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Abstract  — The rapid deployment of next generation
wireless communications systems creates a unique opportu-
nity for the semiconductor industry. High-speed communi-
cations networks require massive digital computing power
along with  analog and radio frequency devices with wide
dynamic range and bandwidth. CMOS technology increas-
ingly forms the technological basis for these developments.
This raises the question of the appropriate  future role of
“non-standard” technologies like Si/SiGe BiCMOS. This
paper will summarize the unique advantages of Si/SiGe 
technology in future wireless communications systems.
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I. INTRODUCTION

Digital CMOS technology is the “tsunami,” that created
the technological impetus for the communication revolu-
tion. Traditional scaling of CMOS technology continues
unabated, with production gate lengths now  less than
0.09um. The digital VLSI portions of the communica-
tions system can “ride” the CMOS scaling wave for the
foreseeable future. At the same time, the analog and RF
portions of the communications system are also increas-
ingly being implemented in CMOS.
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       The major issue with the implementation of next
generation communications systems in “CMOS-only”
technologies is the ultimate limit on scaling and the re-
duction in dynamic range of MOS devices.  Many of the
newer systems are actually increasing their dynamic
range requirements – 3G and 4G wireless systems being
good examples of wireless devices where dynamic range
requirements are increasingly difficult to meet. So the
challenge for an all-CMOS implementation will be to
maintain the dynamic range of scaled CMOS technology
while exploiting its digital capabilities. This is essentially
dependent on the maximum operating voltage of the
device, which is continuing to shrink as gate length is
scaled.
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 Si/SiGe BiCMOS technology faces a different chal-
lenge in high volume commercial applications – how to
justify the inevitably higher cost of the extra bipolar
device if  a “CMOS-only” implementation can satisfy
system requirements.  The answer to this question lies in
the historic role of SiGe technology as a technology
leader. This is roughly illustrated in Figure 1, where the 
fT of  SiGe and CMOS devices is plotted as a function of
critical dimension. Due to the superior scaling properties
of the HBT, its performance usually exceeds that of an 
NMOS device at a given lithographic generation.
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1: Unity gain cutoff frequency of Si/SiGe HBTs
OS devices as a function of critical dimension.

s the Figure shows, Si/SiGe HBT technology main-
ts speed advantage for between one and two tech-
cal generations (3-5 years typically) over CMOS – 
h time to demonstrate unique system capabilities.
ore, we need to address the question of “what
for SiGe HBT technology? The most promising
ations today  of Si/SiGe HBT technology is in the
f > 10 GHz wireless communications systems,
larly in the 30-60 GHz (millimeterwave) fre-
 region.

ILLIMETERWAVE APPLICATIONS OF SIGE 
TECHNOLOGY

eterwave systems – operating from 30 GHz to 100
 have enormous potential for the realization of
ide bandwidth communications systems and posi-
cation. The applications of these systems include
data rate point-to-point communications links,
 personal area networks, and automotive collision
g radars. The widespread application of these
s has historically been limited by the high cost

ated with their implementation.
The high implementation cost is due to many

, including the challenges of packaging and test at
igh frequencies, but the largest factor delaying
entation of these systems is the cost of the mmW



semiconductor devices. Traditionally, the amplifiers,
VCOs, mixers and other high-frequency components
have been implemented in III-V technology – first GaAs-
based, and now InP-based, and perhaps GaN in the near
future. Although impressive gains have been made in the
cost of these technologies (particularly wafer cost and 
yield), the economics of these technologies is still ex-
tremely unfavorable compared to silicon-based technolo-
gies.
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The emergence of commercial SiGe BiCMOS
technologies with SiGe HBT cutoff fT and oscillation
fMAX frequencies exceeding 170 GHz [1-3] illustrates the 
real possibility of the use of silicon HBT technology for 
millimeterwave applications. 60-GHz radio receiver 
blocks were recently demonstrated in a 0.13 µm SiGe 
HBT technology with impressive performance [4]. SiGe 
HBT VCOs have demonstrated excellent output power 
and phase noise at millimeterwave frequencies  [5], and
a 60 GHz transceiver in a Si/SiGe:C technology [6]. A 
silicon-based millimeterwave technology has the poten-
tial to realize the low-cost goals required to reach high
volumes for these next generation systems. So, the ques-
tion is: as silicon-based technology continues to scale to 
higher performance - with fT’s exceeding 200 GHz - can
it meet the stringent performance requirements required
for mmW systems?
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III. MILLIMETERWAVE SYSTEM CHALLENGES 

Millimeterwave technology has historically been 
the province of high bandwidth communications and 
precise position location radar. A vast amount of spec-
trum is available in the 60 GHz range for communica-
tions applications. In the United States, the FCC has
allocated 59-64 GHz for general unlicensed applications,
and in Japan the 59-66 GHz range has been allocated. In
Europe, various bands from 59-66 GHz have been allo-
cated for fixed wireless and WLAN applications. In 
addition, wireless GigaBit Ethernet networks have been 
proposed in the newly licensed 70-80 GHz band [7].
Automotive radar applications are particularly attractive,
and early implementations of these systems have been in
the 24 GHz range [8], but are now moving to 77 GHz 
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Automotive radars employ a variety of wave-
forms, with FMCW modulation being the most common
reported. A block diagram of a typical FMCW radar is
shown in Figure 1 and the typical system requirements
for a FMCW radar are listed in Table I [9].
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Figure 2: Simplified schematic of 77 GHz mmW radar
front end [8].
I: Automotive FM CW 77 GHz Radar Transceiver
ements [9]

FM CW Radar
 Out >13 dBm
wer >13 dBm
Noise -80dBc @100kHz 
 Noise Figure < 13 dB
 Bandwidth 200MHz
 Linearity 1%
us and Harmonics -50dbc
rature -40 to +85C

Most mmW communications and radar systems
sentially noise limited, due to the attenuation of 
ial interferers in the mmW region, so the key per-
ce parameters for a transceiver are Noise Figure,

 power, and oscillator phase noise. For example,
ical specifications for a 77 GHz collision warning
require a local oscillator producing roughly 
, a VCO with phase noise < -80dBc @ 100 kHz
and a system Noise Figure <8 dB as shown in

I [9].
Of these specifications, the output power repre-

he greatest challenge for silicon technology, since 
r breakdown voltage is an inevitable consequence 
ling the devices for mmW operation. At the same
he intrinsically high losses of mmW signal propa-
 on a conducting silicon substrate will make VCO
 and power combining losses especially difficult.

The economics of a mmW transceiver for auto-
 applications are particularly challenging. Morenc
d in [9] that the target costs for an entire trans-
module are in the $40-$70 range, and IC costs
e a small fraction of that. Much like the market for 
d 5 GHz WLAN products, highly integrated trans-
s based on silicon VLSI technology are key to
ing these cost goals. At the same time, the annual
e requirements for automotive applications will be
mpared to those of the WLAN or cellular market,

g the use of “commercial” silicon technology even 
mportant.

Communications systems in mmW technologies
lly utilize low performance digital modulation
es - such as ASK or FSK - in order to avoid the
or linear modulation of the carrier, and ease the
ulation of the carrier at high (Gb/sec.) data rates
his is acceptable for point-to-point communica-

links, with minimal multi-path interference, but
 WLAN uses of mmW technology will probably 
 sophisticated equalization techniques or the use

DM to overcome issues of multi-path interference
maintaining a high data rate. The use of constant
pe OFDM approaches [11] may allow the use of
ath insensitive techniques to be used consistent
he limited transmit power in the mmW environ-
In this case, the bandwidth expansion of the signal
 significant, but this can easily be accommodated

W frequencies.



III. SIGE HBT TECHNOLOGY FOR MMW
APPLICATIONS

As was pointed out earlier, SiGe HBT technol-
ogy has historically played the role of technology leader
in the high-frequency arena. What aspects of the device 
continue to provide it with a key advantage in the era of
sub-100nm CMOS? Since these systems are essentially
noise limited, transmit power becomes a key limitation in
system performance in the mmW regime. As a result, the 
realization of high power amplifiers in this frequency
range becomes a key aspect of the technology.
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The well-known Johnson limit in semiconductor
devices specifies the trade-off between device speed and
breakdown voltage for any given material system, i.e.

(1)onstantTf BV C
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where BV is the device breakdown voltage. Figure 2
illustrates this tradeoff for reported breakdown voltages
and fT’s for SiGe HBTs and MOSFETs [12]. The break-
down voltage becomes especially low (sub-1V) for
MOSFETs in the sub 100nm region due to hot electron
effects, making the implementation of power amplifiers
extremely difficult. Even SiGe HBT’s operated at low 
base impedance (BVCBo) exhibit reduced operating
swing of less than 3V at high fT  (>200GHz). However, 
this improved margin is quite significant when operated
in a power limited regime, and provides a key perform-
ance advantage for SiGe HBT-based circuits. As a result
of these limitations the  practical output power will be
limited to roughly 50 -100 mW per stage.
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limits for SiGe HBTs (BVCEO and BVCBO) and Si
MOSFETs (VDS(Rel) ) as a function of fT [3].

Monolithic power combining techniques must
be employed in order to achieve output powers in the 20-
25 dBm range. At mmW frequencies, promising ap-
proaches include stacked amplifier configurations [13],
transformer-coupled approaches [14], and traditional 
Wilkinson combiner schemes [15]. The effectiveness of
these approaches will depend on the transmission line
performance at mmW frequencies on a silicon substrate.
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IV. CONCLUSIONS 

In order for Si/SiGe HBT technology to retain
al role as technology leader for high frequency
s, it must extend its domain in the mmW region.
ately, recent improvements in device technology 
implementation of high performance mmW circuits
on technology for the first time. The future imple-
ion of these circuits in a cost effective and robust
r will depend on advances in design techniques,
ing, and system-oriented approaches.
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