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Breast Cancer – Definition

An uncontrolled and rapid proliferation of cells in a specific part of
the body may lead to either:

benign tumor 7→ local and circumscribed abnormal growth of
tissue

malignant tumor (cancer) 7→ abnormal growth of tissue
comprised of cells that may invade neighboring organs and
replace normal tissue (metastasis)

Breast cancer 7→ malignant tumor developed from cells of the
breast
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Breast Cancer – Signs

The most common signs of breast cancer are:

Masses

thickenings of the breast tissue
with size 3–30 (mm)

Micro–calcifications

small spots in the breast tissue
with size 0.1–0.3 (mm)
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Breast Cancer – Incidence And Mortality

Incidence:

World Health Organization 7→ 1.3 million people will be
diagnosed with breast cancer in 2005 worldwide

Mortality:

American Cancer Society 7→ 41000 people will die from breast
cancer in the United States during 2005

⇒ Screening mammography: earlier detection through periodical
X-ray breast examination performed on asymptomatic patients is
fundamental
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Screening Mammography – Breast Examination

The left and right breasts of the
patient are both exposed to

X–rays. . .

. . . and mammographic digital
images are obtained for each

breast at different views

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Breast Cancer
Screening Mammography

Screening Mammography – Breast Examination

The left and right breasts of the
patient are both exposed to

X–rays. . .

. . . and mammographic digital
images are obtained for each

breast at different views

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Breast Cancer
Screening Mammography

Screening Mammography – Radiologists’ Detection

The radiologist looks carefully at
each mammographic digital

image. . .

. . . and marks the regions
suspected to be potential breast

tumors
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Screening Mammography – Radiologists’ Performances

It has been demonstrated that radiologists may miss 15–30% of
breast lesions

Missed detections may be due to:

subtle nature of the radiographic findings

poor image quality

eye fatigue

⇒ Computer–Aided Detection (CAD) systems are commonly used
as second readers to increase the efficiency of screening procedures
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Screening Mammography – Computer–Aided Detection

In order to automatically
implement mass detection, first

each mammographic digital
image must be scanned. . .

. . . then for each scanned region
(a.k.a. crop)

What is that?
A mass or a non–mass?
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The Two Classes – Masses Vs. Non–Masses

What is that? A mass or a non–mass?

This actually means separating two classes. . .

Mass class Non–mass class
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Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Features – Pixels, Wavelets, Ranklets

Features should be chosen as to emphasize discriminant
characteristics of the two classes

Explored features:

Pixels

Wavelets

Ranklets

Notice, in this problem features ≡ image representations

(Much more details in the next section. . . )

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Classifier – Flow Diagram

The Two Classes

Masses

Non–masses

7→

Features

Pixels

Wavelets

Ranklets

7→ Classifier

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Problem Set Up
The Two Classes
Features
Classifier

Classifier – Notation

Suppose that some samples {xi , yi}, i = 1, . . . , l taken from some
data distribution are given:

yi ∈ {−1,+1} are the labels representing the class
membership of each sample

xi ∈ Rd are the features characterizing each sample

In this problem:

Class

Mass

Non–mass

Label

+1

−1

Features
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Classifier – Support Vector Machine

SVM is a classifier which finds the hyperplane w · x + b = 0
maximizing the margin between the two classes in the training set

Train

Vectors

Hyperplane
wx + b = 0

Margin

Class 1

Class 2

Support

Test

Class 2

Hyperplane
wx + b = 0

Margin

Class 1
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Classifier – SVM’s Kernels

Once SVM has been trained, each new sample x is classified
according to:

f (x) = sign

(
l∑

i=1

αiyiK (x, xi ) + b

)

Polynomial kernel of degree d :

K (x, y) = (γx · y + r)d

Radial basis kernel:

K (x, y) = exp
(
−γ ‖x− y‖2

)
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Classifier – Performances

After SVM has been tested on
the samples of the test set. . .

Masses

Hyperplane
wx + b = 0

Margin

Non−Masses

True Negatives

False Negatives

False Positives

True Positives

. . . then classification
performances are given by using

ROC curves
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The Two Classes

Masses
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Features
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Wavelets
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Overview – Mass Variability

Tumoral masses vary considerably in:

optical density

shape

size

border

⇒ Objective difficulty of characterizing all types of masses with
the same few measurable quantities (features)
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Overview – Featureless Approach

Many of the algorithms so far developed:

restrict to a specific type of masses

describe the specific type of masses with
a specific set of few features

Adopted approach:

in order to deal with almost every type of masses,
raw/enhanced crops are classified without extracting any a
priori feature 7→ featureless approach
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Overview – Material And Methods

USF Digital Database for Screening Mammography (DDSM):

1000 crops representing masses

5000 crops representing non–masses

Performance evaluation:

10–fold cross–validation

Test set

Fold 1

Entire data set
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Pixels – Flow Diagram

The Two Classes

Masses

Non–masses

7→

Features

Pixels

Wavelets

Ranklets

7→
Classifier

SVM
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Pixels – Motivation

Why pixel–based image representations?

To investigate whether the gray–level values of the crops gives
enough informations in order to discriminate between masses
and non–masses
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Pixels – Definition

A crop. . . . . . and its gray–level values

0 0 . . . 201
0 0 . . . 203
0 0 . . . 201
...

...
...

...
147 171 . . . 237
152 205 . . . 237
152 225 . . . 232
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Pixels – Example

Original crop Equalized crop Resized crop
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Pixels – ROC Curve (Linear Kernel)
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Pixels – Some Numerical Results

FPF ∼ .01 FPF ∼ .03 FPF ∼ .05

PixHRS .70± .06 .84± .05 .89± .03
PixRS .49± .04 .72± .05 .82± .04

Table: Classification results comparison. The TPF values obtained by
the best performing pixel–based image representations are shown, in
particular for FPF values approximately equal to .01, .03 and .05
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Wavelets – Flow Diagram

The Two Classes

Masses

Non–masses

7→

Features

Pixels

Wavelets

Ranklets

7→
Classifier

SVM
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Wavelets – Motivation

Why wavelet–based image representations?

To evaluate whether their ability in enhancing edges and
boundaries improve the discrimination between masses and
non–masses
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Why wavelet–based image representations?

To evaluate whether their ability in enhancing edges and
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non–masses

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Overview
Pixels
Wavelets
Ranklets

Wavelets – Definition

2D discrete wavelet transform (1–level decomposition):

A

0

L 0

H0
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Detail
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Wavelets – Example (Discrete Wavelet Transform)

2D discrete wavelet transform (3–level decomposition):

A1 V1H1 D1

A2 H2 V2 D2

A3 H3 D3V3
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Wavelets – Example (Overcomplete Wavelet Transform)

2D overcomplete wavelet transform (3–level decomposition):

V1 D1

D2

D3V3

V2

H1

H2

H3
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Wavelets – ROC Curve (DWT, Linear Kernel)
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Wavelets – ROC Curve (DWT, Polynomial Kernel)
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Wavelets – ROC Curve (OWT, Polynomial Kernel)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

 PixHRS with lin. ker. (256 feat.)
 DwtHS3 with pol. ker., degree = 3 (4096 feat.)
 OwtS2 with pol. ker., degree = 2 (~3000 features)
 OwtHS2 with pol. ker., degree = 2 (~3000 features)

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Overview
Pixels
Wavelets
Ranklets

Wavelets – Some Numerical Results

FPF ∼ .01 FPF ∼ .03 FPF ∼ .05

PixHRS .70± .06 .84± .05 .89± .03
OwtS2 - .82± .05 .87± .05

DwtHS3 .62± .11 .78± .04 .85± .03

Table: Classification results comparison. The TPF values obtained by
the best performing pixel–based, DWT–based and OWT–based image
representations are shown, in particular for FPF values approximately
equal to .01, .03 and .05
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Ranklets – Flow Diagram

The Two Classes

Masses

Non–masses

7→

Features

Pixels

Wavelets

Ranklets

7→
Classifier

SVM
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Ranklets – Motivation

Why ranklet–based image representations?

To evaluate whether their non–parametricity improve the
discrimination between masses and non–masses

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Overview
Pixels
Wavelets
Ranklets

Ranklets – Motivation
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Ranklets – Definition

Ranklets are features modeled on Haar wavelets

Properties:

orientation selective

non–parametric

multi–resolution
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Ranklets are features modeled on Haar wavelets

Properties:

orientation selective

non–parametric

multi–resolution
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Ranklets – Orientation Selective Property

The Haar wavelet supports are defined:

(C  )
(C  )

−1

+1+1
(T  )

+1

HorizontalVertical

−1

+1

(T  )

(C  )

(C  ) (T  )

(T  )
D

D

D

D
H

H

V V

Diagonal

−1

−1

Then: How many pixel pairs (pm,pn)
with pm ∈ Tj and pn ∈ Cj such that

Intensity(pm) > Intensity(pn)?
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Ranklets – Non–Parametric Property

The ranklet coefficients are computed:

Rj =

∑
p∈Tj

RankCj∪Tj (p)− N
4 (N

2 + 1)

N2

8

− 1, j = V, H, D

Number of pixel pairs (pm,pn) ∈ (Tj × Cj) such that

Intensity(pm) > Intensity(pn). Possible values ∈ [0, N2

4 ]

Rj ∼ +1 if pixels in Tj have intensity values > than Cj

Rj ∼ −1 if pixels in Tj have intensity values < than Cj
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Ranklets – Example

Synthetic image

RV,H,D = [−0.28, 0, 0]

Real image

RV,H,D = [−0.98,−0.08, 0.06]
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Ranklets – Multi–Resolution Property

The ranklet coefficients can be calculated at different resolutions:

Resolution 1:
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Ranklets – Multi–Resolution Property

The ranklet coefficients can be calculated at different resolutions:
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Ranklets – Multi–Resolution Property

The ranklet coefficients can be calculated at different resolutions:
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Ranklets – Multi–Resolution Property

The ranklet coefficients can be calculated at different resolutions:
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Ranklets – Multi–Resolution Property

The ranklet coefficients can be calculated at different resolutions:

Resolution 2:

+1−1

(C  ) (T  )V V (C  )−1

+1 (T  )

H

H

(C  )

(T  )

+1

+1

(T  )

(C  )D

D

D

D

−1

HorizontalVertical Diagonal

−1

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Overview
Pixels
Wavelets
Ranklets

Ranklets – Multi–Resolution Property
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Ranklets – ROC Curve (Varying Kernels)
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 PixHRS with lin. ker. (256 feat.)
 OwtS2 with pol. ker., degree = 2 (~3000 feat.)
 RankS at res. [16,8,4,2] with lin. ker. (1428 feat.)
 RankS at res. [16,8,4,2] with pol. ker., degree = 2 (1428 feat.)
 RankS at res. [16,8,4,2] with pol. ker., degree = 3 (1428 feat.)
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Ranklets – ROC Curve (All Resolutions)
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Ranklets – ROC Curve (Low + High Resolutions)
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Ranklets – ROC Curve (Low + Intermediate Resolutions)
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Ranklets – ROC Curve (Histogram Equalization)
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Ranklets – Some Numerical Results

FPF ∼ .01 FPF ∼ .03 FPF ∼ .05

RankS3 .76± .05 .87± .05 .91± .04
PixHRS .70± .06 .84± .05 .89± .03
OwtS2 - .82± .05 .87± .05

DwtHS3 .62± .11 .78± .04 .85± .03

Table: Classification results comparison. The TPF values obtained by
the best performing pixel–based, DWT–based, OWT–based and
ranklet–based image representations are shown, in particular for FPF
values approximately equal to .01, .03 and .05
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Ranklets – Recursive Feature Elimination

RFE is a method for eliminating features responsible of small
changes in the classifier’s cost function 7→ feature reduction

SVM’s cost function:

J =
1

2
αTHα−αT1, H(i , j) = yiyjK (xi, xj)

RFE iterative implementation:

1 SVM is trained and tested with the actual set of ranklet
coefficients

2 the variation ∆J is computed by removing singularly each
ranklet coefficient

3 the ranklet coefficient corresponding to the smallest ∆J is
removed
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Ranklets – RFE + Cross–Validation

RFE iterative implementation combined to cross–validation:

1 Train SVM for each fold

2 Test SVM for each fold

3 Compute the ranking criterion for each feature in each fold

4 Compute a ranking list, common to all folds, by averaging the
ranking position of each feature in each fold

5 Remove the feature with the smallest rank in the ranking list
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Ranklets – RFE (Error)
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Ranklets – RFE (ROC Curve)
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  RankS at res. [16,8,4,2] with pol. ker., degree = 3 (1428 feat.)
  RankS at res. [16,8,4,2] with pol. ker., degree = 3 (1000 selected feat.)
  RankS at res. [16,8,4,2] with pol. ker., degree = 3 (200 selected feat.)
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Ranklets – RFE (500 Most Important Ranklet Coeffs)

Reducing the number of ranklet coefficients from 1428 to 500 by
means of RFE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Resolution16x16

Res. 16× 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Resolution8x8

Res. 8× 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Resolution4x4

Res. 4× 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Resolution2x2

Res. 2× 2

Matteo Masotti June 1, 2005 – PhD Defense



Digital Mammography
Two–Class Pattern Classification
Exploring Image Representations

CAD System Implementation
Summary

Overview
Pixels
Wavelets
Ranklets

Ranklets – RFE (300 Most Important Ranklet Coeffs)

Reducing the number of ranklet coefficients from 1428 to 300 by
means of RFE:
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Ranklets – RFE (200 Most Important Ranklet Coeffs)

Reducing the number of ranklet coefficients from 1428 to 200 by
means of RFE:
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Ranklets – RFE (Considerations)

Some considerations can be drawn:

At resolutions 2× 2 and 4× 4:

surviving ranklet coefficients are near the borders of the crop
masses 7→ sharp edges near the borders of the crop
non–masses 7→ has not

At resolutions 8× 8 and 16× 16:

surviving ranklet coefficients are near the center of the crop
masses 7→ quite symmetric structure
non–masses 7→ less definite structure
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non–masses 7→ less definite structure
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Overview – Remember?

In order to automatically
implement mass detection, first

each mammographic digital
image must be scanned. . .

. . . then for each scanned region
(a.k.a. crop)

What is that?
A mass or a non–mass?
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Overview – Other Questions Need Answers

The results discussed in the previous section demonstrate that
pixels, wavelets and ranklets give typically a correct answer to the
question:

What is that?
A mass or a non–mass?

Now:

How to scan the mammographic image?

How to search for masses with different sizes?

How to treat findings?

What else in order to have a complete Computer–Aided Detection
(CAD) system for mass detection?
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CAD Scheme – Steps

Proposed scheme:

1 Segmentation
2 For all possible scales and locations. . .

Cropping and resizing
Wavelet and Ranklet transform

3 Merging multi–scale findings

4 Combining wavelet and ranklet findings

5 Prompted image
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CAD Scheme – Flow Diagram

. . .

(i.e. logical AND)

Scale 1

Scale 2

Wavelet−based expert Ranklet−based expert

Scale 1

Scale 2

. . .

Scale n Scale n

Combining
experts

Prompted image

multi−scale
information

Merging
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CAD – Why Combining?

The reason for combining wavelets and ranklets is twofold:

they both achieve high true positive rates

they mark false positives on different regions of the
mammograms

Thus, a logical AND of their outputs gives:

high true positive rates

low false positive rates
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Results – Image Database

The system has been evaluated on a set of Fully Field Digital
Mammography (FFDM) images:

42 with at least one lesion

620 normal

Images have been collected at two different sites:

Maggiore Hospital in Bologna, Italy

Triemli Hospital in Zurich, Switzerland
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Results – Example 1

After merging multi–scale
findings. . .

. . . after combining wavelet and
ranklet findings
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Results – Example 2

After merging multi–scale
findings. . .

. . . after combining wavelet and
ranklet findings
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Results – Example 2

After merging multi–scale
findings. . .

. . . after combining wavelet and
ranklet findings
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Results – FROC Curve
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Results – Some Numerical Results

nWav 2 2 3 3 5 10

nRank 1 2 3 10 10 10

Mean number of
false positives 0.35 0.50 0.73 1.08 1.47 2.10

per–image

True positive
fraction 0.52 0.59 0.72 0.78 0.80 0.84

per–mammogram

True positive
fraction 0.73 0.77 0.86 0.91 0.95 0.95
per–case

Table: Performance of the proposed mass detection scheme
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Further Reading – Exploring Image Representations

M. Masotti, Exploring ranklets performances in
mammographic mass classification using recursive feature
elimination, Submitted to International Conference on Image
Processing, Genova, September 11-14, 2005

M. Masotti, A ranklet-based image representation for mass
classification in digital mammograms, Submitted to Pattern
Recognition

E. Angelini, R. Campanini, E. Iampieri, N. Lanconelli,
M. Masotti, M. Roffilli, Testing the performances of image
representations for mass classification in digital mammograms,
Submitted to Image and Vision Computing
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Further Reading – CAD System Implementation

R. Campanini, D. Dongiovanni, E. Iampieri, N. Lanconelli,
M. Masotti, G. Palermo, A. Riccardi, M. Roffilli A novel
featureless approach to mass detection in digital mammograms
based on support vector machines, Physics in Medicine and
Biology, Vol. 49, No 6 (March 2004) 961-976

R. Campanini, E. Angelini, D. Dongiovanni, E. Iampieri,
N. Lanconelli, C. Mair-Noack, M. Masotti, G. Palermo,
M. Roffilli, G. Saguatti, O. Schiaratura, Preliminary results of
a featureless CAD system on FFDM images, International
Workshop on Digital Mammography 2004 Proc., Durham, NC,
USA, 18-21 June, 2004
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