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Abstract— Using fully or semi-implicit schemes to solve hy-
drodynamic transport equations is very suitable and efficient for
transient simulations of semiconductor devices. But, using these
techniques leads to a large system of linear equations. Here for
the first time, a preconditioning method based on the filter-bank
and wavelet transforms is used to facilitate the iterative solution
of this system. As the first step in the performance investigation
of this preconditioner in the simulation of semiconductor devices,
we apply it to the modified Poisson’s equation in Drift-Diffusion
model. Numerical results show that the condition number are
significantly reduced and convergence rate is increased. The most
important advantage of this preconditioner rather than the other
preconditioners is its low computational complexity which can be
reduced to O(N).

I. INTRODUCTION

In microwave and high-frequency semiconductor devices,
submicrometer dimensions are used. As device sizes continue
to decrease, nonlocal, hot carrier transport becomes domi-
nant and can no longer be ignored. Therefore, hydrodynamic
transport equations which are obtained by taking the first
three moments of the Boltzmann Transport Equation (BTE) in
conjunction with the Poisson’s equation, must be used to study
nonstationary transport effects in submicrometer devices [1].
These equations form a set of nonlinear, coupled and time-
dependent partial differential equations. The solution methods
can be divided into two categories: coupled (Newton) or de-
coupled (Gummel) solvers [2]. The major advantage of using
a coupled scheme is that there is no limit on the maximum
allowable time step, ∆t. However, for large ∆t, the initial
guess of the solution in general turns out to be very different
from the true solution, and hence the overall convergence
rate slows down. In addition, since the equations are solved
simultaneously, CPU memory requirement is higher three
times than that for a decoupled solver. The decoupled method
(Gummel algorithm), treats each of the differential equations
separately by decoupling the equations and solving the system
step by step. Then this sequence is iteratively repeated until
self-consistent values for all unknown variables are obtained
with the desired accuracy. In conventional decoupled methods,
the fully implicit, semi-implicit and explicit methods are used
to solve the equations. Although in explicit scheme, variables
can be evaluated easily through simple algebraic computations,
but the major disadvantage of this scheme is that this method
is numerically unstable for ∆t greater than the maximum
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values. For most practical problems, the maximum
ery small and it makes the explicit methods to be very
nt, especially for obtaining steady-state solutions. In
semi-implicit schemes, the method is unconditionally

or any ∆t or for very large ∆t compared to explicit
s. The only disadvantage of this scheme is its high com-
al cost. Even though this technique is computationally
pensive compared to explicit methods for obtaining
s in new time, it becomes more and more economical
ems where steady-state solutions or transient solutions
times are desired, because of the possibility of using

t when employing the implicit schemes.
s been mentioned in literature [2], using the fully and
plicit methods for parabolic or hyperbolic equations
a system of linear equations, Ax = b. In many prob-
semiconductor device simulation, size of the matrix

ry large and has a large condition number. Solutions
large systems, by a direct method is prohibitively ex-

; because, these methods work fine only for well-posed
s (problems in which the corresponding matrix A has
condition number). In this case, an iterative technique
ly adopted and effective preconditioner of the matrix
quired in order to make it better conditioned than the

matrix [3]. Generally, the better-conditioned system
an accelerated convergence in the iterative solution [4].
ell-documented preconditioning methods such as in-
e LU factorization (ILU) and polynomial precondition-
hods [5]-[6] can be effective. However, they usually
well-above O(N) operations to implement. Recently,
esting preconditioning method based on the filter-bank
elet transforms was proposed [7]. The most important

ge of the new preconditioner is its low computational
ich can be reduced to O(N) complexity. In this paper

l use this preconditioner to accelerate the transient
ion of semiconductor devices. This method seems to

efficient preconditioners for matrices arising from
ifference of PDEs. Hence, this preconditioner can be
to matrices arising from discretizing when using the
d semi-implicit finite difference schemes for solving
pendent hydrodynamic transport equations. Here, as
t step in the performance investigation of this pre-
ner in the simulation of semiconductor devices, we
to the descritized modified Poisson’s equation in Drift-
n model. In [8], the proposed method has been applied
tandard Poisson’s equation as an elliptic equation.



II. IMPLICIT SCHEME FOR SEMICONDUCTOR EQUATIONS

Consider a time-dependent equation of the following form:

∂x

∂t
= f(x). (1)

If a Taylor expansion of x is made around x at t = t1 + 1,
then we have

xt1+1 = xt1 + ∆t.

(
∂x

∂t

)
t1+1

+ O(∆t2). (2)

Using (1) and (2) we obtain

xt1+1 − xt1

∆t
∼= f(xt1+1). (3)

Application of the difference approximation to operator “f”,
gives

(I − ∆tA)xt1+1 = xt1 , (4)

where A is the difference approximation of operator “f”. It can
be shown that the above scheme, known as implicit method,
when applied to the semiconductor equations, is stable for very
large ∆t compared to the explicit method [2].
Here, without loss of generality, we can consider Drift-
Diffusion model and corresponding equations which are as
the following for an unipolar device [12]:

∂n

∂t
+ ∇.(n�υ) = 0 (5)

∇2ψ = − q

ε0εr

(
N+

D − n
)
, (6)

where n�υ = −nµ�E − �∇(Dn) and when defining carrier
mobility as µ ≡ qτp/m� and Diffusion coefficient as D ≡
µkT/q.

A. Modified Poisson’s Equation

While solving for the potential ψt+1 at time level (t + 1),
the carrier concentration nt+1 at (t + 1) ia not available. But
this can be approximated in the following ways [2]:

∇2ψt+1 = − q

ε0εr

(
N+

D − nt+1
)
. (7)

Expanding nt+1 using a Taylor series gives

nt+1 = nt + ∆t.

(
∂n

∂t

)
t

+ O(∆t2). (8)

Ignoring second and higher order terms in time, O(∆t2), and
substituting for (∂n/∂t)t from the continuity equation yields

nt+1 = nt + ∆t∇.
(
−ntµ�∇ψt+1 + �∇(Dnt)

)
. (9)

Hence, (6) can be rewritten as follows:

∇2ψt+1

(
1 +

qµ∆t

ε
nt

)
+

qµ∆t

ε
�∇ψt+1.�∇nt =

q

ε

(−ND + nt + D∆t∇2nt
)
. (10)

The modified Poisson’s equation, (10), is solved for ψt+1

using the full implicit method.
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lving carrier continuity equation by an implicit
it is considered as:

∂n

∂t
= ∇.(µnt+1 �Et+1 + D�∇nt+1) (11)

nt

= µ�Et+1.�∇nt+1 − nt+1µ∇2ψt+1 + D∇2nt+1.

(12)
equation, it is assumed that ψt+1 is known. The

sumption is justified, since ψt+1 is available once
lved. Equation (11) is used to solve nt+1.

I. FILTER-BANK BASED PRECONDITIONER

f the orthogonal wavelet-based preconditioners pro-
ctive schemes for matrices based on the structure of
ces themselves rather than relying on detailed knowl-
the underlying problem from which they arise [9].

consider that the matrix, A, comes from the dis-
n of a PDE. This leads to better approximation of
ormed matrix with lower computational cost for pre-
ing which can be reduced to O(N) complexity [7].
how that general operators have a sparse represen-
wavelet bases were derived in [10]. In [11] it was
at the efficient decomposition level of the wavelet
can be used to construct diagonal preconditioners

ng a Galerkin method. The discrete analogue of the
nal wavelet transforms relies on so called perfect
ction filter-bank transforms. In this paper we use
nal filter-bank transforms and follow the precondi-

gorithm for discretized PDE’s explained in [7]-[8].
apply this algorithm to carry on the construction of
ioner for the modified Poisson’s equation, which is
improve the performance of the method. The motive
orthogonal wavelet transforms is that the condition

of the transformed and untransformed operators are
. However, the condition number actually decreases
ing biorthogonal filter-bank transforms.

ruction of the Preconditioner

onsider a partial differential equation and assume that
lem is discretized with a finite difference method,
of linear equations can be obtained as Ax = b.
to use the filter-bank transform to precondition the
A. If the filter-bank transform of matrix A is called

atrix representation is as shown in Fig. 1. Here, M
proximation of the transformed operator. From its
hich can be computed very easily, we will construct
nditioner [8].
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Structure of matrix representation of transformed operator.
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Fig. 2. Cross section of the simulated MESFET transistor.

IV. APPLICATION TO A DEVICE

Fig. 2 shows the GaAs MESFET structure used to demon-
strate the potential of the proposed preconditioner. This struc-
ture is discretized by a uniform mesh of 65∆x × 32∆y.
Dirichlet boundary conditions are used at the electrodes while
Neumann boundary conditions are used at the other walls.
Here, we apply the proposed filter-bank and wavelet based
preconditioner to matrix A, arising from the modified pois-
son’s equation which described in previous section. The size
of this matrix is (2048×2048). solving the modified Poisson’s
equation, (10), for ψt+1

i,j leads to a system of linear equations,
Ax = b, which matrix A is a function of ∆t and carrier density
distribution, nt. Also, this situation is established in implicit
discretization of carrier continuity equation. It is important to
note, when an explicit scheme is used to solve Drift-Diffusion
model equations, the maximum allowable time step is about
∆texplicit = 0.001ps. But when the equations are discretized
by the above implicit scheme, the method will be stable for
very large ∆t; for instance ∆t = 100∆texplicit.

In this study, the proposed method is applied to matrix
A when t = 0, i.e. n = ND, and ∆t = 0.01ps. The
condition number of this matrix is 11607 and we apply the
proposed filter-bank based preconditioner to it to reduce its
condition number. In Tables I and II, we present the variation
of condition number of the preconditioned matrix according
to the type of filter-bank and wavelet transforms and to the
number of steps in the transform, which determines the size
of nondiagonal part of matrix M called Ḿ . We have used
the tensor product (2-D) transforms for preconditioning. It
is clearly shown that for the δ filter-bank transforms, the
condition number decreases as the filter-bank is of lower order
and as the decomposition levels decrease (Table I). But for the
Daubechies wavelet transforms the condition number decrease
as the wavelet is as higher order and as the decomposition
levels increases (Table II).

Fig. 3 shows the convergence behavior of the proposed
preconditioner for different filter-bank and wavelet 2-D trans-
forms. Convergence behavior of the preconditioned system
is similar to the variation of its condition number. As it
is seen, the convergence rate increases as the filter-bank is
of lower order and as the decomposition levels decreases.
But for the Daubechies wavelet transforms, the convergence
rate increases as the wavelet is as higher order and as the
decomposition level increases. We found that preconditioning
using δ1 filter-bank transform converges faster than the other
filter-bank and wavelet transforms. By increasing the number
of steps in the transform, the size of nondiagonal part of
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f filter bank Name [Ḿ] Condition number

δ1 Delta122 (24.23) × (24.23) 2099
δ1 Delta132 (23.23) × (23.23) 2528
δ1 Delta133 (23.22) × (23.22) 2694
δ1 Delta143 (22.22) × (22.22) 3381
δ3 Delta322 (24.23) × (24.23) 2738
δ3 Delta332 (23.23) × (23.23) 3448
δ3 Delta333 (23.22) × (23.22) 3759
δ3 Delta343 (22.22) × (22.22) 4786

TABLE I

CONDITION NUMBER OF THE PRECONDITIONED MATRIX

RESPONDING TO THE MESFET STRUCTURE FOR DIFFERENT

FILTER-BANK TRANSFORMS.

f wavelet Name [Ḿ] Condition number

4 Dab422 (24.23) × (24.23) 3976
4 Dab432 (23.23) × (23.23) 3248
4 Dab433 (23.22) × (23.22) 3246
4 Dab443 (22.22) × (22.22) 3199
aar) Dab222 (24.23) × (24.23) 6664
aar) Dab232 (23.23) × (23.23) 5783
arr) Dab233 (23.22) × (23.22) 5634
arr) Dab243 (22.22) × (22.22) 5454

TABLE II

ONDITION NUMBER OF THE PRECONDITIONED MATRIX

RESPONDING TO THE MESFET STRUCTURE FOR DIFFERENT

WAVELET TRANSFORMS.

reases. Therefore, the computational complexity of
onditioning method, which is equal to O(N + Ḿ3)
reduced by increasing the number of steps in the

m [8]. It is interesting that we can obtain both good
ning and low computational cost by using δ1 filter-
nsform. For example, in case Delta143, the complex-
ls to O(N) [8]. To compare the performance of the

econditioner (filter-bank based preconditioner) with the
own preconditioning methods, the convergence rate of
mplete LU factorization (ILU) preconditioner which
to our problem, has been illustrated in Fig. 3. Although
formance of the used preconditioner is better when
to the Laplacian operator matrix in standard poisson’s

n [8], for δ1 filter-bank transform with different decom-
levels, the convergence rate is faster than the ILU(0)

itioner.
, we use the solution of the modified Poisson’s equation
d using the proposed filter bank preconditioner for
ion of the considered MESFET transistor. Fig. 4 shows
ential distribution obtained using the proposed algo-

hile Fig. 5 illustrates the carrier density distribution.
nificant to indicate that the proposed algorithm gives
y the same results obtained when the used iterative
does not employ the proposed preconditioner method.

V. CONCLUSION

is paper, we have proposed to use a filter-bank based
itioner for accelerating the iterative solutions of the
stems. These systems of linear equations arise from

icit discretization of semiconductor equations. The per-
e of the preconditioner when applied to the modified
’s equation has been investigated. Results show that



the convergence rate of the used preconditioning scheme, by
δ1 filter-bank transform, is faster than the well-known ILU
method. Moreover, the computational cost of the considered
method is as low as O(N) which is very better than the other
methods.
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