a context, the purpose of this work can be—very informally—seen as
finding image representations characterized by ROC curves which climb rapidly
toward the upper–left corner of the graph. This means, in fact, a high number of
masses that have been correctly classified as belonging to the mass class and a low
number of non–masses that have been incorrectly classified as belonging to the
mass class. In particular, this family of ROC curves are preferable to those which
follows a diagonal path from the lower–left corner to the upper–right corner. The
latter situation, in fact, represents the case in which every improvement in FPF is
matched by a corresponding decline in the T PF.

A final remark deserves to be pointed out. In this work, classification features
are generally submitted to SVM after being processed by a technique—known as
scaling—which re–maps correspondent features of the training and test sets in the
range [0, 1]. Here, correspondent features are intended to be correspondent pixels
when evaluating the pixel–based image representation, correspondent wavelet co-
efficients when evaluating the wavelet–based image representation and so forth.
The scaling coefficients are calculated for each feature during the training phase,
then are used to scale correspondent features both in the training and test set. This
technique is very common in the pattern classification community, since it is use-
ful in order to avoid that features of greater value dominate those of smaller value.
Furthermore, since classification depends mainly on the inner products of feature
vectors, the scaling technique is useful to avoid numerical difficulties.
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4.2 Pixels Performance

The simplest way to code an image is by just concatenating all its intensity val-
ues, thus yielding a long vector with as many entries as the number of pixels in
the image. This codification is usually referred to as the pixel–based image repre-
sentation of the image under analysis.

In the specific context of image classification, adopting the pixel–based im-
age representation actually forces the classifier to separate the images under exam
into different classes by simply using the informations derived from the intensity
values of their pixels. In some sense, it forces the classifier to learn the typical
intensity content of images representing tumoral mass and that of images repre-
senting normal tissue.

In the following, few words will be used in order to describe the three main
pixel–based image representation evaluated in this work. In particular, the clas-
sical pixel–based image representation will be briefly discussed, together with a
few theme variations based on image resizing and histogram equalization. Notice
that all these three featureless techniques based on the pixel–based image repre-
sentation constitute a novel approach to the mammographic mass classification.

4.2.1 Original pixel–based image representation

Dealing with the specific case of mammographic tumoral masses and normal tis-
sue classification, the two classes to separate look like as in Fig. 4.3, when char-
acterized by their pixel–based image representation. In other words, their classi-
fication features are represented exactly by the 64 × 64 intensity values of their
pixels.

Notice that—when choosing the pixel–based image representation—masses
and normal tissue appear as they are in reality, namely masses appear as round–
shape objects with defined edges, whereas non–masses appear as less defined and
very heterogeneous objects. An exception to round–shape masses is represented
by spiculated masses, namely objects having a star–shaped boundary or margin
with sharp fingers pointing away from the center of the mass. Although these two
families of masses are quite different, common characteristics which differentiate
them from non–masses are the tendency to have a fairly sharp boundary and to
appear brighter than the surrounding tissue. In particular, giving information on
the shape of the boundary and contrast with the surrounding tissue, the pixel–
based image representation emphasizes specifically these shared characteristics.
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Figure 4.3: Original pixel–based image representation. Mass (left). Non–mass
(right). Characteristics which differentiate masses from normal tissue
are the tendency of the former to have a fairly sharp boundary and to
appear brighter than the surrounding tissue.

In the rest of this work, the above discussed image representation—also re-
ferred to as original pixel–based image representation—will be indicated as PixS.
In particular, the pre–fix Pix stands for being a pixel–based image representation,
whereas the post–fix S stands for having correspondent classification features—
namely pixels—scaled in the interval [0, 1], as discussed in Section 4.1.3.

4.2.2 Equalized pixel–based image representation

With the purpose of giving extra importance to the former characteristic differ-
entiating masses from normal tissue—namely the sharpness of mass boundary—
histogram equalization is applied to the mammographic crops. As already dis-
cussed in Section 3.1.3, in fact, the net effect of histogram equalization on images
is to transform them into images having higher contrast and exhibiting a larger
variety of gray tones. In the present case, this actually results in having crops in
which edges and boundaries are enhanced, as shown in Fig. 4.4. In some sense,
thus, the idea is to make more noticeable to SVM the differences existing between
masses and normal tissue when looking specifically at their boundary. It is evident
that the underlying hypothesis is that—since masses have generally sharp bound-
aries, whereas normal tissue has blunt ones, or at least none—this can help SVM
in separating the two classes.
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Figure 4.4: Equalized pixel–based image representation. Original mass (left).
Equalized mass (right). The net effect of histogram equalization on
crops is to transform them into images having higher contrast and ex-
hibiting a larger variety of gray tones. This results in an enhancement
of edges and boundaries.

In the rest of this work, the above discussed image representation—also re-
ferred to as equalized pixel–based image representation—will be indicated as
PixH. As for the original pixel–based image representation, the pre–fix Pix stands
for being a pixel–based image representation, whereas the post–fix H stands for
being submitted to histogram equalization.

4.2.3 Resized pixel–based image representation

Going exactly into the opposite direction of the equalized pixel–based image
representation—namely giving extra importance to the brightness of masses with
respect to the surrounding tissue—bi–linear image resizing is applied to the crops.
The resulting crops are characterized by a lower spatial resolution which supplies
a very approximative idea about edges and boundaries, but which provides an ef-
fective picture of the brightness distribution of the pixels, see Fig. 4.5. Contrarily
to what considered for the equalized case, the idea here is thus to make more no-
ticeable to SVM the differences existing between masses and normal tissue when
looking specifically at the brightness distribution of the pixels. The underlying
hypothesis here is that—since masses are generally characterized by a central nu-
cleus brighter that the surrounding tissue, whereas normal tissue has typically
none—this can help SVM in separating the two classes.
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Figure 4.5: Resized pixel–based image representation. Original mass (left). Re-
sized mass (right). The crops resulting from bi–linear resizing are
characterized by a lower spatial resolution which provides an effec-
tive picture of the brightness distribution of the pixels.

In the rest of this work, the above discussed image representation—also re-
ferred to as resized pixel–based image representation—will be indicated as PixR.
As for the pixel–based image representations discussed above, the pre–fix Pix
stands for being a pixel–based image representation, whereas the post–fix R stands
for being bi–linearly resized.

4.2.4 Results and discussion

In order to evaluate in detail the pixel–based image representations discussed
above, several tests are performed.

First, the original pixel–based image representation—PixS—is evaluated for
different SVM’s kernels, namely linear and polynomial with degree 2 and 3. See
Section 2.2.4 for a precise definition of SVM’s kernel and for more informations
on the most typical kernels used in literature. With this image representation, in
particular, SVM is in the situation of classifying images having 64×64 pixels size
and whose correspondent pixels are scaled between [0, 1].

Second, the influence of image resizing is tested by applying bi–linear resizing
to the crops. In particular, the original crops having 64×64 pixel size are resized to
16×16 pixel size by means of bi–linear resizing. The resized crops are then scaled
between [0, 1] and finally classified by using the same SVM’s kernels cited above.
This image representation—characterized by both resizing and scaling—will be
referred to as PixRS in the following.
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Figure 4.6: ROC curves obtained by using pixel–based image representations.
The best performances are achieved by PixHRS, namely crops
processed by means of histogram equalization, bi–linear resizing and
scaling. Good performances are also achieved by PixRS, namely
crops processed by means of bi–linear resizing and scaling. An
SVM’s linear kernel is used.

Third, histogram equalization is explored. In particular, the original crops
having 64 × 64 pixel size are all processed by means of histogram equalization.
The obtained crops are resized to 16×16 pixel size by means of bi–linear resizing,
scaled between [0, 1] and—finally—classified by using the same SVM’s kernels
cited for the two cases described above. This image representation—characterized
by histogram equalization, resizing and scaling—will be referred to as PixHRS
in the following.

The results obtained show several interesting aspects which deserve some dis-
cussion. Some of them—namely the best ones—are represented in Fig. 4.6.
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FPF ∼ .01 FPF ∼ .02 FPF ∼ .03 FPF ∼ .04 FPF ∼ .05
PixHRS .70 ± .06 .77 ± .07 .84 ± .05 .86 ± .05 .89 ± .03
PixRS .49 ± .04 .63 ± .03 .72 ± .05 .78 ± .03 .82 ± .04

Table 4.1: Classification results comparison. The T PF values obtained by the
best performing pixel–based image representations are shown, in par-
ticular for FPF values approximately equal to .01, .02, .03, .04 and
.05.

First, experiments show that crops resizing has not a tangible effect on the
classification performances. This means that the classification results achieved
by the original pixel–based image representation—PixS—and its correspondent
bi–linear resized version—PixRS—are practically the same. This is an impor-
tant result, since it demonstrates that similar results can be achieved by using
16×16 = 256 features instead of 64×64 = 4096, thus sensibly reducing the com-
putational times. In particular—due to that similarity between the performance
achieved by PixS and PixRS—only the ROC curve correspondent to the faster
image representation is plotted in Fig. 4.6, namely the latter.

Second, the tests performed demonstrate that histogram equalization has a
very positive effect on the classification performances. In particular, the original
crops processed by means of histogram equalization, bi–linear resizing and scal-
ing of correspondent pixels are those achieving the best classification results. It
is evident from Fig. 4.6, in fact, that the ROC curve correspondent to this image
representation—namely PixHRS—is significantly better than that correspondent
to PixRS, particularly for FPF values comprised between .01 and .04. Notice,
furthermore, that—as for the above discussed case—here the number of features
is equal to 16 × 16 = 256.

Third, the SVM’s kernel which performs globally better is the linear. This is
reasonable since—working with pixel–based image representations—correlations
among correspondent pixels are much more reliable as features than correlations
among distant pixels, see (Schölkopf et al., 1998). In the case of linear kernel,
in particular, the correlations considered are those among correspondent pixels,
namely the inner products computed are K(x, y) = (x · y)1, where x and y are two
vectors containing the pixels of two images.

Finally, in order to to give also some quantitative results—other than a detailed
ROC curve analysis—the T PF values achieved by PixHRS and PixRS for FPF
values close to .01, .02, .03, .04 and .05, are shown in Tab. 4.1.
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4.3 Wavelets Performance

The main motivation for evaluating wavelet–based image representations is that
they go—in some sense—in the direction of histogram equalization, namely in
the direction of enhancing edges and boundaries of the image under study. As
discussed in Section 3.2, in fact, wavelets are specifically suited to capture the
shape and the interior structure of objects into images. The reason for that is their
ability in encoding the difference in average intensity between local regions along
different orientations in a multi–scale framework. In this sense, a strong response
from a particular wavelet indicates the presence of an intensity difference at that
location in the image—namely an edge or a boundary—whereas a weak response
indicates a uniform area.

In the following, the two wavelet–based image representations evaluated in
this work will be described. The multi–resolution discrete Haar wavelet transform
will be first discussed. Its redundant version—namely multi–resolution overcom-
plete Haar wavelet transform—will be then considered. The motivation for test-
ing both those two wavelet–based image representations is mainly related to the
willingness of exploring the classification performances of SVM while the spa-
tial resolution of the transformed crops is varied. It is well worth reminding, in
fact, that—as discussed in Section 3.2.3—for the multi–resolution discrete Haar
wavelet transform the number of pixels in the analyzed image is equal to that of
the original image. On the contrary, for the multi–resolution overcomplete Haar
wavelet transform the number of pixels in the analyzed image is redundant, typ-
ically twice as the number of pixels in the original image. As it is evident from
Fig. 4.7 and Fig. 4.8, this different number of resulting pixels does not represent
only a simple difference of dimensions, but it influences rather sensibly also the
spatial resolution of the transformed image. In this sense, the evaluation of the two
wavelet–based image representations presented here is motivated by the tentative
of understanding how their different spatial resolution influence the performances.

Finally, it is well worth noticing that—as for the pixel–based—the wavelet–
based image representations described here constitute a novel approach to mam-
mographic mass classification. On the other hand, however, some past works have
addressed different problems—such as pedestrian, car and face detection—by us-
ing a similar featureless approach based on redundant wavelet dictionaries. The
most interesting works on that topic are probably those developed by the MIT
Artificial Intelligence Laboratory, namely (Papageorgiou, 1997; Oren et al., 1997;
Papageorgiou et al., 1998a,b; Papageorgiou & Poggio, 1999a,b).
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Figure 4.7: Multi–resolution discrete Haar wavelet transform. Three decomposi-
tion levels are shown, one for each row. In particular, for each level
j = 1, 2, 3, the approximation component a j, together with the hori-
zontal detail dH

j , the vertical detail dV
j and the diagonal detail dD

j are
depicted. Notice that all images have undergone pixel replication—
as discussed in Section 3.1.2—for displaying purposes.
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Figure 4.8: Multi–resolution overcomplete Haar wavelet transform. Three de-
composition levels are shown, one for each row. In particular, for
each level j = 1, 2, 3, the horizontal detail dH

j , the vertical detail dV
j

and the diagonal detail dD
j are depicted. Here the approximation com-

ponents are not shown, since for the multi–resolution overcomplete
wavelet transform they are generally characterized by visual artifacts,
in particular for decomposition levels higher than one. For that reason
in the rest of this work they will be ignored. Notice that all images
have undergone pixel replication—as discussed in Section 3.1.2—for
displaying purposes.
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Figure 4.9: DWT–based image representation. Mass (left). Non–mass (right).
The approximation component a j (upper–left), together with the hor-
izontal detail dH

j (upper–right), the vertical detail dV
j (lower–left) and

the diagonal detail dD
j (lower–right) are depicted for both mass and

non–mass. One–level decomposition.

4.3.1 DWT–based image representation

In the specific case of this work, when characterized by using an image repre-
sentation based on multi–resolution discrete Haar wavelet transform, the crops
representing tumoral masses and normal tissue will look like as in Fig. 4.9. There,
in particular, the result of a multi–resolution discrete Haar wavelet transform is
shown for one–level decomposition. Notice that each detail contains informations
regarding its specific orientation. For example, by looking carefully at the mass
case in Fig. 4.9, it is possible to notice that the horizontal detail gives information
about the horizontal edge created by the mass and the surrounding tissue. Simi-
larly behaves the vertical detail. In such a context, the classification features will
thus be represented by the 64 × 64 = 4096 wavelet coefficients obtained by ap-
plying the multi–resolution discrete wavelet transform to the crops up to the first
decomposition level.

In the rest of this work, the above discussed image representation—also re-
ferred to as DWT–based image representation—will be indicated as DwtS. In
particular, the pre–fix Dwt stands for being a DWT–based image representation,
whereas the post–fix S stands for having correspondent classification features—
namely wavelet coefficients—scaled in the interval [0, 1], as previously discussed.
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4.3.2 OWT–based image representation

Although very efficient from a computational point of view, one of the major
drawback for the DWT–based image representation—in this specific problem—
is its low spatial resolution. It is in fact evident—for example from the vertical
details dV

1 , dV
2 , dV

3 in Fig. 4.7 and dV
1 in Fig. 4.9—that for high decomposition

levels the wavelet details represent edges and boundaries as blunt objects. This is
due both to the poor spatial resolution characterizing the original crops—namely
their original 64 × 64 pixel size—and to the sub–sampling operations performed
by the discrete wavelet transform. Notice, in particular, that this tendency to poor
spatial resolution is the reason why in this work the wavelet decomposition will
be performed only up to the first level for the DWT–based image representation.
Higher levels are in fact too little informative to be taken into account.

On the contrary, since for the multi–resolution overcomplete Haar wavelet
transform the sub–sampling operations are removed, the resulting image repre-
sentation is characterized by a richer spatial resolution and the problem is some-
how attenuated. Compare, for example, the discrete details dV

1 , dV
2 , dV

3 in Fig. 4.7
with the correspondent overcomplete ones in Fig. 4.8. It is evident that—in the
latter case—the removal of the sub–sampling operations proves to be very useful
in order to obtain transformed crops with higher spatial resolution.

Dealing with this image representation, thus, the classification features will be
represented by the wavelet coefficients obtained by applying the multi–resolution
overcomplete Haar wavelet transform to the crops. In particular, by the selecting
the decomposition levels which represent the best compromise between spatial
resolution and noise level—namely the fourth and sixth—the crops representing
tumoral masses and normal tissue will be characterized by approximately 3000
redundant wavelet coefficients as shown in Fig. 4.10. Notice in particular that—
differently from the DWT–based image representation—here the approximation
components are disregarded. The problem with the approximation components
obtained by the application of the multi–resolution overcomplete Haar wavelet
transform is—in fact—that they are affected by some evident visual artifacts that
could influence negatively the classification performances.

In the rest of this work, the above discussed image representation—also re-
ferred to as OWT–based image representation—will be indicated as OwtS. As for
the DWT–based image representations discussed above, the pre–fix Owt stands
for its being an OWT–based image representation, whereas the post–fix S stands
for its being scaled in the interval [0, 1].
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Figure 4.10: OWT–based image representation. Mass (left). Non–mass (right).
The vertical detail dH

j (left), the horizontal detail dV
j (middle) and

the diagonal detail dD
j (right) wavelet coefficients of level 4 (top

row) and 6 (bottom row) are shown. Notice that the approxima-
tion components are disregarded. The reason is that for the multi–
resolution overcomplete Haar wavelet transform they are generally
affected by some evident visual artifacts that could influence nega-
tively the classification performances.

4.3.3 Results and discussion
The two wavelet–based image representations discussed above are evaluated by
performing several tests.

DWT–based image representation

As regards the tests performed for the DWT–based image representations, first the
original representation—namely DwtS—is evaluated. With this image represen-
tation, in particular, SVM is asked to classify 64× 64 = 4096 wavelet coefficients
obtained by applying the multi–resolution discrete Haar wavelet transform to the
crops and by scaling them in the interval [0, 1]. An SVM’s linear kernel is used.

Second, the influence of histogram equalization is explored by equalizing the
crops before transforming them with multi–resolution discrete Haar wavelet trans-
form. In particular, the original crops having 64×64 pixel size are all processed by
means of histogram equalization. The obtained crops are transformed by means
of multi–resolution discrete Haar wavelet transform, scaled between [0, 1] and—
finally—classified by using an SVM’s linear kernel as for the first test. This
image representation—characterized by histogram equalization, multi–resolution
discrete Haar wavelet transform and scaling—will be referred to as DwtHS.
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Figure 4.11: ROC curves obtained by using wavelet–based image representa-
tions, namely DWT–based. Poor performances—with respect to
PixHRS—are achieved by DwtHS, namely crops processed by
means of histogram equalization, multi–resolution discrete Haar
wavelet transform and scaling. Poor performances are achieved also
by DwtS, namely crops processed by means of multi–resolution dis-
crete Haar wavelet transform and scaling. An SVM’s linear kernel
is used.

Third, the effect of a different choice for the SVM’s kernel is tested. In par-
ticular, other than for the linear kernel, the image representations discussed above
are tested for polynomial kernels with degree 2 and 3.

The results obtained with the DWT–based image representation show several
interesting aspects. For the sake of clearness, only the best ROC curves are plot-
ted. In particular, Fig. 4.11 shows some results correspondent to the first two tests,
whereas Fig. 4.12 to the last one.
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 DwtHS2 with pol. ker., degree = 2 (4096 feat.)
 DwtHS3 with pol. ker., degree = 3 (4096 feat.)

Figure 4.12: ROC curves obtained by using wavelet–based image representa-
tions, namely DWT–based. Discrete performances—with respect
to PixHRS—are achieved by both DwtHS2 and DwtHS3, namely
crops processed by means of histogram equalization, multi–resolu-
tion discrete Haar wavelet transform and scaling. An SVM’s poly-
nomial kernel with degree 2 and 3 is respectively used.

First, experiments show that histogram equalization has a positive influence—
although slight—on the classification performances. As for the pixel–based image
representation, in fact, the original crops processed by means of histogram equal-
ization, transformed by the multi–resolution discrete Haar wavelet transform and
finally scaled are those achieving the best classification results. This is evident
in Fig. 4.11, where the ROC curve correspondent to this image representation—
namely DwtHS—proves to be slightly better than that correspondent to DwtS,
although worse than the best one achieved by the pixel–based image representa-
tion. Notice that the number of features for both DwtHS and DwtS is 4096.
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Second, tests demonstrate that the SVM’s kernel which performs globally bet-
ter is the polynomial with degree higher than one, see Fig. 4.12. This result seems
to have a logic. Dealing with a wavelet–based image representation, in fact, the
vector of features is a concatenation of the approximation and detail components.
In particular, each pixel of the original crop is represented four times in the vector
of features, namely by one wavelet coefficient in the approximation component
and by one wavelet coefficient in each one of the three details. Contrarily to the
pixel–based image representation—where correlations among correspondent fea-
tures are the only important ones—here correlations among distant features are
important as well due to the structure characterizing the vectors of features.

OWT–based image representation

As regards the tests performed for the OWT–based image representations, first the
original representation—namely OwtS—is evaluated. In this case, the classifi-
cation features handled by SVM are the approximately 3000 wavelet coefficients
obtained by applying the multi–resolution overcomplete Haar wavelet transform
to the crops and by scaling them in the interval [0, 1]. Linear and polynomial with
degree 2 and 3 SVM’s kernels are tested.

Second, the influence of histogram equalization is explored by equalizing the
crops as for the first test. In particular, the original crops having 64 × 64 pixel
size are all processed by means of histogram equalization. The obtained crops are
transformed by means of multi–resolution overcomplete Haar wavelet transform,
scaled between [0, 1] and—finally—classified by using linear and polynomial
with degree 2 and 3 SVM’s kernels. This image representation—characterized
by histogram equalization, multi–resolution overcomplete Haar wavelet transform
and scaling—will be referred to as OwtHS in the following.

The results achieved by the OWT–based image representations are shown in
Fig. 4.13. As for the previous cases, in order to have a plot as clear as possible,
only the best results are reported.

Experiments give first some confirmations about the importance of SVM’s
polynomial kernels with degree higher than one. In particular—evaluating differ-
ent SVM’s kernels—it results that also for the OWT–based image representation
a vector of features in which a pixel of the original crop is represented more than
once is best classified by means of polynomial kernels with degree higher than
one. For that reason, in Fig. 4.13 the ROC curves plotted correspond to tests
performed by using SVM’s polynomial kernels with degree 2.
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Figure 4.13: ROC curves obtained by using wavelet–based image representa-
tions, namely OWT–based. Discrete performances—with respect
to PixHRS—are achieved by OwtHS2, namely crops processed
by means of histogram equalization, multi–resolution overcom-
plete Haar wavelet transform and scaling. Good performances are
achieved by OwtS2, namely crops processed by means of multi–
resolution overcomplete Haar wavelet transform and scaling. An
SVM’s polynomial kernel with degree 2 is used.

Second, the results obtained with regard to the influence of histogram equal-
ization on the classification performances contradict somehow what obtained for
the DWT–based image representation. As it is evident from Fig. 4.13, in fact,
the ROC curve which corresponds to the crops processed by means of histogram
equalization, transformed by the multi–resolution overcomplete Haar wavelet tra-
nsform and finally scaled—namely OwtHS2—proves to be worse with respect to
that which corresponds to the crops simply transformed by the multi–resolution
overcomplete Haar wavelet transform and finally scaled, in other words OwtS2.
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FPF ∼ .01 FPF ∼ .02 FPF ∼ .03 FPF ∼ .04 FPF ∼ .05
PixHRS .70 ± .06 .77 ± .07 .84 ± .05 .86 ± .05 .89 ± .03
OwtS2 - .75 ± .05 .82 ± .05 .85 ± .05 .87 ± .05

DwtHS3 .62 ± .11 .73 ± .07 .78 ± .04 .82 ± .04 .85 ± .03

Table 4.2: Classification results comparison. The T PF values obtained by the
best performing pixel–based, DWT–based and OWT–based image rep-
resentations are shown, in particular for FPF values approximately
equal to .01, .02, .03, .04 and .05.

The reason is probably that the combined effect of histogram equalization together
with a redundant wavelet analysis enhances too much the crops, thus encoding in
the wavelet coefficients unnecessary and unimportant image details, for instance
noise. Notice, furthermore, that the ROC curve corresponding to OwtHS2 is prac-
tically overlapped to that corresponding to DwtHS3. In some sense, histogram
equalization has the same effect on the classification performances obtained by
both using discrete and overcomplete wavelet transform. At the same time, the
ROC curve corresponding to OwtS2 is almost overlapped to that corresponding
to PixHRS. In particular they represent the best classification performances ob-
tained so far.

To compare quantitatively the best results obtained for the three main im-
age representations tested—namely pixel–based, DWT–based and OWT–based—
Tab. 4.2 is presented. Here, the T PF values achieved by PixHRS, DwtHS3 and
OwtS2 are shown for FPF values close to .01, .02, .03, .04 and .05.

The good performances of PixHRS are evident. This is quite expected, since
as already discussed in detail this image representation in based on both histogram
equalization and bi–linear resizing, techniques which are theoretically supposed
to separate well tumoral masses from normal tissue. In particular, the combined
effect of histogram equalization and bi–linear resizing is to enhance edges and
boundaries separating tumoral masses from the surrounding tissue, but—at the
same time—also to strongly characterize their central bright nucleus.

On the other hand, the performances of OwtS2 are good as well. Also for
that image representation positive results are quite expected. The wavelet rep-
resentation allows in fact to capture both the detailed structures and the general
shape of tumoral masses. The overcomplete wavelet transform, however, clearly
leads to superior performances with respect to the discrete wavelet transform—
DwtHS3—due to the richer spatial resolution which assures.
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4.4 Steerable Filters Performance

Although in their very preliminary version, in the following Section the tests per-
formed in order to evaluate the steer–based image representation will be briefly
presented and discussed. In particular, the motivation for placing this Section be-
tween that dealing with the tests performed by using the wavelet–based image
representation and that dealing with the tests performed by using the ranklet–
based image representation is mainly due to logic and coherence rather than to
chronological reasons. In fact, the steer–based image representation has been the
last—from a chronological perspective—being implemented and it is currently
under evaluation. In this sense, the results presented herein must be considered as
a sort of anticipation of a more complete study which is—at the time—still under
development.

As for the wavelet–based image representation, the reason for evaluating the
steer–based image representation is that it goes in the direction of histogram equal-
ization, thus in the direction of enhancing edges and boundaries of the image un-
der study. Furthermore, due to its redundancy and steering properties, it assures a
rich spatial resolution of the transformed image—as for the overcomplete wavelet
transform—but with a higher orientation selectivity. Those properties proved to
be fundamental in order to achieve good classification performances in the image
representations previously discussed.

In the following, the two steer–based image representations evaluated in this
work will be described. The classical multi–resolution steerable pyramid will be
first discussed. As already described in detail, it mainly consists of a linear trans-
form in which an image is decomposed into a collection of sub–bands localized
at different resolutions and steered at several orientations. Fig. 4.14, for example,
shows a tumoral mass decomposed by means of a steerable pyramid at three reso-
lutions and six different fixed orientations. A further implementation using wedge
filters will be also considered. Here, the steering and asymmetric properties of
wedge filters are first used in order to localize the angles at which the filters re-
sponse is maximal. The classical steerable filters are then used in order produce
a steerable pyramid at different resolutions and steered at the angles found by the
wedge filters, see Fig. 4.15.

Finally, although this approach represents the first example of a featureless
technique based on steerable pyramids and SVM for mammographic mass classi-
fication, however a similar scheme has been implemented in (Sajda et al., 2002)
by using as classifier a Hierarchical Pyramid Neural Network (HPNN).
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Figure 4.14: Steerable pyramid decomposition of a tumoral mass. Five order
derivative steerable filters have been used. Shown are the resulting
six orientations at three different resolutions and the final low–pass
image.
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Figure 4.15: Steerable pyramid decomposition of a tumoral mass. Five order
derivative steerable filters have been used. Shown are the orienta-
tions corresponding to the first six maximal responses found by the
wedge filters, namely 185 ◦, 41 ◦, 117 ◦, 88 ◦, 151 ◦ and 344 ◦ (from
upper–right to lower–left). Three different resolutions and the final
low–pass image are also shown.
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Figure 4.16: Steer–based image representation. Mass (left). Non–mass (right).
This image representation corresponds to the multi–resolution ste-
erable pyramid obtained by using as filters the zero order derivative
of a Gaussian. Three–level, one–angle decomposition.

4.4.1 Steer–based image representation

When dealing with the steer–based image representation, the parameters which
could influence the classification performances are mainly the number of decom-
position levels and the number of fixed angles at which the pyramidal decom-
position is performed. In particular, the number of angles is determined by the
steerable filters used. As already discussed in Section 3.3, in fact, by changing
the derivative order of the steerable filters used, the number of orientations may
be adjusted, for example first derivatives yield two orientations, whereas second
derivatives yield three orientations and so forth.

In this work—being the testing still under development—the only steerable
filters evaluated are those correspondent to a zero order Gaussian derivative. This
means a single orientation angle and a maximal number of decomposition levels
equal to 3, when dealing with crops having pixels size 64×64. In particular, when
characterized by such an image representation, the crops representing tumoral
masses and normal tissue look like as in Fig. 4.16. Here, the first decomposition
level is represented by a crop with pixel size 64 × 64, the second decomposition
level by one with pixel size 32 × 32, the third decomposition level by one with
pixel size 16 × 16 and finally by a low–pass residual with pixel size 8 × 8.

In the rest of this work, the above discussed image representation—also re-
ferred to as steer–based image representation—will be indicated as SteerS. In
particular, the pre–fix Steer stands for being a steer–based image representation,
whereas the post–fix S stands for having correspondent classification features—
namely the coefficients obtained by the steerable pyramid—scaled in the interval
[0, 1] as previously discussed.
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Figure 4.17: Steer–based image representation at maximal energy. Mass (left).
Non–mass (right). This image representation corresponds to the
multi–resolution steerable pyramid obtained by using as filters the
five order derivative of a Gaussian oriented at the first maximal re-
sponse angle found by wedge filters. Three–level decomposition.

4.4.2 Steer–based image representation at maximal energy

In the image representation which corresponds to the multi–resolution steerable
pyramid at the maximal energy angle, the wedge filters are first used in order to
individuate the angles at which their response is maximal. The filters obtained
by the five order derivative of a Gaussian are then steered along the directions
individuated by the wedge filters. Notice, in particular, that the number of angles
for which the response is maximal could differ according to the crop. For this
reason, since SVM deals with dimensionally homogeneous vectors, it is necessary
to fix to one the number of angles at which the decomposition is performed. In
this sense, the parameter which could influence the classification performances is
only the number of decomposition levels. When characterized by such an image
representation, the crops representing tumoral masses and normal tissue look as in
Fig. 4.17. As for steer–based image representation, the first decomposition level
is represented by a crop with pixel size 64 × 64, the second decomposition level
by one with pixel size 32 × 32, the third decomposition level by one with pixel
size 16 × 16 and finally by a low–pass residual with pixel size 8 × 8.

In the rest of this work, the above discussed image representation—also re-
ferred to as steer–based image representation at maximal energy—will be indi-
cated as SteerMaxS. In particular, the pre–fix SteerMax stands for being a steer–
based image representation at maximal energy, whereas the post–fix S stands for
having correspondent classification features—namely the coefficients obtained by
the steerable pyramid—scaled in the interval [0, 1].
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4.4.3 Results and discussion
In order to evaluate the steer–based image representation discussed above, some
tests are performed. Again, being the evaluation in its very preliminary phase,
the results presented herein should not be considered as an exhaustive picture
of the classification performances of that image representation, but rather as an
anticipation of the very first findings.

In the first test the steer–based image representation is evaluated. In partic-
ular, the original crops having 64 × 64 pixel size are decomposed by means of
the multi–resolution steerable pyramid at different levels and steered at the single
orientation corresponding to the zero order derivative filters used. The resulting
coefficients are then classified by means of several SVM’s kernels, namely linear
and polynomial with degree 2 and 3.

Second, the steer–based image representation at the maximal energy is evalu-
ated. In this case, the original crops are submitted for instance to the analysis of
the wedge filters. Once the angle correspondent to the maximal energy is found
for each crop, they are decomposed by means of the multi–resolution steerable
pyramid at different levels and steered at each correspondent angle found. Also
for this case, the resulting coefficients are then classified by means of several
SVM’s kernels, namely linear and polynomial with degree 2 and 3.

Experiments confirm that the SVM’s kernels which performs globally better
are the polynomial ones with degree higher than one, in particular with degree
equal to three, see Fig. 4.18. As discussed for the wavelet–based image represen-
tation, this result is quite understandable. Dealing with feature vectors in which
each original pixel of the crop is represented more than once, in fact, correlations
among distant features are important.

The tests performed seem also to demonstrate that the use of the multi–resolu-
tion steerable pyramid oriented at the maximal energy angle results in an improve-
ment of the classification performances. Looking at Fig. 4.18, in fact, it is evident
that the steer–based image representation at maximal energy performs slightly bet-
ter than the steer–based one. Nevertheless, the results achieved are sensibly worse
than those correspondent to the best image representations found so far. Due to
the incompleteness of the tests performed, a precise motivation for that is difficult
to find. However, one possible explanation is that the number of features for the
steer–based image representations—namely 5440—is much higher than that for
the pixel–based and the OWT–based image representations, respectively 256 and
3000. This could result in a harder problem for SVM.
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Figure 4.18: ROC curves obtained by using steer–based image representations.
Poor performances—with respect to both PixHRS and OwtS2—are
achieved by the ROC curve which corresponds to the coefficients
first obtained by applying the multi–resolution steerable pyramid
and then classified by means of SVM’s polynomial kernel with de-
gree 3. Poor performances, even though slightly better, are obtained
by the ROC curve which corresponds to the coefficients first ob-
tained by applying the multi–resolution steerable pyramid at maxi-
mal energy angle and then classified by means of SVM’s polynomial
kernel with degree 3.
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4.5 Ranklets Performance

The main purpose of this Section is to discuss the tests performed by using the
ranklet–based image representation. The aim is to understand whether the non–
parametric, multi–resolution and orientation selective properties of the multi–
resolution ranklet transform can be exploited in order to improve the performance
obtained so far for the two–class classification problem under study. To this pur-
pose, it is well worth reminding that—as discussed in Section 3.4—the non–
parametric property of the multi–resolution ranklet transform derives from its
being mainly based on the rank transform, a transform that—given p1, . . . , pN
pixels—replaces the value of each pi with the value of its order among all the
other pixels. At the same time, the multi–resolution and orientation selective
properties derive from its being mainly modeled on the multi–resolution over-
complete Haar wavelet transform in two dimensions. This means that—as for
the wavelet transform—the ranklet transform of each crop can be computed at
different positions and resolutions by means of a suitable shift and stretch of the
Haar wavelet supports. This clearly permits to analyze the crop at several differ-
ent resolutions, thus allowing the multi–resolution ranklet transform to represent
coarse scale features all the way down to fine scale features. Furthermore—for
each resolution—the vertical, the horizontal and the diagonal ranklet coefficients
can be computed. This clearly allows to analyze the crop at different orientations.

The approach adopted here is once more a featureless approach. In other
words, the ranklet coefficients derived from the application of the multi–resolution
ranklet transform to the mass crops and to the non–mass crops are directly used as
classification features. To this purpose, the multi–resolution ranklet transform of
each crop is first performed at different resolutions by shifting and stretching the
Haar wavelet supports, see Fig. 4.19. Each crop is then presented to SVM as a col-
lection of several ranklet triplets RV,H,D, each one corresponding to a specific shift
and stretch of the Haar wavelet supports. Notice, in particular, that the ranklet–
based image representation described here constitutes a twofold novelty for mam-
mographic mass classification. The first reason is that featureless approaches have
never been applied to tumoral mass classification, as previously discussed for the
pixel–based, wavelet–based and steer–based approaches. The second reason is
that ranklets have never been applied to medical image processing. As already
discussed in Section 3.4, in fact, ranklets have been applied—up to now—almost
exclusively to face detection problems, see (Smeraldi, 2002, 2003a; Smeraldi &
Rob, 2003; Smeraldi, 2003b).
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Figure 4.19: Multi–resolution ranklet transform. Left, middle and right columns
represent respectively how vertical, horizontal and diagonal ranklet
coefficients are calculated at different positions and resolutions. In
this sense, from each row, a triplet RV,H,D of ranklet coefficients is
computed and presented to SVM.
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Resolutions Number of ranklet coefficients
[16, 14, 12, 10, 8, 6, 4, 2] 2040

[16, 8, 4, 2] 1428
[16, 8, 2] 921
[16, 2] 678
[16, 4] 510

[16, 14, 12, 10] 252
[16, 8] 246

Table 4.3: Number of resulting ranklet coefficients obtained by applying the
multi–resolution ranklet transform to a crop with pixel size 16 × 16.
Different combinations of resolutions are shown.

4.5.1 Ranklet–based image representation
In order to compute in reasonable times the multi–resolution ranklet transform,
crops are for instance required to be resized from the original 64× 64 pixel size to
16 × 16 by means of bi–linear resizing.

The number of classification features—ranklet coefficients—passed to SVM
then strongly depends on the resolutions at which the multi–resolution ranklet
transform is performed. Tab. 4.3 shows the correspondence among the resolutions
at which it is performed and the number of ranklet coefficients computed. For
example, the multi–resolution ranklet transform of a crop with pixel size 16 × 16
at resolutions [16, 8, 4, 2] pixels—namely by using Haar wavelet supports having
respectively pixel size 16 × 16, 8 × 8, 4 × 4 and 2 × 2—results in 1 triplet RV,H,D

from the resolution at 16 pixels, 81 triplets RV,H,D from the resolution at 8 pixels,
169 triplets RV,H,D from the resolution at 4 pixels and 225 triplets RV,H,D from
the resolution at 2 pixels, thus for a total of 3 × (1 + 81 + 169 + 225) = 1428
ranklet coefficients. Notice that, the lower is the linear dimension of the Haar
wavelet support, the higher is the resolution at which the multi–resolution ranklet
transform is performed and so the number of ranklet coefficients produced. And
vice versa. This is consistent with the expression discussed in Eq. 3.26.

In the following, the above discussed image representation will be indicated as
RankS, regardless of the resolutions at which the multi–resolution ranklet trans-
form is performed. Here, the pre–fix Rank stands for its being a ranklet–based
image representation, whereas the post–fix S for its having features—namely ran-
klet coefficients—scaled in the interval [−1, 1]. Notice that this last property is
automatically assured by the definition of ranklet coefficients given in Eq. 3.25.
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4.5.2 Results and discussion

In order to evaluate the performances of the ranklet–based image representation,
three main experiments are carried out.

The first test is intended to understand the influence of the SVM’s kernel on
the classification performances. To this aim, the original crops are for instance
resized from their original 64×64 pixel size to 16×16 by means of bi–linear resiz-
ing. Using—as image representation—the ranklet coefficients resulting from the
multi–resolution ranklet transform of the resized crops at resolutions [16, 8, 4, 2]
pixels, several SVM’s kernels are then varied, namely linear and polynomial with
degree 2 and 3. The resulting number of classification features here is 1428.

The second test is intended to comprehend the effects of the multi–resolution
property of the ranklet transform on the classification performances. As for the
previous test, the original crops are resized from their original 64 × 64 pixel size
to 16 × 16 by means of bi–linear resizing. The multi–resolution ranklet transform
is then applied to the resized crops by using several combinations of different
resolutions, namely those shown in Tab. 4.3. The number of classification features
here varies according to the resolutions at which the analysis is performed.

The last test is intended to investigate the influence of histogram equalization
on the performances. This aspect is explored by processing the original crops hav-
ing 64×64 pixel size by means of histogram equalization. The obtained crops are
resized to 16×16 pixel size, transformed by means of the multi–resolution ranklet
transform at resolutions [16, 8, 4, 2] pixels and—finally—classified by SVM. As
for the first test, the number of classification features here is 1428.

The results obtained for those three tests are reported in the following. In
particular, Fig. 4.20 shows some results about the first test. Fig. 4.21, Fig. 4.22
and Fig. 4.23 are concerned with the second test. Finally, Fig. 4.24 is related to
the last test. The ROC curves obtained definitely deserve some discussion.

First, looking at Fig. 4.20, the ranklet–based image representation seems to
improve its classification performances in correspondence of increasing values for
the polynomial degree of the SVM’s kernel. In particular, while the linear SVM’s
kernel achieves discrete performances, the polynomial SVM’s kernels with degree
2 and 3 achieve excellent results. What is particularly worth noticing is that the
ROC curves which correspond to the ranklet coefficients obtained by applying the
multi–resolution ranklet transform at resolutions [16, 8, 4, 2] pixels—and classi-
fied by means of SVM’s polynomial kernel with degree 2 and 3—perform better
than PixHRS and OwtS2, namely the best image representations found so far.
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 OwtS2 with pol. ker., degree = 2 (~3000 feat.)
 RankS at res. [16,8,4,2] with lin. ker. (1428 feat.)
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Figure 4.20: ROC curves obtained by using ranklet–based image representa-
tions. Excellent performances—with respect to both PixHRS and
OwtS2—are achieved by ROC curves which correspond to the ran-
klet coefficients first obtained by applying the multi–resolution ran-
klet transform at resolutions [16, 8, 4, 2] pixels and then classified by
means of SVM’s polynomial kernel with degree 2 and 3. Discrete
performances are achieved by using an SVM’s linear kernel.

This result is quite expected. As for the wavelet–based image representations, in
fact, the vector containing the ranklet coefficients is actually a vector in which
each pixel of the original crop—or better each region—is represented more than
once. Each region of the original crop is, in fact, analyzed at different resolu-
tions by the ranklet transform and accordingly encoded in the vector of features.
As already discussed in Section 4.3.3, in such a situation correlations among dis-
tant features prove to be fundamental and—for this reason—SVM’s polynomial
kernels with degree higher than one perform better.
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Figure 4.21: ROC curves obtained by using ranklet–based image representa-
tions. Low, intermediate and high resolutions are taken into ac-
count. Excellent performances—with respect to both PixHRS and
OwtS2—are achieved by ROC curves corresponding to the ran-
klet coefficients obtained by applying the multi–resolution ranklet
transform at resolutions [16, 14, 12, 10, 8, 6, 4, 2], [16, 8, 4, 2] and
[16, 8, 2] pixels. An SVM’s polynomial kernel with degree 3 is used
for them.

Second, Fig. 4.21 shows the results obtained employing as image representa-
tion the ranklet coefficients resulting from the multi–resolution ranklet transform
at resolutions [16, 14, 12, 10, 8, 6, 4, 2], [16, 8, 4, 2] and [16, 8, 2] pixels. It is ev-
ident from the ROC curve analysis that all these combinations perform almost
identically and they all perform better than PixHRS and OwtS2. In particular—
due to the previous considerations about the choice of SVM’s kernel when dealing
with ranklet–based features—an SVM’s polynomial kernel with degree 3 is used.
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This result is quite important, since it demonstrates that using 921 classification
features—as for the case [16, 8, 2]—as well as 2040 classification features—as for
the case [16, 14, 12, 10, 8, 6, 4, 2]—almost identical performances are achieved.
This, in turn, means saving a lot of computational time. Notice, also, that in
the tests discussed above all the resolutions are taken into account, as for the
[16, 14, 12, 10, 8, 6, 4, 2] case. Or at least a sampled version of them is considered,
as for the [16, 8, 4, 2] and [16, 8, 2] cases. In other words, low, intermediate and
high resolutions are all contemplated.

Third, Fig. 4.22 shows the results obtained using as image representation the
ranklet coefficients resulting from the multi–resolution ranklet transform at reso-
lutions [16, 4] and [16, 2] pixels, thus ignoring the intermediate resolutions. An
SVM’s polynomial kernel with degree 3 is used as for the previous tests. Look-
ing at the performances, it is evident that they are not essential for classification
purposes. In fact, the results obtained for the [16, 4] and [16, 2] cases are only
slightly different from those obtained for the [16, 8, 4, 2] case and they all per-
form better than the PixHRS and Owt2 image representations. As for the tests
discussed above, this result demonstrates that using 510 classification features—
as for the case [16, 4]—as well as 1428 classification features—as for the case
[16, 8, 4, 2]—it is possible to obtain almost identical performances. As discussed
above, this result is worthy, since it means avoiding unnecessary waste of time by
dealing with a redundant set of features.

Fourth, in Fig. 4.23 the results obtained by using as image representation the
ranklet coefficients resulting from the multi–resolution ranklet transform at resolu-
tions [16, 14, 12, 10] and [16, 8] pixels are shown. In this case, the high resolutions
are ignored. Looking at the performances, it is evident that they are important for
classification purposes. In fact, the results achieved by the [16, 14, 12, 10] and
[16, 8] cases perform worse than those achieved by the [16, 8, 4, 2] case and by
PixHRS and OwtS2. In particular, here—as for the tests discussed above—an
SVM’s polynomial kernel with degree 3 is used.

Finally, in Fig. 4.24 the results obtained with regard to the influence of his-
togram equalization on the classification performances are shown. It is quite ev-
ident that the ROC curve which corresponds to the crops processed by means
of histogram equalization and that which corresponds to the crops non equal-
ized are almost overlapping. This result is once again really important, since it
demonstrates that a computational expensive procedure as histogram equalization
is generally ineffective—when dealing with ranklet coefficients—in order to im-
prove the classification results.
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Figure 4.22: ROC curves obtained by using ranklet–based image representations.
Low and high resolutions are taken into account. Intermediate res-
olutions are ignored. Excellent performances—with respect to both
PixHRS and OwtS2—are achieved by ROC curves corresponding
to the ranklet coefficients obtained applying the multi–resolution
ranklet transform at resolutions [16, 4] and [16, 2] pixels. An SVM’s
polynomial kernel with degree 3 is used for them.
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Figure 4.23: ROC curves obtained by using ranklet–based image representations.
Low and intermediate resolutions are taken into account. High
resolutions are ignored. Discrete performances—with respect to
PixHRS and OwtS2—are achieved by ROC curves corresponding
to the ranklet coefficients obtained by applying the multi–resolution
ranklet transform at resolutions [16, 14, 12, 10] and [16, 8] pixels.
An SVM’s polynomial kernel with degree 3 is used for them.
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 RankS at res. [16,8,4,2] with pol. ker., degree = 3, + hist. eq. (1428 feat.)
 RankS at res. [16,8,4,2] with pol. ker., degree = 3, (1428 feat.)

Figure 4.24: ROC curves obtained by using ranklet–based image representa-
tions. Histogram equalization is tested. Excellent performances
are achieved by both ROC curves, namely that correspondent to the
equalized crops and that correspondent to the non equalized crops.
An SVM’s polynomial kernel with degree 3 is used for them.
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FPF ∼ .01 FPF ∼ .02 FPF ∼ .03 FPF ∼ .04 FPF ∼ .05
RankS3 .76 ± .05 .82 ± .05 .87 ± .05 .89 ± .05 .91 ± .04
PixHRS .70 ± .06 .77 ± .07 .84 ± .05 .86 ± .05 .89 ± .03
OwtS2 - .75 ± .05 .82 ± .05 .85 ± .05 .87 ± .05

DwtHS3 .62 ± .11 .73 ± .07 .78 ± .04 .82 ± .04 .85 ± .03

Table 4.4: Classification results comparison. The T PF values obtained by the
best performing pixel–based, DWT–based, OWT–based and ranklet–
based image representations are shown, in particular for FPF values
approximately equal to .01, .02, .03, .04 and .05.

In order to give also some quantitative results, the T PF values of the best
performing image representations discussed so far are shown in Tab. 4.4, in par-
ticular for FPF values close to .01, .02, .03, .04 and .05. The results obtained
by the best pixel–based image representation PixHRS, OWT–based image repre-
sentation OwtS2 and DWT–based image representation DwtHS3 are compared
to the best ranklet–based image representation. In particular—as regards the best
ranklet–based image representation—the results reported are those achieved by
the ranklet coefficients produced by the multi–resolution ranklet transform at res-
olutions [16, 8, 4, 2] pixels and classified by means of an SVM’s polynomial kernel
with degree 3, for the sake of brevity RankS3.

The reasons for choosing RankS3 have been somehow already anticipated
when the tests performed with ranklets have been presented. However, it is well
worth summarizing them.

First, the results achieved demonstrate that—when dealing with the ranklet–
based image representation—the SVM’s polynomial kernels with degree higher
than one achieve excellent performances, for instance SVM’s polynomial kernel
with degree 3.

Furthermore, the low and high resolutions at which the multi–resolution ran-
klet transform is performed prove to be quite important in order to achieve good
performances, whereas intermediate resolutions can be ignored without sensi-
bly affecting the classification results. These considerations suggest to perform
the multi–resolution ranklet transform at resolutions [16,4] or [16,2] pixels, thus
ignoring the intermediate resolutions. Or at least to perform it at resolutions
[16,8,4,2] or [16,8,2] pixels, thus using a sampled version of all the resolutions
and achieving slightly better performances. In either cases the main idea is to
use a reduced number of ranklet coefficients, namely only those influencing the
classification performances.
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4.5.3 Ranklet coefficients reduction by means of SVM–RFE
As already discussed in Section 2.3, one of the most challenging task—when fac-
ing a classification problem—is to reduce the dimensionality of the feature space
by finding a restricted number of features which influence most the classification
performances. The importance of that is twofold. First, finding a smaller sub–set
of features which are particularly influent on the classification performances ac-
tually results in having smaller training and test sets, thus in lower computational
times. This clearly proves to be fundamental when developing algorithms which
must be suited for real–time working, as for instance medical applications. Sec-
ond, the so–called curse of dimensionality from statistics theory asserts that the
difficulty of an estimation problem increases drastically with the dimension of the
space. In such a sense, it is not unusual that a classifier benefits from feature space
dimensionality reduction.

In order to study whether and how it is possible to reduce the original 1428 ran-
klet coefficients of RankS3 to a smaller sub–set of features, SVM–RFE is applied
to each fold of the cross-validation procedure used for the previously discussed
tests. The iterative procedure adopted is the following:

1. Train SVM for each fold

2. Test SVM for each fold

3. Compute the ranking criterion represented by Eq. 2.72 for each feature in
each fold

4. Compute a ranking list, common to all folds, by averaging the ranking posi-
tion of each feature in each fold

5. Remove the feature with the smallest rank in the ranking list

In particular, two aspects of this approach deserve some deeper and careful con-
sideration. First, SVM must be re–trained after each feature elimination. This is
reasonable, since the importance of a feature characterized by medium–low im-
portance may be promoted by removing a correlated feature. Second, each fold of
the cross–validation is characterized by a different training set. After each train-
ing phase, thus, the computation of the ranking criterion leads to a ranking list
different for each fold. This in particular means that the feature having smallest
ranking is different for each fold. In order to eliminate the same feature from all
the training sets, it is thus necessary to compute a ranking list common to all folds.
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Figure 4.25: Application of SVM–RFE to the 1428 ranklet coefficients of the
ranklet–based image representation RankS3. For each fold of the
10–fold cross validation procedure, the classification error versus
the number of features selected by SVM–RFE is plotted. Notice that
the number of ranklet coefficients can be sensibly reduced without
affecting the classification performances.

This is achieved by averaging the ranking positions of each feature in each rank-
ing list. The feature having the smallest rank in the common ranking list is thus
eliminated from all the training sets and the procedure is iterated.

Experiments show that—with this technique—the number of ranklet coef-
ficients can be significantly reduced without affecting the classification perfor-
mances. It is evident from the results shown in Fig. 4.25, for example, that re-
ducing the number of ranklet coefficients from 1428 down to 1000—or at least
500—the classification error remains practically unaffected.
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Figure 4.26: ROC curves obtained by using ranklet–based image representations
in combination with SVM–RFE. Excellent performances—with re-
spect to RankS3—are obtained by both ROC curves, namely that
correspondent to a reduction of the number of ranklet coefficients
from 1428 down to 1000 and that correspondent to a reduction from
1428 down to 200.

Similarly, reducing the number of ranklet coefficients of RankS3 from 1428
down to 1000—and then down to 200—ROC curves can be generated for each
specific reduced image representation. Here, a reduced image representation is
characterized by a sub–set of features which results from the recursive application
of SVM–RFE to the original 1428 ranklet coefficients of RankS3. In particular,
the results shown in Fig. 4.26 seem to demonstrate that SVM takes some benefit
from the reduction of the feature space dimensions, as anticipated in the intro-
ductory part of this Section. In fact, the results achieved by the reduced image
representations are almost overlapped—or at least slightly better—with respect to
those achieved by the original image representation.
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Finally, some interesting considerations can be drawn about which ranklet co-
efficients are the most discriminating ones in this two–class classification problem.
To this purpose, it is necessary to look carefully at the ranklet coefficients which
survive after the various steps of SVM–RFE.

In Fig. 4.27, Fig. 4.28 and Fig. 4.29—for example—the ranklet coefficients
produced by the multi–resolution ranklet transform at resolutions 16 × 16, 8 × 8,
4× 4 and 2× 2 pixels are shown. In particular, in Fig. 4.27 only the most discrim-
inating 500 ranklet coefficients are shown, in Fig. 4.28 only the most discrimi-
nating 300, whereas in Fig. 4.29 only the most discriminating 200. Small green
circles represent vertical ranklet coefficients, medium red circles represent hori-
zontal ranklet coefficients and, finally, large blue circles represent diagonal ranklet
coefficients. Furthermore, in order to give an idea of the resolutions involved, the
gray dashed square represents the dimensions of the Haar wavelet supports.

By looking carefully at the ranklet coefficients calculated at resolutions 2 × 2
and 4×4 which survive after each cut, it is evident that the most discriminant ran-
klet coefficients are those near the borders of the image, thus those codifying the
contour information of the image. That is reasonable, in fact, the main difference
between the two classes at fine resolutions is that masses have sharp edges near
the borders of the image, whereas normal tissue has not.

On the contrary, as the resolution decreases to 8 × 8 and 16 × 16, the most
important ranklet coefficients are those near the center of the image, thus those
codifying the symmetry information of the image, rather that its contour infor-
mation. That seems to be reasonable too, since at coarse resolutions the main
difference is that masses appear approximately as symmetric circular structures
centered on the image, whereas normal tissue has a less definite structure.
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Figure 4.27: Ranklet coefficients after SVM–RFE has selected the 500 most rele-
vant ones. Small green circles represent vertical ranklet coefficients,
medium red circles represent horizontal ranklet coefficients, large
blue circles represent diagonal ranklet coefficients. The gray dashed
square represents the dimensions of the Haar wavelet supports. Res-
olution 16 × 16 (upper–left), 8 × 8 (upper–right), 4 × 4 (lower–left),
2 × 2 (lower–right) are represented.
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Figure 4.28: Ranklet coefficients after SVM–RFE has selected the 300 most rele-
vant ones. Small green circles represent vertical ranklet coefficients,
medium red circles represent horizontal ranklet coefficients, large
blue circles represent diagonal ranklet coefficients. The gray dashed
square represents the dimensions of the Haar wavelet supports. Res-
olution 16 × 16 (upper–left), 8 × 8 (upper–right), 4 × 4 (lower–left),
2 × 2 (lower–right) are represented.
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Figure 4.29: Ranklet coefficients after SVM–RFE has selected the 200 most rele-
vant ones. Small green circles represent vertical ranklet coefficients,
medium red circles represent horizontal ranklet coefficients, large
blue circles represent diagonal ranklet coefficients. The gray dashed
square represents the dimensions of the Haar wavelet supports. Res-
olution 16 × 16 (upper–left), 8 × 8 (upper–right), 4 × 4 (lower–left),
2 × 2 (lower–right) are represented.
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Chapter 5
CAD System Implementation

In this Chapter, a practical application into a real–time working Computer–Aided
Detection (CAD) system of some of the previously discussed image representa-
tions will be described. In particular, the wavelet–based and ranklet–based image
representations will be used. The motivation for choosing those image representa-
tions is twofold. First, they prove to obtain excellent classification performances,
in particular when compared to the others. Second, their implementation is almost
straightforward and their computational times are definitely acceptable. Notice,
specifically, that as regards the wavelet–based image representation, the overcom-
plete version will be considered. The reason is that—as previously evaluated—its
richer spatial resolution allows for sensibly better classification performances. To
this aim, Section 5.1 will introduce some of the main motivations for developing a
featureless mass detection algorithm, together with some basic informations about
the system. In Section 5.2, the mass detection scheme will be described in detail,
with a specific attention to the practical implementation of the wavelet–based and
ranklet–based image representations. Section 5.3 will give some details about
the digital image database used in order to set up and evaluate the CAD system.
Finally, in Section 5.4 some informations about the way in which performances
are evaluated will be outlined, whereas in Section 5.5 the achieved results will be
presented and discussed.
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5.1 System Motivation And Overview

As anticipated in Section 1.3, tumoral masses are thickenings of the breast tissue
which appear on mammographic images as lesions with size ranging from 3 mm
to 20–30 mm. Those lesions vary considerably in optical density, shape, position,
size and characteristics of the boundary. In addition, their visual manifestation
does not depend only upon the physical properties of the lesion itself, but it is also
affected by the image acquisition technique and by the projection considered. It
turns out that identifying morphological, directional or structural quantities that
characterize them is very difficult.

The aspects outlined above make mass detection even more demanding for
automatic CAD systems. In fact, automatic detection methods often rely on a
feature extraction step in which masses are isolated by using a set of characteris-
tics which describe them. Due to the great variety of masses, however, it proves
to be extremely difficult to get a common set of features effective for every kind
of masses. For that reason, many of the algorithms for mass detection so far
developed have concentrated on the detection of a specific type of mass or—at
least—on masses characterized by a particular size.

In order to deal with possibly every kind of masses, a detection system which
does not rely on any feature extraction step is presented in this work. Consider-
ing the complexity of the class of objects to detect, considering that said objects
frequently present characteristics similar to the environment which surround them
and, finally, considering the objective difficulty of characterizing this class of ob-
jects with few measurable quantities, in the approach proposed herein no modeling
is used. On the contrary, the algorithm automatically learns to detect masses by
the examples presented to it, thus—as already discussed in Section 4.1—without
any a priori knowledge provided by the trainer. Everything the system needs is a
set of positive and negative examples, namely crops of tumoral masses and nor-
mal breast tissue. In particular, the detection scheme codifies the image with both
a multi–resolution overcomplete Haar wavelet transform and a multi–resolution
ranklet transform, as discussed in Sections 4.3.2 and 4.5.1. The amount of infor-
mations produced by each image representation is then separately classified by
means of an SVM trained accordingly. Finally, a region is marked as a suspect
mass according to a combining strategy applied to the results obtained by the two
image representations. Notice, that the possibility of eliminating the feature ex-
traction step is mainly due to the ability of SVM to handle multi–dimensional
spaces and to maintain—at the same time—a good generalization capacity.
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Several works, in the past, have used SVM in mammographic applications.
As already discussed in Section 2.2, other than for its ability in handling multi–
dimensional spaces without loosing in generalization capacity, this is mainly due
to its advantages over other classifiers, namely an easier setting procedure and
usually better performances on novel data. For example, in the past it has been
used for reducing false positive signals, in the detection of mammographic micro–
calcifications (Bazzani et al., 2001) and in the diagnosis of ultra–sonography
breast images (Chang et al., 2003). Notice, in particular, that in both those cases
SVM classifies signals by means of extracted image features. On the other hand,
a featureless approach based on SVM for the detection of lesions in mammo-
grams has been investigated for the first time by our group in (Campanini et al.,
2002, 2004c,a). In another study—see (El-Naqa et al., 2002)—a similar approach
has been used, but the class of object to detect—namely mammographic micro–
calcifications—is much less heterogeneous in terms of size, shape and contrast.

5.2 Mass Detection Algorithm

The proposed mass detection algorithm is aimed at virtually detecting lesions
whatever position they occupy and at whatever scales—or resolutions—they oc-
cur in the mammographic image. Roughly speaking, this is realized by scanning
and classifying all the possible locations of the image—namely crops—with the
passage of a window. By combining the scanning pass with an iterated resizing of
the window, multi–scale detection is thus achieved. In such a context, each crop
classified by SVM as belonging to the positive class of masses identifies an area
judged as suspect by the CAD system.

Fig. 5.1 shows a detailed chart of the mass detection scheme presented herein.
The first step consists of an external and internal breast segmentation, namely a
pre–selection of the suspect regions within the breast. This is mainly achieved by
means of a mammographic image resizing, a high–pass filtering, an adaptive local
gray–level thresholding and, finally, the application of morphological operators.
The aim of such a technique is basically to exclude the background area from
further processing and to find out suspect regions within the breast. Due to such
a segmentation, a significant reduction of both the number of false positives per
image and of the computational times is achieved. For more details on that see
(Campanini et al., 2004b).
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Figure 5.1: Mass detection algorithm.
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Second, one of the main problems to address in mass detection is that lesions
occur at different scales in the mammogram, typically in a range of dimensions
from 3 mm to 20–30 mm. There thus emerges the necessity of scanning the mam-
mographic image at different scales. On the other hand, the system needs a fixed
size crop, since SVM deals with dimensionally homogeneous vectors. The so-
lution implemented is consequently that of cropping the entire image by means
of scanning windows with different dimensions and then resizing all the obtained
crops to a pre–fixed pixel size 64 × 64.

For example, consider an input image with 4000×3000 pixel size—each pixel
being 50 µm—and three scale targets of 32 mm (640 pixels), 16 mm (320 pixels),
and 10 mm (213 pixels). The desired dimension of the crop is obtained resizing
by means of bi–linear interpolation the windows of 640 × 640, 320 × 320 and
213 × 213 pixel size to 10%, 20% and 30% respectively. The analysis of the en-
tire image is thus obtained by shifting the window with a scanning step fixed to
approximately 10% of the linear dimensions of the window. In this way, there is a
certain degree of superposition between contiguous squares. Without superposi-
tion, in fact, many lesions could fail to be detected because they are not centered
on the scanning crop. This is consistent with the fact that during the training phase
the positive examples are shown as crops centered on a mass. Notice, finally, that
the number of analyzed scales is strictly related to the range size of the masses to
detect.

Third, a multi–resolution analysis of each resized crop is performed by using
two different approaches, namely the multi–resolution overcomplete Haar wavelet
transform and the multi–resolution ranklet transform discussed in Section 4.3.2
and Section 4.5.1. The motivation for choosing those image representations is
twofold. First—as discussed in detail in Section 4.3.3 and Section 4.5.2—they
proved to obtain excellent classification performances, in particular when com-
pared to the others. The reason is probably that their multi–resolution and orienta-
tion selective properties—together with redundancy for the multi–resolution over-
complete Haar wavelet transform and non–parametricity for the multi–resolution
ranklet transform—make them particularly suitable for this kind of pattern clas-
sification problems. Second, their implementation is almost straightforward and
their computational times are definitely acceptable. In such a way, the number of
coefficients obtained for each image representation is quite high, approximately
3000 for the former, whereas 1428 for the latter. In other words, each resized crop
is represented by a vector of approximately 3000 wavelet–based classification fea-
tures and a vector of 1428 ranklet–based classification features.
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Each one of the two feature vectors is thus used as input for one of two dedi-
cated SVMs. Before the CAD system is applied in real–time modality, in fact, one
SVM is trained by means of wavelet–based features, whereas the other by means
of ranklet–based features. In such a way—once trained—each SVM is capable
of classifying the correspondent input vector of wavelet–based or ranklet–based
features. In particular, for each crop, SVM gives the distance from the separating
Maximal Margin Hyperplane discussed in Eq. 2.45. This distance is used as an
index of confidence on the correctness of the classification. In the past, in fact,
some work has been done in order to extract a posterior probability from SVM
outputs, see for example (Platt, 1999). With this in mind, a feature vector clas-
sified as positive with a large distance from the hyperplane will have a higher
likelihood of being a true positive as compared to a vector very close to the hyper-
plane and hence close to the boundary area between the edges of the two classes.
Following this approach, the scanning of all possible locations—at all analyzed
scales—provides a list of suspect candidates, each candidate consisting of a crop
with a distance from the hyperplane greater than a prefixed threshold.

The fourth step in the proposed detection scheme consists of merging multi–
scale informations. The output of each SVM is in fact a set of candidates detected
at either one of the scales. However, the same suspect region can be detected
at several scales. In this case, the centers of the various candidates—representing
that region at different scales—may not be the same, since the scanning step at one
particular scale is different from the others. The candidates are then fused within
a specified neighborhood into a single candidate. Therefore, the output of both
the two detection methods—namely the wavelet–based and the ranklet–based—
is a list of suspect regions, each one detected at least at one scale, see Fig. 5.2.
Notice that, in literature, the output of a detection method—namely the specific
image representation adopted, the classifier used, the classifier’s settings and so
forth—is usually referred to as the result achieved by a particular expert.

The final step consists of combining together the results obtained by the two
experts in order to produce the final detection. The basic idea is that an ensemble
of experts may improve the overall performance of each individual expert, pro-
vided that the individual experts are independent, namely they commit mistakes
on different objects, see (Kuncheva et al., 2000). In this specific case, the detection
performance of the two experts is almost identical. However—due to the differ-
ent image representations, kernels and training conditions used—they will often
make different errors. Hence, one very efficient way to reduce false positives is to
combine their outputs by performing a logical AND.
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Figure 5.2: Merging multi–scale informations and combining the results of the
wavelet–based and ranklet–based experts. Merging multi–scale in-
formations consists of fusing into a single candidate all the candi-
dates at all scales within a specified neighborhood. Combining the
results consists of performing a logical AND of the results obtained
after merging is completed.
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5.3 Image Data Set

A former version of the proposed mass detection scheme has already been tested
on digitized images of the DDSM database described in Section 4.1.2, see (Cam-
panini et al., 2004c). On that former version, however, the system was based on
the combination of three experts all using the multi–resolution overcomplete Haar
wavelet transform and differing mainly in the SVM’s kernels used.

Further tests have been then performed on the FFDM database, namely digital
images collected at two different sites, Maggiore Hospital in Bologna—Italy—
and Triemli Hospital in Zurich—Switzerland—as described in (Campanini et al.,
2004a). Both those hospitals have a Giotto Image MD Full Field Digital Mam-
mography (FFDM) system manufactured by Internazionale Medico Scientifica
(IMS), Italy. Also in this case, however, the system was provided with three
experts based exclusively on multi–resolution overcomplete Haar wavelet trans-
form. Furthermore, its settings were optimized for the combined detection of both
masses and micro–calcifications in mammograms.

In order to evaluate the mass detection performances of the CAD system by
using both the wavelet–based and the ranklet–based image representations, the
FFDM data set is used. This data set consists of about 750 images. They have
gray–level resolution of 13 bits and linear pixel dimensions correspondent to 85
µm. They have been collected both in the course of the clinical evaluation of the
FFDM system and subsequently during the regular clinical examinations. Each
case is relative to one patient and is composed of four projections, namely two
cranio–caudal and two medio–lateral views. In particular, digital mammograms
are always available in four projections per patient. The database is comprised of
672 normal images without lesions and 88 images with at least one lesion, such
as tumor opacities or clustered micro–calcifications. The locations of lesions have
been marked by expert radiologists and collected together with the images.

5.4 Performance Evaluation

In order to set up and evaluate the mass detection algorithm, the data set is divided
into two sub–sets, namely a training set—even though quite improperly, as it will
be discussed in the following—and a test set. The former consists of 46 cancer im-
ages and 52 normal ones, whereas the latter of 42 cancer images and 620 without
lesions. In the following the training and test procedures will be described.
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5.4.1 Training procedure

The training of the CAD system is obtained by presenting a set of crops with pixel
size 64×64 containing masses and a set of crops with pixel size 64×64 correspond-
ing to normal tissue. Crops corresponding to masses represent positive examples
for the classifier, whereas crops corresponding to normal tissue represent negative
examples.

In such a context, each positive example is a portion of a mammographic im-
age which contains completely a mass. In particular, the size of the positive crops
is chosen so that the ratio between the crop area and the area of the mass core
is nearly 1.3. In this way, all the positive examples are characterized by having
about 30% of background and 70% of the area occupied by the mass. As a further
consequence, the real size of masses is smaller than the size of the searching scale.
For example, a scale with a 40 mm crop is appropriate for searching masses of 35
mm. Notice that, in this way, the classifier is specifically trained to recognize—as
positives—feature vectors corresponding to squares centered on lesions.

As regards negative examples, they have no superposition with positive exam-
ples, since negative crops are extracted from normal cases, whereas positive crops
from malignant ones. Furthermore, whilst the positive examples are quite well de-
fined, there are no typical negative examples. To overcome the problem of defin-
ing this extremely large negative class, a bootstrap technique is used, see (Efron
& Tibshirani, 1993). Namely, after the initial training, the system is re–trained
by using a new set containing some mis–classified false positive examples. Those
examples, in particular, are obtained from the detection of images which are not
present in the initial training set. This procedure is thus iterated until an accept-
able performance is achieved. In this way, the system is forced to learn by its own
errors.

Due to the small number of FFDM images available for training the CAD sys-
tem, the training set previously accomplished with the digitized images coming
from the DDSM database is used in place of the former. This training set is com-
prised of few hundreds crops with pixel size 64 × 64 containing masses and few
thousands crops with pixel size 64 × 64 corresponding to normal tissue. In par-
ticular, the difference between the number of images available to train the CAD
system in the DDSM database—800 malignant, 600 normal—and in the FFDM
database—46 malignant, 52 normal—is evident by noticing that they differ by one
order of magnitude. Some crops used in the training procedure has been already
shown in Fig. 4.1.
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5.4.2 Test procedure

In order to evaluate the performance of the CAD system on the 42 cancer and 620
normal images of the FFDM test set, a sigmoidal Look–Up–Table (LUT) needs to
be first applied for transforming the histogram of those FFDM images. The main
objective is to find the best LUT mapping the FFDM images histogram into the
histogram relative to the DDSM images used for the training step. In particular,
in order to close the optimal LUT, the system is trained with 44 positive crops of
lesions and 4000 negative crops of normal tissue taken from the FFDM images
of the—so–called—training set. This approach is fundamental, since it allows to
exploit the very large number of images from the DDSM database to train the
system, whereas the detection performances can be evaluated on the still small
FFDM dataset available.

5.5 Results

The proposed CAD system searches for masses with a size smaller than 35 mm.
Therefore the multi–scale detection is performed by using as scales 8, 10, 13, 17,
22, 27, 33 and 40 mm. A region is defined as a true positive if its center falls
within the ground–truth annotations, otherwise it is considered as a false positive.
The number of false positives is computed using normal cases only.

The detection performances of the system are evaluated by means of FROC
curves. As already discussed in Section 2.1.4, an FROC curve is a plot of the
detection rate versus the average number of false positive marks per image. It
provides a summary of the trade–off between the sensitivity and the specificity of
the system.

In particular, the performance results are presented on a per–mammogram and
on a per–case basis. In the former, the cranio–caudal and medio–lateral oblique
views are considered independently. In the latter, a mass is considered discovered
if it is detected in either one of the views. Notice, in particular, that the per–case
evaluation takes into consideration that, in clinical practice, once the CAD alerts
the radiologist to a cancer on one view, it is unlikely that the radiologist will miss
the cancer. In this way, the scoring method considers all the malignant masses on a
mammogram—or in a case—as a single true positive finding. The rationale is that
a radiologist may not need to be alerted to all malignant lesions in a mammogram
or case before taking action.
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nWav 2 2 3 3 5 10
nRank 1 2 3 10 10 10

Mean number of
false positives 0.35 0.50 0.73 1.08 1.47 2.10

per–image
True positive

fraction 0.52 0.59 0.72 0.78 0.80 0.84
per–mammogram

True positive
fraction 0.73 0.77 0.86 0.91 0.95 0.95
per–case

Table 5.1: Performance of the proposed mass detection algorithm evaluated on
42 cancer and 620 normal images taken from the FFDM database.
Results are given on a per–mammogram and on a per–case basis.

The CAD system performances are evaluated by putting a threshold on the
maximum number of signals which the wavelet–based and the ranklet–based ex-
perts prompt before the logical AND. Basically, the suspect candidates are ranked
according to their distance from the SVM’s hyperplane. Only the best nWav signals
are then kept for the wavelet–based expert, whereas only the best nRank are kept
for the ranklet–based one. In particular, the different points of the FROC curve
are obtained by varying the thresholds nWav and nRank for both the experts.

Tab. 5.1 shows the performances achieved by the proposed CAD system when
evaluated on 42 cancer and 620 normal images taken from the test set of the
FFDM database. Furthermore, a plot of the FROC curve correspondent to those
performances is shown in Fig. 5.3. Notice, in particular, that results are shown
on both a per–mammogram and a per–case basis. The results achieved are defi-
nitely promising and clearly indicate the suitability of the presented CAD system
in detecting breast masses. Furthermore, they improve the performances obtained
by our group in (Campanini et al., 2004c,a) with a former version of the system
provided with exclusively wavelet–based experts. It is evident that a direct com-
parison of the results is impossible, since in one case the image databases used
are different, whereas in the other the performances are evaluated on the detection
of both masses and micro–calcifications. However, the clear improvement in the
results obtained by the CAD system proposed herein seems to confirm the effec-
tiveness of combining the discussed wavelet–based and ranklet–based experts.
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Figure 5.3: FROC curve correspondent to the proposed mass detection algorithm
evaluated on 42 cancer and 620 normal images taken from the FFDM
database. Results are given on a per–mammogram and on a per–case
basis.

The reason for those successful results is probably twofold. First, the multi–
resolution overcomplete Haar wavelet transform and the multi–resolution ranklet
transform achieve excellent classification performances, as discussed in detail in
Section 4.3.3 and Section 4.5.2. In other words, they are particularly suited to
achieve high sensitivity values—namely high true positive values—when classi-
fying tumoral masses. Second—by looking carefully at their marks on the mam-
mograms under exam—they prove to act as two almost completely independent
experts. In fact, they typically commit mistakes on different regions of the mam-
mograms. Given those premises, performing a logical AND of their outputs is
an approach which walks in the direction of maintaining a high specificity, while
reducing the number of false positives per–image, see for example Fig. 5.4.
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5.5 — Results

Future work has still to be done, for instance in order to enlarge the FFDM
image database. In this way it will be possible to train new experts directly on
digital images, allowing an improvement of the CAD results and a more precise
determination of its performance. Further improvements could then be achieved
by implementing other independent experts, namely the pixel–based image repre-
sentation discussed in Section 4.2. This image representation, in fact, proved to
achieve classification performances very close to that obtained by means of the
wavelet–based and ranklet–based image representations.
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Figure 5.4: False positive reduction by combining both the wavelet–based and
ranklet–based experts. Left column: mammographic images before
the wavelet–based (red marks) and ranklet–based (green marks) out-
puts are combined by logical AND. Right column: the logical AND
between the two experts is performed so that the true diagnosed mass
(blue marks) survives as marked, whereas all false positives are re-
jected.
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Conclusions

In this work, a two–class classification problem is faced. In particular, the two
classes to separate are tumoral masses—namely thickenings of the breast tissue
with size ranging from 3 mm to 30 mm—and normal breast tissue. In order to do
that, each X–ray image under study is scanned at all the possible locations with the
passage of a window. A corresponding crop of the mammographic image is then
extracted and classified by means of a Support Vector Machine (SVM) classifier
as belonging to the class of tumoral masses or to the class of normal breast tissue.
Differently from the most part of the mass detection algorithms developed up to
now, the approach proposed herein does not rely on any feature extraction step
aimed at individuating some measurable quantities characterizing masses. On
the contrary, it is rather a featureless approach in which crops are passed to the
classifier in their raw form, namely as vectors of gray–level values. The reason
for this choice is that—due to the great variety of masses—it is extremely difficult
to get a set of common features effective for all kind of masses. Thus, in order to
deal with all their different kinds, a possible choice is the featureless approach, in
which no a priori information is extracted from the crops.

The first experimental part of this work is aimed at evaluating the classification
performances of different image representations—such as image representations
based on pixels, wavelets, steerable pyramids and ranklets—by means of ROC
curve analysis. This literally means that the features used to classify each crop
are respectively the gray–level values of the crop, the coefficients obtained after
applying the wavelet transform to the crop, the coefficients obtained after apply-
ing the steerable pyramid to the crop and, finally, the coefficients obtained after
applying the ranklet transform to the crop. In this sense, each specific image rep-
resentation selected for the crop embodies itself the features to classify.

161



C

Experiments show some very interesting results. The pixel–based image rep-
resentation achieve very good classification performances, in particular when the
crops are processed by means of histogram equalization and bi–linear resizing.
Good performances are achieved as well by the wavelet–based image represen-
tations, in particular by its overcomplete version. The reason is probably that
a richer spatial resolution allows for better classification performances. Very
preliminary results show also that the image representation based on steerable
pyramid—namely steer–based image representation—performs quite well. Nev-
ertheless, the last results must be considered as a sort of anticipation of a more
complete study which is—at the time—still under development.

The best classification performances are achieved by the ranklet–based image
representation. In some sense, it could be considered as the optimal image repre-
sentation for the image classification problem under analysis. In particular, due
to its interesting results, further investigations are carried out by applying SVM
Recursive Feature Elimination (SVM–RFE), namely by recursively eliminating
some of the ranklet coefficients and—contemporary—monitoring the classifica-
tion performances. Tests show that it is possible to sensibly reduce the number of
ranklet coefficients—namely from 1428 down to 200—without affecting the clas-
sification performances. Furthermore, they show that at fine resolutions the most
discriminant ranklet coefficients are those near the borders of the image, thus those
codifying the contour information of the image. On the other hand, at coarse res-
olutions, the most important ranklet coefficients are those near the center of the
image, thus those codifying the symmetry information of the image, rather that
its contour information. This results seems reasonable, since the main difference
between the two classes at fine resolutions is that masses have sharp edges near
the borders of the image, whereas normal breast tissue has not. At the same time,
at coarse resolutions the main difference is that masses appear approximately as
symmetric circular structures centered on the image, whereas normal tissue has a
less definite structure.

The second experimental part of this work deals with the application of two of
the best image representations found into a real–time working Computer–Aided
Detection (CAD) system. In particular—due to their excellent classification per-
formances and almost straightforward implementation—the two image represen-
tations implemented are the ranklet–based and the wavelet–based. The approach
proposed is that of first considering the two image representations as two sepa-
rated mass detectors which commit different errors on the mammographic images
under study. Then, to combine their responses by performing a logical AND.
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This strategy is particularly effective, since those image representations prove
to be well suited to achieve high sensitivity values—namely high true positive
values—when classifying tumoral masses. At the same time, they act as two—
almost completely—independent experts, since they commit mistakes on differ-
ent regions of the mammograms. It follows that the logical AND of their re-
sponses maintains a high specificity, while reducing the number of false posi-
tives per–image. In order to give some quantitative result, the mass detection
scheme proposed marks per–case 77% of cancers with a false–positive rate of 0.5
marks per–image. Due to those good classification results, the system proposed
herein is currently deployed at three hospitals worldwide in its prototype version.
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