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Abstract— Using fully or semi-implicit schemes to solve hy-
drodynamic transport equations is very suitable and efficient for
transient simulations of semiconductor devices. But, using these
techniques leads to a large system of linear equations. Here for
the first time, a preconditioning method based on the filter-bank
and wavelet transforms is used to facilitate the iterative solution
of this system. As the first step in the performance investigation
of this preconditioner in the simulation of semiconductor devices,
we apply it to the modified Poisson’s equation in Drift-Diffusion
model. Numerical results show that the condition number are
significantly reduced and convergence rate is increased. The most
important advantage of this preconditioner rather than the other
preconditioners is its low computational complexity which can be
reduced to O(N).

I. INTRODUCTION

In microwave and high-frequency semiconductor devices,
submicrometer dimensions are used. As device sizes continue
to decrease, nonlocal, hot carrier transport becomes domi-
nant and can no longer be ignored. Therefore, hydrodynamic
transport equations which are obtained by taking the first
three moments of the Boltzmann Transport Equation (BTE) in
conjunction with the Poisson’s equation, must be used to study
nonstationary transport effects in submicrometer devices [1].
These equations form a set of nonlinear, coupled and time-
dependent partial differential equations. The solution methods
can be divided into two categories: coupled (Newton) or de-
coupled (Gummel) solvers [2]. The major advantage of using
a coupled scheme is that there is no limit on the maximum
allowable time step, At. However, for large At, the initial
guess of the solution in general turns out to be very different
from the true solution, and hence the overall convergence
rate slows down. In addition, since the equations are solved
simultaneously, CPU memory requirement is higher three
times than that for a decoupled solver. The decoupled method
(Gummel algorithm), treats each of the differential equations
separately by decoupling the equations and solving the system
step by step. Then this sequence is iteratively repeated until
self-consistent values for all unknown variables are obtained
with the desired accuracy. In conventional decoupled methods,
the fully implicit, semi-implicit and explicit methods are used
to solve the equations. Although in explicit scheme, variables
can be evaluated easily through simple algebraic computations,
but the major disadvantage of this scheme is that this method
is numerically unstable for At greater than the maximum
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allowed values. For most practical problems, the maximum
At is very small and it makes the explicit methods to be very
inefficient, especially for obtaining steady-state solutions. In
fully or semi-implicit schemes, the method is unconditionally
stable for any At or for very large At compared to explicit
schemes. The only disadvantage of this scheme is its high com-
putational cost. Even though this technique is computationally
more expensive compared to explicit methods for obtaining
variables in new time, it becomes more and more economical
in problems where steady-state solutions or transient solutions
for long times are desired, because of the possibility of using
large At when employing the implicit schemes.

As it has been mentioned in literature [2], using the fully and
semi-implicit methods for parabolic or hyperbolic equations
lead to a system of linear equations, Az = b. In many prob-
lems of semiconductor device simulation, size of the matrix
A is very large and has a large condition number. Solutions
of such large systems, by a direct method is prohibitively ex-
pensive; because, these methods work fine only for well-posed
problems (problems in which the corresponding matrix A has
a small condition number). In this case, an iterative technique
is usually adopted and effective preconditioner of the matrix
A is required in order to make it better conditioned than the
original matrix [3]. Generally, the better-conditioned system
leads to an accelerated convergence in the iterative solution [4].
Some well-documented preconditioning methods such as in-
complete LU factorization (ILU) and polynomial precondition-
ing methods [5]-[6] can be effective. However, they usually
require well-above O(N) operations to implement. Recently,
an interesting preconditioning method based on the filter-bank
and wavelet transforms was proposed [7]. The most important
advantage of the new preconditioner is its low computational
cost, which can be reduced to O(N) complexity. In this paper
we will use this preconditioner to accelerate the transient
simulation of semiconductor devices. This method seems to
provide efficient preconditioners for matrices arising from
finite difference of PDEs. Hence, this preconditioner can be
applied to matrices arising from discretizing when using the
fully and semi-implicit finite difference schemes for solving
time-dependent hydrodynamic transport equations. Here, as
the first step in the performance investigation of this pre-
conditioner in the simulation of semiconductor devices, we
apply it to the descritized modified Poisson’s equation in Drift-
Diffusion model. In [8], the proposed method has been applied
to the standard Poisson’s equation as an elliptic equation.
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II. IMPLICIT SCHEME FOR SEMICONDUCTOR EQUATIONS
Consider a time-dependent equation of the following form:

ox

5 =@ (1)

If a Taylor expansion of x is made around = at ¢t = t; + 1,
then we have

et = 2h 4 A¢ (%) +0(A). )
t1+1
Using (1) and (2) we obtain
l.i1+1 _ fL'tl
A = ET. 3)

Application of the difference approximation to operator “f”,
gives

(I — AtA)z T = gt 4)
where A is the difference approximation of operator “f”. It can
be shown that the above scheme, known as implicit method,
when applied to the semiconductor equations, is stable for very
large At compared to the explicit method [2].
Here, without loss of generality, we can consider Drift-
Diffusion model and corresponding equations which are as
the following for an unipolar device [12]:

g—? +V.(n0) =0 (5)
V2 = ——L (N —n), ©6)
€0€r
where n = —nuE — V(Dn) and when defining carrier

mobility as p = ¢7,/m* and Diffusion coefficient as D =
pkT'/q.

A. Modified Poisson’s Equation

While solving for the potential ™1 at time level (¢ + 1),
the carrier concentration n**! at (¢ + 1) ia not available. But
this can be approximated in the following ways [2]:

v?wt«kl — _ q (Ng _ nt+1) . (7)
€€
Expanding n'*! using a Taylor series gives
0
nttl = nt + At (6—?) + O(At). (8)
t

Ignoring second and higher order terms in time, O(At?), and
substituting for (On/0t); from the continuity equation yields

Pt — ot 4 AR (_ntﬂﬁwf“ + ﬁ(Dnt)) )
Hence, (6) can be rewritten as follows:
Y2yt (1 n Mﬁ) i Mﬁwtﬂﬁnt -
€ €
% (=Np +n' + DAtV?n!). (10)

The modified Poisson’s equation, (10), is solved for !*+!
using the full implicit method.
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B. Carrier Continuity Equation

For solving carrier continuity equation by an implicit
scheme, it is considered as:

on

5 = V.(unt+1ﬁt+l + Dﬁnt“)

an

or
nttl _pt . .
At — /,LEt+1.Vnt+1 _ nt+luv2¢t+1 + Dv2nt+1'

(12)

In above equation, it is assumed that ¢)!T! is known. The
above assumption is justified, since 1’T! is available once

(10) is solved. Equation (11) is used to solve n**!.

III. FILTER-BANK BASED PRECONDITIONER

Most of the orthogonal wavelet-based preconditioners pro-
vide effective schemes for matrices based on the structure of
the matrices themselves rather than relying on detailed knowl-
edge of the underlying problem from which they arise [9].
Here, we consider that the matrix, A, comes from the dis-
cretization of a PDE. This leads to better approximation of
the transformed matrix with lower computational cost for pre-
conditioning which can be reduced to O(N) complexity [7].
Results show that general operators have a sparse represen-
tation in wavelet bases were derived in [10]. In [11] it was
shown that the efficient decomposition level of the wavelet
transform can be used to construct diagonal preconditioners
when using a Galerkin method. The discrete analogue of the
biorthogonal wavelet transforms relies on so called perfect
reconstruction filter-bank transforms. In this paper we use
biorthogonal filter-bank transforms and follow the precondi-
tioner algorithm for discretized PDE’s explained in [7]-[8].
Here we apply this algorithm to carry on the construction of
preconditioner for the modified Poisson’s equation, which is
shown to improve the performance of the method. The motive
for using orthogonal wavelet transforms is that the condition
numbers of the transformed and untransformed operators are
the same. However, the condition number actually decreases
when doing biorthogonal filter-bank transforms.

A. Construction of the Preconditioner

If we consider a partial differential equation and assume that
this problem is discretized with a finite difference method,
a system of linear equations can be obtained as Ax = b.
We want to use the filter-bank transform to precondition the
operator, A. If the filter-bank transform of matrix A is called
fl, its matrix representation is as shown in Fig. 1. Here, M
is the approximation of the transformed operator. From its
inverse which can be computed very easily, we will construct
the preconditioner [8].
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Fig. 1. Structure of matrix representation of transformed operator.

13th GAAS® Symposium — Paris, 2005

M



0.3um

S G D
I I

1 - —

0.2um 0.3pum 03pm  0.4pum

02pm| 1 0.12um

Active layer (2 x 10'7¢m ™3

Semi-insulating layer (1 x 10*3em™3)

HX

Fig. 2. Cross section of the simulated MESFET transistor.

IV. APPLICATION TO A DEVICE

Fig. 2 shows the GaAs MESFET structure used to demon-
strate the potential of the proposed preconditioner. This struc-
ture is discretized by a uniform mesh of 65Az x 32Ay.
Dirichlet boundary conditions are used at the electrodes while
Neumann boundary conditions are used at the other walls.
Here, we apply the proposed filter-bank and wavelet based
preconditioner to matrix A, arising from the modified pois-
son’s equation which described in previous section. The size
of this matrix is (2048 x 2048). solving the modified Poisson’s
equation, (10), for 1&%1 leads to a system of linear equations,
Ax = b, which matrix A is a function of At and carrier density
distribution, nt. Also, this situation is established in implicit
discretization of carrier continuity equation. It is important to
note, when an explicit scheme is used to solve Drift-Diffusion
model equations, the maximum allowable time step is about
Ategpiicit = 0.001ps. But when the equations are discretized
by the above implicit scheme, the method will be stable for
very large At; for instance At = 100Atcpiicit-

In this study, the proposed method is applied to matrix
A when t = 0, ie. n = Np, and At = 0.01ps. The
condition number of this matrix is 11607 and we apply the
proposed filter-bank based preconditioner to it to reduce its
condition number. In Tables I and II, we present the variation
of condition number of the preconditioned matrix according
to the type of filter-bank and wavelet transforms and to the
number of steps in the transform, which determines the size
of nondiagonal part of matrix M called M. We have used
the tensor product (2-D) transforms for preconditioning. It
is clearly shown that for the § filter-bank transforms, the
condition number decreases as the filter-bank is of lower order
and as the decomposition levels decrease (Table I). But for the
Daubechies wavelet transforms the condition number decrease
as the wavelet is as higher order and as the decomposition
levels increases (Table II).

Fig. 3 shows the convergence behavior of the proposed
preconditioner for different filter-bank and wavelet 2-D trans-
forms. Convergence behavior of the preconditioned system
is similar to the variation of its condition number. As it
is seen, the convergence rate increases as the filter-bank is
of lower order and as the decomposition levels decreases.
But for the Daubechies wavelet transforms, the convergence
rate increases as the wavelet is as higher order and as the
decomposition level increases. We found that preconditioning
using d; filter-bank transform converges faster than the other
filter-bank and wavelet transforms. By increasing the number
of steps in the transform, the size of nondiagonal part of
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Type of filter bank Name l M] l Condition number
51 Deltalay | (22.2%) x (21.23) | 2099
51 Deltalss | (25.2%) x (23.2%) 2528
51 Deltalss | (23.22) x (23.27) 2694
51 Deltalys | (22.2%) x (22.27) 3381
03 Delta32s | (2%.23) x (2%.2%) 2738
03 Delta3ss | (23.23) x (23.23) 3448
33 Delta3ss | (23.2%) x (25.22) 3759
53 Delta3ss | (22.22) x (22.27) 4786

TABLE I
CONDITION NUMBER OF THE PRECONDITIONED MATRIX
CORRESPONDING TO THE MESFET STRUCTURE FOR DIFFERENT
FILTER-BANK TRANSFORMS.

‘ Type of wavelet Name ‘ [M] ‘ Condition number
Dy Dabday | (2%.2%) x (22.2%) 3976
Dy Dabdgzs | (23.23) x (23.23) 3248
Dy Dabdsz | (23.22) x (23.27) 3246
Dy Dabdyz | (22.27) x (22.27) 3199
Do (Haar) Dab222 | (22.23) x (2%.2%) 6664
Do (Haar) Dab232 | (23.2%) x (23.2%) 5783
Do (Harr) Dab233 | (23.22) x (23.27) 5634
Do (Harr) Dab243 | (22.27) x (22.22) 5454

TABLE I
CONDITION NUMBER OF THE PRECONDITIONED MATRIX
CORRESPONDING TO THE MESFET STRUCTURE FOR DIFFERENT
WAVELET TRANSFORMS.

M decreases. Therefore, the computational complexity of
the preconditioning method, which is equal to O(N + M?3)
can be reduced by increasing the number of steps in the
transform [8]. It is interesting that we can obtain both good
conditioning and low computational cost by using ¢§; filter-
bank transform. For example, in case Deltalys, the complex-
ity equals to O(N) [8]. To compare the performance of the
used preconditioner (filter-bank based preconditioner) with the
well-known preconditioning methods, the convergence rate of
the incomplete LU factorization (ILU) preconditioner which
applied to our problem, has been illustrated in Fig. 3. Although
the performance of the used preconditioner is better when
applied to the Laplacian operator matrix in standard poisson’s
equation [8], for ¢; filter-bank transform with different decom-
position levels, the convergence rate is faster than the ILU(0)
preconditioner.

Here, we use the solution of the modified Poisson’s equation
obtained using the proposed filter bank preconditioner for
simulation of the considered MESFET transistor. Fig. 4 shows
the potential distribution obtained using the proposed algo-
rithm, while Fig. 5 illustrates the carrier density distribution.
It is significant to indicate that the proposed algorithm gives
precisely the same results obtained when the used iterative
method does not employ the proposed preconditioner method.

V. CONCLUSION

In this paper, we have proposed to use a filter-bank based
preconditioner for accelerating the iterative solutions of the
large systems. These systems of linear equations arise from
an implicit discretization of semiconductor equations. The per-
formance of the preconditioner when applied to the modified
Poisson’s equation has been investigated. Results show that
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Steady-state potential distribution obtained using the proposed

the convergence rate of the used preconditioning scheme, by
07 filter-bank transform, is faster than the well-known ILU
method. Moreover, the computational cost of the considered
method is as low as O(N) which is very better than the other
methods.
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