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Abstract  —  A InP/GaAsSb/InP double-heterojunction 
bipolar transistor (DHBT) structure has been defined, 
realized by MBE epitaxy, and optimized, thanks to simulation 
based on in-depth physical characterizations. A circuit-
oriented technology has been developed, which has been 
validated by the design and fabrication of a full-rate (40 GHz 
clock) 40 Gbit/s D-FF. 

I. INTRODUCTION

InP/GaAsSb material has been for long identified as 
having a great potential for high performance HBTs [1]. 
InP/GaAsSb transistors have been developed and cut-off 
frequencies beyond 300 GHz have been achieved [2]. In 
this paper, we report on the fabrication of a GaAsSb/InP 
DHBT structure, its optimization thanks to physical 
simulations based on physical characterization, and the 
development of an associated circuit-oriented process. This 
process has been validated by the fabrication and 
characterization of a full-rate 40 Gbit/s D-FF. Epitaxial 
growth is presented in section II, material characterization 
in section III, simulation-based optimization in section IV, 
DHBT circuit technology in section V; the design, 
fabrication and characterization of the validation circuit is 
reported in section VI.

II. GAASSB/INP EPITAXY AND CHARACTERIZATION

A VG 100 multi 4”wafers MBE system equipped with 
standard Veeco effusion cells for Group III and Group V 
elements was used for the elaboration of the structure. 
Regular solid Si and CBr4 gaz sources were used as n- and 
p-type dopants respectively. Growth temperature was 
monitored by Ircon pyrometer. DHBT InP/GaAsSb/InP 
growth was conducted on nominally exact (001) InPact 
InP:Fe substrates. Devices structures consist in a heavily 
doped InP/GaInAs lattice matched subcollector, a 250 nm 
InP low doped collector (few 1016 cm–3), a 50 nm GaAsSb 
heavily doped base (C: 8 1019 cm–3), a 70 nm doped InP 
emitter and a heavily doped InP/GaInAs emitter cap. The 
typical base sheet resistance value determined by TLM 
measurements is B = 760 /sq. Optimal growth 
conditions were obtained by a fine tuning of the growth 
temperature, total group V to III ratio with a particular 
attention to the GaAsSb base material. A preliminary 
work [3] has shown that the p-type carriers mobility can be 
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ined at 28 cm–2/V/sec with corresponding doping as 
s 2.5 1020 cm–3 (Fig. 1).  

Fig. 1: GaAsSb hole mobility 
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Fig. 2: X ray diffraction spectrum 

III. PHYSICAL CHARACTERIZATION

 extensive photoluminescence (PL) and 
eflectance (PR) spectroscopy, we evidenced the 
 nature of the InP/GaAsSb interface which impacts 
e emitter-base injection efficiency, and the collector 
n average velocity, leading to high speed 



transistors [4]. The conduction band offset ∆Ec was found 
to be ~95 meV for Sb fraction XSb = 45.7% [5]. The Fermi 
level pinning at the GaAsSb surface (which impacts on the 
base sheet resistance) is found to be pinned at 220 meV 
above the valence band. Finally, PL and PR analysis led us 
to conclude to rather strong localization effects, related to 
potential fluctuations probably induced by alloy disorder in 
antimonide alloys [6]. 

IV. GAASSB DHBT STRUCTURE OPTIMIZATION

A. Physical simulations 
Accurate physical simulations were performed to save 

expensive technological effort and confirm significant 
direction of improvements of the device performances. A 
two dimensional device simulation software is used to 
calculate the DC characteristics of the DHBT. The carrier 
transport mechanisms are described by a hydrodynamic 
model derived from Stratton energy balance equations, 
which is extended to the case of degenerate 

semiconductors. The numerical solution is achieved using 
self-consistent solution of Stratton partial differential 
equations coupled with Poisson and carrier continuity 
equations. Due to type-II conduction band alignment at the 
InP/GaAsSb interface, electron injection through the 
heterojunction is described by thermo-ionic field emission.  
To save computer time, the simulation domain is limited to 
half a device with an emitter area of 2×30 µm².  

As experimental features of the heavily carbon-doped 
GaAs0.51Sb0.49 base is one of the key points to implement 
realistic simulation, the influence of unknown sensitive 
GaAsSb parameters were studied [7]. Indeed, fitting the 
Gummel I-V characteristics of real transistors has allowed 
to precise: 

- the bandgap narrowing and its sharing between the 
valence and conduction band discontinuities of the 
heterojunction,  

- mechanisms of electron-hole recombination in the 
base,  

- a typical value of carrier minority lifetime.  
Finally, the physics of DC current gain drop at high 

collector density current was studied. 
As the DHBT DC current gain strongly depends on the 

conduction band alignment at the InP/GaAsSb interface, 
the effective band gap energy of the GaAsSb is 
implemented as an adjustable parameter. The theoretical 
value EGth of 0.72 eV for GaAs0.49Sb0.51 energy band gap at 
300K was found to have to be reduced by 70 meV.  

B. Transport analysis and optimization 
The preeminent influence of SRH bulk recombination 

into the p-GaAsSb base on the current gain was confirmed 
[8]. To estimate the associated minority carrier life time, 
τn, forward Gummel characteristics were simulated for 
different τn values and compared to the measured ones 
with GaAsSb recombination centers located at mid gap. As 
shown in figure 3, the simulated forward Gummel plots are 
in good agreement with the measured values for 
τn  ≈ 0.5 ns. 
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Fig. 3: Measured (o) and simulated (solid lines) 
 and collector current densities versus VBE for VCB = 0V  
d for different values of electron life-time in the base:  
τn = 0.05 ns (1), τ n = 0.25 ns (2) and τ n = 0.5 ns (3) 

e evolution of DHBT current gain, β, with respect to 
 is shown in figure 4. A sharp drop of β is observed 

BE >0.73 V and collector current density about 
/cm2. Indeed, at high injection level, for 
0 kA/cm², the large valence band discontinuity at the 
ollector interface, i.e. ∆EV  in the range of 
.92 eV, prevents the injection of holes from the base 
e collector. Hence, instead of the classical base 
ut effect, a parasitic barrier builds up at the base-
or interface inducing two major effects [7]: 
ctrons injected in the collector are partly reflected 
 the base, leading to the quasi-saturation of JC . 

e base majority carrier concentration increases  to 
in the quasi-neutrality, leading to the increase of the 
ecombination rate and hence the rise of the base 
t, JB.
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Fig. 4: Evolution of current gain versus VBE

lly, the results presented in [9] have shown the 
ement of the DHBT operation at high current 
 requires not only the optimization of intrinsic 
or parameters but also the quality of the collector 
 contact. 

V. GAASSB/INP TECHNOLOGY

tel R&I self-aligned triple-mesa InGaAs/InP DHBT 
logy has already been described [10]. It has been 
y adapted to suit GaAsSb/InP DHBT structure: due 



to its favorable type-II lineup, antimonide-based HBTs do 
not need the quaternary compounds currently used in 
InGaAs-based HBTs to suppress the conduction band 
spike at the base-collector junction; the associated two 
etching steps are no longer necessary, leading to a simpler 
and more reproducible process. Due to the associated 
dimensional control, the scaling needed to achieve still 
higher performances will be more easily achieved. 

A. Large size transistor characterization 
Large size transistors were fabricated for various 

characterization; in particular, static gain >30 and base 
sheet resistance ~800 Ω/sq were measured. 

Micro-photoreflectance measurements (fig. 5) were 
successfully performed on a 1µm diameter spot on a large 
size HBT (50µm x 50µm emitter size).  

Fig. 5: Micro-PR spectrum recorded on a 1µm spot  
in the E-B spacing of a 50µmx50µm size emitter TBH 

This allowed to optically determine the internal electric 
field at the emitter-base junction (about 75 kV/cm) [11]. 

Localized optical characterization has been done on 
HBT under biasing [12]; figure 6 presents micro-PR 
spectra for two biasing conditions.  

Fig. 6: Micro-PR spectra for VBE=0 V (solid) and 0.3 V 
(dashed) biasing 

This kind of characterization opens the way to E/B 
junction optimization w.r.t. base composition. 

B. Low resistivity base contact 
Pt-based ohmic contact has been intensively studied for 

reliable, low resistive and non-diffusive base contacts. 
Pt/Ti/Pt/Au (15/20/30/50 nm) contacts show extremely 
low resistivity on p-doped GaAsSb layers (ρc < 10-6

Ω.cm2) for which conventional TLM measurements lead to 
large uncertainties. An alternative method, called Floating 
Contacts Transmission Line Modeling (FCTLM) has been 
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ped [13]. Using this method, reliable parameters 
been extracted from Pt-based ohmic contacts on 
d GaAsSb (NA=3.6x1019 cm-3). In agreement with 
vorable Fermi level pinning reported above, the 
t resistivity has been found as low as 
2x10-7 Ω.cm2, corresponding to a transfer length 
30 ± 10) nm. 

ronic device fabrication and characterization
 self-aligned triple mesa technology allows to 
te devices with 2-µm-width emitters (Fig. 7).  

Fig. 7: 2 x 3 µm² GaAsSb DHBT microphotograph 
re 8 shows the frequency characteristics for various 

r lengths. FT and FMAX reach 160 and 200 GHz 
tively. 

Fig. 8: Dynamic characteristics of 2 µm-width  
GaAsSb/InP DHBTs 

IRCUIT DESIGN, FABRICATION & CHARACTERIZATION

circuit-oriented InP/InGaAs technology has been 
ped for very high bit-rate ICs fabrication [14] using 
with 2-µm emitter width, and including three Ti/Au 
nnection levels, TaN resistors, MIM capacitors and 

inductors.  
 technology has been used, the only modifications in 
cess being those presented in section V. 
rder to validate the suitability of this GaAsSb/InP 
echnology to address very-high-speed mixed-signal 
ations, we have chosen to use a Master-Slave 
-Flop (MS-DFF), rather than more common but less 
nt ring oscillator or static divider, as it operates at 
te, on very wide band input.  
 design of this DFF [15] is based on an ECL 
cture, in order to operate at 40 Gbit/s with 40 GHz 
It includes a sensitive buffer, two (master and slave) 
d latches and an output buffer. Compact and 
tric layout is a key to achieve high quality output 

  



Figure 9 shows the microphotograph of the circuit 
fabricated using this GaAsSb-based technology. 

Measured fabrication yield is 77% on a two-inch wafer.  

Fig. 9: 40 Gbit/s (40 GHz-clock)  
GaAsSb DHBT D-FF microphotograph 

Excellent functional characteristics have been achieved, 
as appears on figure 10. These include: 

- S/N>19 (85% vertical eye opening)  
- 500mV output swing and   
- < 0.5 ps RMS jitter (88% horizontal eye opening). 

Fig. 10: 40 Gbit/s (40 GHz-clock) GaAsSb DHBT  
D-FF eye diagram (100 mV/division) 

VII. CONCLUSION

Based on an in-depth physical analysis of GaAsSb 
material and GaAsSb/InP heterojunctions, simulations 
have allowed to define and optimize a GaAsSb/InP DHBT 
device structure. All structures were realized using 
GSMBE epitaxy. The DHBT structure has been optimized 
for 40 Gbit/s digital IC fabrication. Using a triple-mesa 
self-aligned micronic HBT technology, 40 Gbit/s (40 GHz 
clock) D-Flip-Flops have been fabricated, validating the 
full process (from epitaxy to circuit). As using antimonide-
based HBTs leads to a more robust technology, this 
approach has great potential for future scaled (submicron) 
HBT technology suitable for very high performance circuit 
fabrication. 
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