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A detailed procedure to learn a nonlinear model together with its first-order derivative data is presented. 
Two correlated multilayer perceptron (MLP) neural networks providing the model and its first-order 
derivatives, respectively, are trained simultaneously. Applying this method to FET devices leads to 
nonlinear models for current and charge fitting derivative parameters. The training data is the bias-
dependent equivalent circuit parameters extracted from S-parameter measurements. The resulting models 
are suitable for both small-signal and large-signal analyses, in particular for intermodulation distortion 
prediction. Examples for power amplifier simulations of power transfer, efficiency and intermodulation 
distortion performances are presented. 
 
INTRODUCTION 
 
The standard approach for characterizing an 
integrated microwave device and its enclosing 
package requires the extraction of an equivalent 
circuit which is fitted to electrical measurements. 
Neural networks have been usefully applied to 
model the bias dependence of S-parameters and 
output current to perform small-signal and large-
signal models, respectively (1). CAD software 
systems generally implement separate small-signal 
and large-signal models. However, this can lead to 
inconsistent simulation results. 
 
To overcome this problem, neural networks can be 
used to learn a model using not only input/output 
data but also derivative data. If two neural networks, 
one providing the model to learn and an adjoint 
network modelling its derivative parameters, have 
correlated architectures, can learn both models 
simultaneously (2,3). In this paper a practical 
implementation providing modifications of the 
backpropagation training algorithms is presented. 
 
The proposed approach is applied to find large-
signal models for drain current and charge in FET 
devices without loss of generality. An experiment 
based on a 0.5x1000µm medium power GaAs 
MESFET is presented. The process is implemented 
by the AMS foundry (Alenia-Marconi Systems). 
 
The training data is the bias-dependent equivalent 
circuit parameters extracted from S-parameter 
measurements. Notice that learning the equivalent 
circuit parameters means learning the derivative 
information of the large-signal model. The capability 
of training an active device model, using the first-

order derivative information, is very useful in 
simultaneous small-signal/large-signal device 
simulation, and allows intermodulation distortion 
prediction. 
 
NEURAL   NETWORK   APPROACH 
 
Consider the MLP neural network shown in Figure 
1, modelling the Ids current of an FET device as a 
function of the bias voltages Vgs and Vds. First-order 
derivative parameters Gm and Gds can be modeled by 
an adjoint neural network shown in Figure 2. The 
same number of layer 1 neurons in both networks 
must be chosen to obtain the required accuracy. F is 
the nonlinear transfer function.  
 
The two networks have correlated weights and 
topologies. In order the two networks to be trained 
simultaneously, a global network has to be built. On 
account of weight and bias correlations, constraints 
on derivative calculation must be imposed in the 
backpropagation algorithm used to train the network. 
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Figure 1: A two layer neural network modelling the Ids 

current. 
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Figure 2: An adjoint neural network modelling Ids  first-

order derivative parameters. 
 
The global network can be trained alternatively with 
the only input/output data of the function to learn, 
with only its derivative data, or finally, with both of 
them. In every case the network will provide both 
the function and its derivative models as well. 
 
FET   LARGE-SIGNAL   MODEL 
 
The proposed technique has been applied to find a 
large-signal model of a FET device. In particular a 
0.5x1000µm medium power GaAs MESFET 
implemented by the AMS foundry (Alenia-Marconi 
Systems) has been considered. 
 
The bias-dependent intrinsic parameters, from the 
extracted small-signal equivalent circuit shown in 
Figure 3a (4), provide nonlinar current and charge 
partial derivatives, corresponding to the nonlinear 
equivalent circuit shown in Figure 3b 

 

gsdsm dVdIG =                dsdsds dVdIG =  
 

gsg11 dVdQC =                dsg12 dVdQC =  

gsd21 dVdQC =                dsd22 dVdQC =  
 
where derivative capacitances are defined from 
intrinsic capacitances as (5,6) 
 

gdgs11 CCC −=  gd2112 CCC −==     
and 

gdds22 CCC −=  
 
The nonlinear relationship of Ids, Qg and Qd with 
respect of large-signal voltages Vgs and Vds are each 
evaluated by mean of a couple of neural networks as 
that shown in Figure 1 and Figure 2. The nonlinear 
transfer function chosen for the two sub-networks 
are the hyperbolic tangent and its first-order 
derivative, respectively. 
 
The Ids model is extracted training the first-order 
derivative sub-network with the extracted 
parameters Gm and Gds. Input/output training data for 
the Ids sub-network are taken from DC 
measurements, especially to impose deep pinchoff 

and zero-crossing constraints to the I-V 
characteristics. DC current data, on the other hand, 
have a wrong RF behavior, especially for the output 
conductance. The result, which is plotted in Figure 
4, is that the Ids model will be completely defined for 
any input voltage, whereas traditional Ids models 
need conditional statements to separate different 
voltages domains. This fact speed up nonlinear 
simulations involving different bias regions. 
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Figure 3: MESFET (a) linear and (b) nonlinear equivalent 

circuit 
 

On the other hand, to train charge models from Cij 
parameters, only derivative data is available, that is 
only the derivative sub-network is trained, whereas 
the Qg and Qd sub-networks provide the desired 
charge models. After training, a good agreement of 
equivalent circuit parameters between the neural 
models and experimental data is observed at all the 
100 bias points, as it can be seen in Figg.5-6. 
Neural models for gate-source current Igs and gate-
drain breakdown current Igd have been also trained 
on DC current measurements. 
 
EXPERIMENTAL  RESULTS 
 
The five neural models have been easily 
implemented into a user-defined nonlinear device 
model of the Agilent ADS microwave circuit 
simulator to predict the performance at 5 GHz of the 
power amplifier shown in the circuit schematic of 
Figure 7. The results for power gain and power 



transfer are shown in Figure 8 and 9 respectively, 
whereas a prediction of power efficiency is shown in 
Figure 10. Acceptable approximation of third-order 
intermodulation (IMD3) behavior with two tones at 
5 GHz and 5.05 GHz has been also obtained and 
results are plotted in Figure 11. 
 
CONCLUSIONS 
 

A detailed procedure to learn nonlinear models 
using also derivative information has been 
presented. When applied to large-signal parameter 
extraction of nonlinear devices, using only first-
order derivative information, this approach has led 
to models that have the same complexity of 
traditional formula-based models but are more 
consistent and reliable, both for small-signal and 
large-signal behavior prediction. The simulation of a 
power amplifier circuit with the neural FET models 
approaches the accuracy of the measured data. 
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Figure 4: Ids neural model curves (continuous) and 

DC measured curves (dashed). 
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Figure 5: Ids first-order derivative model fitting. 
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Figure 6: Charge derivative model fitting 
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Figure 7:  Agilent ADS  power amplifier simulation circuit. 
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Figure 8: Power amplifier gain simulation and 
measurements. 

 Figure 9: Amplifier power transfer simulation and 
measurements. 
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Figure 10: Amplifier power efficiency simulation and 
measurements. 

 Figure 11:  IMD3 simulation and measurements. 

 


