
 
Abstract—We found different performances for the same 

device due to the variations in the process from die to the other 
on the same wafer or on another one. Yield analysis becomes 
one of the important tools into commercial Computer Aided 
Design (CAD) programs. Statistical issues are crucial in yield 
analysis for microwave circuits. Yield analysis needs accurate 
statistical properties between the parameters of devices’ 
models to reflect correctly the physical variations. Normally, 
on the level of the device modeling, the statistical properties 
between the model parameters like means and standard 
deviations are noisy by using the known techniques 
(optimization-based and direct) for extracting the small signal 
equivalent circuit model parameters of active microwave 
devices. We introduce how is Artificial Neural Network (ANN)
accurate and efficient statistical extraction method for small 
signal model parameters of Hetero Junction Bipolar 
Transistor (HBT). Utilizing this methodology provides a 
robust statistical model for our device.  

I. INTRODUCTION

 Both of the optimization based extraction and direct 
extraction techniques provide the statistical model with 
noise in terms of uncertainty coming from stop criterion for 
the former technique and measurements accuracy of 
selected data points used in the later one [1]. To overcome 
this problem, authors suggested building inverse function to 
extract the model parameters from the model performances 
(measured quantities). This technique gives a unique 
solution and controls the noise and is called Recursive 
Inverse Approximation (RIA). Firstly, the nominal device 
(device which has a performance close to the average 
performance) is extracted using a global optimization 
technique. RIA assumes that the changes between the model 
parameters for the devices are very small, and therefore it 
approximates the function of the model parameters of any 
device by Taylor series expansion around the extracted 
parameters vector of the nominal device. Then some 
estimated parameters obtained by sampling around the 
vicinity of the nominal parameters (model parameters for 
the nominal device) used in accuracy checking and 
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ter corrections. They applied it to SPICE level 3 
parameters for MOSFET. In this paper, we construct 
p or function by using Artificial Neural Network 
ANN learns the required relation between model 

ters domain and performance (measured or 
ed quantities) domain from these estimated 
ters and their corresponding performances (training 

e apply this methodology to extract small signal 
ent circuit model parameters for Hetrojunction 
 Transistor (HBT). This paper is organized as 
: the statement of the problem is in section II, we 

he theory of the used ANN technique in section III, 
entation and results are shown in section IV, and 
the conclusion is drawn in section V. 

II. PROBLEM IDENTIFICATION 

 complete equivalent scheme of an HBT as seen 
e probe tips is shown in Fig. 1. It can be subdivided 
o parts: the intrinsic core of the device (bias-

ent), and the external pad parasitics (which are bias-
dent). In [2], the sensitivity analysis proves that the 
eters are insensitive with respect to parasitic 

ters, and also with respect to Cbe and Rbe. So our 
 is focused only to obtain values of the rest of the 
c part shown in Fig.2, namely Cbc,Cf, Gm, Rb and Re
h device. The insensitive parameters of all devices 
 the same as for nominal device.  The relationship 
n the 5 remaining model parameters and the 
ed S-parameters is represented by an ANN model.  
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A big challenge concerned the selection of an optimal set 
of input variables. The most straightforward approach 
would be to consider the four S-parameters at all measured 
frequency points, but this quickly counts up to a huge 
number of input parameters. As alternative approach, we 
propose to take the 8 complex mean of the real and 
imaginary parts of the S-parameters over the considered 
frequency range as inputs for the ANN. As example the first 
and second inputs of our neural network become 
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Where: Re (S11)i and Im (S11)i are the real and Imaginary 
parts of (S11) at frequency point ‘i’ and ‘N’ is the total 
number of all frequency point 

Let the performance vector for our case to be S.
[ ]TSmeanSmeanSmeanS ))(Im(...))(Im())(Re( 221111= (3)

Let also the most sensitive equivalent circuit model 
parameters be 

[ ]Teibmbcf RRGCCX =          (4) 

We want to find a map such that nXS ℜ∈→ℜ∈ 8 ,
where m is the number of measured frequency points, and n 
is the number of most sensitive model parameters. The 
requirement is to construct ψ such that, 

)(SX ψ=                   (5) 
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Fig. 2 Intrinsic part of the device 

III. ARTIFICIAL NEURAL NETWORK

The ANN is constructed through learning from a set of 
input/output data (training set). After training, the ANN is 
able to generalize the relationship between the input and 
output, in the sense that for a given input value, which is not 
in the training set, it can predict the corresponding output.  

The mapping between the input vector x  with Nx the 
number of input neurons, and the output vector y  with Ny

the number of output neurons, can be determined as 
follows:  
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re Nz is the number of neurons in the hidden layer, 
the weighting factor and kθ is the bias term. Let the 
on function of the hidden layer be the sigmoid 
n )(ζf , where 

ζζ −+
=

e
f

1
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the output from the kth neuron of the hidden layer is 
n Eq.3. 

)( kk fz γ=             (8) 

utput of the jth neuron in the output layer is, 

j
zN

k
jkk wz η+

=1
,            j=1,2,….,Ny                        (9) 

jkw being the weighting factor and jη  the bias term. 

training process is in fact an optimization problem to 
e best values for jjkkki ww ηθ ,,, to minimize the 
ve function, which is square of the difference 
n the output from the ANN and the training data. 

IV. IMPLEMENTATION AND RESULTS

alidate our methodology, we carried out a controlled 
ent i.e we know both of most sensitive small signal 

ent circuit model parameters and the corresponding 
ances beforehand (test data) for each device. Firstly, 
ermine the nominal device, by characterizing 23 
 from different wafers with a geometry of 0.8 µm x 
 on a Si/SiGe HBT in the frequency range from 1 
 20GHz, biased at VBE =0.9 V and VCE =1.5V and 
the device which has average performance over all 
asured devices as a nominal device. Secondly, we 
the small signal equivalent circuit model parameter 
for the nominal device using [2], again these model 
ters are called the nominal parameters. Thirdly, we 
all signal equivalent circuit model shown in Fig. 2 to 
e twenty data using Monte Carlo simulations utility 
 (Advanced Design System), they are used as test 
e vary the model parameters [X] according to known 
s (means, slandered deviations and correlations) to 
corresponding performance [S]. These data represent 
rformance of 20 devices. Similarly, another one 



hundred Monte Carlo simulations was performed randomly 
around the vicinity (±10%, the maximum limit the model 
parameter can deviate from the nominal value) of the 
nominal parameters to get the corresponding performances 
and together they constitute the training data, we use these 
samples to train the ANN using the back-propagation 
algorithm [3], as implemented in the Neuro-Modeler 
program [4]. To prove the effectiveness of ANN to obtain 
better statistically model more than the conventional 
extraction methods, we extract the model parameters also 
with optimization based extraction [2] for the same S used 
in test data. The comparison between the extracted model 
parameters from ANN, extracted with optimization-based 
method and the original test data is shown in Figs.3-7 for 
Cbc,Cf, Gm, Rb and Re respectively. From the comparisons 
we can say that ANN is more accurate in extracting our 
model parameters than if we extract those parameters using 
conventional extraction methods. To statistically validate 
our extraction methodology, we compare the means and 
standard deviations of the test data and the extracted data 
with the two methodologies in Table I, also the correlations 
between test data and corresponding correlations as 
extracted from ANN model and optimization-base [2] are 
compared in Tables II-IV. 
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.
Mean Standard Deviation Most sensitive equivalent circuit 

model parameters ANN Tested 
data 

Optimization 
based 

ANN Tested 
data 

Optimization 
based 

Gm 309.29 311 314.28 11.57 9.30 15.12 
Rb 43.21 42.6 43.89 1.59 1.46 1.59 
Re 16.52 16.1 17.07 0.46 0.47 0.49 
Cbc 7.51 7.21 8.01 0.21 0.17 0.47 
Cf 10.04 9.64 10.59 0.23 0.25 0.31 

TABLE I
COMPARISON BETWEEN MEANS AND STANDARD DEVIATIONS FOR TEST DATA, ANN-BASED METHODOLOGY AND 

OPTIMIZATION-BASED TECHNIQUE
C b c Cf Gm Rb Re

C b c 1     
Cf -0.10 1    
Gm -0.33 -0.09 1   
Rb -0.45 -0.13 -0.12 1  
Re -0.47 0.29 0.26 0.74 1 

TABLE II 
CORRELATION BETWEEN THE MODEL PARAMETERS OF TESTED SAMPLES 

C b c Cf Gm Rb Re

C b c 1     
Cf -0.24 1    
Gm -0.30 -0.11 1   
Rb -0.34 -0.24 -0.29 1  
Re -0.54 0.40 0.24 0.56 1 

TABLE III 
CORRELATION BETWEEN THE EXTRACTED MODEL PARAMETERS WITH ANN

 C b c Cf Gm Rb Re

C b c 1     
Cf 0.04 1    
Gm -0.28 -0.24 1   
Rb -0.07 0.03 -0.26 1  
Re -0.20 0.03 0.29 0.56 1 

TABLE IV 
CORRELATION BETWEEN THE EXTRACTED MODEL PARAMETERS WITH OPTIMIZATION-BASED TECHNIQUE

V. CONCLUSION

 In this paper we used ANN as learning tool to construct 
map between the average of S-parameters over the whole 
frequency range and the most sensitive small signal model 
parameters. We also showed that ANN model preserves the 
statistical relations between the extracted model parameters.  
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