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1. Introduction

As part of a more general revision of the quarterly national accounts, new
estimates of consumer’s expenditures have recently been made available by
ISTAT, the italian National Statistical Office, covering the period 1970:1-
1990:4. The main feature displayed by the data is the presence of substantial
cyclical growth, particularly accentuated during the the first decade.

In this paper we focus attention on the series at constant prices relative to
eight expenditure classes, with the fundamental scope of characterising them
from a structural standpoint; in other words, we will attemp to summarise
the stylised facts concerning these series in terms of stochastic components
which bear direct interpretation, such as trend, seasonals, cycle and irregular.

For this purpose we compare three classes of structural models which are
based on a particular set of assumptions about the way those components
interact. Thus the emphasis of the analysis is shifted to the representation
which better interprets the data. The main finding is that the series in
question do not admit the orthogonal decomposition trend-+cycle+seasonals;
rather a representation in which trend and cycle are related is preferred.

The plan of the paper is the following: the series are described in the next
section; in section 3 we discuss three different classes of structural models
that may account for the kind of behaviour displayed by the data, whereas
section 4 is devoted to a brief review of estimation and model comparison
and selection. The estimation results are presented and discussed in section
5 and a tentative explanation of the reason why one class of models proves to
be almost systematically inferior with respect to its competitors is proposed.
We then draw some conclusions.

2. Description of the data

Estimates of consumption making up the System of National Accounts
are available on a yeatly basis for 50 expenditure items at both current and
constant (1985) prices. Several data sources are employed in this estima-
lion process; among these, the Household Expenditure Jurvey carried out
quartterly by ISTAT plays a major role.

The yearly estimates have been distributed across the quarters according
to a variant of the Chow and Lin (1973) procedure described in Barbone et

al. {1981); most indicator series employed are desumed from the Household
Expenditure Survey.

The series considered in this paper are at constant prices. It it has been
deemed adequate for a preliminary and exploratory analysis such as the
present one to restrict the analysis to the data aggregated into the following
expenditure categories:

1. Food, Beverages and Tobacce

2. Clothing and Foeotwear

3. Rent, Furl, Power

4. Furniture, Houschold Equipment and Servi’ces
5. Health

6. Transport and Communications

7. Recreation, Educalion, cic.

8. Other Goods and Services

As can be seen from figure 1 the individual series trend upwards and are
characterised by a regular seasonal behaviour; most of them show a break
in regime occurring at the beginning of 1981. Figure 2 displays the seasonal
differences of the logarithms of the series, which approximate the yearly
growth rates; these have a very smooth appearance and their movements have
2 periodic nature and are strongly coherent with the Italian business cycle.
For most consumption classes' growth rates underwent a marked reduction
during the 1974-75 and 1981-82 depressions; two minor contractions followed
the small crises in 1978 and 1985.

Another feature shared by all plots is the change in regime in 1981, when
growth started to be less volatile; for series 2-5 the tendency to reduction in
the growth rates which characterises the 70’s was reverted.

Figure 3 shows the power spectrum of the series filtered by the operator
Ay, estimated by adopting 2 Parzen window with truncation point at 15; the
presence of a cyclical component whose period oscillates between 10 and 15

!Series (1) is somewhat of an anomaly since it lags the cycle.



quarters turns up rather clearly. In some cases the spectrum suggests that
the cycle is the resultant of the overlapping of a fundemental and harmonic
component,

3. A Model for the Data

The basic ingredients of a structural model are components which bear
straightforward interpretation, such as trend, ¢ycle, seasonals and irregular;
there is also a variety of ways in which autoregressive effects can be brought
into the model. By appropriately combining these building blocks we can
envisage competing ways of interpreting the data previously described.

A trend component, denoted by p,, can be modelled according to the
following local linear process:

= peat P+ (n
By = Bi1 + 6 (2)

where 1, and (; are mutually uncorrelated white noise disturbances with
mean zero and variances af' and cr? respectively; the underlying level is thus
conceived as evolving over time according to a random walk with drift §,
which in turn evolves as a pure random walk.

The trend has an /M A(2, 1) reduced form, as can be seen by solving (1)
and (2) with respect to pe: g = G-y /{1 — L)? + /{1 = L); furthermore, its
specification allows a fair degree of generality:

e if 0"(2 = 0 the trend is reduced to a random walk with constant drift
(Apy = F+m);

o if also ¢} = 0 then it is deterministic linear (e = po + Bt);

¢ if o7 =0, but 67 > 0, it becomes A%u; = (;_q, resulting in a relatively
smooth trend (Harvey and Jaeger, 1991).

As a process capable of generating a stochastic cycle, ;, we consider:

v | cos A, sln . () Ky
[y’);‘]_p[—siulc COSAC][VI’:A]_'—[R:]’ (3)
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where p is a dumping factor, 0 < p < 1, ¥ appears by construction in order
to form v, A, is the frequency in radians and &; and k; are two mutually
uncorrelated white-noise disturbances with mean zero and variances o2 and
ol The single equation expression for 1, deduced from (3) is:

_ (L —pcos A L)k, + psin A Lk}

b 1 —2pcos A L + p?l2 ’ (4)

Rence ¢y ~ ARM A(2,1) with the AR. parameters constrained to lie within
the region corresponding to complex roots, The spectral generating function
can be shown to be maximum at A_.

The cycle ean otherwise be incorporated within the trend by defining a
cyclical trend: ; '

He = ,u:r_] + Be1 + Pior + e (5)

where §; and i, follow (2) and {3) respectively.

The seagonal pattern is denoted by 7, and is modelled by a set of nonsta-
tionary stochastic cycles defined at the seasonal frequencies A; = 2mi/s, i =
1,...,[5/2], s being the number of seasons in the data and [s/2] = s/2 for s

even and [s/2] = (s — 1)/2 for s odd; thus:

12/2)
S E it

i=1

{ Vit ] B [ cos ki sin X ] Yit ] N [ Wit ]

Yo | | —sinA; cosA; Vi wh

with w;; and w}, being two uncorrelated zero mean white-noises with variance
ol and o’ . respectively.

When s = 4 (quarterly data), as in our case study, the seasonal com-
ponent is the result of two cycles: the first is defined at the fundamental
frequency 7 /2, corresponding to a period of 4 quarters, and has the single
equation representation:

where:

_ Wi + wl‘,f—l
e = 1+ 12 1
which is a nonstationary ARM A(2,1) process with two complex conjugate
roots ¢ and —1, with ¢ denoting the imaginary unit (4> = —1}, of modulus
9



one. The second is defined at the harmonic 7 (two cycles per year) and, as
for i =2, cos A; = —1 and sin A; = 0, 1t collapses to:

Wy

Yo = 1+—L’

and therefore v, ~ AR(1) process integrated at frequency =,

Finally, we can think of modelling the irregular component £, as a white
noise variable with zero mean and variance o,; to compiete the specification
it is assumed that the disturbances in all four components are mutually
uncorrelated.?

A first way of putting the pieces together is to assume that the compo-
nents combine orthogonally to yield the model:

Ye=pte +¥e + 1+ e (6)

which wili be labelled as BSCM, since it is an extension of the Basic Struc-

tural Model (BSM) allowing for the presence of a cyclical component,
The second is the Cyclical Trend plus Seasonal Model (CTSM):

= !1:1 + 7+ ey, (7)

The conditions 0 < p < | and 0 < A, < 7 are sufficient to achieve the
identifiability of both medels: in fact, if p = 0 then ), = &, ~ WN and 1t
cahnot be distinguished from the irregular term; on the other hand, when
p=1and A, = 2mifs, i = 1,...,[s/2] the cycle cannot be separated from
the seasonal component at frequency ;.

Since all starred quantities appear by construction and are devoid of
meaningful interpretation, it is customary, for the sake of parsimony, to

impose the overidentifying restrictions o2, = 02 and o}, = 02, = o]

. Ly w?
t=1,...,[s/2].

An alternative way of modelling the short run dynamics consists in al-
lowing y, to follow a finite order autoregression: )

e(L)ye = e+ 7 + e, (8)

2We may otherwise assume that they are perfectly correlated, i.e. that there is a single
disturbance driving all components. The basic restriction posed by identifiability is that
we cannrot, estimate the degree of correlation among these disturbances.
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where {L) is a p-th order polynomial in the lag operator whose roots lie
outside the unit circle. Mode! (8), which will be referred to as the Autore-
gressive Basic Structural Model (ABSM), may account for pseudo-cyclical
behaviour providing the roots of the autoregressive polynomial are complex.

Both the trend and the seasonal are subject to the same autoregressive
effects and there is no way of recovering the orthogonal decomposition into
trend, cycle, seasonal and irregular.

4, Maximum Likelihood Estimation and Model Selec-
tion

Estimation of the structural parameters can be performed by casting
the above models in the state space form which consists of a measurement
equation for the “residual” § = y, — z}:

{,=z:a,+£,, t=1,.;-,T, (9)
and a transition equation:
oy = Ty + 1, t=1,...,T, (10)

where z, is an m X 1 vector, «; is an m X 1 state vector, ®; is a k x I
vector of explanatory variables, § is a k x 1 vector of unknown parameters,
T is an m X m transition matrix and e, 7, are independent N{D(0,¢2) and

NID(0, Q).
Define:
i1
n=[y1]:
T — pcosA. psin .
Y74 —psinA. poosA |’
01 0
T,=|-10 0],
0 01
1 1 1
T”f:[o I 0}'
Then:

11



o for the BSOM: o = [it, B e b mu i s 2, =[1 010610 1],
6 = 0 and T = diﬂg{T‘”T,ﬂ,TT} ™= [Th G K PC: [T w{t WQQY,

_ 2 2 2 2 2 2 2
Q, = dmg{am Uc,omaﬁ,arw,awcrw}.

o for the CTSM: 2z, =[1000101], T = diag{T 4Ty, T}, with the
"

remaining quantities defined as before;

¢ for the ABSM o, = [ 8 v 95 72l Z; =[10101], 2 =
[yt—l yt—z]'-, § = [ %02]', T = diﬂg{Tu,Tw} = [Wt Gt wi Wiy wzc]’,
Q, = diaglo?, a2, o, 52, 52).

Under the further assumptions that ag ~ N{ao, Po) independentiy of
g, and n,, the likelihood function s obtained from the Kalman filter via
the prediction error decomposition and can be maximised numerically with
respect to the structural parameters. In the autoregressive model the lagged
values of the dependent variable are treated as exogenous and the Generalised
Least Square transformation method described in Harvey {1989), section
3.4.2, is used.

Let @), denote the estimate of a; based on the information available up
to time s and also let its covariance matrix be Py, = E[(o—ay,)(a—ay,)];
then the Kalman filter consists of the two well know sets of equations, the
prediclion equations,

&y = Tia't—]|f.—ls
Pm_l = TiPt—llt—lT:+Qt1

aitd the updating equations,

gy = atlt—1+Pt|f—1ztf¢_]Vh
Py 12,2 Py,
Py = Py, - fhel }’ fi=t
1

where v, = £ — zjay,_; is the one-step-ahead prediction error (innovation)
with fy = E(v}) = 2P y_12: + o2

The Kalman filter thus recursively computes the optimal (in the mean
square error sense) estimator of the unobserved state vector @y_1 based on
the information at time ¢ — 1, together with its covariance matrix Py, and
updates it on the basis of the information available at time ¢.
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The Gaussian log likelihood is then (apart from a constant):

o] ZT: o1 i o/
=5 T 3 0 je.
2 t=d41 fi 2 t=d41

The summation runs from d + 1, d denoting the number of nonstationary
elements in the state vector (which corresponds to the degree of the differ-
ence operator needed to achieve a stationary and invertible form), when the
algorithm is initialised with a diffuse prior for the nonstationary elements in
@y; see also Harvey and Shephard (1991).

Once the model has been fitted, the main diagnostics are based on the
one step ahead innovations 1, = y, — 225 ~— zy@y;_q, which are standardised

1
by division by the standars deviations, {7, so as to yield the standardised
tmnovations: v
¢

l}t':——l,. t2d~|—l,,T.

fe
The time-domain diagnostic quantities that we use in the discussion below
are:

¢ the Ljung-Box @ statistic based on the first P autocorrelations of the
standardised innovations:

P
QP)=T"(T"+2) Z_:I(T' — 7)),

where T* = T'— d and #(7) is the residual autocorrelation at lag ; Q is
asymptotically x* with P — n degrees of freedom, n being the numnber
of estimated hryperparameters.

e A test for heteroskedasticity constructed from the residuals:
T N EEEY -
nw=| v 7S]
t=T—h+1 t=d+1

where h is the nearest integer to T*/3; this statistic can be tested
against an F'(h, k) distribution.

13



s A test for normality is based on the Bowman and Shenton statistic:

T T .
N=— (b, —3)P =N
5 51+24(b.>. 3) 1+ N,

where +/b; is the third moment of the standardised innovations about
the mean and by is the fourth moment; its null distribution is x2. N,
and N, thus provide separate tests of skewness and kurlosis.

The one-step-ahead prediction error variance (p.e.v. = &%), estimated by
fr, is an unportant measure of goodness of fit that can be used for model
comparison aud selection; for instance, the likelihood ratio test of g restric-
tions o the n X 1 parameter vector & can be based on the statistic:

LR ~T"n(53/6")

where the subscript “0” denotes the value of the p.e.v. in the restricted model,
which is asymptotically distributed as a x2. Non-nested models can be com-
pared on the basis of the Akaike information criterion:

AIC = &%ezpl2(n + d)/T).

For seasonal data a relative measure of goodness of fit is provided by the
coefficient of determination:

R =1-T"3/SSDSM

where S5DS5M is the sum of squares of first differences around the seasonal
means, i.e,

T a
O e 4,2
bb‘DbM = Z(Ay! = Z'HJZ-”‘)
t=2 =1
z;'s are seasonal dummies taking value one in season j and zero otherwise
and the ;s are least squares estimates.

5. Estimation Results

The estimation results for the three classes of models, along with diag-
nostics and goodness of fit, are reported in tables 1-6 (appendix).
The main findings are summarised below:

14

The irregular term is not needed in any model (the estimated vari-
ance of €, is zero); this is the result of the excess smoothness which
characterises the data.

Normality is sometimes violated due to the presence of structural breaks
and outlying observations.

The seasonal component shows little variation {relative to the other
components) for series (1) to (5), whereas for series (8) il stands for

the most relevant source of variation in the data.

The values of the ¢ statistic underline the fact that significant aute-
correlation is still left, in the data. This is attributable to the nature
of the periodic component which results from the overlapping of two
cycles, one defined at the fundamental frequency and the other at the
harmonic.

The estiimated BSCM fall within twe broad classes: models which have
ol = 0 (series (1), {2), (5), (6)} and models for which the variance of
the slope ¢/ is either zero or close to zero. The frequency at which
the cycle is estimated is in bune with what we expected from speciral
analysis; however, the estimated dumping factors are fairly close to cne
implying a high concentration of power about this frequency.

In the CTSM the ML estimates of O'f: and of 03 are either zero or very

close to zero. Note that the power spectrum i1s ne longer maximum at
Ae but to the left of it.

The estimated ABSM are capable of originating the kind of pseudo-
cyclical behaviour displayed by the data, since the roots of the au-
toregressive polinomial are complex and less than unity in modulus;
moreover, all models have og' =0.

Coming to medel selection, it is apparent fromn the diagnostic tables
that the BSCM doesn't provide the best explanation of the data. The
perforinance of the CTSM and the ABSM is fairly similar though some-
times the former is less satisfactory in interpreting the antocorrelation
structure of the data; selection according to the AIC would tend to
favour the CTSM in the case of series (4) (6) and (7), whereas the

15



latter is preferred in the remaining cases. In the case of series (8) l;h.e
BSCM model does not perform too badly with respect to its competi-
tors, the main reason being that the seasonal variations capture m.ost
of the dynamic of the data, so as to blur any discrimination according
to the nature of the remaining component. Moreover, the CTSM and
the ABSM are to be preferred on the grounds of parsimony.

The possible reason why the CTSM and the ABSM gave a similar fit ii
better understood by comparing their stationary form. When o2, 02 and o?
are zere the stationary form of model (7} is

Agye = 48+ S(L)Prr + A[(1 + L){wre + o] )+ (1+ EPwn,  (11)
where S(L) = 1+ L+ L* + L3. For the ABSM (8) with o, = o, = 0 we have:
PlL) Ay = 48+ S(Lmeq + A1+ LY {wi + wiy ) + (14 L), (12)

Then, replacing 4_y in (11) by expression (4) lagged one period iimd dividing
both sides of (12) by »{L}, the link between the two models is a,pparen.t,
provided (L) is capable of generating pseudo-cyclical behaviour. The main
difference is that in the ABSM the cycle does not affect the trend alone, but

it 1s embedded in the seasonal movements too. )
If we now consider the stationary form of the BSCM with ¢2 = 0 we may

give a tentative explanation of its poor performance:
Al = Aame + S(L) + AA gD + A*[(1 + L) (wy, +wi ) (2 Lwa,

with the first term on the right hand side vanishing when ¢2 = 0; when

crg = (0 1t becomes:
Aqye =473 + S(L)ne+ Agpr + A1+ L){wie +wf ) + (1 4 L¥)wyl.

In all cases for which of # 0, then y, is rende.red stationary by AA,
and its time series properties differ from those implied by (11} and (12)..“,
might be the case that overdilferencing has taken place, which would raise
identifiability problems.
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6. Conclusions

In this paper we have attempted to describe the quarterly series on cop-
sumer’s expenditures recurring to three classes of structural models; the
BSCM, implying an orthogonal decomposition trend+-cycle+seasonals; the
(“TSM, which interprets the series as a sum of a cyclical trend and a sea-
sonal component; the ABSM, for which both the trend and the seasonal
component are subject to the same autoregressive effects.

Model selection favours the last two classes of models which are shown to
give similar responses. This is supposedly due to the fact that they are more
apt to interpret plenomena whose growth is cyclical, whereas the BSUM
postilates the presence of a cycle in the level.

The fundamental implication of this finding is that the traditional distine-
tion between Lwo independent forces driving the short and long run move-
ments is not warranted by these data; trend variations and business cycle
movements appear to be substantially related instead, We also note i pass-
ing that one can view the BSCM as Lhe stochastic counterpart of the trend
stationary process dealt with by Nelson and Plosser (1982) in a different
setup. In fact, in their paper two conflicting representations were contrasted,
the deterministic trend plus stationary cycle representation and one in which
there is only one source of shocks driving both the trend and the cycheal
compenent and for which the Beveridge- Nelson decomposition is appropriate
[see Beveridge and Nelson (1981}]. These processes could be diseriminated
by performing unit roots tests. The analogy with their results lies in the
finding that even though we allow the trend to be stochastic the data do not
support the idea that trend and cycle are the expression of separate forces.
Olbvoiusly nothing prevents us from carrying ont some kind of Beveridge-
Nelson decomposition on the CTSM and the ABSM in order to extract the
transitory component.

Finally, if we were to accept the representation furnished by the CTSM
then there would be only one souree of disturbances driving the eyclical trend,
and the interpretation arising would be that cyclical fluctuations produce
changes in long run growth. We may, however, interpret the trend-cycle
{and seasonals-cycle) interactions by reverting the causal chain: innevations
in growth are the source of the business cycle fluctuations. Unfortunately,
the above univariate analysis cannot provide a solution to this dilemma and
i order to gain more insight on the interactions among trend, cycle and

i7



seasonals we would have to bring in additional information on the sources of .
their variations. Appendix

Table 1: Estimates of BSCM

. | Series I al I ag ] al ] P I Ae [ 2n [ A, [ al i Uz—l
) 0| 30| 43]093[058] 1081] 1] 0
(2) 0235 826 092|055 11.35] o 0

. (3) |124] 5 o] -| - | 84 o
(4) 8811 23 | 2370 0.83 (055 | 1146 { 51| O
(5) 0| 23| 679|094 [043] 1460 5| 0
(6) 0f243| 707 | 092|044 | 1430 | 89| 0
(7) |2360| o 179|095 |0.41| 1524 | 102| 0
{8) B 28 53 1095|060 1042 {234 | O

Noles: estimation was carried out using the package STAMP. All
variance estimates have been multiplied by 107; 27/, is the pe-
riod (in quarters}.

Table 2: BSCM - Diagnostics and goodness of fit

[Series | M| N[ N]H()]Q(O2) ] pev.| RE|] AIC

(1) 0.03] 0.02] 005] 0.37] 31.04 | 212x 1077 [0.26 ] 282
(2) 234 | 9521 11.86 | 0.20 | 16.15 [ 3786 x 107 | 0.33 | 5038
(1) 0.32 | 75.15 | 75.47 | 0.05 | 62.99 [ 3165 x 1077 | 0.39 | 3921
(4) 185 | 9.06 | 10.91 § 0.25 | 22.42 | 7908 x 10”7 | 0.04 | 10523
(5) 0.04 | 029 | 033 0.66| 46.22 [ 1773 x 1077 | 0.25 | 2359
(6) 248 [ 2271 | 25.19 | 0.78 | 49.12 | 5206 x 10~7 | 0.68 | 6928
, (7) 1.02 | 32,79 | 33.81 | 005 | 33.64 | AT6R x 1077 | 0.44 | 7676
(%) 144 | 017 | 1.61 ] 201 | 22.22 | 39408 x 1077 | 0.90 | 5243
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Table 5: Estimates of ABSM

Table 3. Estimates of CTSM

[Series [o2 [oZ | o2 p| M| o207 ] [Seties]| w1 @] of]of] o2]ai]
D) 0] 1| 69]082[061] 1] 0 (1) P L12-0.56 1 951 0] 2} 0
(2) 0|10] 1308|074 063| 20 o0 ' (2) 1 1031-045)1i68} 0} 89 0
(3) ol 8| 410f078l105] 51| 0 (3) | 0.771-0.647 578} 0} 62 O
4 | o ol3111]oes|111]| 35| 0 (4) ] 0.53-0.40 137511 0 86| 0
5) | o| of 703|078 056 5| 0 : (5) | 1.09}-053) 636 0 13} 0
6 ol ol 8321077 04s| 84l o (6) [1.27|-057] 432| 0230 0
(1) 0| 01420 | 064a|081| 84, 0 (1) [ LOL|-0.511 7251 01203 0
() o| 2| 118|080 |057]236| 0 (8) ]OB4|-0IT| 76] 0]464) O
Notes: all variance estimates have Dbeen multiplied by otes: a var-iance estimates have been multiphe
107, by 107; all estimates are significant at the 1% level.
Table 4: CTSM - Diagnostics and goodness of fit Table 6: ABSM - Diagnostics and goodness of fit
[Beties | M| Na] N HR]QE)] pev. | R AIC] (Series | M| M| N[H(M)]QU2)] pev | Rj | AIC
() 1059 | 63| 08z] 038 2707 | 156107 |06 198 (1) 121 040 1.61| 0.40] 1658 | 160x 107 | 0.55] 194
(2) 210 6381 8571 0.18] 8.84|3202% 10-7 | 0.44 | 4062 (2) 119 | 6.34| 753 | 0.14| 538 |3114x 1077 | 0.48 | 3767
(3) |24 3553|3837 | 0.04|87.62 | 2414 x 1077 | 0.53 | 2991 (3) | 0.74] 1.19| 193 0.08 | 41.49 | 1794 x 1077 | 0.68 | 2170
(4) |0.04| 050| 054 | 0.26 16.74 | 6556 x 10-7 | 0.21 | 7932 (4) |056] 0.00] 056 0.29 | 10.81 | 6650 x 1077 | 0.18 | 8045
(5) 0.14 0.11 0.15 0.74 30.48 1329 % 10—7 0.44 1608 (El) 0.14 0.11 0.15 0.59 10.75 | 1106 % 10'_7 0.52 1338
(6) | 3241637 | 19.61] 0.84 | 46.84 | 2533 x 10~7 | 0.85 | 3064 ‘ (6) 3.7 | 2841 601 066 | 2381 13286 x 1077 | 0.81 | 3975
(7 0.01 | 49.45 | 49.4¢ 0.04 | 39.58 1 3303 %« 10~7 | 0.68 | 3996 (7) 3.62 | 45.51 | 49.13 0.05] 15.14 | 3708 x 10~7 | 0.62 | 4486
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