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Recursive Random-Sampling Strategy for a Digital 
Wattmeter 

Domenico Mini ,  Member, ZEEE, Gaetano Iuculano, Member, ZEEE, Antonio Menchetti, Fabio Filicori, and 
Marcantonio Catelani 

Abstract-A recursive, random-sampling strategy is pro- 
posed for the implementation of a digital broadband wattme- 
ter. In this strategy each sampling instant is obtained by adding 
to the preceding one a predetermined constant lag plus a ran- 
dom increment. In order to correlate the measurement uncer- 
tainty to the bandwidth, the asymptotic mean-square error 
arising from the sampling strategy and the filtering algorithm 
is evaluated and analyzed; it has been shown that the proposed 
sampling strategy does not limit the bandwidth of the instru- 
ment if an appropriate statistical distribution of the random 
increments is selected. The theoretical results are compared 
with those obtained by simulating the measurement process. 

I. INTRODUCTION 
HEN the primary objective is the design of a broad- W band sampling wattmeter and the waveform of the 

input signals can be almost periodic, it is convenient to 
use a random asynchronous sampling strategy. In fact, the 
bandwidth of a strategy using asynchronous equally 
spaced samples is certainly smaller than the sampling fre- 
quency [l] ,  [2]. In a previous paper [3] we proposed a 
random asynchronous sampling strategy which does not 
limit the bandwidth of the input signals; in this hypothesis 
the bandwidth is limited only by that of the sample-and- 
hold (S/H) devices and of the input signal-conditioning 
circuits. The experimental results obtained with a proto- 
type wattmeter confirmed the theoretical results [4]. This 
strategy had however the drawback of requiring a pair of 
S/H devices and ADC’s for each channel (voltage and 
current). In this paper a new random-sampling strategy, 
of a recursive type, is proposed. It has the same property 
of the previous one, i.e., it does not limit the bandwidth 
of the wattmeter (Section IV), and has the advantage that 
it can be implemented using only one S/H and one ADC 
for each channel (Section 11). 

To evaluate the performance of the proposed wattmeter 
we use a criterion which allows comparing, in terms of 
accuracy and bandwidth, the recursive sampling strategy 
with all nonrecursive ones [2], [5], [6]. By using this cri- 
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terion, uncertainty is quantified by the asymptotic, mean- 
square error of the output referred to the true value of the 
measurand, i.e., mean power. This error takes into ac- 
count not only all the possible measurement occurrences, 
but also the variability of the unknown nuisance parame- 
ters introduced by the measurement method (Section 11). 
The asymptotic mean-square error, evaluated considering 
the frequency content of the instantaneous power, satis- 
fies the superposition principle, in the sense that the square 
of the rms value of any spectral component contributes 
additively through a weighting coefficient to the final er- 
ror (Section 111). These weighting coefficients are picked 
up from a continuous function of frequency, which we 
call the weighting function; this function, therefore, char- 
acterizes the performance of the instrument also with re- 
spect to the bandwidth. The expression of the weight‘ 
function for the proposed recursive, random-sampling 
strategy is deduced and discussed, and the results of the 
theoretical study are compared with simulation findings 
(Section IV). 

11. THE RECURSIVE SAMPLING STRATEGY 
Let us suppose that the instantaneous powerp(t) has a 

discrete spectrum and can be expressed by a generalized 
Fourier series in the form: 

+m 

P ( 0  = Po + c p, exp ( j w q t ) ,  (1) q =  -m 

q + o  

where aq = -U,, P-, = P: coincides with the complex 
conjugate of P,, and the different U, do not necessarily 
have a common submultiple. In the hypothesis that the 
different angular frequencies do not have a common sub- 
multiple, the signal is called almost-periodic. The DC 
quantity Po, which constitutes the true value of the mea- 
surand, is defined by: 

When the converted signal is periodic with period T, = 
27r/wl, then wq = qwl ,  and the DC quantity Po can be 
calculated without considering the limit in (2) if To coin- 
cides with the period of the signal (To = TI). 

The digital wattmeter described here is based on a re- 
cursive, random-sampling strategy in which every sam- 
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pling instant ti is obtained by adding to the preceding one 
a predetermined constant lag T, plus a random increment 
Xi T, : 

ti = t i - ,  + T, (1 + X i ) .  (3) 
The random variables are written in boldface letters, and 
the continuous random variable Xi is the ith of a set of 
stationary independent increments with a common char- 
acteristic function denoted by: 

+(UT,) = E {exp ( j w T X , ) } ,  (4) 

where E { .  } is the expected value. In (4) we have consid- 
ered the argument UT,, since X, contributes to the sam- 
pling instant through the multiplicative factor T,. The set 
of the sampling instants can be interpreted as a stochastic 
point process. The lag T, is not correlated with any spec- 
tral component of the instantaneous power p(t); therefore, 
this recursive, random-sampling strategy is of an asyn- 
chronous type. Obviously, if X, = 0 in (3), the sampling 
strategy becomes an equally spaced type Iosing the char- 
acteristic of recursivity . 

The lag T, in ( 3 )  has been introduced so that the time 
interval between two successive samples is never smaller 
than T,; therefore, if the value selected for T, is not less 
than the maximum data acquisition and processing time 
of the digital hardware adopted, a real-time instrument 
can be obtained using only one S/H device and one ADC 
for each of the two channels (voltage and current). 

The discrete output of the instrument is an estimate of 
Po and can be expressed by: 

N -  1 

P k  = C a , p ( t k - i )  (5 )  
r=O 

which defines any linear time-invariant finite-impulse re- 
sponse filter (FIR filter); the coefficients a, must be con- 
veniently selected to achieve the prescribed filter charac- 
teristics [7]. The index k is an integer which marks a 
generic output randomly picked up from a sequence of 2h 
+ 1 successive outputs ( -h  I k I +h), each of which 
has an equal chance of being selected [ 2 ] ,  [ 3 ] .  So we can 
introduce k as a discrete random variable uniformly dis- 
tributed in the interval ( -h ,  +h). 

The initial one of the N sampling instants used to gen- 
erate the first value of the output sequence ( k  = -h) is 
given by: 

t - h - N f l  = 7 + Tc(1 + X - h - N + l ) ,  (6)  

where 7 is the unknown shift between the initial sampling 
instant and the time origin of p(t). In the asynchronous 
case any realization of 7 is independent of the instanta- 
neous power p ( t ) ,  and it is strictly related to the turn-on 
instant of the instrument. Therefore, any actual value of 
7 may be assumed as a representation of a continuous ran- 
dom variable uniformly distributed in some generic time 
interval (- T/2, + T/2, T being unknown) [6]. 

Beginning at the first instant (6) and applying ( 3 )  re- 

cursively we obtain: 
r k - i  1 

By substituting (1) and (7) into ( 5 )  we can write: 
N -  1 + W  

q + o  

N -  1 

* exp ( j w ,  [(k + h + N ) T ,  + 21) ai 
i = O  

/ k - i  \ 

r = - h - N + l  

In order to obtain a scale factor equal to one, it is neces- 
sary to impose that: 

N =  1 

C ai = 1. (9) 
i = O  

111. THE PERFORMANCE ANALYSIS 
An appropriate characterization of the output uncer- 

tainty can be obtaiyed by evaluating the statistical param- 
eters of the output Pk, i.e., the mean value E { P k }  and the 
mean-square error E{ ( p k  - p0) } . In order to incorporate 
all the a priori chances and also to avoid the influence of 
the conventional time origin on the instrument perfor- 
mance, the number (2h + 1) of the output states and the 
excursion T of the initial shift 7 must be sufficiently large 
and theoretically must tend to infinite. Therefore, we con- 
sider the asymptotic statistical parameters, i.e., the 
asymptotic mean: 

F = lim E{Pk} (10) 
h + w  
T-+ 03 

and the asymptotic mean-square error: 

e* = lim - P ~ ) ~ } .  (1 1) 
h - + m  
T +  m 

In the following only the errors arising from the sam- 
pling strategy and the filtering procedure are considered 
[SI, because this paper aims to deduce the specific prop- 
erties of the proposed sampling strategy and to compare 
the strategy with the other ones. It can be shown (see Ap- 
pendix) that the output of the instrument is asymptotically 
unbiased (F = Po) and, consequently, the asymptotic 
mean-s uare error coincides with the asymptotic variance 
(e2 = U ) whose final expression is: 9 

m 

u2 = 2 q =  1 IpqI2 W2(fqT,). 

This equation shows, according to the superposition prin- 
ciple, that the contribution of the squared rms value of 
each harmonic component fq is weighted by the nonneg- 
ative coefficient W2( fqT,). The sequence of the weighting 
coefficients W2( fi T,), W2( AT,), - can be derived from 
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a continuous weighting function W2( f T,) by determining 
its values at the successive normalized frequencies f,T,, 
f2Tc, - The lag T, being a constant not correlated with 
any spectral component of the instantaneous power, the 
products AT,, f2Tc, * - can assume every positive real 
value. 

Previously it was found that (12) is valid for other non- 
recursive sampling strategies [3], [4]; we can now hy- 
pothesize that a corresponding weighting function can be 
deduced for each sampling strategy, recursive or not, ran- 
dom or equally spaced. Thus the behavior of the weight- 
ing function W2( f T c )  as a function offT, and the possible 
points at which the weighting coefficients are evaluated 
completely describe the performance of each sampling 
strategy with the associated filtering algorithm. 

IV. THE WEIGHTING FUNCTION 
The final expression of the weighting function for the 

recursive sampling strategy defined by (3) can be deduced 
from (A26) (see Appendix) by replacing the discrete vari- 

For f = 0 and f + m  we obtain W2(0) = 1 and 
W2( fT,) + 1 /N, respectively; further, for bf T, = p, with 
p a positive integer, we get W 2 ( p / b )  = 1 /N. The plot of 
the weighting function for N = 10 and for different values 
of b (b = 0.5, 1, 2) is,shown in Fig. 1 .  This very low 
value of N has been chosen only to show the shape of the 
weighting function more clearly. We note that the func- 
tion oscillates around the value 1 /N. For increasing val- 
ues of b, i.e., the range of the random increments Xi in 
(3), the maximum of the weighting function, excluding 
the value at the null frequency, reduces in magnitude and 
shifts towards the origin. Obviously, the overshoot above 
1 / N  must not exceed an acceptable threshold in order to 
contain the contribution of each spectral component to the 
asymptotic variance through the corresponding weighting 
coefficients. On the other hand, higher values of b in- 
crease the mean response time of the wattmeter, and con- 
sequently b must be selected as small as possible. 

By excluding the values near the origin, (15) can be 
approximated for N sufficiently large by the following re- 
lation (see in Appendix (A28)): 

1 1 - sinc2(bfT,) 

1 + sinc2(bfTc) - 2 sinc:(bfT,) cos 
W2(fT,) = - 

N 

able fq by a continuous one f :  

N- I N-1 N-1 

W2(fTc) = c a: + 2 c c aiai-, 
i = O  r = l  i = r  

Re [exp (j2arfTC) W(2afTc)]. (13) 

The weighting function depends on the coefficients ai of 
the FIR filter and on the time-shifted characteristic func- 
tion of the random increments. Assuming that the random 
increments are uniform between 0 and b, the character- 
istic function becomes: - ~~~ 

+(2afT,) = E{exp (j2afT,Xi)} 

= exp (jafbT,) sinc (bfT,). (14) 

In this hypothesis the mean sampling interval is (1 + 
b/2)TC, and the mean response time of the wattmeter, in 
which the N samples of the input signals are taken in order 
to estimate the mean power, results in T,,, = (N - 1)(1 
+ b / 2 ) T C .  By using an N-point rectangular window to 
realize the FIR filter (ai = 1 /N),  (13) after some manip- 
ulations can be rewritten as follows (see in Appendix 
(A27)): 

4 F+ N-1 1 L  
W2(fTc)  = - + 2 C (N - r) 

N N r = l  

The frequency corresponding to the maximum Wf,, of 
the weighting function given by (16) does not depend on 
the number N, but is influenced only by the selected range 
b. The amplitude of this maximum is inversely propor- 
tional to N; thus the product of Wf,, and the mean re- 
sponse time of the wattmeter normalized to T, (T, / T, = 
N[l + b/2]) is independent of N and can be plotted as a 
function of b (Fig. 2). This product attains a minimum for 
b = 1.5, where Wf,, = 1.5/N; therefore, this value of 
the range b allows us optimal control of both the asymp- 
totic variance and the mean response time of the watt- 
meter. However, the choice of b is not critical, as it can 
be confirmed by the flatness of the minimum in Fig. 2. 
Finally, we have simulated the measurement process in 
order to estimate the weighting coefficients at different 
frequencies of sinusoidal inputs. Fig. 3 plots, fo rb  = 1.5 
and N = 10, the weighting function (solid line) corre- 
sponding to (15), the approximated one (dashed line) from 
(16) and the weighting coefficients (solid dots) estimated 
by simulation considering 4*103 successive outputs of the 
wattmeter. This figure emphasizes both the optimal ap- 
proximation gained by using (16) and the goodness of the 
comparison between the estimated weighting coefficients 
and the corresponding points of the theoretical weighting 
function. 

By referring to our previous papers which describe a 
nonrecursive random-sampling strategy with a uniform 
distribution of the sampling instants within each interval 
T, [3], 151, 161, we can observe that the shape of the 
weighting function given by (15) is different from that of 
the nonrecursive one only for the presence of a small rip- 
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N = 10 

b = 0.5 ~ II 

Fig. 1. Plot of the weighting function (15) for N = 10 and three different 
values of b. 

b 

Fig. 2. Product between the absolute maximum (WL,,) of the weighting 
function approximated by the (16) and the mean response time T,,, of the 
wattmeter. normalized to T<,  versus the range b. 

w2 
.15 

1 
N 
- 

.05 

0 

N = 10 

i fT, 

Fig. 3 .  Comparison between the theoretical weighting function (solid line), 
the approximated one (dashed line) and the weighting coefficients (black 
dots) estimated by simulation considering 4 . 10’ successive outputs of the 
wattmeter. 

ple around the value 1/N (Fig. 3). Therefore, both these 
sampling strategies do not introduce any limitation in fre- 
quency. The recursive, random-sampling strategy has 
however two advantages over the nonrecursive one: the 
value of the range b is not critical, and only one S/H and 
one ADC are required for each channel. 

V. CONCLUSIONS 
The digital wattmeter described here is based on a re- 

cursive, random-sampling strategy in which two succes- 
sive sampling instants cannot differ by an interval smaller 
than a predetermined value T,; this interval makes possi- 
ble an instrument which can operate in real time with only 
one S/H and one ADC for each of the two channels. To 
evaluate the performance of the instrument, the asymp- 
totic variance of the output was computed, and it was 
shown that it can be deduced with the same simple for- 
mula previously obtained for other sampling strategies and 
filtering algorithms. In fact, the asymptotic variance can 

be expressed as the sum of the contributions of each spec- 
tral component of the instantaneous power, weighted by 
coefficients which can easily be deduced from a continu- 
ous function which we call the weighting function. There- 
fore, the comparison between the different sampling strat- 
egies and filtering algorithms can be made by comparing 
the weighting functions. The recursive random strategy 
has been implemented by supposing the random-sampling 
increments uniformly distributed within a finite time in- 
terval correlated with a predetermined lag time T,. It was 
also shown that the optimum value of this time interval, 
for an excellent compromise between the measurement 
uncertainty, quantified through the asymptotic variance, 
and the measurement time, is not critical. From the shape 
of the weighting function corresponding to this optimum 
time interval it can be deduced that the bandwidth of the 
instrument is not limited by the sampling strategy itself, 
i.e., by the conversion time of the ADC devices, but only 
by the bandwidth of the S/H devices and of the input con- 
ditioning circuits. The contribution to the uncertainty of 
the spectral components of the converted signal depends 
only on the size N of the window used to design the FIR 
filters, i.e., on the time available for each measurement. 

APPENDIX 
By assuming: 

Y r  = (1  + Xr)Tc, (All  

(8) with the condition expressed by (9) can be written in 
the following simple manner: 

N - 1  +m N -  1 

where 
I k - i  

Let us introduce the characteristic function of Y,: 

where E{ e }  is the expected value, and @(uqTc) is defined 
by (4). The expected value of Ykj (A3), talung into ac- 
count that random sums of random variables [9] are in- 
volved, can be derived by using the identity: 

(A51 
where E{ - I ( .  } is the conditional expected value; conse- 
quently, for (A4) and recalling that the sequence of iden- 
tical distributed random variables Yr is independent of k,  
we have: 

E{Yki<uq>} = E{E{Yki(uq) Ilk} } 

due to the properties of the geometric progression. By re- 
calling that I GY(wq) I I 1, the limiting value of (A6) for 
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h tending to infinity is: This last expression is a consequence of the fact that the 
set of random variables Yr which appear in the definition 
of &i’ (A12) is independent of the set of variables Yr 1 when ay(@,) = 1 

lim E{Yki(Wq)} = 0 elsewhere. (A7) which appear in Y k i ( w q  + U,!); besides: 

E { Z k i i r l l k  = k }  = @ Y ( W ~ ) ~ - ~ ‘ .  (A14) 

On the other hand, by remembering (A7), it follows: 

h +  m i 
Now we can deduce the expected value of P k .  From (A2) 
one gets: 

(A81 (A151 

because wq = 27rfq and: 

E{exp ( jwqz ) }  = - 

By recalling (A13) and by applying (A9) with (wq + 
wql)  instead of w,, we can now evaluate the mean-square 
error, i.e., the expected value of (All) :  exp (jwqt) dt = sinc ( f q ~ )  

+m 

(A91 E{(& - p0>’} = 2 pqpqI sinc [(f, + & ’ ) T I  

T r2 - T / 2  

,.,I= - w  

q,q‘ + 0 since z is independe? of Yki(Wq). By recalling (A7), the 
limiting value of E { P k }  for h and T tending to infinite, 
i.e., the asymptotic mean, is * a?E{Yki(Wq + wq’)} 

N- I 

due to the fact that limT, sinc ( f q T )  = 0, since f q  is i >  i’  

always different from zero. 
.- 

Now we can deduce the square error ( b k  - PO)~: 
+m 

Taking into account (A14) and that 
( P k  - pol2 = C PqPqr, exp [ j ( w q  + w q , ) ~ l  

0 forfq # -fqf 

N -  1 T +  m i 1 forf, = -fqf 

i , i ’ = O  

(A171 

q , q t =  - m  

lim sinc [(f, + fqt) TI = q , q ’ + O  

’ C a i a i ,  Y k i  (wq) Y k i ’  (wq’) 
and consequently the contribution to the asymptotic, 

+m mean-square error is non-null only forf, = -fqt (and so 
q’ = -q beingf-, = -f,), we conclude from (A16) that: 

lim E{(& - p0>’} = 2 I P , ~ ~ W ’ ( ~ , T , > .  (A18) 

= C pqpq,  exp [ j ( w q  + wqI)z] 
m 

q , q ‘ = - m  
q , q ’ + O  

h +  m q =  1 N -  1 

* [ i?o a? y k i  ( u p  + wq’) T-* m 

We have considered that aY(O) = 1, P - ,  = P:  and: 
N-  1 N -  1 

W2(fqT,) = .C a: + 2 c a i a i t R e [ a y ( w q ) i - i ‘ ]  
1=0  i ,  i‘ = 0 

i >  i ’  

(A191 
(A1 1) 

where we have distinguished the contributions to the sums 
for i = i’ and i # i’. Besides we have set: represents a generic weighting coefficient. By noting that: 

N - 1  N - l  1 - 1  N - 1  N - l  k - r ’  c = c c = c  c 6420) 
Z k I i ’  = eXp jCdq, C Yr] (A12) r , i ‘ = O  I = I  r ’ = O  r = l  z = r  

I > I ’  r = ~ - z ‘  
[ r = k - r + l  

and we have taken into account that changing the indexes 
a with a’ and/or i with i’ does not alter the expressions. 

and by recalling (A4), (A19) becomes: 

Now -let us consider the following expected-value: N -  1 N - l  N - l  

W2(fqT,) = c a: + 2 c c aiai-, 
r = l  i = r  E { Y k i ( W q  + 0 4 ‘ )  Zki i ‘}  = E { E { Y k i ( u q  + wq’) z k i i ’ l l k } }  i = O  
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(ai = l / N ) ,  the weighting coefficients can be written in 
the form: 

- Re [exp (j27rgq T,) +r(2.rrf, Tc)l 

- _  - + + R e [ r i : ( N -  r) 
N N  

exp (j2vXqT,)+‘(2.rrf,TC) 1 (A221 

where we have taken into account a simple property of 
the complex numbers. From this equation it can be de- 
duced that W 2 ( 0 )  = l .  To derive a simpler expression of 
the weighting coefficients we can proceed as follows. By 

that the weighting coefficients can be written in the form: 
n N - 1  1 L  

W2(fqT,) = - + 3 C ( N  - r) N N r = l  

* Re [exp [j27rr (1 + :) fqT,] 

- sincr (b& Tc)) 
I 

1 2 N - l  
=-+-- j  C ( N - r )  

N N r = l  

cos 27rr 1 + - & T, sincr (b& T,). [ ( : ) I  
(A271 

From (A26) it follows that this equation can be optimally 
approximated, for& > 0 and N sufficiently large, by the 
relation : 

1 1 - sinc2 (b&T,) 
W2(fqTc)  = 

1 + sinc2 (bf,T,) - 2sinc2 (bfqT,) cos 
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(A23) 

and by recalling the expression of the arithmetic-geomet- 

g = exp ( j 2 a g q  T,) +‘(2afq T,) 

ric progression-[ lo], (A22) becomes REFERENCES , 

1 2  - N g 2  + (N - l )g  [I1 [ g N + l  ( g  - 1)2 
W 2 ( f q T c )  = - + T R e  

N N  
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