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1. The logistic regression model
1.1 Introduction

The looking for models synthesizing the relationships between a set of
variables has found an answer in the linear model that is a simple and, at the
same time, a powerful tool to describe and interpret these relations. From the
first developments by Gauss and Legendre for the study of continuous variables
(with a clear reference to normal error distribution), the linear model has also
been extended to discrete and qualitative variables. The generalized linear
models include all the models based on a linear combination of explanatory
variables to analyze data in the form of counts and in the form of proportions.

In general. the model is defined by the equation

Y=F@ X)+e (1)

where F', the link function, is a real-valued function which operates in the
index f'X and constitutes the systematic part of the model; E is an error

term. Assuming that E(elX =x) = 0, model (1.1) is usually represented as
E¥IX=x)=F(@'X) (1.2)

This model can take several forms allowing to study a variety of situations:
McCullagh and Nelder (1989) give a wide survey on generalized models
showing several applications in biometrics; Amemya (1981) describes these
models from an econometric point of view In the context of binary response
models, if Y is coded as one or zero (success or failure), equation (1.2) can have
the probit formulation E(¥1X =x)=Pr(Y =11X =x) = ®(p' X) or the
logit formulation:

exp(B x) a3

n(x)=Pr(Y =11X=x)= T+ exp(B %)



that determines the logistic regression model, formalized by Cox (1970), but
already used in an intuitive way in some biological researches (Berkson, 1944,
1951; Dyke and Patterson, 1952).

In (1.3) the logarithm of the conditional odds of success to failure is
modeled as a linear function of the K explanatory variables

n(x) (1.4)

logu(x)= ln[‘l—n_(x)]= g{x): B X

The sign of the k -th parameter ¢ determines whether an increase in the

k-th variable X, leads to corresponding decrease in n(x). From this

viewpoint the analogy with the linear regression model is immediate. On the
other hand, however. the binary nature of the dependent variable leads to
fundamentally different assumptions: in fact the conditional distribution of the
outcome variable has a binomial distribution with probability given by the

conditional mean E(YIX=X)=m(Xx),  bounded between zero and one.
hus the error term has a binomial distribution with variance equal to
n(x)(1-n(x)) depending onX .

1.2. The maodel fitting

Let {i.% = Xij....Xig ;i =1....n} be a sample of 1 observations. If some of
the explanatory variables are continuos there may be a specific covariate pattern
(setting) Xy,..., X, for each subject, otherwise, if only categorical variables

are considered, repeated covariate settings may be possible.
An estimate of the unknown parameters can be obtained by applying the
maximum likelihood method'; the log-likelihood is defined as?:

! We don’t deal with the method of least square because in the case of dichtomot
outcome it do not has the usual properties

? For sake of simplicity, TU; stands for T(X;)

n (1.5)
HB:y} = {yilnm; +(1-y; yin(1 -, )}

i=]

= Z{Yiﬁ'xi =in(1+exp(P’x; ))}

i=]

The maximum likelihood estimate [3A maximizes (1.5) and satisfies
condition X'r = O where r=y-n and

T, =exp(B'x; )/ (1+exp( B'x; }), showing the linkage with the least
squares obtained for the linear regression. The first order equations are

however non linear in 3 and therefore iterative methods are required to solve

them; using the Newton-Raphson method BA is expressed at the (¢+1)-th
iteration as

B+)=F ) +X'VEOX)X'r(@), t=12.... (1.6)

where V = diag{ft,-(l—ft,- )}= Cov(y) and the arguments of V and

I refer to the values of these quantities calculated at 8 (7). It often takes only a
few iterations to get satisfactory convergence.

1.3 Adequacy of an estimated model

Once a model has been chosen and fitted to the observed data, it is necessary
to assess how effective the functional expression is in describing the outcome
variable in terms of variability. This is the well-known problem of " goodness of
fit". requiring to check whether the estimated (or predicted) values give an
accurate representation of the observed values, i.e. if the observed differences
can be attributed to sampling error or model misspecifications. The overall
assessment of goodness of fit follows two logical step: the computation of a
measure of fit and the application of an hypothesis testing.



Measures of discrepancy may be evaluated in different ways. One strategy is
based on the comparison of the simplest model (or null model) containing only
the intercept with the saturated model (or full model) containing as many
parameters as the data points. Other solutions are obtained by evaluating the
difference between estimated values and observed values.

In this paper the most popular methods of assessing the fit of an estimated
logistic regression model are discussed with the assumption that the model
contains all the significant variables.

2. Likelihood ratio statistics and R type measures

In the ordinary linear regression model the residuals sum of squares plays a
central role in assessing the goodness of fit. Several attempts have been done to
define similar measures in the case of a qualitative dependent variable but none
of these measures are is widely used.

Let [, be the log-likelihood for the fitted model (current model) containing
the intercept and the the K covariates and let /, denote the (maximized) log-
likelihood for the saturated model. A first measure is given by the likelihood
ratio, called deviance

n 1’6’ (l _ﬁ’) (2.])
D=-2(lg ) =—22,:y,- ln(y—)+ a- yi)ln[—(l_ )

i=1 i

Other quantities have been proposed in analogy with the well known R? for
the linear regression model. Let be [, the (maximized) log-likelihood for the

null model. As the model complexity increases, the parameters space expands,
so the value of the maximized likelihood increases. Thus the enequality

ly <1y <1, holds and the measure (improperly called R %)

R? = ’K _10 2.2)
I.r - 10

that lies in the range from 0 to . can be computed.
From equation (1.5) the null model gives & i = 2 y; /n so that
i/

lp = n[3(0g() + (1 - 3) log(1 - 3)]
The saturated model has a dummy variable for each subject, and so € i=W
forali . Thus, I, =0 and the (2.2) becomes

[ 2.3)

as proposed by McFadden (1974).

In these equations R? is a different expression of the likelihood ratio, as
Hosmer and Lemeshow pointed out (1989), so it is not a measure of goodness of
fit. In fact this ratio compares fitted values under two models rather than
comparing the observed values to those fitted by the current model.

An alternative solution belongs to a family of measures developed by Efron
(1978) using an axiomatic approach. The proposed index

Z( y, -1, 24

21—
ko=l z()’;—f)z

i

measures the associatioii between the observed responses and their fitted values.
It is a natural criterion corresponding to the standard one used for the linear
regressioii’.

According to this R? failures to incorporate the dependence of the variance
of Y, on T in the error structure. Amemya (1981) suggested a related measure -

R . . . 2
*When the probability linear model is fitted by ordinary least squares this particular R
simplifies to the standard R? for regression modelling.



less simple to interpret- that weights square deviations by a weightcoefficient
which is inversely proportional to the predicted variance.

Latila (1993) has recently proposed a modified version of R2 that can be
interpreted in terms of explained and unexplained variation of the underlying
latent model.

Qualitative dependent variable models can be viewed as consisting of two
parts: the first specifies a structural relationship between the regressors and an

underlying variable y,, while the second part specifies how the dependent

variable is observed. In the logistic regression model we have:
¥ =B +u @)

where the cumulative distribution function of u; is the logistic ie.

2
L(OG _]
3

In practice y; is unobservable, what we observe is a dummy variable y
defined hy

yi=1ify >0 2:6)

¥i =0 otherwise

The proposed R 2 p is based on the expression for the standard R? in terms

of estimatcd cocfficicnt and regressors sample covariance matrix:
RZP =BI~B/(62+B'~B) (2.7)

where P is a consistent estimator of B . This index has the same asymptotic

.. . . . 2
limit and the same interp.etation as the conventional R“.

3. Chi-square type measures.
Different solutions have been proposed according to the kind of
observations: if there is a limited number of different covariate patterns and

replicate measurements for each of them, goodness of fit can be examined by
the methods developed for categorical data. otherwise it is necessary to group
sample units in some way.

3.1 Statistics for repeated observations

One of the most popular statistic is the Pearson chi square that can be
directly calculated when repeated observations are avaliable. This statistic is
based on residuals. In general. the raw residual is defined as the observed value
minus the fitted value. In a logistic model the residuals are difficult to interpret,
because they are differences between discrete and continuous quantities for
which a normal distribution is usually not appropriate (Azzalini ef al. 1989).
Furthermore. ench of these residuals has a two-point distribution that depends
on X through Tt(X): that is, each residual has a specific distribuiion. Cox and
Snell (1968) defined modified residuals which reduce the problem of
discreteness but difficulties remain in samples with sparse data where covariate
values are irregularly spread over a large number of points.

Let J be the number of distinct values of observed X (if some units have

the same value of Xthen J<n) and let m, (J=1....,J) denote the

number of subjects wiih X = x ;1 it follows that Z m; = n. Furthermore let
i

Y; be the numher of units with positive response ¥ = 1 then, defined the
estimnted value as

mjf j(x )=mj(exp[2(x)]/ {1+ exp[¢(0) ] G.1)

Pearson's residuals are defined as follows



c—m T 32
- (yj mjnj) (3.2)

r(}’j,ﬂj) = = =

ijnj(l—nj)

The summary statistic based on these residuals is

2 J ) 3.3)
X = zr(yj,nj)
J=1

Another measure of the distance between the observed and the fitted values
is the deviance residual defined as

2 (3.4
L Y; ,((mj—)’,-)
d(yj.n:j)—:t{z{yj l'{mﬂf, ]J+(mj—)’,~)- \m_,-(l—“,-)

where the sign is the same as the sign of (y; ~m j1f ); the summary statistic

based on these residuals is the deviance

J
D=2d(y,x,;)

j=1

(3.5)

that corresponds to the quantity shown in equation (2.1).

The distribution of both statistics, under the null hypothesis that the fitted
model is fully adequate is approximated by a chi-square  with
J — K = 1degrees of freedom. This statement derives from the fact that D is
the likelihood ratio test statistic of a satured model withJ parameters versus the
model fitted with k +1parameters. A similar theory provides the null
distribution of X *but this measure is unstable for fitted values near zero or
one. If however J = n the p-values are incorrect because distributional results
have been obtained under the condition that only n becomes large (the so-
called 1 asymptotics). The problem thus remains of how grouping the subjects

to meet the condition called m-asymptotics according to which, when fixing
J < nand letting n become large, each value of m ;7 tends to become large.

3.2 Pooling observations according to estimated probabiliiies: the Hosmer -
Lemeshow test statistics

Hosmer and Lemeshow (1980. 1982) considered the chi-sqaure statistic
determined in a 2 X J table, where the rows correspond to the two values of the
outcome variable ¥ = 0,1 and the columns correspond to the J' values of the
explanatory variables in the group, showing that the p-values are correct when
the expected values are sufficiently "large” in each cell. This condition holds
under /-asympiotics. In the 2X J table the expected values will always pe
quite small since the number of columns increases as N increases: this gives
rise to the problem of sparse data that must be treated with specific solutions.

Thus, goodness of fit statistics require to group observed and fitted values in
such a way that m1-asymptotics can be used. Hosmer and Lemeshow proposed a
very simple solution: reduce the number of columns, i.e. collapse them on the
basis of the estimated probabilities. The estimated probabilities are set out i
increasing order and grouped in g intervals that identify the columns of a pew
2xg contingency table in which each cell of the first row gives the observed

number of units with ¥ =1 and each cell of the second row contains the units
with ¥ = 0,

The problem is then how to construct the intervals: two alternative solutions
have been proposed. The first is based on percentiles of the estimated
probability. according to which, having fixed a priori the number g of groups
(very often it is assumed g = 10) and set out the probabilities T, in increasing

order, the cutpoints of the intervals are fixed so as to include the same number
of units: in other words this involves asserting  that the marginal row

distribution is uniform. The first group contains then/ ¢ units having the
smallest estimated probnbilities while the last group includes the n / g units
having the largest estiinnted probnbilities. Intuitively. if the model holds, thep
the probabilities 7T ; for those individuals that show ¥ = 1 will be found in the
upper percentiles i.e. in the last columns of the table. With this in mind. for



each interval the observed value is calculated as the sum of units with Y =1
and the expected value is calculated as the sum of estimated probabilities for all
units belonging to the interval. Table 1 shows this solution.

Table 1
Dependent Probability
variable intervals
1 2 g Total
y=1 Oy Oy, Oy, n,
y= Oq, Oy, Oug n,
Total ng ng g n

The statistic comparing the observed values with expected values is defined as

¢, =y 3 e

3.6)

where

- 3.0

10

and T, indicates the set of the n/ g units of { -th percentile (or interval),

Under the null hypothesis, the distribution of é ¢ 18 well approximnted by

the chi-square distribution with £ —2 degrees of freedom (Hosmer and
Lemeshow, 1980%)

This solution ensures a reasonable number of units for each probability
interval. but on the other hand. the true values of the estimated probabilities are
ignored. Furthermore each interval dcpends on the particular sample observed
and therefore makes the compnrison with other samples very difficult, Ag an
alternative solution, Hosmer and Lemeshow suggested to form groups with
preset intervals and then to calculate, as in the previous statistic, the observed
values as the sum of the units of each interval and the expected values as the
sum of the probabilities. Table 2 summarises this solution

Table2
Dependent Probability
variable intervals
[0-0.1) [0.1-0.2) [0.9-1.0]  Total
y=1 On On o, n,
y=0 O,” 0’02 O'Og ”2
Total n, n', n, n

This scheme gives the statistic

* This approximation has heen shown by simulation, starting from the results offered by
Moore and Spruill (1975) who dealt with the problein of how to extend the usual thery
for the goodness of fit chi-sqare test when the paramcters are estimated for ungrouped
data and the frequencies in tlie 2xg table depend on tlie estunated pParameters. i.e, the

cells are variable and not fixed

11



2 (3.8)

which, underthe null hypothesis, also has a distribution approximated by a
x *with g — 2 degrees of freedom.

The validity of these two solutions is essentially proved in an empirical way
by means a set of simulations. Hosmer and Lemeshow have stated that the

statistic H is more powerful than C even if the latter appears to have a better
approximation to ¥ : g2, in particular when many of the estimated probabilities
are low, e.g less than 0.2 (Hosmer. Lemeshow and Kler, 1988). In fact if the
sample is small and the probabilitics are concentrated in a few values, when the
second mcthod is used it leads (o classes with a few units and therefore
problems arise in the determination of the expected values and in the

assessment of the results obtained applying the statistic 1'} .

If on the one hand. as pointed out by Demaris (1992), some results appear to
emphasize the tendency of these statistics 1o confirm the model too often. on the
other hand they offer, at least in terms of a first data control, the possibilty of
assessing, on the basis of the tables 1 or 2 (where the expected values are
reported), in which regions the model have not a good fit.

These grouping criteria offer a  valid solufion but some caulions are
required. These procedures consider similar units that have very close
probabilities of giving specific results, but these units might refer to X values
which can be similar with respect to the relationshig studied and can be very
distant in the covariate space. It would therefore be advisable to assess the
variability of the regressors inside each group to check the results obtained: it
may even occur that umits with very close X values have an estimated
probability that falls within different intervals. Moreover, another very delicate
problem concerns the choice of the number of intervals in which the estimated
probabilities are divided: one of the most frequently solutions adopted, in
particular in epidemiological studies, is that of assuming g =10, but this

choice can be justified only empirically. This problem makes it even more

12

e o

imperative to establish some group identification criteria that are not linked to
the specific situation, but that can be used in all situations, and thus makes the
results less subjective.

The methods based on grouping are therefore completely insensitive to
differences in logit within the pooled groups, in fact the observations are
grouped in such a way that the local fluctations are canceled out in each pooled
cell. Hence these statistic are not able to detect the deviations of the model: le
Cassie and van Houwelingen (1991} have shown this bad behaviour through
differrent simulations.

4. A solution based on partitioning the covariate space

The grouping strategy based on partitioning the covariate space nto distinct
regions is a way to deal with these problems. The idea is that units with similar
covariate pattern have the same probability of having ¥ = 1. By means of a
clustering algorithm the covariate space is divided into W distinct regions to
form a matrix Z, ., where the element z,, ((i=1,....m w=1,.... W) is
equal 1o one or zerc depending on whether the i-th unit belongs to the w-th
region or not. Consider the model

logir(?rt)zy'z+[3'x 4.1)
The null hypothesis to testis H, oy, =¥, =...Y, = 0 or equivalently

Hy:logit(n) = 'x (4.2)
This hypothesis can be tested directly (Fienberg and Gong, 1984) using a

conditional likchihood ratio test of modet {(4.2) versns model (4.1). If 11 is
sufficiently larger than W and if these groups are set before, then this statistic

should be distributed as a Zwith W —1 degrees of freedom (Haberman,
1974).



Tsiatis (1980) suggested a similar solution based on a quadratic form of
observed values minus expected vaiues in each group. First of all the log-
likelihood is determined according to (4.1):

4.3)
1= 2[5 %, +¥'2) - nft + exp(B 'x, +7'z,)]]

where Z, is the vector. obtained from Z, that refers to unit i . The partial

derivatives of / with respect oy, are calculated at ¥ = Qand B=8

(4.4)

Sy - >z, exp(Bx,)
{1+cxp(BA'x,.)}

and are equal to the difference between the observed vaiue and the expected one
for the W-th region. Indicating with as the W -dimensional vector of the partial
denvatives P'=(dl/dy, ,...,dlfdy,,). the statistic which is used is the

quadratic form:
Qo=PG’'P 4.5)
where G is the covariance matrix obtained as
G=A-BC'B (4.6)
with
A =-9%y 3y, (ww=1..,W)

B =-9%foy, B, w=1..W,w=1.._k) “.n
C. ==4%B, B, (w,w=1,..,k)

14

Under the null hypothesis, the Q statistic is asymptotically distributed a5 a
chi-square with degrees of freedom equal to the rank of the matrix G, that is
shown to be equal to W —1.

This test is independent of the number of covariates, it holds under very
general regularity conditions, and can be easily interpreted as a "score test" (or
Rao test) and therefore is asymptotically equivalent to the Waid test and the
likelihood ratio test. The precision of the results is in part offset by the
computntions necessary to evaluate the statistic (in particular as regards the
determination of the genernlized inverse of G ).

The choice of clustering predictor variables, instead of grouping the units by
the estimated probabilities. is motivated (Landwehr et al., 1984) to the local
analysis and the concept of near-neighbours; moreover observations with very
similar estimnted probnbilities can derive from explanatory variables that are by
no means close. Otherwise. not only are there many cluster techniques but none
of these appears to offerreliable results when the number of regressors is quite
large, unless the sample size is also large. A problem arises that when the
number of predictors, K , is high, so each unit tends to be very far from the
others in the X metric, thus the groups obtained may include units with very
different values of X and therefore with very different true probabilities of
havingY =1versusY =0 that is, for large  vaiues of k the groups tend
towards randomization with respect to pr(Y =1x) (Rubin, 1984). This is a
similar problem, although posed in a different way, to the one emphasized in
the Hosmer and Lemeshow solution based on the grouping of estimated
probabilities.

Whatever solution is adoptcd, there is always a component of subjectivity
linked to the number of groups to be considered; this means that criteria cannot
be generalized. and each time it is necessary to decide this number on the basis
of various considerations. This choice is strongly conditioned by sample
characteristics: aggregation on the basis of the explanatory variables cannot

5 Several variants of score test (or Lagrange inultiplier statistics) have been proposed to
reduce some coinputational difficulties and 10 avoid problems in small size samples. For
a general review see Davidsoii and MacKinnon (1983)

15



exclude a careful exarnination of the variability exhibited within the sample. If
the sample is small with respect to the number of regressors involved. the
formation of hornogeneous groups is partially comnprornised: no aggregation
criterion can guarantee the separation of the sample variability from that
involved in the characteristics; it is also very difficult to identify sufficiently
nurnerous groups of homogeneous units for the observed characteristics. in
particular if some of these are continuous. Aggregation as a function of the
estinated probabilities is also critical if the majority of the estimates are
concentrated arounc 4 few values: there is a risk of identifying a few groups, or
of an excessive disaggregation. enhancing the variability between the subjects.

5. An outline on other approaches
5.1 Graphical soluriotz

Landwehr, Pregibon and Shoemaker (1984) prefer to set up a graphic
solution rather than an analytical test. still in the same spirit of grouping the
observations. According to what has already been developed for the linear
regression model (Daniel and Wood, 1980), they suggest to partition the
residual deviance into a pure-error component and a lack-of-fit component : if
the model has a good fit, the latter component will be srnall. otherwise a high
value may be interpreted as a systernatic behavior that the logistic model fails to
account for.

If there are repeated values of X (ie. m > 0) then the pure-error

component is quickly obtained; otherwise. it is necessary to group the units and
perform an approxirnate factorization of the deviance. The procedure requires to
partition the 1 units into W clusters with n, units in each.

On the basis of rnodel(4.1) it is possible to calculate the contribution of each
observation to local devianced (It aw Vi), wherey, and T w are

respectively the observed values and the estirnated probabilities for the 1 -th
unit of w-region: then we can calculated the sum of these deviances

asDy, = zd(ﬁiw.)’iw)-
Reordering the W groups so that O, < 0, 1..0,, where O is a measure
of group inhomogeneity,e.g. if a hierarchical algorithm has been used, it is the

16

height (or distance)in the tree at which the group is formed. Then the estimates
of the error cornponent are determined

5(t)=20., i(nw -1 D
w=) w=]

where D(r), t=1,...W represents the local mean deviance for the tightest
groups.
Finally a’plot of D () versus its degree of freedom is made. Superimposing

on this plot the line of the global mean deviance, and observing its position
relative to the set of points: one can conclude that there is lack of fit when this
line, that shows the variability of the data about the fitted rnodel, is
systernatically above the points corresponding to the local mean deviances,

Landwehr, Pregibon and Shoernaker prefer the gmphic solution as they
think that it provides more information on the data and their fit to the model: on
the other hand, Jennings ( 1986) has demonstrated with simple examples that
the local mean deviance overestimates the global one for 7 close to 0.5 and
underestirnates it for 7 close to 1 or O. Thus the order in which the groups are
formed has a strong effect on the gmphical results. Moreover. this graphical
approach has the problem of how to define precisely when to accept and when
to reject the null hypothesis.

5.2 A general approach: the Brown test

Brown (1982) proposed a solution where the logistic model is erbedded in
a larger family of parametric models in which the logistic, as a special case,
depends upon two additional parameters.

The general familiy of models is defined as (Prentice. 1976)

Gix) 3.2
r(x)= fz""' (1-2)""dz/ B(a,b)

o

17



where a,b >0, B(a,b)is the beta function and

G(x)=exp(B 'x)/(1+exp(B 'x)) (5.3)

The logistic model corresponds to the parameter values a=b =1.

The assumption of model (5.3) allows a statistical test of the adequancy of fit
of the specific logistic modcl relative to the general parametric model. The null
hypothesis is & = b =1and the statistical procedure is based on the asymptotic
distribution of the score statistic for the parameters in the general model.

The log-likelihood of observed data is given by:

n (54)
1= 0, In(p(x,)+ (1 - y,) In1 = p(x,))

The score statistic of the parameters are defined, as we have just seen, to be the
partial derivates of the log-likelihood with respect to each parameter:

d/
=) x,(y; —p(x,)), k=0,....K
B, 2

(5.5)
g_c’fz O; = P+ In(p(x,)) /(1- p(x,))

%: Y ;- p(x,)d + In(1 = p(x;)) / p(x;)

The score statistic are asymptotically jointly normally distributed and the
test for adequacy of logistic model can be based on the distribution of

(9! / 9a,d! / db) under the null hypothesis.

18

Letbe q=(q,,9,)=(9!/da,dl / db) and C the estimated covariance
matrix of ( , the statistic test is

T=q'C"q (5.6)

This statistic is asymptotically distributed as a chi square with 2 degrees of
fredoom. A large value for this test would indicate that the two additional
parametrs in the extended model may be different from one and that the
extended model fits better than the logistic one.

The test statistic is relatively easy to compute and does not suffer from the
practical limitations of the other procedure, even for continuos covariates and
samples as small as 50, the null distribution of the statistic is adequately
described by a chi square variate. This procedure constitutes a method for
examining the logistic model as providing a reasonable description of the data
relative to another model in a general class and as such has power against
certain patternd of deviations between the observed and fitted data. On the
contrary, this solution has poor power against other patterns with deviations
which appear to be randomly distributed throughout the range of response rates.
In this situations, the Hosmer and Lemeshow tests should perform better.

5.3 Non parametric approach

Nonparametric regression can be used to assess the relationship between a
response and a set of explanatory variables. The idea is to check the validity of
the systematic part of the model by comparing a non parametric estimate of the
regression curve with a parametric one. In the context of the logistic regression
this approach represents a good solution because of the difficulties that arise
when applying standard residual-based model checking techniques.

Kemel methods have been firstly used firstly by Copas (1983) to examine
graphically the fit in one dimensional problems. A kemnel estimation g(x) is

calculated and logit(g (X)) is plotted against X: if the model fits well . a
straight line at 45° through the origin is obtained.

19



Azzalini, Bowman, and Hardle (1989) have generalized this approach: they
compared the function 7€ (X) with a kemel estimate 7 (x)by defining a
pseudo-likclihood ratio statistic.

e _e)l] g
ooleeleonfttl]

The significance of the observed value of this statistic is estimated
simulating its distribution under the null hypothesis. The nature of any
difference between Tt (x) and T (X) is assessed by using simulations to

construct bands for the non parametric curve under the assumptions that the
logistic model is correct.

To build pointwise simulation bands a complete set of simulated responses is
derived {y:,...,y;} from the fitted model that is Y, has a binomial

distribution with probabilty 7 (X;). and a new non parametric estimation 7T

is produced using the same smoothing parameter employed forthe original data.
This operation is repeated a large number of times, say N . For a given E.

empirical upper and lower -2-8 percentage points of the & -s at each design

define the simulation bands.

However, a problem occurring in this solutions is the bias in the non
parametric estimate. le Cassie and van Houwelingen (1991) proposed a test
statistic based on a kemel estimate of the standardized residuals that solves
many of the problems with the methods above menlioned.

le Cassie and van Houwelingen (1991) considered a smoothing function of
the standardizcd residuals obtained by the kemel estimate of Watson (1964)

> r(x;H((x~x,) / h,) (5.8)

r(x)=-%

2 H((x-x,)/h,)

20

H(z) is the multiplicative kemel function defined for zZ= (z,,... ,Zx ) as

LS 5.9)
H@z)=]]H(@,)

d=1

where H is a one-dimensioiial non negative symmetric bounded kemel
function, zero outside a closed interval and normalized according to

2
J.H(z)dz=l and IH( z) dz <oo. The paramecter h, is the bandwidth

which controls the amount of smoothing and Z; = X — X ; thus the smoothed

residual is a weighted average of the residuals in the neighborhood of X, where
the handwidth determines the size of the region over which the residuals are
averaged and the kemel determines the weighting,

It is not difficult to show ihat for each X the mean of 7(x) conditional
on the observed values for the covariates X is equal to zero and the variance is

2 H[(x-x, /4,)]

(5.10)
var(F (x)) = —2 2
{zﬂ[(x - xj)/h,,]}
j
The test statistic T is defined as
T=n"Y F(x, Mx,) 1D

where
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(x,) ===
- S H[x, ~x;, /h)]

i

[Z H[(X.- ~-x;)/h, ]} (5.12)

In this statistic each observation gives the same contribution under the null
hypothesis.

le Cessie aiid van Houwclingen gave an explicit expression for the mean and
the variance of the test statistic  they also studied the asymptotic properties.
The distribution of T under the null hypothesis was derived and the cutoff
points of T were compared with the cutoff points of the normal distribution
obtaining quite good results because the distribution of T has heavier tails. The
comparison with a scaled chi-square gave better approximations for the smaller
significance levels. Thus with this solution it can be formally specified when the
null hypothesis should be accepted and when rejected, since the cutoff points are
well approximated under the null hypothesis by its asymptotic normal
distribution and even better by the scaled chi-square distribution.

A crucial point is the choice of the bandwidth. The performance of the
statistic was determined for different values: if it is chosen too small the statistic
has no power and if it is chosen too big all local deviations are smoothed away.
The author suggested a bandwidth such that each region over which the

residuals are averaged contains approximately Jn observations.

In summary, this method has some advantages: it detects deviations of the
model in all directions and it doesn't require partitioning the data. However,
further researches is needed especially in the case of categorical regressors to
improve the statistic test.

® When g(x) is known le Cessie and van Houwelingten showed that the exact results

are quite simple; in the case of estiinated functions the behaviour of the statistic is
asymptotically the same but the effect of estiination is negligibile for finite samples
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5.4 An exact approach

All the parametric tests described in the previous sections use the
corresponding chi-square approximations for the statistics. But when ihe sample
size is small and the data are sparse the accuracy of the asymptotic
approximations is questionable. Under these circumstances the use of exact
inferential procedures would seem to be a better solution.

Exact methods for the logistic model, aiid in general for categorical data,
have received particular attention in recent years (see Agresti, 1992 for an
complete review). One of the most interesting methods developed to check
model fit follows a conditional approach, in which one obtains sampling
distribution not dependent on unknown parameters by conditioning on their
sufficient statistics (McCullagh, 1985, 1986: Bedrick and Hill, 1990, 1992).

Under modcl (1.4). the vector of sufficieiit statistics for Bis given by

S = XY aiid assuming the maximum likelihood estimate as 7t the probability
distribution of the data pr(Y,B) , indexed by B, can be factonzed in the

marginal distribution of the stntistic S and the conditional distribution of the
observationsgiven by S :

pr(Y;B) = pr(Y!S)pr(S;p) (5.13)

Following ~ Fisher (1950). inferences about Bare based just on pr(Y;P)
whereas model checks must also be based on pr(YIS).

A model check caii be implemented by specifying a statistic T that quantifies
the discrepancy between observed and fitted data, nnd computing a significance
level for T on the basis of the conditional distribution. This distribution is

J m.
pr(Y=ylS=s)= Tmn( ’) (5.14)
s \Yj

where
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Ry r'I(

(4 pyaty )'EA‘, Jj=i

m; 5.15)
Y;

and A, ={a=(a,,...,a,)',ai integer: 0<aq, Smi} with X'a=s.

A,,. is the set of response vectors that give the same value of the ufficient

statistic as the observed data’
The p-value for testing the model is the conditional probability that the
goodness of fit statistic is at least as large as observed, i.e

p(M)=pr(T>T,|S=s; H,) (5.16)

The criterion is the one typical of significance tests: no alternative hypothesis is
requested. but the result is provisional and requires further tests.

As supported by mnny researchers, the conditioning by a sufficient statistic
remains one of the more reasonable solutions, especially when the sample size
is small or the date are sparse. Nevertheless further studies are needed to make
exact methods more widely applicable, This a useful topic for future research.
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