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Abstract

We prove some Schauder type estimates and an invariant Harnack inequality
for a class of degenerate evolution operators of Kolmogorov type. We also prove a
Gaussian lower bound for the fundamental solution of the operator and a uniqueness
result for the Cauchy problem. The proof of the lower bound is obtained by solving
a suitable optimal control problem and using the invariant Harnack inequality.

1 Introduction

We consider second order operators of the non-divergence form

Lu :=
p0∑

i,j=1

ai,j(z)∂xixj u +
p0∑

i=1

ai(z)∂xiu +
N∑

i,j=1

bi,jxi∂xj u− ∂tu, (1.1)

where z = (x, t) ∈ RN ×R, 1 ≤ p0 ≤ N and the coefficients ai,j and ai are bounded continuous functions.
The matrix B = (bi,j)i,j=1,...,N has real, constant entries, A0(z) = (ai,j(z))i,j=1,...,p0 is a symmetric and
positive, for every z ∈ RN+1. In order to state our assumptions on the operator L, it is convenient to
introduce the analogous constant coefficients operator

Ku :=
p0∑

i,j=1

ai,j∂xixj u +
N∑

i,j=1

bi,jxi∂xj u− ∂tu, (1.2)

with the constant matrix A0 = (ai,j)i,j=1,...,p0 symmetric and positive. Our assumptions are:

H1 the operator K is hypoelliptic i.e. every distributional solution to Ku = f is a smooth classical
solution, whenever f is smooth,

H2 There exists a positive constant Λ such that

Λ−1|ζ|2 ≤ 〈A0(z)ζ, ζ〉 ≤ Λ|ζ|2, ∀ ζ ∈ Rp0 ,∀ z ∈ RN+1. (1.3)
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H3 The coefficients ai,j and aj are bounded and Hölder continuous of exponent α ≤ 1 (in the sense of
the Definition 1.1 below).

Some comments about our assumptions are in order. We first note that, in the case p0 = N and
B = 0, conditions [H1]-[H2]-[H3] are verified by every uniformly parabolic operator in non-divergence
form, with Hölder continuous coefficients (in that case, K is the heat operator). On the other hand,
several examples of degenerate operators (i.e. with p0 < N) appear in kinetic theory and in finance.
Consider for instance the linear Fokker-Planck equation

∂tf − 〈v,∇xf〉 = divv(∇vf + vf),

where f is the density of particles at point x ∈ Rn with velocity v ∈ Rn at time t (see [9] and [30]). It
can be written in the form (1.1) by choosing p0 = n, N = 2n and

B =
(

In In

0 0

)

where In is the identity n× n matrix. We also recall that in the Boltzmann-Landau equation

∂tf − 〈v,∇xf〉 =
n∑

i,j=1

∂vi

(
ai,j(·, f)∂vj f

)
,

the coefficients ai,j depend on the unknown function through some integral expression (see, [20], [7] and
[21]). Equations of the form (1.1) arise in mathematical finance as well. More specifically, the following
linear equation

S2∂SSV + f(S)∂MV − ∂tV = 0, S, t > 0, M ∈ R
with either f(S) = log (S) or f(S) = S, arises in the Black & Scholes theory when considering the
problem of the pricing Asian option (see [3]). Moreover, in the stochastic volatility model by Hobson &
Rogers, the price of an European option is given by a solution of the equation

1
2
σ2(S −M)(∂SSV − ∂SV ) + (S −M)∂MV − ∂tV = 0,

for some positive continuous function σ (see [16] and [10]). We refer to the paper by Di Francesco and
Pascucci [11] for an extensive survey of the financial motivations to the study of operators as above.

With the aim to discuss our assumptions and the regularity properties of the operators K, we intro-
duce some notations. Here and in the sequel, we will denote by A

1
2
0 = (āij)i,j=1,...,p0

the unique positive

p0 × p0 matrix such that A
1
2
0 ·A

1
2
0 = A0, and by A and A

1
2 the N ×N matrices

A =
(

A0 0
0 0

)
, A

1
2 =

(
A

1
2
0 0
0 0

)
. (1.4)

Note that the operator K can be written as

K =
p0∑

j=1

X2
i + Y, (1.5)

where

Xi =
p0∑

j=1

āij∂xj , i = 1, . . . , p0, Y = 〈x,B∇〉 − ∂t. (1.6)

∇ = (∂x1 , . . . , ∂xN
) and 〈·, ·〉 are, respectively, the gradient and the inner product in RN .

The following statements are equivalent to hypothesis [H1]:
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H1 Ker(A
1
2 ) does not contain non-trivial subspaces which are invariant for B;

H2 there exists a basis of RN such that B has the form



∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.7)

where Bj is a matrix pj−1 × pj of rank pj , with

p0 ≥ p1 ≥ . . . ≥ pr ≥ 1, p0 + p1 + . . . + pr = N,

while ∗ are constant and arbitrary blocks;

H3 if we set

E(s) = exp(−sBT ), C(t) =
∫ t

0

E(s)AET (s)ds, (1.8)

then C(t) is positive, for every t > 0;

H4 the Hörmarder condition is satisfied:

rank Lie (X1, . . . , Xp0 , Y ) = N + 1, at every point of RN+1. (1.9)

For the equivalence of the above conditions we refer to [18]. In the sequel, we assume that the basis of
RN is as in H2, so that B has the form (1.7). Under the assumption [H1], Hörmarder constructed in
[17] the fundamental solution of K:

Γ(x, t, ξ, τ) =
(4π)−

N
2√

detC(t− τ)
exp

(
− 1

4
〈C−1(t− τ)(x− E(t− τ)ξ), x− E(t− τ)ξ〉 − (t− τ)trB

)
,

(1.10)
if t > τ , and Γ(x, t, ξ, τ) = 0 if t ≤ τ .

Since the works by Folland [14], Rotschild and Stein [31], Nagel, Stein and Wainger [26] concerning
operators satisfying the Hörmarder condition, it is known that the natural framework for the regularity
of that operators is the analysis on Lie groups. The first study of the group related to the operator
(1.2) has been done by Lanconelli and Polidoro in [18]. The group law is defined as follows: for every
(x, t), (ξ, τ) ∈ RN+1 we set

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (1.11)

where E(τ), is the matrix in (1.8). Let f ∈ C(Ω), for some open set Ω ∈ RN+1. We say that a function
u : Ω → R is a classical solution to Lu = f with if ∂xiu, ∂xi,xj u(i, j = 1, . . . , p0) and the Lie derivative

Y u(x, t) = lim
h→0

u(E(−h)x, t− h)− u(x, t)
h

are continuous functions, and the equation Lu = f is satisfied at any point of Ω.
We recall that Γ is invariant with respect to the translations defined in (1.11):

Γ(x, t, ξ, τ) = Γ
(
(ξ, τ)−1 ◦ (x, t)

)
:= Γ

(
(ξ, τ)−1 ◦ (x, t), 0, 0

)
. (1.12)

Moreover, if (and only if) all the ∗-block in (1.7) are null, then K is homogeneous of degree two with
respect the family of following dilatations,

δ(λ) :=
(
D(λ), λ2

)
= diag

(
λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr , λ

2
)
, (1.13)
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(Ipj
denotes the pj × pj identity matrix), i.e.

K ◦ δ(λ) = λ2(δ(λ) ◦K), ∀λ > 0 (1.14)

(see Proposition 2.2 in [18]), and Γ is a δ(λ)-homogeneous function:

Γ(δ(λ)z) = λ−QΓ(z), ∀ z ∈ RN+1 \ {0}, λ > 0,

where
Q = p0 + 3p1 + . . . , (2r + 1)pr.

Since
det

(
δ(λ)

)
= det

(
diag(λIp0 , λ

3Ip3 , . . . , λ
2r+1Ipr

, λ2)
)

= λQ+2, (1.15)

the number Q+2 is said homogeneous dimension of RN+1 with respect to the dilation group (δ(λ))λ>0 and
Q is said spatial homogeneous dimension of RN with respect to (δ(λ))λ>0. For every z = (x, t) ∈ RN+1

we set

‖z‖ =
N∑

j=1

|xj |
1

qj + |t| 12 , (1.16)

where qj are positive integers such that δ(λ) = diag(λq1 , . . . , λqN ). It is easy to check that ‖ · ‖ is a
homogeneous function of degree 1 with respect the dilation δ(λ), i.e.

‖δ(λ)z‖ = λ‖z‖, for every λ > 0, and z ∈ RN+1. (1.17)

Definition 1.1. Let α ∈]0, 1]. We say that a function f : RN+1 → R is Hölder continuous of exponent
α, in short f ∈ Cα, if there exists a positive constant c such that

|f(z)− f(ζ)| ≤ c ‖ζ−1 ◦ z‖α, for every z, ζ ∈ RN+1.

The first main result of this paper is an uniform Harnack inequality for non-negative solution u of
Lu = 0. We consider a suitable bounded open subset S of RN , that will be specified at the beginning of
Section 5, and we define the unit cylinder as H(T ) = S×]0, T [, for any positive T . Moreover, we set for
every (ξ, τ) ∈ RN+1, R > 0, δ ∈]0, 1[, and α, β, γ such that 0 < α < β < γ < 1,

HR(ξ, τ, R2T )= (ξ, τ) ◦ δ(R)
(
H(T )

)
,

H−= {(x, t) ∈ HδR(ξ, τ, TR2) : τ + αR2T ≤ t ≤ τ + βR2T},

H+ = {(x, t) ∈ HδR(ξ, τ, TR2) : τ + γR2T ≤ t ≤ τ + R2T}.

We have

Theorem 1.2. Assume that L satisfies conditions [H1]-[H2]-[H3]. Let α, β, γ be such that 0 < α < β
and β + 1

2 < γ < 1. Then there exist three positive constants M, δ and T , with δ < 1, depending only on
α, β, γ and on the operator L, such that

sup
H−

u ≤ M inf
H+

u.

for every positive solution u of Lu = 0 in HR(ξ, τ, TR2) and for any R ∈]0, 1].

The proof of Theorem 1.2 is based on a suitable adaptation of the method introduced by Krylov and
Safanov, also used by Fabes and Strook [13] in the study of uniformly parabolic operators. We recall
that a Harnack inequality for the positive solutions to Lu = 0 has been proved by Polidoro in [27], in the
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case of homogeneous Kolmogorov operators, and by Morbidelli in [25] for non-homogeneous Kolmogorov
operators, by using mean value formulas. In [27] and [25] divergence form operators are considered,
under the assumption that the coefficients ai,j and the derivatives ∂xiai,j are Hölder continuous for
i, j = 1, . . . , p0. Moreover in [27] and [25] the coefficients ai do not appear in the operator L. We
acknowledge that the fact that the Krylov-Safanov-Fabes-Strook approach, combined with the parametrix
method, improves the Harnack inequality for operators with Hölder continuous coefficients was pointed
out by Bonfiglioli and Uguzzoni in [4].

In order to use the Krylov-Safanov-Fabes-Strook method, we prove a Schauder type estimate that
extends the analogous result proved by Manfredini in [24] for homogeneous operators (we refer to Section
3 for the definition of the function spaces and the norms appearing in the following statement).

Theorem 1.3. Let Ω be a bounded open set, f ∈ Cα
d (Ω), and let u be a bounded function belonging to

C2+α
loc (Ω) such that Lu = f in Ω. Then u ∈ C2+α

d (Ω) and there exist a positive constant c, depending
only on the constant Λ, on the Hölder-norm of the coefficients of L and on the diameter of Ω, such that

|u|2+α,d,Ω ≤ c (sup
Ω
|u|+ [f ]2+α,d,Ω). (1.18)

We recall that optimal Schauder estimates for the Cauchy problem
{

Lu = 0 in RN×]0, T ],
u(x, 0) = ϕ(x) x ∈ RN .

(1.19)

have been obtained by many authors in the framework of the semigroup theory. In Theorems 1.2 and
8.2 of [23] Lunardi proves an optimal Hölder regularity result for the solution u to (1.19), under the
assumption that the initial data ϕ has Hölder continuous derivatives ∂xiϕ and ∂xi,xj ϕ, i, j = 1 . . . p0.
It is also assumed that the matrix (ai,j) satisfies our Hypothesis [H2] and that the coefficients ai,j are
Hölder continuous function of the space variable x that converge as |x| goes to +∞. Lorenzi in [22]
improves the results by Lunardi in that the coefficients ai,j are not assumed to be bounded functions.
On the other hand, in [22] the coefficients ai,j have Hölder continuous derivatives up to third order and
the Lie Algebra related to the constant coefficient operator has step 2. Priola in [29] considers operator
with unbounded coefficients ai, i = 1, . . . , p0. Lunardi states in [23] an interior estimate for the Cauchy
problem (1.19) with bounded continuous initial data ϕ:

‖u(·, t)‖C2+α
d (RN ) ≤

Ceωt

t1+
α
2
‖ϕ‖C0

d(RN ), 0 ≤ α < 1.

Here C and ω are suitable positive constants and the space Cα
d (RN ) is defined in terms of a homogeneous

norm analogous to the norm used in our Definition 1.1 (see formula (1.16) in [23] for the details). In
order to compare the above estimate with our Theorem 1.3 we give a simple consequence of it.

Corollary 1.4. Let ϕ : RN → R be a bounded continuous function, and let u be the (unique) bounded
solution to the Cauchy problem (1.19). Then, for every positive T , there exists a constant cT , only
depending on T and on the operator L, such that the solution u to (1.19) satisfies

sup
x∈RN

|u(x, t)|+
p0∑

i=1

√
t sup

x∈RN

|∂xiu(x, t)|+
p0∑

i,j=1

t sup
x∈RN

|∂xi,xj u(x, t)|+

+t1+
α
2


 sup

x,y∈RN

x6=y

|u(x, t)− u(y, t)|
‖(x− y, 0)‖α

+
p0∑

i=1

sup
x,y∈RN

x6=y

|∂xiu(x, t)− ∂xiu(y, t)|
‖(x− y, 0)‖α


+

+t1+
α
2




p0∑

i,j=1

sup
x,y∈RN

x6=y

|∂xi,xj u(x, t)− ∂xi,xj u(y, t)|
‖(x− y, 0)‖α


 ≤cT sup

x∈RN

|ϕ(x)|,

(1.20)

for every t ∈]0, T ].
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We finally recall the recent paper by Di Francesco and Pascucci in [12], where the estimates (1.20) are
improved assuming that the initial condition ϕ of the Cauchy problem is a Hölder continuous bounded
function. More specifically, in Proposition 3.3 in [12] it is shown that

|∂xiu(x, t)− ∂xiu(y, t)| ≤ cT
‖(x− y, 0)‖α/2

t1/2−α/4
sup

ξ,η∈RN

ξ 6=η

|ϕ(ξ)− ϕ(η)|
‖(ξ − η, 0)‖α

,

|∂xixj u(x, t)− ∂xixj u(y, t)| ≤ cT
‖(x− y, 0)‖α/2

t1−α/4
sup

ξ,η∈RN

ξ 6=η

|ϕ(ξ)− ϕ(η)|
‖(ξ − η, 0)‖α

,

for every (x, t), (y, t) ∈ RN×]0, T ], i, j = 1, . . . , p0, and α ∈]0, 1[.

Our next main result is a pointwise lower bound of the fundamental solution of L satisfying conditions
[H1]-[H2]-[H3]. We recall that Morbidelli in [25], and Di Francesco and Pascucci in [11], prove the
existence of a fundamental solution Γ of L by the Levi parametrix method and that Γ satisfies the
pointwise estimate

Γ(z, ζ) ≤ c+
T Γ+(z, ζ), ∀ z = (x, t), ζ = (ξ, τ) ∈ RN+1, such that 0 < t− τ < T, (1.21)

where Γ+ is the fundamental solution of the operator

Kµ = µ

p0∑

i=1

∂2
i + 〈x,B∇〉 − ∂t, (1.22)

µ and T are any positive constants, µ > Λ in [H2], c+
T is a positive constant only depending on µ, T and

on the constants appearing in [H1]-[H2]-[H3]. Here we prove an analogous lower bound.

Theorem 1.5. Assume that L satisfies condition [H1]-[H2]-[H3]. Then there exist a positive constant
µ such that, for every positive T , it holds

Γ(x, t) ≥ c−T Γ−(x, t), ∀x ∈ RN , 0 < t < T.

Here Γ− is the fundamental solution of the operator Kµ in (1.22), µ and c−T are two positive constants
depending on L, µ < Λ−1 and c−T also depends on T .

In order to state our last result, we recall that Di Francesco and Pascucci prove in [11] a Tychonoff-
type uniqueness result: the Cauchy problem (1.19) has a unique solution u satisfying the growth condition

∫ T

0

∫

RN

|u(x, t)|e−C|x|2dx dt < +∞, (1.23)

for some positive C (see Theorem 1.6 in [11]). Here we prove a Widder-type uniqueness theorem

Theorem 1.6. Assume that L satisfied condition [H1]-[H2]-[H3], and let u, v be two solution of the
Cauchy problem (1.19). If both u and v are non negative, then u ≡ v in RN × [0, T [.

This paper is organized as follows. In Section 2 we recall some known facts about Kolmogorov
operators and we give some preliminary results. Specifically, we prove some accurate bounds of the
fundamental solution of K and of its derivatives, then we prove a representation formula for the derivatives
of the solutions to Lu = f , in terms of the function f . In Section 3 we prove the Schauder type estimates
stated in Theorem 1.3. In Section 4 we consider the Dirichlet problem related to the cylinder HR(ξ, τ, R2),
and we give some pointwise lower bound of the relevant Green function. That lower bound is the key
point of the Krylov-Safanov-Fabes-Strook method for the Harnack inequality and is a direct consequence
of some pointwise estimates provided by the parametrix method (see Remark 2.3 in Section 2). Then,
in Section 5 we give the proof of Theorem 1.2. In Section 6 we prove a non-local Harnack inequality by
using repeatedly the invariant (local) Harnack inequality stated in Theorem 1.2 and a method introduced
in a recent work by Boscain and Polidoro [6], that is based on the optimal control theory (see Theorem
6.1). We finally give the proof of Theorem 1.5 and Theorem 1.6.
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2 Some known and preliminary results

We first discuss some geometric features of the Lie group (RN+1, ◦), and the related dilations δ(λ). Then
we recall some know results about the constant coefficients Kolmogorov-Fokker-Planck operators K.

Lemma 2.1. For every positive T and for every compact set H ⊂ RN there exists a constant CT,H ≥ 1
such that

i) ‖z−1‖ ≤ CT,H‖z‖, for every z ∈ H × [−T, T ];

ii) ‖z ◦ ζ‖ ≤ CT,H

(‖z‖+ ‖ζ‖), for every ζ ∈ RN × [−T, T ] and z ∈ H × R.

Moreover the constant CT,H can be chosen arbitrarily close to 1 provided that T is sufficiently small.

Proof. We decompose the matrix E defined in (1.8) according to (1.7):

E(s) =




E0,0(s) E0,1(s) . . . E0,r(s)
E1,0(s) E1,1(s) . . . E1,r(s)

...
...

. . .
...

Er,0(s) Er,1(s) . . . Er,r(s)


 (2.1)

and we denote
x =

(
x(0), . . . , x(r)

)
. (2.2)

for every x ∈ RN , where x(j) ∈ Rpj for j = 0, . . . , r. We also denote

|x(j)|δ =
pj∑

k=1

|x(j)
k | 1

2j+1 , |x|δ = |x(0)|δ + · · ·+ |x(r)|δ =
N∑

k=1

|xk|
1

qk , (2.3)

so that we can write the norm defined in (1.16) as ‖(x, t)‖ = |x|δ + |t| 12 .
As a preliminary result, we show that there exists a constant CT,H , only depending by T and H,

such that
|E(s)y|δ ≤ CT,H‖(y, s)‖, ∀ y ∈ H, s ∈ [−T, T ]. (2.4)

From condition H2 it follows that E0,0(s) = Ip0 + s O0,0(s),

Ej,j(s) =
(
Ipj + sOj,j(s)

)
, j = 1, . . . , r,

Ej,k(s) =
(−s)j−k

(j − k)!
(
Ipj + s Oj,j(s)

)
BT

j . . . BT
k+1, j = 1, . . . , r, k = 0, . . . , j − 1

and Ej,k(s) = sOj,k(s), for k > j. Here Oj,k denotes a pj × pk matrix whose coefficients continuously
depend on s. We then have

|E(s)y|δ ≤
r∑

j,k=0

|Ej,k(s)y(k)|δ =
r∑

j=0

j−1∑

k=0

|Ej,k(s)y(k)|δ+

r∑

j=0

|Ej,j(s)y(j)|δ +
r∑

j=0

r∑

k=j+1

|Ej,k(s)y(k)|δ ≤

r∑

j=0

j−1∑

k=0

cT ‖(y, s)‖ 2j−2k
2j+1 ‖(y, s)‖ 2k+1

2j+1 + cT ‖(y, s)‖+
r∑

j=0

r∑

k=j+1

cT ‖(y, s)‖ 2k+3
2j+1

where cT is a constant only depending on T . This proves (2.4).
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We are now in position to conclude the proof of Lemma 2.1. The assertion i) directly follows from
the fact that (x, t)−1 = (−E(−t)x,−t), whereas ii) is an immediate consequence of

‖(x, t) ◦ (ξ, τ)‖ = ‖(ξ + E(τ)x, t + τ)‖ ≤ ‖(ξ, τ)‖+ |E(τ)x|δ + |t| 12

and of the fact that |E(τ)x|δ ≤ CT,H‖(x, τ)‖ ≤ CT,H (‖(x, t)‖+ ‖(ξ, τ)‖).
We next prove that CT,H can be chosen arbitrarily close to 1 provided that T is sufficiently small.

We consider only ii). Since

‖(x, t) ◦ (ξ, τ)‖ ≤ ‖(ξ + E(τ)x, t + τ)‖ ≤ ‖(ξ, τ)‖+ ‖(x, t)‖+ |(E(τ)− IN )x|δ
where IN denotes the N ×N identity matrix, it is sufficient to show that

|(E(s)− IN )y|δ → 0, as s → 0, (2.5)

uniformly on y ∈ H. We proceed as above

|(E(s)− IN )y|δ ≤ =
r∑

j=0

j−1∑

k=0

|Ej,k(s)y(k)|δ +
r∑

j=0

|(Ej,j(s)− Ipj )y
(j)|δ +

r∑

j=0

r∑

k=j+1

|Ej,k(s)y(k)|δ ≤

r∑

j=0

j−1∑

k=0

cT |s|
j−k
2j+1 ‖(y, 0)‖ 2k+1

2j+1 + cT |s|
1

2j+1 ‖(y, 0)‖+
r∑

j=0

r∑

k=j+1

cT |s|
1

2j+1 ‖(y, 0)‖ 2k+1
2j+1 .

This proves the claim (2.5) and accomplishes the proof.

In the sequel, in order to simplify the notation and to emphasize the last assertion of the lemma, we
will write CT instead of CT,H .

Remark 2.2. As a direct consequence of Lemma 2.1, we get the following assertion. Let CT = CT,H

and let M be any constant in ]0, C−2
T [. Then, for every z, ζ ∈ H × [−T, T ] we have

‖ζ‖ ≤ M ‖z‖ ⇒ 1−M C2
T

CT
‖z‖ ≤ ‖z ◦ ζ‖ ≤ CT (1 + M)‖z‖. (2.6)

We finally note that
‖(ξ, τ)−1 ◦ (x, t)‖ ≤ CT

(‖(x, t)‖+ ‖(ξ, τ)‖), (2.7)

for every (ξ, τ) ∈ H × R, (x, t) ∈ RN+1 such that |t − τ | ≤ T , where the constant CT can be chosen
arbitrarily close to 1 provided that T is sufficiently small.

For every operator K of the form (1.2), we define the homogeneous operator K0 by setting

K0u :=
p0∑

i,j=1

ai,j∂xixj u + Y0u, Y0 = 〈B0,∇〉 − ∂t (2.8)

where

B0 =




0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Br

0 0 0 · · · 0




. (2.9)
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It is known that the corresponding matrices E0, C0 and C−1
0 satisfy

E0(λ2s) = D(λ)E0(s)D(
1
λ

), C0(λ2t) = D

(
1
λ

)
C0(t)D

(
1
λ

)
, C−1

0 (λ−2t) = D(λ)C−1
0 (t)D(λ) (2.10)

for any s, t ∈ R and λ > 0 (see Remark 2.1 and Proposition 2.3 in [18]). Moreover, for every given T > 0,
there exists a positive constant cT such that

∥∥∥∥D

(
1√
t

)
(C(t)− C0(t)) D

(
1√
t

)∥∥∥∥ ≤ cT t ‖C0(1)‖
∥∥∥D(

√
t)

(C−1(t)− C−1
0 (t)

)
D(
√

t)
∥∥∥ ≤ cT t

∥∥C−1
0 (1)

∥∥
(2.11)

for every t ∈]0, T ], and

〈C0(t)x, x〉 (1− cT t) ≤〈C(t)x, x〉 ≤ 〈C0(t)x, x〉 (1 + cT t),〈C−1
0 (t)y, y

〉
(1− cT t) ≤ 〈C−1(t)y, y

〉 ≤ 〈C−1
0 (t)y, y

〉
(1 + cT t);

(2.12)

for every x, y ∈ RN , t ∈]0, T ] (see Lemma 3.3 in [18]). As a direct consequence, there exist two positive
constants c′T , c′′T such that

c′T tQ(1− cT t) ≤ det C(t) ≤ c′′T tQ(1 + cT t), (2.13)

for every (x, t) ∈ RN×]0, T ] such that t < 1
cT

(see formula (3.14) in [18]).

In order to give a preliminary estimate useful in the proof of the Harnack inequality, we next recall
the parametrix method, used in [25] and [11]. For any given z0 we consider the frozen operator

Kz0 =
p0∑

i,j=1

ai,j(z0)∂i,j + 〈x,B∇〉 − ∂t, (2.14)

we denote by Γz0 its fundamental solution and we define the parametrix as

Z(z, ζ) = Γζ(z, ζ). (2.15)

We also recall (1.10), so that the fundamental solution of (1.22) with singularity at the origin, is

Γµ(x, t) =
(4πµ)−

N
2√

detC̃(t)
exp

(
− 1

4µ
〈C̃−1(t)x, x〉 − t trB

)
, C̃(t) =

∫ t

0

E(s)
(

Ip0 0
0 0

)
ET (s)ds.

(2.16)
We look for the fundamental solution Γ of L as a function in the form

Γ(z, ζ) = Z(z, ζ) + J(z, ζ), (2.17)

where J is an unknown function which is determined by the requirement that LΓ(z, ζ) = 0, for z 6= ζ.
Let Γ−Λ and Γ+

Λ denote, respectively, the fundamental solution of the operators K 1
Λ

and KΛ defined in
(1.22) (Λ is the constant in hypothesis [H2]). Then the following inequalities hold:

Λ−NΓ−Λ (z, ζ) ≤ Z(z, ζ) ≤ ΛNΓ+
Λ(z, ζ) ∀ z, ζ ∈ RN+1. (2.18)

Moreover, consider any µ > Λ and denote by Γ+ the fundamental solution of the operator defined in
(1.22). Then, for any positive T , there exists a positive constant C, depending on T, µ and on the matrix
B, such that

|J(z, ζ)| ≤ C (t− τ)
α
2 Γ+(z, ζ), (2.19)

for every x, ξ ∈ RN and t, τ with 0 < t − τ < T (see [11], Corollary 4.4). Thus, from (2.16), (2.18) and
(2.19), it follows that the fundamental solution Γ satisfies the estimate (1.21). We point out that (2.18)
and (2.19) also give a lower bound that will be used in the proof of the Harnack inequality.
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Remark 2.3. From (2.18) and (2.19), it follows that

Γ(z, ζ) ≥ Λ−N Γ−Λ (z, ζ)− C (t− τ)
α
2 Γ+(z, ζ)

for every z = (x, t), ζ = (ξ, τ) ∈ RN+1 such that 0 < t− τ < T .

We finally recall the usual property of the fundamental solution

Γ(x, t) =
∫

RN

Γ(x, t, y, s)Γ(y, s)dy, for every s ∈]0, t[, (2.20)

and some pointwise bounds of Γ and of its derivatives that have been proved by Di Francesco and Pascucci
(see Proposition 3.5 in [11]). For every T > 0 and for any k ∈ N, there exists a positive ck, depending on
T,Λ, λ, k, and B, such that, if we set η = D

(
1√
t−τ

)
(x− E(t− τ)ξ), then we have

(
1 + |η|2)

k
2 Γ(x, t, ξ, τ) ≤ ck Γ+(x, t, ξ, t),

(
1 + |η|2)

k
2 |∂xi

Γ(x, t, ξ, τ)| ≤ ck
Γ+(x, t, ξ, t)√

t− τ
, for i = 1, . . . , p0

(
1 + |η|2)

k
2 |∂xi,xj Γ(x, t, ξ, τ)| ≤ ck

Γ+(x, t, ξ, t)
t− τ

, for i, j = 1, . . . , p0

(
1 + |η|2)

k
2 |Y Γ(x, t, ξ, τ)| ≤ ck

Γ+(x, t, ξ, t)
t− τ

.

(2.21)

We consider the operator Kλ defined as

Kλ := λ2

(
δ(λ) ◦K ◦ δ(

1
λ

)
)

, λ ∈]0, 1], (2.22)

and we prove some uniform-in-λ estimates of its fundamental solution, and of its derivatives. Then we
prove a representation formula for u ∈ C∞0 solution of Ku = g.

We first remark that, K is homogeneous (i.e. K satisfy condition (1.14)) if, and only if, K = Kλ, for
every λ > 0. In order to explicitly write Kλ and its fundamental solution, we note that, if

B =




B0,0 B1 0 · · · 0
B1,0 B1,1 B2 · · · 0

...
...

...
. . .

...
Br−1,0 Br−1,1 Br−1,2 · · · Br

Br,0 Br,1 Br,2 · · · Br,r




where Bi,j are the pi × pj blocks denoted by “∗” in (1.7), then Kλ =
p0∑

i,j=1

aij∂xixj + Yλ, where Yλ :=

〈x,Bλ∇〉 − ∂t, and

Bλ =




λ2B0,0 B1 0 · · · 0
λ4B1,0 λ2B1,1 B2 · · · 0

...
...

...
. . .

...
λ2rBr−1,0 λ2r−2Br−1,1 λ2r−4Br−1,2 · · · Br

λ2r+2Br,0 λ2rBr,1 λ2r−2Br,2 · · · λ2Br,r




(2.23)

The fundamental solution Γλ of Kλ reads

Γλ (x, t, 0, 0) =





(4π)−
N
2√

det Cλ(t)
exp

(− 1
4 〈C−1

λ (t)x, x〉 − t tr(Bλ)
)

if t > 0,

0 if t ≤ 0,
(2.24)
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with

Eλ(s) = exp(−sBT
λ ), Cλ(t) =

t∫

0

Eλ(s)
(

A0 0
0 0

)
ET

λ (s)ds. (2.25)

The translation group “◦λ” related to Kλ is

(x, t) ◦λ (ξ, τ) = (ξ + Eλ(τ)x, t + τ), (x, t), (ξ, τ) ∈ RN+1. (2.26)

We remark that
δ(λ)(ζ ◦λ z) =

(
δ(λ)ζ

) ◦ (
δ(λ)z

)
, ∀z, ζ ∈ RN+1 and λ > 0. (2.27)

The above identity is a direct consequence of the following result, which relates the matrices Eλ, Cλ and
C−1

λ with the dilations.

Lemma 2.4. For every t, R > 0, λ ∈]0, 1], we have

ER
λ
(λ2t) = D(λ)ER(t)D

(
λ−1

)
. (2.28)

D(λ)CR(t)D(λ) = CR
λ
(λ2t), (2.29)

D
(
λ−1

) C−1
R (t)D

(
λ−1

)
= C−1

R
λ

(λ2t) (2.30)

Proof. We use the Taylor expansion of ER(t) and the fact that D(λ)BT
RD

(
1
λ

)
= λ2BT

R
λ

. We have

D(λ)ER(t)D
(
λ−1

)
= D(λ)

( +∞∑

k=0

(−t)k

k!
(BT

R)k

)
D

(
λ−1

)
=

+∞∑

k=0

(−t)k

k!
(
D(λ)BT

RD
(
λ−1

))k
=

+∞∑

k=0

(−t)k

k!

(
λ2BT

R
λ

)k

= ER
λ
(λ2t)

This proves (2.28). We next consider (2.29). We have

D(λ)CR(t)D(λ) = D(λ)
( ∫ t

0

ER(s)AET
R(s)ds

)
D(λ) =

λ2

∫ t

0

D(λ)ER(s)D
(
λ−1

)
AD

(
λ−1

)
ER(s)T D(λ)ds =

(by (2.28))

∫ t

0

ER
λ
(λ2s)AET

R
λ
(λ2s)λ2ds =

∫ λ2t

0

ER
λ
(τ)AET

R
λ
(τ)dτ = CR

λ
(λ2t).

The proof of (2.30) is an immediate consequence of (2.29).

The following inequalities analogous to (2.11) and (2.12) hold: for every T > 0, there exists a positive
constant cT such that

∥∥∥∥D

(
1√
t

)
(Cλ(t)− C0(t))D

(
1√
t

)∥∥∥∥ ≤ cT λt ‖C0(1)‖
∥∥∥D(

√
t)

(C−1
λ (t)− C−1

0 (t)
)
D(
√

t)
∥∥∥ ≤ cT λt

∥∥C−1
0 (1)

∥∥
(2.31)
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for every t ∈]0, T ]. Moreover

〈C0(t)x, x〉 (1− cT λt) ≤〈Cλ(t)x, x〉 ≤ 〈C0(t)x, x〉 (1 + cT λt),〈C−1
0 (t)y, y

〉
(1− cT λt) ≤ 〈C−1

λ (t)y, y
〉 ≤ 〈C−1

0 (t)y, y
〉
(1 + cT λt);

(2.32)

for every x, y ∈ RN , t ∈]0, T ]. We omit the proof since it follows the same lines of the proof of (2.11) and
(2.12), respectively, and relies on the application of the identities stated in Lemma 2.4. In the sequel we
shall need the following result, that is an improvement of the estimate (2.13).

Lemma 2.5. For every positive T , there exists a constant cT > 0 such that

|det Cλ(t)− det C0(t)|
det C0(t)

≤ cT λt,

for every t ∈]0, T ] and for any λ ∈]0, 1].

Proof. We first note that, from (2.10) and (1.13) it follows that

det C0(t) = det D(
√

t) det C0(1) detD(
√

t), and det D(s) = sQ,

then we have

det Cλ(t)− det C0(t)
det C0(t)

=
det Cλ(t)− det C0(t)

tQ det C0(1)
=

det D
(

1√
t

)
(det Cλ(t)− det C0(t)) det D

(
1√
t

)

det C0(1)
=

det
(
D

(
1√
t

)
Cλ(t)D

(
1√
t

))
− det C0(1)

det C0(1)

We recall that, if A and B are two n×n matrix with ‖A‖ ≤ M and ‖B‖ ≤ M , then | detA−detB| ≤
C(n,M)‖A− B‖, for some positive constant C(n,M) only depending on n and M . The first inequality
in (2.31) implies that ∥∥∥∥D

(
1√
t

)
Cλ(t)D

(
1√
t

)∥∥∥∥ ≤ M

for some positive constant M only depending on T and on the matrix B, as a consequence we have
∣∣∣det

(
D

(
1√
t

)
Cλ(t)D

(
1√
t

))
− det C0(1)

∣∣∣
det C0(1)

≤ C(N, M)
det C0(1)

∥∥∥∥D

(
1√
t

)
(Cλ(t)− C0(t))D

(
1√
t

)∥∥∥∥ .

The thesis then follows from the first inequality in (2.31).

Proposition 2.6. For every R ∈]0, 1], and any z ∈ RN+1, z 6= 0, we have

ΓR

(
δ(

1
R

)(x, t)
)

= RQΓ(x, t) (2.33)

∂xiΓR

(
δ(

1
R

)(x, t)
)

= RQ+1∂xiΓ(x, t), ∀ i = 1, . . . , p0. (2.34)
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Proof. The explicit expression of ΓR is

ΓR

(
δ(R−1)(x, t)

)
=

(4π)−
N
2√

detCR( t
R2 )

exp
(
−1

4
〈D(R−1)C−1

R (tR−2)D(R−1)x, x〉
)

exp
(−tR−2trBR

)
.

From (2.30) we get
D(R−1)C−1

R (tR−2)D(R−1) = C−1(t),

moreover, from (2.29) it follows that

det
(CR(tR−2)

)
= det

(
D(R−1)

)
det

(
D(R)CR(tR−2)D(R)

)
det

(
D(R−1)

)
= R−2Qdet(C(t)).

The thesis then follows from the fact that trBR = R2trB. The proof of (2.34) is analogous.

Proposition 2.7. Let Γ be a fundamental solution of Ku = 0. For every T > 0 there exists a positive
constant C ′T such that:

Γ(z, w) ≤ C ′T
‖w−1 ◦ z‖Q

, (2.35)

∣∣∂xj Γ(z, w)
∣∣ ≤ C ′T

‖w−1 ◦ z‖Q+1
, j = 1, . . . p0, (2.36)

∣∣∂xixj Γ(z, w)
∣∣ ≤ C ′T

‖w−1 ◦ z‖Q+2
, i, j = 1, . . . p0, (2.37)

Y Γ(z, w) ≤ C ′T
‖w−1 ◦ z‖Q+2

, (2.38)

for every z, w ∈ RN × [−T, T ]. Moreover, if H ⊂ RN is a compact set and M is as in Remark 2.2, then
there exists a positive constant C ′′T such that

|Γ(z, w)− Γ(z̄, w)| ≤C ′′T
‖z−1 ◦ z̄‖

‖w−1 ◦ z‖Q+1
, (2.39)

∣∣∂xj Γ(z, w)− ∂xj Γ(z̄, w)
∣∣ ≤C ′′T

‖z−1 ◦ z̄‖
‖w−1 ◦ z‖Q+2

, j = 1, . . . p0, (2.40)

∣∣∂xixj Γ(z, w)− ∂xixj Γ(z̄, w)
∣∣ ≤C ′′T

‖z−1 ◦ z̄‖
‖w−1 ◦ z‖Q+3

, i, j = 1, . . . p0, (2.41)

|Y Γ(z, w)− Y Γ(z̄, w)| ≤C ′′T
‖z−1 ◦ z̄‖

‖w−1 ◦ z‖Q+3
, (2.42)

for every z, z̄, w ∈ RN × [−T, T ] such that ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z‖ and w−1 ◦ z ∈ H × [−T, T ].

The proof is postponed at the end of this section.

In the sequel we will consider the analogous of the operators Kλ with non-constant coefficients aij :

Lλ := λ2

(
δ(λ) ◦ L ◦ δ

(
1
λ

))
. (2.43)

If (aij) is the matrix of the coefficients of the second order part of L, then the coefficients of Lλ are
(aλ)ij(z) := aij(δ(λ)(z)). As a direct consequence of (2.27), it is possible to relate the module of
continuity of the (aλ)ij ’s with the module of continuity of the aij ’s, as the following remark states
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Remark 2.8. If the coefficients aij of L are Hölder continuous in the sense of Definition 1.1, then the
coefficients (aλ)ij of Lλ are Hölder continuous with respect to the translation group ◦λ. Indeed, we have

|(aλ)ij(z)− (aλ)ij(ζ)| = |aij(δ(λ)(z))− aij(δ(λ)(ζ))| ≤ c ‖δ(λ)(ζ)−1 ◦ δ(λ)(z)‖α = c λα‖ζ−1 ◦λ z‖α.

Proposition 2.9. For every T > 0 there exist two positive constants µ and c, with µ > Λ depending
only on T , on the matrix B and on Λ, such that

|Γλ(x, t)− Γ0(x, t)| ≤ cλΓ+
0 (x, t), ∀x ∈ RN , t ∈]0, T [ (2.44)

|∂xi
Γλ(x, t)− ∂xi

Γ0(x, t)| ≤ c
λ√
t
Γ+

0 (x, t), ∀x ∈ RN , t ∈]0, T [, i = 1, . . . , p0 (2.45)

In (2.44) and in (2.45), Γ0 denotes the fundamental solution of K0 defined in (2.8), and Γ+
0 is the

fundamental solution of

K+
0 = µ

p0∑

i=1

∂2
i + 〈x, B0∇〉 − ∂t.

Proof. From the explicit expression of Γλ and Γ0, and from the second inequality (2.32), we get

|Γλ(x, t)− Γ0(x, t)| ≤ cN

∣∣∣∣
1√

detCλ(t)
− 1√

detC0(t)

∣∣∣∣e−
1
4 〈C−1

0 (t)x,x〉(1−ctλt)+

+
cN√

detC0(t)

∣∣∣∣e−
1
4 〈C−1

0 (t)x,x〉(1−ctλt) − e−
1
4 〈C−1

0 (t)x,x〉
∣∣∣∣

As a direct consequence of Lemma 2.5 we have that there exist a constant c such that
∣∣∣∣

1√
detCλ(t)

− 1√
detC0(t)

∣∣∣∣ ≤ λ
c T√

detC0(t)
. (2.46)

We next fix a positive T0 such that T0cT < 1. We recall (2.16), and note that it is possible to choose
µ such that the function Γ+

0 satisfies

1√
detC0(t)

e−
1
4 〈C−1

0 (t)x,x〉(1−cT t) ≤ c0 Γ+
0 (x, t), for every (x, t) ∈ RN×]0, T0[,

for some positive constant c0 depending on T0, µ, and on the matrix B. On the other hand we have

∣∣∣1− e−cT λt〈C−1
0 (t)x,x〉

∣∣∣ ≤ cT λ t〈C−1
0 (t)x, x〉 ≤ c′T λT

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

by the mean value theorem and (2.10). Thus, from (2.21), it follows that
∣∣∣1− e−cT λt〈C−1

0 (t)x,x〉(1−cT t)
∣∣∣ 1√

detC0(t)
e−

1
4 〈C−1

0 (t)x,x〉 ≤ c1λ Γ+
0 (x, t),

for some positive constant c1. Summarizing the above inequalities we finally find that there exists a
positive constant c2 such that

|Γλ(x, t)− Γ0(x, t)| ≤ c2λ Γ+
0 (x, t)

for any x ∈ RN and 0 < t < T0. This concludes the proof in the case that TcT < 1. If TcT ≥ 1, we use
repeatedly the identity (2.20) and we conclude the proof after a finite number of iteration.
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In order to prove (2.45), we claim that:

|((C−1
λ (t)− C−1

0 (t))x)i| ≤ c
λ√
t

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣ (2.47)

for every i = 1, . . . , p0. We first observe that

|((C−1
λ (t)− C−1

0 (t))x)i| = 1√
t
|((D(

√
t)[C−1

λ (t)− C−1
0 (t)]D(

√
t)D(

1√
t
))x)i|

Thanks to (2.31) and (2.10), we have

‖D(
√

t)[C−1
λ (t)− C−1

0 (t)]D(
√

t)‖ = sup
|v|=1

|〈D(
√

t)[C−1
λ (t)− C−1

0 (t)]D(
√

t)v, v〉| =

= sup
|v|=1

|〈[C−1
λ (t)− C−1

0 (t)]D(
√

t)v, D(
√

t)v〉| ≤

≤ tλ cT sup
|v|=1

|〈C−1
0 (t)D(

√
t)v, D(

√
t)v〉| =

= tλ cT sup
|v|=1

|〈C−1
0 (1)v, v〉| ≤ Tλ cT ‖C−1

0 (1)‖

This implies (2.47). The thesis follows from the same argument as above. We omit the details.

Lemma 2.10. Let Γ and Γ0 be the fundamental solution of K and K0, respectively. Then for every
i, j = 1, . . . , p0, we have

∫

‖z‖=ε

∂xiΓ(z)νjdσ(z) →
∫

‖z‖=1

∂xiΓ0(z)νjdσ(z), as ε → 0+

where νj is the j-th component of the outer normal to the surface {z ∈ RN+1 : ‖z‖ = 1}.
Proof. We split the set {z ∈ RN+1 : ‖z‖ = ε} as B+

ε ∪B−
ε , where

B+
ε = {(x, t) ∈ RN+1 : ‖(x, t)‖ = ε, t ≥ 0}, B−

ε = {(x, t) ∈ RN+1 : ‖(x, t)‖ = ε, t < 0},
and we describe B+

ε , and B−
ε as the graph of the function Φε : Aε → R, where

Φε(x) =
(
ε− |x|δ

)2
, Aε = {x ∈ RN : |x|δ ≤ ε}.

We have
∫

B+
ε

∂xiΓ(x, t)νj(x, t)dσ(x, t) = −
∫

Aε

∂xiΓ(x, Φε(x))
∂Φε(x)

∂xj
dx =

(by the change of variable x = D(ε)y, since Φε(D(ε)y) = ε2Φ1(y))

−
∫

A1

∂xiΓ(δε(y, Φ1(y)))
∂Φ1(y)

∂yj
εQ+1dy = −

∫

A1

∂xiΓε(y, Φ1(y))
∂Φ1(y)

∂yj
dy =

∫

B+
1

∂xiΓε(x, t)νj(x, t)dσ(x, t),

by (2.34). The same argument applied to the set B−
ε shows that

∫

‖z‖=ε

∂xiΓ(z)νjdσ(z) =
∫

‖z‖=1

∂xiΓε(z)νjdσ(z).
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Then, ∣∣∣∣
∫

‖z‖=ε

∂xi
Γ(z)νjdσ(z)−

∫

‖ζ‖=1

∂xi
Γ0(ζ)νjdσ(ζ)

∣∣∣∣

≤
∫

‖ζ‖=1

|∂xiΓε(ζ)− ∂xiΓ0(ζ)|νjdσ(ζ)

(by (2.45)) ≤ c ε

∫

‖(ξ,τ)‖=1

Γ+
0 (ξ, τ)√

τ
νjdσ(ξ, τ) ≤ c1ε

for some positive constant c1 only depending on the operator K. This concludes the proof.

In order to prove a representation formula for the second order derivatives of a solution u to Ku = g,
we consider a function η ∈ C∞(RN+1) such that 0 ≤ η ≤ 1, η(z) = 1 if ‖z‖ ≥ 1 and η(z) = 0 if ‖z‖ ≤ 1

2 .
For every ε > 0 we set

ηε(z) = η (δ (1/ε) z) , (2.48)

and we note that there exists a positive constant c, only depending on η, such that

|∂xiηε(w−1 ◦ z)| ≤ c

ε
, |∂xixj ηε(w−1 ◦ z)| ≤ c

ε2
, |Y ηε(w−1 ◦ z)| ≤ c

ε2
, (2.49)

for every z, w ∈ RN+1, i, j = 1, . . . , p0 and ε ∈]0, 1]. Besides ∂xiηε(w−1 ◦ z) = 0, ∂xixj ηε(w−1 ◦ z) = 0 and
Y ηε(w−1 ◦ z) = 0 whenever ‖w−1 ◦ z‖ ≤ ε

2 .

Proposition 2.11. Let u ∈ C0(RN+1) be such that u, ∂xiu, ∂xixj u and Y u belong to Cα(RN+1) for
i, j = 1, . . . , p0, and let denote g = Ku. Then, for every z ∈ RN+1, for every i, j = 1, . . . , p0, we have

∂xixj u(z) = − lim
ε→0

∫

‖w−1◦z‖≥ε

∂xixj Γ(z, w)g(w)dw − g(z)
∫

‖ζ‖=1

∂xiΓ0(ζ)νjdσ(ζ) (2.50)

where Γ and Γ0 denote respectively the fundamental solution of K and K0, and νj is the j-th component
of the outer normal to the surface {ζ ∈ RN+1 : ‖ζ‖ = 1}.
Proof. For convenience, we set z = (x, t), w = (y, s), ζ = (ξ, τ). From the very definition of fundamental
solution, we have that

u(z) = −
∫

RN+1
Γ(z, w)g(w)dw, z ∈ RN+1

for every u ∈ C∞0 (RN+1). By our assumptions on u we have g ∈ Cα(RN+1), then a standard den-
sity argument extends the above identity to any function u such that u, ∂xiu, ∂xixj u and Y u belong to
Cα(RN+1). We next prove that

∂xiu(z) = −
∫

RN+1
∂xiΓ(z, w)g(w)dw, i = 1, . . . , p0. (2.51)

If ηε is the function defined in (2.48), we set

uε(z) = −
∫

RN+1
ηε(w−1 ◦ z)Γ(w−1 ◦ z)g(w)dw.
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By using (2.35), we get

|uε(z)− u(z)| ≤ ‖g‖∞
∫

‖w−1◦z‖≤ε

Γ(w−1 ◦ z)dw ≤ C ′T ‖g‖∞
∫

‖w−1◦z‖≤ε

1
‖w−1 ◦ z‖Q

dw

(by the change of variable ζ = δ( 1
ε )(w−1 ◦ z), note that det Eε(τ) = e−ε2τtrB)

= C ′T ‖g‖∞
∫

‖ζ‖≤1

εQ+2e−ε2τtrB

εQ‖ζ‖Q
dζ ≤ C ′′T ε2‖g‖∞

∫

‖ζ‖≤1

dζ

‖ζ‖Q
.

Then uε uniformly converges to u, as ε → 0. Note that, for every i = 1, . . . , p0, we have

∂xi
uε(z) = −

∫

RN+1

(
∂xi

ηε(w−1 ◦ z)Γ(w−1 ◦ z) + ηε(w−1 ◦ z)∂xi
Γ(w−1 ◦ z)

)
g(w)dw

so that, by using (2.49) and (2.36), we find
∣∣∣∣∂xiuε(z)−

∫

RN+1
∂xiΓ(w−1 ◦ z)g(w)dw

∣∣∣∣ ≤ ‖g‖∞
∫

‖w−1◦z‖≤ε

|∂xiΓ(w−1 ◦ z)|dw

+‖g‖∞ c

ε

∫
ε
2≤‖w−1◦z‖≤ε

Γ(w−1 ◦ z)dw ≤ c1‖g‖∞ε

for a positive constant c1 only depending on K. This proves that ∂xiuε uniformly converges to the right
hand side of (2.51), then (2.51) holds.

In order to conclude the proof, we set

vε(z) = −
∫

RN+1
ηε(w−1 ◦ z)∂xiΓ(w−1 ◦ z)g(w)dw.

Since ηε(w−1 ◦ z) = 1 in the set {w ∈ RN+1 : ‖w−1 ◦ z‖ ≥ ε}, we have

∂xj vε(z) = −
∫

‖w−1◦z‖≥ε

∂xjxiΓ(w−1 ◦ z)g(w)dw

−
∫

‖w−1◦z‖≤ε

∂xj [ηε(w−1 ◦ z)∂xiΓ(w−1 ◦ z)]g(w)dw = −I1(ε, z)− I2(ε, z)

for every j = 1, . . . , p0. We next show that I1(ε, z) uniformly converges on any compact subset of RN+1

as ε → 0+. For every 0 < ε′ < ε′′, we have

I1(ε′, z)− I1(ε′′, z) =
∫

ε′≤‖w−1◦z‖≤ε′′
∂xixj Γ(w−1 ◦ z)(g(w)− g(z))dw

+g(z)
∫

ε′≤‖w−1◦z‖≤ε′′
∂xixj Γ(w−1 ◦ z)dw = I ′1(ε

′, ε′′, z) + g(z)I ′′1 (ε′, ε′′)

Since g ∈ Cα(RN+1), and (2.37) holds, we find

|I ′1(ε′, ε′′, z)| ≤ cC ′T

∫

ε′≤‖w−1◦z‖≤ε′′

dw

‖w−1 ◦ z‖Q+2−α
≤ c′T |ε′′ − ε′|α, (2.52)
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for some positive constant c′T that does not depend on z. By the change of variable in the integral
appearing in I ′′1 , we find

∫

ε′≤‖w−1◦z‖≤ε′′
∂xixj

Γ(w−1 ◦ z)dw =
∫

ε′≤‖ζ‖≤ε′′
∂ξiξj

Γ(ζ)e−τ tr Bdζ

=
∫

‖ζ‖=ε′′
∂ξiΓ(ζ)e−τ tr Bνjdσ(ζ)−

∫

‖ζ‖=ε′
∂ξiΓ(ζ)e−τ tr Bνjdσ(ζ),

(2.53)

by the divergence Theorem. Hence Lemma 2.10 and (2.52) imply that I1(ε, · ) uniformly converges as
ε → 0.

We next consider I2(ε, z).

I2(ε, z) =
∫

‖w−1◦z‖≤ε

∂xj
[ηε(w−1 ◦ z)∂xi

Γ(w−1 ◦ z)](g(w)− g(z))dw

+g(z)
∫

‖w−1◦z‖≤ε

∂xj [ηε(w−1 ◦ z)∂xiΓ(w−1 ◦ z)]dw = I
′
2(ε, z) + g(z)I

′′
2 (ε)

We have
|I ′2(ε, z)| ≤

∫
ε
2≤‖w−1◦z‖≤ε

|∂xj ηε(w−1 ◦ z)||∂xiΓ(w−1 ◦ z)||g(w)− g(z)|dw

+
∫

‖w−1◦z‖≤ε

ηε(w−1 ◦ z)|∂xjxiΓ(w−1 ◦ z)||g(w)− g(z)|dw.

Using the fact that g ∈ Cα(RN+1), (2.36) and (2.37) as before, we easily find that |I ′2(ε, z)| ≤ c εα, for
some positive constant c only depending on K. Moreover, by the change of variable ζ = w−1 ◦ z and the
divergence theorem, we get

I
′′
2 (ε) =

∫

‖ζ‖=ε

ηε(ζ)∂ξiΓ(ζ)νj(ζ)e−τ tr Bdσ(ζ) =
∫

‖ζ‖=ε

∂ξiΓ(ζ)νj(ζ)e−τ tr Bdσ(ζ),

thus, by Lemma 2.10, we find

I
′′
2 (ε) →

∫

‖ζ‖=1

∂xiΓ0(ζ)νjdσ(ζ), as ε → 0.

This proves that

∂xj vε(z) ⇒ − lim
ε→0

∫

‖w−1◦z‖≥ε

∂xixj Γ(w−1 ◦ z)g(w)dw − g(z)
∫

‖ζ‖=1

∂xiΓ0(ζ)νjdσ(ζ).

This completes the proof, since vε(z) converges to ∂xiu(z) as ε → 0.

Proof of Proposition 2.7. We first recall a result from [8]: for every T > 0 there exists a positive constant
CT such that:

Γλ(z, ζ) ≤ CT

‖ζ−1 ◦ z‖Q
, ∀z, ζ ∈ RN × [−T, T ] and λ ∈]0, 1]. (2.54)

Inequality (2.35) is a plain consequence of the above bound (with λ = 1).
In order to prove (2.36), (2.37) and (2.38) we set ζ = (ξ, τ) = w−1 ◦ z, so that Γ(z, w) = Γ(ξ, τ).

Then

∂xj Γ(ξ, τ) =− 1
2

(C−1(τ)ξ
)
j

Γ(ξ, τ) for j = 1, . . . , N,

∂xixj Γ(ξ, τ) =
(

1
4

(C−1(τ)ξ
)
i

(C−1(τ)ξ
)
j
− 1

2
C−1(τ)i,j

)
Γ(ξ, τ) for i, j = 1, . . . , N.

(2.55)
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We next claim that
∣∣∣
(C−1(τ)ξ

)
j

∣∣∣ ≤ c0

τ qj/2

∣∣∣D(
1√
τ

)ξ
∣∣∣ for j = 1, . . . , N,

∣∣C−1(τ)i,j

∣∣ ≤ c0

τ
qi+qj

2

for i, j = 1, . . . , N,
(2.56)

for every (ξ, τ) ∈ RN × [0, T [, where the qj ’s are as in the definition of the norm (1.16), and the constant
c0 only depends on T and on the matrix B. Indeed,

∣∣∣
(C−1(τ)ξ

)
j

∣∣∣ ≤
∣∣∣
((C−1(τ)− C−1

0 (τ)
)
ξ
)
j

∣∣∣ +
∣∣∣
(
C−1
0 (τ)ξ

)
j

∣∣∣ =

1
τ qj/2

∣∣∣
(
D(
√

τ)
(C−1(τ)− C−1

0 (τ)
)
D(
√

τ)D(
1√
τ

)ξ
)

j

∣∣∣+
1

τ qj/2

∣∣∣
(
D(
√

τ)C−1
0 (τ)D(

√
τ)D(

1√
τ

)ξ
)

j

∣∣∣ ≤
1

τ qj/2

∥∥D(
√

τ)
(C−1(τ)− C−1

0 (τ)
)
D(
√

τ)
∥∥ ·

∣∣∣D(
1√
τ

)ξ
∣∣∣ +

1
τ qj/2

∣∣∣C−1
0 (1)D(

1√
τ

)ξ
∣∣∣,

by (2.10). From (2.11) it then follows that
∣∣∣
(C−1(τ)ξ

)
j

∣∣∣ ≤ 1 + cT τ

τ qj/2
‖C−1

0 (1)‖
∣∣∣D(

1√
τ

)ξ
∣∣∣.

This proves the first assertion in (2.56). The proof of the second one is analogous, it is sufficient to note
that

C−1(τ)i,j = 〈C−1(τ)ei, ej〉, i, j = 1, . . . , N,

where ej denotes the j–th vector of the canonical basis of RN . By the homogeneity of the norm, we also
have that

‖(ξ, τ)‖ =
∥∥∥
(
D(
√

τ)D(
1√
τ

)ξ, τ
)∥∥∥ =

√
τ

∥∥∥
(
D(

1√
τ

)ξ, 1
)∥∥∥ ≤ c1

√
τ
(∣∣∣D(

1√
τ

)ξ
∣∣∣ + 1

)
, (2.57)

for a constant c1 only dependent on B. This inequality, together with the first one in (2.56), gives

‖(ξ, τ)‖qj ·
∣∣∣
(C−1(τ)ξ

)
j

∣∣∣ ≤ c2

(∣∣∣D(
1√
τ

)ξ
∣∣∣ + 1

)qj+1

, j = 1, . . . , N, (2.58)

for some positive constant c2, then, by (2.21), we find

‖(ξ, τ)‖qj
∣∣∂xj Γ(ξ, τ)

∣∣ ≤ c3 Γ+(ξ, τ), j = 1, . . . , N, (2.59)

and inequality (2.36) directly follows from (2.54). The same argument leads to the following inequality

‖(ξ, τ)‖qi+qj
∣∣∂xixj Γ(ξ, τ)

∣∣ ≤ c4 Γ+(ξ, τ), i, j = 1, . . . , N, (2.60)

which gives (2.37). The bound (2.38) is a straightforward consequence of (2.37) and of the fact that Γ is
a solution to Ku = 0.

Before proceeding with the second set of inequalities, we state a further result that will needed in
the sequel

‖(ξ, τ)‖qi+qj+qm
∣∣∂xixjxmΓ(ξ, τ)

∣∣ ≤ c5 Γ+(ξ, τ), i, j,m = 1, . . . , N,

‖(ξ, τ)‖qi+qj+qm+qn
∣∣∂xixjxmxnΓ(ξ, τ)

∣∣ ≤ c6 Γ+(ξ, τ), i, j,m, n = 1, . . . , N,
(2.61)
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for some positive constants c5, c6. We omit the proof, since it is analogous to the previous one.

We are now concerned with the proof of (2.39). As before, we set (ξ, τ) = w−1 ◦ z, (η, σ) = z−1 ◦ z̄,
and we recall that M is as in Remark 2.2. We have

Γ(ξ, τ)− Γ
(
(ξ, τ) ◦ (η, σ)

)
= Γ(ξ, τ)− Γ

(
(ξ, τ) ◦ (0, σ)

)
+

Γ
(
(ξ, τ) ◦ (0, σ)

)− Γ
(
(ξ, τ) ◦ (η, σ)

)
=

σ Y Γ
(
(ξ, τ) ◦ (0, θ1σ)

)
+

N∑

i=1

ηj∂xj
Γ
(
(ξ, τ) ◦ (θ2η, σ)

)
,

(2.62)

for some θ1, θ2 ∈]0, 1[. Note that ‖(0, θ1σ)‖ ≤ ‖(η, σ)‖, and that ‖(θ2η, σ)‖ ≤ ‖(η, σ)‖, so that both the
inequalities ‖(0, θ1σ)‖ ≤ M‖(ξ, τ)‖, and ‖(θ2η, σ)‖ ≤ M‖(ξ, τ)‖ hold true. Then, by (2.6),

‖(ξ, τ) ◦ (0, θ1σ)‖ ≥ 1−M C2
T

CT
‖(ξ, τ)‖, ‖(ξ, τ) ◦ (θ2η, σ)‖ ≥ 1−M C2

T

CT
‖(ξ, τ)‖. (2.63)

Thus, we obtain from (2.59) that
∣∣∣∣∣

N∑

i=1

ηj∂xj Γ
(
(ξ, τ) ◦ (θ2η, σ)

)
∣∣∣∣∣ ≤ c3

N∑

j=1

|ηj | · ‖(ξ, τ) ◦ (θ2η, σ)‖−qj Γ+
(
(ξ, τ) ◦ (θ2η, σ)

) ≤

c3

N∑

j=1

‖(η, σ)‖qj · ‖(ξ, τ) ◦ (θ2η, σ)‖−qj Γ+
(
(ξ, τ) ◦ (θ2η, σ)

) ≤

c′T
‖(η, σ)‖

‖(ξ, τ)‖Q+1
,

(2.64)

by (2.54) and (2.63). Analogously, we obtain from (2.38) and (2.63)

∣∣σY Γ
(
(ξ, τ) ◦ (0, θ1σ)

)∣∣ ≤ C ′T |σ|
‖(ξ, τ) ◦ (0, θ1σ)‖Q+2

≤ c′′T
‖(η, σ)‖

‖(ξ, τ)‖Q+1
, (2.65)

By substituting (2.64) and (2.65) in (2.62), we obtain (2.39).
The proof of (2.40) is analogous: for any j = 1, . . . , p0 we have

∂xj Γ(ξ, τ)− ∂xj Γ
(
(ξ, τ) ◦ (η, σ)

)
= σ Y ∂xj Γ

(
(ξ, τ) ◦ (0, θ1σ)

)
+

N∑

i=1

ηi∂xixj Γ
(
(ξ, τ) ◦ (θ2η, σ)

)
, (2.66)

for some θ1, θ2 ∈]0, 1[. In order to estimate the first term in the right hand side we rely on the very
definition of the commutator of ∂xj and Y and on the fact that Γ is a solution to Ku = 0: we find

Y ∂xj Γ(x, t) = −
p0∑

i,m=1

ai,m∂xixjxmΓ(x, t)−
N∑

k=1

bj,k∂xk
Γ(x, t), ∀(x, t) 6= (0, 0). (2.67)

Recall that B has the form (1.7), and j ≤ p0, then bj,k = 0 for every k ≥ p0 + p1. Hence, it follows from
the firs set of inequalities in (2.56) that

∣∣∣∣∣
N∑

k=1

bj,k∂xk
Γ(x, t)

∣∣∣∣∣ =

∣∣∣∣∣
p0+p1∑

k=1

bj,k∂xk
Γ(x, t)

∣∣∣∣∣ ≤ c′0
(
t−1/2 + t−3/2

) ∣∣∣D(
1√
t
)x

∣∣∣Γ(x, t),

where the constant c′0 only depend on T and B. Thus, by (2.57) and (2.21), we obtain
∣∣∣∣∣

N∑

k=1

bj,k∂xk
Γ
(
(ξ, τ) ◦ (0, θ1σ)

)
∣∣∣∣∣ ≤

c′′′0∥∥(ξ, τ) ◦ (0, θ1σ)
∥∥3 Γ+

(
(ξ, τ) ◦ (0, θ1σ)

)
. (2.68)
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The above inequality, the first line in (2.61), and (2.63) then give

∣∣σ Y ∂xj
Γ
(
(ξ, τ) ◦ (0, θ1σ)

)∣∣ ≤ c′′′′0

|σ|∥∥(ξ, τ) ◦ (0, θ1σ)
∥∥Q+3

≤ c′′′T

‖(η, σ)‖∥∥(ξ, τ) ◦ (0, θ1σ)
∥∥Q+2

(2.69)

for a positive constant c′′′T depending on T , B and Λ in [H2]. The last sum in (2.66) can be estimate as
(2.64), by using the first set of inequalities in (2.61). We find

∣∣∣∣∣
N∑

i=1

ηj∂xixj
Γ
(
(ξ, τ) ◦ (θ2η, σ)

)
∣∣∣∣∣ ≤ c′′T

‖(η, σ)‖
‖(ξ, τ)‖Q+2

,

which, together with (2.69), gives (2.40).
The same argument gives the proof of (2.41): in this case we have to use the second set of inequalities

in (2.61) and the analogous of (2.67):

Y ∂xixj
Γ(x, t) =

p0∑
m,n=1

am,n∂xixjxmxn
Γ(x, t)−

N∑

k=1

(
bj,k∂xkxi

Γ(x, t) + bi,k∂xkxj
Γ(x, t)

)
,

For all (x, t) 6= (0, 0). We omit the other details.
Finally, as in the proof of (2.38), we simply note that (2.42) is an immediate consequence of the fact

that Γ is a solution to Ku = 0.

3 Schauder estimates

Let Ω be an open subset of RN+1, and α ∈]0, 1]. We will say that f ∈ Cα(Ω) if

|f |α,Ω = sup
Ω
|f |+ sup

z,ζ∈Ω
z 6=ζ

|f(z)− f(ζ)|
‖ζ−1 ◦ z‖α

(3.1)

is finite. Note that | · |α,Ω is a norm and that

|fg|α,Ω ≤ 2 |f |α,Ω |g|α,Ω, (3.2)

for every f, g ∈ Cα(Ω). We say that f ∈ C2+α(Ω) if

|f |2+α,Ω = |f |α,Ω +
p0∑

i=1

|∂xif |α,Ω +
p0∑

i,j=1

|∂xixj f |α,Ω + |Y f |α,Ω < ∞. (3.3)

Moreover, we say that f is locally Hölder-continuous function, and we write f ∈ Cα
loc(Ω) if f ∈ Cα(Ω′)

for every compact subset Ω′ of Ω. For every z, ζ ∈ Ω, we set

dz,ζ = min{dz, dζ}, dz = inf
w∈∂Ω

‖w−1 ◦ z‖.

We say that a function f : Ω → R belongs to Cα
d (Ω), if

|f |α,d,Ω = sup
Ω
|f |+ sup

z,ζ∈Ω
z 6=ζ

dα
z,ζ

|f(z)− f(ζ)|
‖ζ−1 ◦ z‖α

, (3.4)

is finite. We also consider the following norm:

[f ]2+α,d,Ω = sup
z∈Ω

d2
z|f(z)|+ sup

z,z̄∈Ω
d2+α

z,z̄

|f(z)− f(z̄)|
‖z̄−1 ◦ z‖α
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and we observe that, for every f, g ∈ Cα
d (Ω), we have

[fg]2+α,d,Ω ≤ 2|g|α,d,Ω[f ]2+α,d,Ω, (3.5)

We say that f ∈ C2+α
d (Ω) if

|f |2+α,d,Ω := sup
z∈Ω

|f |+ sup
z,ζ∈Ω
z 6=ζ

d2+α
z,ζ

|f(z)− f(ζ)|
‖ζ−1 ◦ z‖α

+
p0∑

i=1

sup
z∈Ω

dz|∂xif |+

p0∑

i=1

sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xi
f(z)− ∂xi

f(z̄)|
‖z̄ ◦ z‖α

+
p0∑

i,j=1

[∂xixj
f ]2+α,d,Ω + [Y f ]2+α,d,Ω

(3.6)

is finite. In order to prove our Schauder-type estimate we recall some interpolation inequalities for
functions u in the space C2+α

d (Ω). For every ε > 0 there exist a positive constant Cε such that

sup
Ω

dz|∂xi
u| ≤ Cε sup

Ω
|u|+ ε sup

Ω
d2

z|∂xixj
u| (3.7)

sup
Ω

d2
z|∂xixj u| ≤ Cε sup

Ω
|u|+ ε sup

z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

(3.8)

sup
Ω
|u|+

p0∑

i=1

sup
Ω

dz|∂xiu|+
p0∑

i,j=1

sup
Ω

d2
z|∂xixj u| ≤ Cε sup

Ω
|u|+ ε

p0∑

i,j=1

sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

(3.9)

for every i, j = 1, . . . , p0. The above inequalities have been proved by Manfredini (see the statement
“Interpolation inequalities” p. 846, in [24]).

We will prove our interior estimate of Schauder type by a classical argument, based on the represen-
tation formulas of the solution in terms of the fundamental solution of the frozen operator

K̃z0u :=
p0∑

i,j=1

ai,j(z0)∂xixj u +
p0∑

i=1

ai(z0)∂xiu + Y. (3.10)

Remark 3.1. Denote a = (a1(z0), . . . , ap0(z0), 0, . . . , 0) ∈ RN . Then the fundamental solution Γ̃z0 of
K̃z0 is

Γ̃z0(x, t) = Γz0(x− at, t)

where Γz0 is the fundamental solution of

Kz0u :=
p0∑

i,j=1

ai,j(z0)∂xixj u + Y.

As a consequence, the representation formula stated in Proposition 2.11 also holds for Γ̃z0 .
Besides, since the coefficients a1, . . . , ap0 are bounded functions, the estimates of Proposition 2.7

extend to Γ̃z0 . Indeed, there exist two positive constants c′ and c′′, depending on supi=1,...,p0
|ai(z)|, such

that
c′‖(x, t)‖ ≤ ‖(x− at, t)‖ ≤ c′′‖(x, t)‖.

Then we have, for instance

Γ̃z0(x, t) = Γz0(x− at, t) ≤ C ′T
‖(x− at, t)‖Q

≤ C ′T
(c′‖(x, t)‖)Q

.

The other bounds extend to Γ̃z0 analogously.
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In order to avoid cumbersome notations, in the sequel we denote by Γz0 the fundamental solution of
K̃z0 . We also recall that the function

Γ∗z0
(ζ, z) = Γz0(z, ζ), ∀ z, ζ ∈ RN+1, z 6= ζ

is the fundamental solution of

K∗
z0

=
p0∑

i,j=1

aij(z0)∂xixj
−

p0∑

i=1

ai(z0)∂xi
− Y − trB

(see [11], Theorem 1.5). Note that the function Γ̃∗z0
(x, t, ξ, τ) = e(t−τ)trBΓ∗z0

(x, t, ξ, τ) is the fundamental
solution of

p0∑

i,j=1

aij(z0)∂xixj
−

p0∑

i=1

ai(z0)∂xi
− Y

then the results proved in the pervious section apply to Γ∗z0
.

Proof of Theorem 1.3. We first remark that it suffices to prove inequality (1.18) for compact subsets of
Ω. Indeed, let (Ωk)k∈N be a sequence of open bounded subsets of Ω, such that Ωk ⊂ Ωk+1 for all k
and

⋃
k∈NΩk = Ω. Assume that (1.18) holds on every Ωk, with the same constant c, then every norm

|u|2+α,d,Ωk
is finite. We then fix z, ζ ∈ Ω, with z 6= ζ. For sufficiently large k, we have

|u(z)|+ d2+α(Ωk)
|u(z)− u(ζ)|
‖ζ−1 ◦ z‖α

+ dz(Ωk)|∂xiu(z)|+ d2+α(Ωk)
|∂xiu(z)− ∂xiu(ζ)|

‖ζ−1 ◦ z‖α
+ d2

z(Ωk)|∂xixj u(z)|

+ d2+α
z,ζ (Ωk)

|∂xixj u(z)− ∂xixj u(ζ)|
‖ζ−1 ◦ z‖α

+ d2
z(Ωk)|Y u(z)|+ d2+α

z,ζ (Ωk)
|Y u(z)− Y u(ζ)|
‖ζ−1 ◦ z‖α

≤ c(supΩk
|u|+ [f ]2+α,d,Ωk

) ≤ c(supΩ |u|+ [f ]2+α,d,Ω)

for every i, j = 1, . . . , p0. Hence, by letting k to infinity, we obtain the inequality

|u(z)|+ d2+α
z,ζ

|u(z)− u(ζ)|
‖ζ−1 ◦ z‖α

+ dz|∂xiu(z)|+ d2+α
z,ζ

|∂xiu(z)− ∂xiu(ζ)|
‖ζ−1 ◦ z‖α

+ d2
z|∂xixj u(z)|

+d2+α
z,ζ

|∂xixj u(z)− ∂xixj u(ζ)|
‖ζ−1 ◦ z‖α

+ d2
z|Y u(z)|+ d2+α

z,ζ

|Y u(z)− Y u(ζ)|
‖ζ−1 ◦ z‖α

≤ c(sup
Ω
|u|+ [f ]2+α,d,Ω),

so that (1.18) holds in the set Ω.
We next split the proof into three steps. We first prove a bound of the derivatives of u in the space

Cα
d (Ω), when u is compactly supported, then we extend the bounds to more general solutions u and,

finally we conclude the proof by using some interpolation inequalities.

First step We first prove that, if u has compact support, then there exist a positive constant cΩ such
that

dα
z,z̄ |u(z)− u(z̄)| ≤ cΩ|g|α,d,Ω ‖z−1 ◦ z̄‖α,

d1+α
z,z̄ |∂xiu(z)− ∂xiu(z̄)| ≤ cΩ|g|α,d,Ω ‖z−1 ◦ z̄‖α,

d2+α
z,z̄ |∂xixj u(z)− ∂xixj u(z̄)| ≤ cΩ|g|α,d,Ω ‖z−1 ◦ z̄‖α,

(3.11)

for every z, z̄ ∈ Ω, and for any i, j = 1, . . . , p0.
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Fix z0 ∈ Ω and let Kz0 be the frozen operator introduced in (3.10). Let u be compactly supported
and set g = Kz0u. Since Ω is bounded, we have that R = supw,z∈Ω ‖w−1 ◦ z‖ is finite. To prove the first
inequality in (3.11), we observe that

u(z)− u(z̄) =
∫

BR(z0)

(
Γz0(w

−1 ◦ z)− Γz0(w
−1 ◦ z̄)

)
g(w)dw

Let M be the positive constant in the inequality (2.41), we split the above integral as follow:

u(z)− u(z̄) =
∫

BR(z0)∩{‖z−1◦z̄‖≤M‖w−1◦z‖}

(
Γz0(w

−1 ◦ z)− Γz0(w
−1 ◦ z̄)

)
g(w)dw

+
∫

BR(z0)∩{‖z−1◦z̄‖≥M‖w−1◦z‖}

(
Γz0(w

−1 ◦ z)− Γz0(w
−1 ◦ z̄)

)
g(w)dw

So, by (2.35) and (2.39), we get

|u(z)− u(z̄)| ≤ CT ‖g‖∞
∫

BR(z0)∩{‖z−1◦z̄‖≤M‖w−1◦z‖}

∣∣Γz0(w
−1 ◦ z)− Γz0(w

−1 ◦ z̄)
∣∣ dw

+CT ‖g‖∞
∫

BR(z0)∩{‖z−1◦z̄‖≥M‖w−1◦z‖}

∣∣Γz0(w
−1 ◦ z)− Γz0(w

−1 ◦ z̄)
∣∣ dw

≤ CT ‖g‖∞
(
‖z−1 ◦ z̄‖

∫

BR(z0)∩{‖z−1◦z̄‖≤M‖w−1◦z‖}

1
‖w−1 ◦ z‖Q+1

dw

+
∫

BR(z0)∩{‖z−1◦z̄‖≥M‖w−1◦z‖}

1
‖w−1 ◦ z‖Q

+
1

‖w−1 ◦ z̄‖Q
dw

)

≤ C ′T ‖g‖∞‖z−1 ◦ z̄‖+ C ′′T ‖g‖∞‖z−1 ◦ z̄‖2 ≤ C ′′′|g|α,d,Ω‖z−1 ◦ z̄‖α

for some positive constant C ′′′ that depends on Ω and L. The proof of the second inequality in (3.11) is
similar and will be omitted. We next prove the third one. By Proposition 2.11, we have

∂xixj u(z)− ∂xixj u(z̄) =

− lim
ε→0

∫

ε≤‖w−1◦z‖≤R

∂xixj Γz0(w
−1 ◦ z)[g(w)− g(z)]dw + lim

ε→0

∫

ε≤‖w−1◦z̄‖≤R

∂xixj Γz0(w
−1 ◦ z̄)[g(w)− g(z̄)]dw

−(g(z)− g(z̄))
∫

‖ζ‖=1

∂xiΓz0,0(ζ)νj σ(ζ)

−g(z) lim
ε→0

∫

ε≤‖w−1◦z‖≤R

∂xixj Γz0(w
−1 ◦ z)dw + g(z̄) lim

ε→0

∫

ε≤‖w−1◦z̄‖≤R

∂xixj Γz0(w
−1 ◦ z̄)dw

where Γz0,0 denotes the fundamental solution of

p0∑

i,j=1

ai,j(z0)∂xixj +
p0∑

j=1

aj(z0)∂xj + Y0

and Y0 is defined in (2.8). Since g ∈ Cα
d , the first two integrals in the above formula converge as ε → 0.

Then, in the following, we shall omit the limit.
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In order to give a bound for the last two integrals in the above formula, we use (2.53) and Lemma
2.10. We find

lim
ε→0

∫

ε≤‖w−1◦z‖≤R

∂xixj
Γz0(w

−1 ◦ z)dw =

− lim
ε→0

∫

‖ζ‖=ε

∂ξiΓ(ζ)e−τ tr Bνjdσ(ζ) +
∫

‖ζ‖=R

∂ξiΓ(ζ)e−τ tr Bνjdσ(ζ) =

−
∫

‖ζ‖=1

∂ξi
Γε(ζ)e−τ tr Bνjdσ(ζ) +

∫

‖ζ‖=R

∂ξi
Γ(ζ)e−τ tr Bνjdσ(ζ) = c̃

and, analogously,

lim
ε→0

∫

ε≤‖w−1◦z̄‖≤R

∂xixj
Γz0(w

−1 ◦ z̄) = c̃.

We summarize the above results in the following formula

∂xixj
u(z)− ∂xixj

u(z̄) =

−
∫

M‖w−1◦z‖≤‖z−1◦z̄‖

∂xixj Γz0(w
−1◦z)[g(w)−g(z)]dw−

∫

‖z−1◦z̄‖≤M‖w−1◦z‖≤MR

∂xixj Γz0(w
−1◦z)[g(w)−g(z)]dw

+
∫

M‖w−1◦z̄‖≤‖z−1◦z̄‖

∂xixj Γz0(w
−1◦ z̄)[g(w)−g(z̄)]dw+

∫

‖z−1◦z̄‖≤M‖w−1◦z̄‖≤MR

∂xixj Γz0(w
−1◦ z̄)[g(w)−g(z̄)]dw

− c̃1 (g(z)− g(z̄)) = I1 + I2 + I3 + I4 − c̃1 (g(z)− g(z̄))

We estimate separately I1, I2, I3 and I4. Choose a positive T such that Ω ⊂ RN×] − T, T [ and apply
Proposition 2.7. If Ω′ denotes the support of u, then the inequality (2.37) yields

|I1| ≤ c1|g|α,Ω′

∫

M‖w−1◦z‖≤‖z−1◦z̄‖

‖w−1 ◦ z‖α

‖w−1 ◦ z‖Q+2
dw = c|g|α,Ω′‖z−1 ◦ z̄‖α.

An analogous procedure can be used to estimate I3. It is sufficient to observe that, by (ii) of Lemma 2.1,

‖w−1 ◦ z̄‖ ≤ CT (‖w−1 ◦ z‖+ ‖z−1 ◦ z̄‖) ≤ CT

(
1 +

1
M

)
‖z−1 ◦ z̄‖,

for any w such that M‖w−1 ◦ z‖ ≤ ‖z−1 ◦ z̄‖. Concerning I2 and I4, we have

I2 + I4 =
∫

‖z−1◦z̄‖≤M‖w−1◦z‖≤MR

(
∂xixj Γz0(z̄, w)− ∂xixj Γz0(z, w)

)(
g(w)− g(z)

)
dw−

∫

‖z−1◦z̄‖≤M‖w−1◦z‖≤MR

∂xixj Γz0(z̄, w)
(
g(w)− g(z)

)
dw+

∫

‖z−1◦z̄‖≤M‖w−1◦ ¯z‖≤MR

∂xixj Γz0(z̄, w)
(
g(w)− g(z̄))

)
dw =

∫

‖z−1◦z̄‖≤M‖w−1◦z‖≤MR

(
∂xixj Γz0(z̄, w)− ∂xixj Γz0(z, w)

)(
g(w)− g(z)

)
dw+

(
g(z)− g(z̄)

) ∫

A0

∂xixj Γz0(z̄, w)dw +
∫

A1

∂xixj Γz0(z̄, w)
(
g(w)− g(z)

)
dw+

∫

A2

∂xixj Γz0(z̄, w)
(
g(w)− g(z̄

)
dw = J1 +

(
g(z)− g(z̄)

)
J2 + J3 + J4,
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where
A0 =

{
w ∈ RN+1 : ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z‖, ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z̄‖ ≤ MR

}
,

A1 =
{
w ∈ RN+1 : M‖w−1 ◦ z̄‖ < ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z‖},

A2 =
{
w ∈ RN+1 : M‖w−1 ◦ z‖ < ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z̄‖}.

We first consider J1. From (2.41), we get

|J1| ≤ c1|g|α,Ω′‖z−1 ◦ z̄‖
∫

‖z−1◦z̄‖≤M‖w−1◦z‖

1
‖w−1 ◦ z‖Q+3−a

dw = c|g|α,Ω′‖z−1 ◦ z̄‖α.

We now estimate J2. By the divergence Theorem, we obtain

J2 =
∫

∂Ā

∂xi
Γz0(ζ̄)νje

−τ̄ tr Bdσ(ζ̄)

where Ā =
{
ζ̄ ∈ RN+1 : ‖z−1 ◦ z̄‖ ≤ M‖ζ̄ ◦ z̄−1 ◦ z‖, ‖z−1 ◦ z̄‖ ≤ M‖ζ̄‖ ≤ MR

}
, thus, by (2.36), we find

|J2| ≤C ′T

∫

∂Ā

1
‖ζ̄‖Q+1

dσ(ζ̄) ≤ C ′T

( ∫

‖z−1◦z̄‖=M‖ζ̄‖

1
‖ζ̄‖Q+1

dσ(w)+

∫

‖z−1◦z̄‖=M‖ζ̄◦z̄−1◦z‖

1
‖ζ̄ ◦ z̄−1 ◦ z‖Q+1

dσ(w) +
∫

‖ζ̄‖=R

1
‖ζ̄‖Q+1

dσ(ζ̄)

)
= C ′′,

for a suitable positive constant C ′′, depending on the operator K and Ω.
In order to find a bound for J3 and J4 we note that from (2.6) it follows that

1−M C2
T

CT
‖w−1 ◦ z‖ ≤ ‖w−1 ◦ z̄‖ ≤ CT (1 + M)‖w−1 ◦ z‖.

Then

|J3|, |J4| ≤ C̄|g|α,Ω′

∫

M‖w−1◦z̄‖<‖z−1◦z̄‖

‖w−1 ◦ z̄‖α

‖w−1 ◦ z̄‖Q+2
dw ≤ C̄ ′|g|α,Ω′‖z−1 ◦ z̄‖α,

for a suitable positive constant C̄ ′.
Summarizing the above inequalities we conclude that

|I1 + · · ·+ I4| ≤ C ′′′ |g|α,Ω′‖z−1 ◦ z̄‖α, ∀ z, z̄ ∈ Ω. (3.12)

This accomplishes the proof of (3.11).

Second step We next remove the assumption that u has a compact support in Ω. Denote by Br(z̄) the
metric ball with center at z̄ and radius r:

Br(z̄) =
{

ζ ∈ RN+1 : ‖z̄−1 ◦ ζ‖ ≤ r
}

,

and suppose that Br(z̄) ⊂ Ω. If T is a positive constant such that Ω ⊆ RN×] − T, T [ and CT is the
constant appearing in Remark 2.2, then we choose any m > C3

T . Note that, being CT ≥ 1, we have that
there exists a positive constant c such that ‖ζ−1 ◦ z‖ ≥ cr, for every z ∈ B r

m
(z̄), ζ ∈ ∂Br(z̄). We claim

that there exists a positive constant CΩ, only depending on the operator L and Ω, such that

r2+α |u(z)− u(z̄)|
‖z̄−1 ◦ z‖α

≤ CΩ([g]2+α,d,Br(z̄) + sup
Br(z̄)

|u|),

r2+α |∂xiu(z)− ∂xiu(z̄)|
[z̄−1 ◦ z]α

≤ CΩ([g]2+α,d,Br(z̄) + sup
Br(z̄)

|u|),

r2+α |∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

≤ CΩ([g]2+α,d,Br(z̄) + sup
Br(z̄)

|u|),

(3.13)
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for any z̄, z and r > 0 such that Br(z̄) ⊂ Ω and z ∈ B r
2m3

(z̄).
We only prove the last inequality since the first two are simpler than that one. We consider a function

ϕ ∈ C∞0 (Br(z̄)) such that ϕ(z) = 1 whenever z ∈ B r
2m2

(z̄) and ϕ(z) = 0 when z ∈ Br(z̄) \ B r
m2

(z̄). We
also require that |∂xiϕ(z)| ≤ c

r , |∂xixj ϕ(z)| ≤ c
r2 (for i, j = 1, . . . , p0), and |Y ϕ(z)| ≤ c

r2 . A such function
can be defined as ηε in (2.48) (also recall (2.49)).

We integrate the function vg − uK∗
z0

v on Br(z̄), where g = Kz0u and v(ζ) = ϕ(ζ)Γ∗z0
(ζ, z):

u(z) = −
∫

Br(z̄)

ϕ(ζ)g(ζ)Γ∗z0
(ζ, z)dζ +

∫

B r
m2

(z̄)\B r
2m2

(z̄)

u(ζ)K∗
z0

(ϕ(ζ)Γ∗z0
(ζ, z))dζ, (3.14)

consequently, we have

∂xixj
u(z) = −∂xixj

∫

Br(z̄)

ϕ(ζ)g(ζ)Γ∗z0
(ζ, z)dζ + ∂xixj

∫

B r
m2

(z̄)\B r
2m2

(z̄)

u(ζ)K∗
z0

(ϕ(ζ)Γ∗z0
(ζ, z))dζ

= −∂xixj

∫

Br(z̄)

ϕ(ζ)g(ζ)e−(t−τ)trBΓz0(z, ζ)dζ +

∂xixj

∫

B r
m2

(z̄)\B r
2m2

(z̄)

u(ζ)K∗
z0

(ϕ(ζ)e−(t−τ)trBΓz0(z, ζ))dζ = vi,j(z) + wi,j(z),

(3.15)
for i, j = 1, . . . , p0, where z = (x, t) and ζ = (ξ, τ). Consider the second term in (3.15). We first note
that,

wi,j(z) =
∫

B r
m2

(z̄)\B r
2m2

(z̄)

∂xixj u(ζ)K∗
z0

(ϕ(ζ)e−(t−τ)trBΓz0(z, ζ))dζ, (3.16)

for every z ∈ B r
2m3

(z̄). Then

rα |wi,j(z)− wi,j(z̄)|
‖z̄−1 ◦ z‖α

≤ c rα

‖z̄−1 ◦ z‖α
sup

Br(z̄)

|u|

(
sup

Br(z̄)

|K∗
z0

ϕ|
∫

B r
m2

(z̄)\B r
2m2

(z̄)

|∂xixj Γz0(z, ζ)− ∂xixj Γz0(z̄, ζ)|dζ

+
p0∑

h,k=1

sup
Br(z̄)

|∂ξh
ϕ|

∫

B r
m2

(z̄)\B r
2m2

(z̄)

|∂xixj ∂ξk
Γz0(z, ζ)− ∂xixj ∂ξk

Γz0(z̄, ζ)|dζ

)

=
c rα

‖z̄−1 ◦ z‖α
sup

Br(z̄)

|u|(I∗1 + I∗2 ),

(3.17)
for some positive constant c only depending on the operator K. We first consider I∗1 :

I∗1 = sup
Br((̄z))

|Lz0ϕ|(J∗1 + J∗2 ) (3.18)
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where
J∗1 =

∫

B r
m2

(z̄)\B r
2m2

(z̄)∩{‖z̄−1◦z‖≤M‖ζ−1◦z̄‖}

|∂xixj
Γz0(z, ζ)− ∂xixj

Γz0(z̄, ζ)|dζ,

J∗2 =
∫

B r
m2

(z̄)\B r
2m2

(z̄)∩{‖z̄−1◦z‖≥M‖ζ−1◦z̄‖}

|∂xixj
Γz0(z, ζ)− ∂xixj

Γz0(z̄, ζ)|dζ,

and M is the constant in (2.41). Aiming to estimate J∗1 , we note that,

‖ζ−1 ◦ z‖ ≥ 1
CT

‖ζ−1 ◦ z̄‖ − CT ‖z̄−1 ◦ z‖ ≥ 1
C2

T

‖z̄−1 ◦ ζ‖ − CT r

2m3
≥ m− C3

T

mC2
T

r

2m2
> 0, (3.19)

for every ζ ∈ B r
m2

(z̄) \B r
2m2

(z̄) and z ∈ B r
2m3

(z̄). Then, by using (2.41) we obtain

J∗1 ≤ c

∫

B r
m2

(z̄)\B r
2m2

(z̄)

‖z̄−1 ◦ z‖
‖ζ−1 ◦ z̄‖Q+3

dζ ≤ c′T
‖z̄−1 ◦ z‖

rQ+3

∫

B r
m2

(z̄)\B r
2m2

(z̄)

dζ ≤ c′′T
‖z̄−1 ◦ z‖

r
, (3.20)

since ‖ζ−1 ◦ z̄‖ ≥ r
2m2CT

, for every ζ out of the ball B r
2m2

(z̄). On the other hand, by (2.37), we have

J∗2 ≤ c

∫

B r
m2

(z̄)\B r
2m2

(z̄)∩{‖z̄−1◦z‖≥M‖ζ−1◦z̄‖}

(
1

‖ζ−1 ◦ z‖Q+2
+

1
‖ζ−1 ◦ z̄‖Q+2

)
dζ,

thus, by using again (3.19), and the fact that ‖ζ−1 ◦ z̄‖ ≥ r
2m2CT

for every ζ out of the ball B r
2m2

(z̄), we
find

J∗2 ≤
∫

B r
m2

(z̄)\B r
2m2

(z̄)∩{‖z̄−1◦z‖≥M‖ζ−1◦z̄‖}

c′

rQ+2
dζ ≤ c′

rQ+2

∫

{‖z̄−1◦z‖≥M‖ζ−1◦z̄‖}

dζ = c′′
(‖z̄−1 ◦ z‖

r

)Q+2

.

From the above inequality and (3.20), recalling that ‖z̄−1 ◦ z‖ ≤ r
2 m3 , we finally get

I∗1 ≤ c′α sup
Br(z̄)

|K∗
z0

ϕ|
(‖z̄−1 ◦ z‖

r

)α

, (3.21)

for some positive constant c′α. To prove an analogous estimate for I∗2 we state that the function ∂xixj ∂ξk
Γz0

satisfies the following estimates analogous to Proposition 2.7:

|∂xixj ∂ξk
Γz0(z, ζ)− ∂xixj ∂ξk

Γz0(z̄, ζ)| ≤ c
‖z̄−1 ◦ z‖

‖ζ−1 ◦ z̄‖Q+4
,

for i, j, k = 1, . . . , p0 provided that ‖z̄−1 ◦ z‖ ≤ M‖ζ−1 ◦ z̄‖, for some positive constant M . We omit the
proof since it the same as that of Proposition 2.7. The argument used in the estimate of I∗1 gives in this
case

I∗2 ≤ c′′α max
h=1,...,p0

supBr(z̄) |∂xh
ϕ|

r

(‖z̄−1 ◦ z‖
r

)α

(3.22)

If we use (3.21), and (3.22) in (3.17), and we recall that |∂xh
ϕ(z)| ≤ c

r , for h = 1, . . . , p0 and |Lz0ϕ(z)| ≤
c
r2 , we then find

rα |wi,j(z)− wi,j(z̄)|
‖z̄−1 ◦ z‖α

≤ cα
1
r2

sup
Br(z̄)

|u|, (3.23)
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for some positive constant cα only depending on L,Ω and α.
Since ϕg is Hölder continuous and compactly supported in Ω, the estimate (3.12) holds for the first

term in (3.15), then
|vi,j(z)− vi,j(z̄)| ≤ c|ϕg|α,B r

m2
(z̄)‖z̄−1 ◦ z‖α

Since rα|ϕg|α,B r
m2

(z̄) ≤ c|ϕg|α,d,B r
m

(z̄) for a constant c that does not depend on r, we have

rα|vi,j(z)− vi,j(z̄)| ≤ c|ϕg|α,d,B r
m

(z̄)‖z̄−1 ◦ z‖α ≤ 2 c|ϕ|α,d,B r
m

(z̄)|g|α,d,B r
m

(z̄)‖z̄−1 ◦ z‖α,

Since |ϕ|α,d,B r
m

(z̄) ≤ cϕ, and r2|g|α,d,B r
m

(z̄) ≤ c′[g]2+α,d,Br(z̄), for some constant c′, cϕ that do not depend
on r, we finally get

r2+α |vi,j(z)− vi,j(z̄)|
‖z̄−1 ◦ z‖α

≤ c′′[g]2+α,d,Br(z̄).

Combining the above estimate, (3.23), and (3.11), we thus find

r2+α
|∂xixj

u(z)− ∂xixj
u(z̄)|

‖z̄−1 ◦ z‖α
≤ r2+α |vi,j(z)− vi,j(z̄)|

‖z̄−1 ◦ z‖α
+ r2+α |wi,j(z)− wi,j(z̄)|

‖z̄−1 ◦ z‖α

≤ c([g]2+α,d,Br(z̄) + sup
Br(z̄)

|u|).

This accomplishes the proof of (3.13).

Third step We prove (1.18). Let z0 and ζ0 be any two distinct points of Ω, such that dz0 ≤ dζ0 . We
define the function F as

F (z) := f(z) +
p0∑

i,j=1

(ai,j(z0)− ai,j(z))∂xixj u(z) +
p0∑

i=1

(ai(z0)− ai(z))∂xiu(z)

so that Kz0u = F, and we consider a constant µ < 1
2C2

T
, that will be specified later (CT is the constant

in Lemma 2.1. We observe that, by our choice of µ, we have dz ≥ 1
2 CT

dz0 for every z ∈ Br(z0), with
r = µdz0 . Indeed,

‖ζ−1 ◦ z‖ ≥ 1
CT

‖ζ−1 ◦ z0‖ − ‖z−1 ◦ z0‖ ≥
(

1
CT

− CT µ

)
dz0 ≥

1
2 CT

dz0 ,

for every ζ ∈ ∂Ω. As a direct consequence Br(z0) ⊂ Ω.
Let m be the positive constant fixed in the previous step. If ζ0 ∈ B r

2 m2
(z0), then (3.13) yields

(µdz0)
2+α |u(z0)− u(ζ0)|

‖ζ−1
0 ◦ z0‖α

+ (µdz0)
2+α |∂xiu(z0)− ∂xiu(ζ0)|

‖ζ−1
0 ◦ z0‖α

+ (µdz0)
2+α |∂xixj u(z0)− ∂xixj u(ζ0)|

‖ζ−1
0 ◦ z0‖α

≤ c

(
[F ]2+α,d,Br(z0) + sup

Br(z0)

|u|
)

.

(3.24)

On the other hand, if ζ0 6∈ B r
2 m2

(z0) we have

d2+α
z0

|u(z0)− u(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xiu(z0)− ∂xiu(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xixj u(z0)− ∂xixj u(ζ0)|
‖ζ−1

0 ◦ z0‖α

≤ c

µ2+α

(
sup
z∈Ω

|u(z)|+ sup
z∈Ω

dz|∂xiu(z)|+ sup
z∈Ω

d2
z|∂xixj u(z)|

)
.

(3.25)
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Hence, by combining (3.24) and (3.25), we obtain

d2+α
z0

|u(z0)− u(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xiu(z0)− ∂xiu(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xixj u(z0)− ∂xixj u(ζ0)|
‖ζ−1

0 ◦ z0‖α

≤ c

µ2+α

(
[F ]2+α,d,Br(z0) + sup

Ω
|u|

)
+

c

µ2+α

(
sup
z∈Ω

|u(z)|+ sup
z∈Ω

dz|∂xi
u(z)|+ sup

z∈Ω
d2

z|∂xixj
u(z)|

)
.

(3.26)

We next provide an estimate of [F ]2+α,d,Br(z0) in terms of |∂xixj u|α,d,Br(z0). We have

[F ]2+α,d,Br(z0) ≤
p0∑

i,j=1

[(ai,j(z0)− ai,j)∂xixj
u]2+α,d,Br(z0) + [f ]2+α,d,Br(z0)

+
p0∑

i=1

[(ai(z0)− ai(z))∂xiu]2+α,d,Br(z0)

By (3.5), we have

[(ai,j(z0)− ai,j)∂xixj u]2+α,d,Br(z0) ≤ 2 |ai,j(z0)− ai,j |α,d,Br(z0)[∂xixj u]2+α,d,Br(z0), (3.27)

for all i, j = 1, . . . , p0. Then, since dz ≥ 1
2CT

dz0 for any z ∈ Br(z0), we have r
dz,z̄

≤ 2CT µ, for every
z, z̄ ∈ Br(z0), thus

|ai,j(z0)− ai,j |α,d,Br(z0) ≤ sup
Br(z0)

|ai,j(z0)− ai,j(z)|+ rα sup
z,z̄∈Br(z0)

z 6=z̄

|ai,j(z)− ai,j(z̄)|
‖z̄−1 ◦ z‖α

≤ rα |ai,j |α,d,Ω + sup
z,z̄∈Br(z0)

z 6=z̄

rα

dα
z,z̄

dα
z,z̄

|ai,j(z)− ai,j(z̄)|
‖z̄−1 ◦ z‖α

≤ cα µα |ai,j |α,d,Ω,

(3.28)
for a positive constant cα only depending on L and Ω. Analogously,

[∂xixj u]2+α,d,Br(z0) = sup
Br(z0)

d2
z|∂xixj u|+ sup

Br(z0)

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄ ◦ z‖α

≤ r2 sup
Br(z0)

|∂xixj u|+ r2+α sup
Br(z0)

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

≤ sup
Br(z0)

r2

d2
z

d2
z|∂xixj u|+ sup

Br(z0)

r2+α

d2+α
z,z̄

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

≤ (2CT )2+α

(
µ2 sup

Ω
d2

z|∂xixj u|+ µ2+α sup
Ω

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

)
.

(3.29)
Then, by using the above inequality and (3.28) in (3.27), we obtain

[(ai,j(z0)− ai,j)∂xixj u]2+α,d,Br(z0) ≤ c′′α |ai,j |α,d,Ωµ2+α

(
sup
z∈Ω

d2
z|∂xixj u|

+ µα sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

)
,

(3.30)
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for a positive constant c′′α only depending on L and Ω.
We next provide an analogous estimate for the term (ai(z0)− ai)∂xi

u. By (3.5), we have

[(ai(z0)− ai)∂xi
u]2+α,d,Br(z0) ≤ |ai(z0)− ai|α,d,Br(z0)[∂xi

u]2+α,d,Br(z0), (3.31)

for every i = 1, . . . , p0. The same arguments used in the proof of (3.28), and (3.29) give

[(ai(z0)− ai)∂xiu]2+α,d,Br(z0) ≤ kα |ai|α,d,Ωµ2+α

(
sup
z∈Ω

dz|∂xiu|+ µα sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xiu(z)− ∂xiu(z̄)|
‖z̄−1 ◦ z‖α

)
.

where kα is a positive constant only depending on L and Ω. Note that the norms |ai,j |α,d,Ω and |ai|α,d,Ω

are bounded by a constant depending on Ω and on the quantities involved in hypothesis [H3], hence the
above inequality and (3.30) give the following estimate for F :

[F ]2+α,d,Br(z0) ≤ Cα µ2+α

(
sup
z∈Ω

d2
z|∂xixj

u|+ µα sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

+ sup
z∈Ω

dz|∂xiu|+ µα sup
z,z̄∈Ω
z 6=z̄

d2+α
z,z̄

|∂xiu(z)− ∂xj u(z̄)|
‖z̄−1 ◦ z‖α

)
+ [f ]2+α,d,Ω,

(3.32)

where the constant Cα only depends on α, on Ω and on the operator L.
We next remove the terms dz|∂xiu| and d2

z|∂xixj u| from the right hand side of (3.32) by using first
the inequality (3.7) with ε = 1 and then the inequality (3.8) with ε = µα. We obtain

[F ]2+α,d,Br(z0) ≤ c′µ2+2α sup
z,z̄∈Ω

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

+ C ′µ sup
Ω
|u|

+c′µ2+2α sup
z,z̄∈Ω

d2+α
z,z̄

|∂xiu(z)− ∂xj u(z̄)|
‖z̄ ◦ z‖α

+ [f ]2+α,d,Ω,

where c′ and C ′µ are suitable positive constants. Hence, by using the above estimate together with (3.9)
with ε = µ2+2α in (3.26), we find

d2+α
z0

|u(z0)− u(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xiu(z0)− ∂xiu(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ d2+α

z0

|∂xixj u(z0)− ∂xixj u(ζ0)|
‖ζ−1

0 ◦ z0‖α

≤ C ′′µ

(
sup
Ω
|u|+ [f ]2+α,d,Ω

)
+ cµα sup

z,z̄∈Ω
d2+α

z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

+cµα sup
z,z̄∈Ω

d2+α
z,z̄

|∂xiu(z)− ∂xj u(z̄)|
‖z̄ ◦ z‖α

(3.33)

for every z0, ζ0 ∈ Ω, where the constant c does not depend on µ. Thus, if µ is sufficiently small, we have

d2+α
z0

|u(z0)− u(ζ0)|
‖ζ−1

0 ◦ z0‖α
+ sup

z,z̄∈Ω
d2+α

z,z̄

|∂xiu(z)− ∂xj u(z̄)|
‖z̄−1 ◦ z‖α

+ sup
z,z̄∈Ω

d2+α
z,z̄

|∂xixj u(z)− ∂xixj u(z̄)|
‖z̄−1 ◦ z‖α

≤ c(sup
Ω
|u|+ [f ]2+α,d,Ω).

(3.34)
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We next recall that dz0 ≤ dζ0 and use again (3.9), with ε = 1. We find

sup
Ω
|u|+

p0∑

i=1

sup
Ω

dz|∂xiu|+
p0∑

i,j=1

sup
Ω

d2
z|∂xixj u|+ sup

z,z̄∈Ω
d2+α

z,z̄

|u(z)− u(z̄)|
‖z̄−1 ◦ z‖α

+
p0∑

i=1

sup
z,z̄∈Ω

d2+α
z,z̄

|∂xiu(z)− ∂xiu(z̄)|
‖z̄−1 ◦ z‖α

+
p0∑

i,j=1

sup
z,z̄∈Ω

d2+α
z,z̄

|∂xixj
u(z)− ∂xixj

u(z̄)|
‖z̄−1 ◦ z‖α

≤ c(sup
Ω
|u|+ [f ]2+α,d,Ω).

As a final step, we observe that Y u(z) = f(z)−∑p0
i,j=1 ai,j(z)∂xixj u(z)−∑p0

i=1 ai(z)∂xiu(z), so that
we get from (3.5) the following inequality

[Y u]2+α,d,Ω ≤ c


[f ]2+α,d,Ω +

p0∑

i,j=1

[ai,j ]α,d,Ω[∂xixj u]2+α,d,Ω +
p0∑

i=1

[ai]α,d,Ω[∂xiu]2+α,d,Ω


 .

The thesis follows from the last two estimates.

Corollary 3.2. If f ∈ Cα
d (Ω) and Γz0 is the fundamental solution of the operator Kz0 , then the function

v(z) =
∫

Ω

Γz0(z, w)f(w)dw

is a classical solution of Kz0v = −f in Ω and belongs to C2+α
d (Ω).

Proof. By Theorem 1.4 in [11], v is solution of Kz0v = −f in Ω. The conclusion directly follows by
Theorem 1.3.

Proof of Corollary 1.4. Let u be the unique solution of the Cauchy problem (1.19) on the set RN×]0, 2T [.
By the uniqueness result stated in Theorem 1.4 in [11], we have

u(x, t) =
∫

RN

Γ(x, t, y, 0)ϕ(y)dy, (x, t) ∈ RN×]0, 2T [,

then, from the first estimate in (2.21) it follows that

|u(x, t)| ≤ c0‖ϕ‖∞
∫

RN

Γ+(x, t, y, 0)dy,

so that
sup

(x,t)∈RN×]0,2T [

|u(x, t)| ≤ c0‖ϕ‖∞ (3.35)

We next prove the L∞ bound for u and for its derivatives. Consider any point x ∈ RN . By using the
invariance with respect to the translation, it is not restrictive to assume that x = 0. We set r = CT T 2

and Ω = B2r(0)×]0, 2T [, where CT is the constant appearing in Remark 2.2 and

Bρ(0) =
{

y ∈ RN : ‖(y, 0)‖ < ρ
}

is the metric ball with center at the origin and radius ρ. We explicitly note that d(y,t) =
√

t, for every
(y, t) ∈ Br(0)×]0, T [. Then, by applying Theorem 1.3 to the set Br(0)×]0, T [, and by (3.35), there exist
a positive constant cT , depending on T , such that

√
t

p0∑

i=1

sup
x,∈RN

|∂xiu(x, t)|+ t

p0∑

i,j=1

sup
x∈RN

|∂xixj u(x, t)| ≤ cT ‖ϕ‖∞ (3.36)
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In order to conclude the proof, we consider the second order derivatives ∂xixj
u of u for i, j = 1 . . . , p0.

If y ∈ Br(0), y 6= 0, then from Theorem 1.3 we get

t1+
α
2
|∂xixj

u(0, t)− ∂xixj
u(y, t)|

‖(y, 0)‖α
≤ cT ‖ϕ‖∞. (3.37)

On the other hand, if y 6∈ Br(0)×]0, T [, we have

t1+
α
2
|∂xixj

u(0, t)− ∂xixj
u(y, t)|

‖(y, 0)‖α
≤ 2

T
α
2

rα
sup

x∈RN

t|∂xixj
u(x, t)| ≤ cT ‖ϕ‖∞, (3.38)

thanks to (3.36). We then obtain the desired bound of the last term in the left hand side of (1.20).
The bound of u and of its first order derivatives can be obtained in the same manner, then the proof is
accomplished.

4 Dirichlet Problem and Green function

In this section, we construct the Green function G related to the Dirichlet problem for L, for a suitable
family of cylindrical sets HR(z0, T ), then we prove an uniformly lower bound for G.

Denote by e1 = (1, 0, . . . , 0) the first vector of the canonical basis of RN and by Br(x0) the Euclidean
ball in RN , centered in x0 with radius r. We fix any ε ∈]0, 1[, we set

S = B1(ε e1) ∩B1(−ε e1),

and we define for every T > 0 the unit cylinder and its parabolic boundary as

H(T ) = S×]0, T [, ∂rH(T ) = (S × {0}) ∪ (∂S × [0, T ]).

Moreover, we set for every z0 = (x0, t0) ∈ RN+1, and R > 0,

HR(z0, T ) = z0 ◦ δ(R)
(
H(T R−2)

)
, ∂rHR(z0, T ) = z0 ◦ δ(R)

(
∂rH(T R−2)

)
. (4.1)

Note that T is the true height of the set HR(z0, T ), by the definition (1.13) of δ(R). Besides

meas
(
HR(z0, T )

)
= T RQmeas

(
S

)
(4.2)

(since HR(z0, T ) ⊂ RN+1 and S ⊂ RN , meas
(
HR(z0, T )

)
denotes the Lebesgue measure in RN+1 while

meas
(
S

)
is the Lebesgue measure in RN ). Indeed, it is sufficient to use the change of variable related to

the translation (1.11) Φ(y, s) = (y + E(s)x0, s + t0) and note that detJΦ = 1. Then we use the dilation
defined in (1.13), and we find

meas
(
HR(z0, T )

)
= meas

(
HR(0, T )

)
= RQ+2meas

(
H(T R−2)

)
= T RQmeas

(
H(1)

)
.

Analogously, if we set
SR(z0, s) = z0 ◦ δ(R)

(
S × {sR−2}), (4.3)

with s ∈ [0, T ], we find
meas

(
SR(z0, s)

)
= RQmeas

(
S

)
. (4.4)

In the sequel we will denote SR(z0) = SR(z0, 0).
We say that a function u : HR(z0, T ) ∪ ∂rHR(z0, T ) → R is a classical solution to the Dirichlet

problem {
Lu = −f in HR(z0, T ),
u = g in ∂rHR(z0, T ), (4.5)
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where f ∈ C(HR(z0, T ) and g ∈ C(∂rHR(z0, T )) if it is a classical solution to Lu = −f in HR(z0, T )
and the boundary datum is attained by continuity. We next prove that the Dirichlet problem (4.5)
has a unique classical solution. The uniqueness is an immediate consequence of the following Picone’s
maximum principle: if u ∈ C(HR(z0, T )) is such that ∂xi

u, ∂xi,xj
u and Y u belong to C(HR(z0, T )), for

i, j = 1, . . . , p0 and satisfy
{

Lu ≥ 0 in HR(z0, T )
lim supz→ζ u(z) ≤ 0 for every ζ ∈ ∂rHR(z0, T ),

then u ≤ 0 on HR(z0, T ).
In order to prove the existence of the solution of the Cauchy-Dirichlet problem (4.5), we construct

a barrier function at any points of ∂rHR(z0, T ). Consider an open set Ω ⊂ RN+1, a point z0 ∈ ∂Ω, and
denote by Ã(z) the (N + 1)× (N + 1) matrix

Ã(z) =
(

A0(z) 0
0 0

)
.

We say that a vector ν ∈ RN+1 is a L-non-characteristic outer normal to Ω at z if B(z + ν, |ν|) ∩ Ω = ∅
and 〈Ã(z)ν, ν〉 > 0 (here B(ζ, ρ) is the Euclidean ball of RN+1 with center at ζ and radius ρ).

Lemma 4.1. For every point z = (x, t) ∈ ∂rH(T ), with t 6= 0 there exist a vector ν ∈ RN+1 such that ν
is an L-non-characteristic outer normal to H(T ) at z.

Proof. For every (y, t) ∈ ∂rH(T ), with t > 0, we set y = y′ + y′′, where y′ = (y1, . . . , yp0 , 0, . . . , 0) and
y′′ = y − y′. We distinguish two cases: if y1 ≥ 0, we set ν = y + ε e1. Clearly, ν is an outer normal at
(y, t). Besides, we have

〈Ã(y, t)ν, ν〉 = 〈A0(y, t)ν′, ν′〉 ≥ Λ−1‖ν′‖2 ≥ Λ−1(ε + y1)2 > 0

since ε > 0 and y1 ≥ 0. If otherwise y1 < 0, we set ν = y− ε e1, and we conclude the proof as above.

Summarizing, we are able to construct a barrier function ω to every point of the parabolic boundary
of H(T ) as follow:

• if z = (x, t) ∈ ∂rH(T ), with t > 0, we set

ωz(y, s) = e−λ|ν|2 − e−λ|(y,s)−(x,t)−ν|2 , (4.6)

where ν is an outer normal at (x, t) and λ is a positive constant only depending on the matrix B,
on the constant Λ and on the L∞ norm of the coefficients aj of L.

• if z = (x, 0) ∈ ∂rH(T ), we set
ωz(y, s) = s. (4.7)

Note that it is possible to choose the constant λ such that ωz in (4.6) is a barrier for every operator LR,
with R ∈]0, 1]. As a consequence the function ω(y, s) = ωζ

(
(δ(1/R)

(
z−1
0 ◦ (y, s)

))
is a barrier at any

point z ∈ ∂rHR(z0, T ) (ωζ is the function defined in (4.6) or (4.7), with ζ = δ(1/R)
(
z−1
0 ◦ z

)
).

Theorem 4.2. Let f ∈ Cα
d (HR(z0, T )) and g ∈ C(∂rHR(z0, T )). There exist a unique classical solution

u ∈ C2+α
d (HR(z0, T )) ∩ C(HR(z0, T )) of the Dirichlet problem

(PD)
{

Lu = −f
u|∂rHR(z0,T ) = g
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Proof. The uniqueness of the solution is an immediate consequence of the Picone’s maximum principle.
To prove the existence, we use the continuity method, as in the classical study of uniformly parabolic
equations (see, for instance [15]).

As a first step, we consider the problem (PD) with homogeneous boundary condition (g ≡ 0). Let
Kz0 be the frozen operator defined in (2.14). For every λ ∈ [0, 1], we define the operator Lλ by

Lλ = λL + (1− λ)Kz0 .

In the sequel, we shall indicate by (Pλ,f ) the Dirichlet problem

(Pλ,f )
{ Lλu = −f

u|∂rHR(z0,T ) = 0

and by Λ the set

Λ =
{

λ ∈ [0, 1] : the problem (Pλ,f ) has a solution

u ∈ C2+α
d (HR(z0, T )) ∩ C(HR(z0, T )) for every f ∈ Cα

d (HR(z0, T ))
}

.

We clam that Λ contains λ = 0, and that Λ is at once an open and closed subset of [0, 1]. It will follow
that Λ = [0, 1], hence, the problem (PD) with g ≡ 0 has a solution.

In order to prove that 0 ∈ Λ, we consider a function f ∈ Cα
d (HR(z0, T )) and we denote by Γz0 the

fundamental solution of the frozen operator Kz0 defined in (3.10). If we set

v(z) =
∫

HR(z0,T )

Γz0(z, w)f(w)dw

then v ∈ C2+α
d (HR(z0, T )) and Kz0v = −f in HR(z0, T ), by Corollary 3.2. Since f is bounded, we also

have v ∈ C(HR(z0, T )). On the other hand, a result by Bony (Theorem 5.2 [5]) states that there exist a
unique solution ω ∈ C∞(HR(z0, T )) ∩ C(HR(z0, T )) to the Dirichlet problem

{
Kz0ω = 0
ω|∂rHR(z0,T ) = −v

Hence u = ω + v ∈ C2+α
d (HR(z0, T )) ∩ C(HR(z0, T )) and it is the solution of (P0,f ).

The proof of the fact that Λ is open and closed is analogous to the case of homogeneous Kolmogorov
equations, i.e. in the case that all ∗-blocks of the matrix B are null. We refer to [24] for the details of
the proof.

We next study the problem (PD) with f ≡ 0. Let (gn)n∈N be a sequence of functions belonging
to C∞(HR(z0, T )) ∩ C(HR(z0, T )), uniformly convergent to g in HR(z0, T ). Denote fn = Lgn and let
un ∈ C2+α

d (HR(z0, T )) ∩ C(HR(z0, T )) be the solution of the problem
{

Lu = fn

u|∂rHR(z0,T ) = 0

(the existence of un has been proved before). If we define vn = un − gn, then
{

Lvn = 0
vn|∂rHR(z0,T ) = −gn

and from the maximum principle it follows that

sup
HR(z0,T )

|vn − vm| ≤ sup
∂rHR(z0,T )

|gn − gm| ∀n,m ∈ N

Then (vn) uniformly converges to some function v, and by the estimate (1.18), we deduce that v belongs
to C2+α

d (HR(z0, T )) ∩ C(HR(z0, T )), it satisfies Lv = 0 in HR(z0, T ) and v = g on ∂rHR(z0, T ). This
concludes the proof.
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We next construct a Green function for the cylinder HR(z0, T ) by setting

G(z, ζ) = Γ(z, ζ)− h(z, ζ), (4.8)

where Γ is the fundamental solution of (1.1), and, for any ζ ∈ HR(z0, T ), h( · , ζ) is the solution to the
follow Dirichlet problem {

Lh = 0
h|∂rHR(z0,T ) = Γ(·, ζ). (4.9)

From the properties of Γ and from the maximum principle it follows that, for every f ∈ C(HR(z0, T )),

u(z) =
∫

HR(z0,T )

G(z, ζ)f(ζ)dζ, z ∈ HR(z0, T ) ∪ ∂rHR(z0, T ),

is the solution of the Dirichlet problem
{

Lu = −f
u|∂rHR(z0,T ) = 0

We next list some basic properties of G.

i) G(z, ζ) ≥ 0 for every z, ζ ∈ HR(z0, T ) with z 6= ζ.

ii) G(·, ζ)|∂rHR(z0,T ) = 0, for every ζ ∈ HR(z0, T ).

iii) if the derivatives ∂xixj ai,j and ∂xiai are Hölder continuous of exponent α, for i, j = 1, . . . , p0, then
the adjoint operator L∗ satisfies hypotheses [H1]-[H2]-[H3]. Then G∗(z, ζ) = G(ζ, z) (G∗ denotes
Green function of L∗).

For every T > 0, δ ∈]0, 1], (ξ, τ) ∈ RN+1 we set

H+
δ (ξ, τ, T ) = Hδ(ξ, τ, T ) ∩

{
(x, t) ∈ RN+1 : t ≥ τ + T

2

}
.

Theorem 4.3. Consider the Green function G related to any cylinder HR(ξ, τ, R2T ), with R ∈]0, 1].
There exist three constants δ0, T ∈]0, 1], and κ > 0, only depending on the operator L, such that

G(x, t, y, τ) ≥ κ

RQ
, for every (x, t) ∈ H+

δ0R(ξ, τ, R2T ), y ∈ Sδ0R(ξ, τ). (4.10)

Proof. We can set, without loss of generality, (ξ, τ) = (0, 0). Let G be the Green function related to
HR(0, R2T ), defined by (4.8)-(4.9). The function hR(z, ζ) = RQh(δ(R)z, δ(R)ζ) is the solution of the
problem {

LRu = 0
u|∂rH(T ) = ΓR(·, δ(R)ζ)

in the unit cylinder H(T ). Let α ∈ ]
0, 1

2

]
be a fixed constant. Since Sα(0, 0) is a compact subset of the

lower basis of H(T ), and ΓR continuously depends on R ∈ [0, 1], we have

max
(z,(ξ,0),R)∈∂rH(T )×Sα(0,0)×[0,1]

hR(z, (ξ, 0)) ≤ max
(z,(ξ,0),R)∈M(T )×Sα(0,0)×[0,1]

ΓR(z, (ξ, 0)) ≡ κ,

where M(T ) = ∂rH(T ) ∩ {0 < t < T}. We stress that the above inequity is uniform in R ∈ [0, 1]. Thus,
by the maximum principle,

hR(z, ξ, 0) ≤ κ,

for every z ∈ H(T ), (ξ, 0) ∈ Sα(0, 0) and R ∈]0, 1]. On the other hand, by (2.18) and (2.19) we get

ΓR(z, ζ) = ZR(z, ζ) + JR(z, ζ) ≥ FR(z, ζ),
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for any z, ζ ∈ RN+1, where

FR(z, ζ) := Λ−NΓ−Λ,R(z, ζ)− C(t− τ)
α
2 Γ+

R(z, ζ)

and Γ−Λ,R and Γ+
R are the fundamental solution to

1
Λ

p0∑

i=1

∂2
i + YR, µ

p0∑

i=1

∂2
i + YR,

respectively, with µ > Λ. By the explicit expression (2.16) of the functions Γ−Λ,R and Γ+
R, we find

FR(0, t, 0, 0) =
e−tR2tr(B)

(4π)N/2
√

det CR(t)

(
Λ−

3
2 N − C t

α
2 µ−

N
2

)
→∞

as t → 0+, uniformly with respect to R ∈ [0, 1]. Thus, there exists T ∈]0, 1] such that FR(0, t, 0, 0) ≥ 3κ
for any t ∈]0, T ] and R ∈ [0, 1]. Since FR is a continuous function, there exists β > 0 such that

ΓR(x, t, y, 0) ≥ FR(x, t, y, 0) ≥ 2κ

for every (x, t, y) ∈ H+
β (0, T )× Sβ(0, 0) and R ∈ [0, 1]. Hence, if we set δ0 = min

{
α, β

}
, we have

Γ(x, t, y, 0) ≥ 2κ

RQ
, and h(x, t, y, 0) ≤ κ

RQ

for every (x, t, y) ∈ H+
δ0

(0, T ) × Sδ0(0, 0) and R ∈ [0, 1]. The thesis then follows from the fact that
G(z, ζ) = Γ(z, ζ)− h(z, ζ).

5 Harnack inequality

Fix a positive T as in Theorem 4.3. For every (ξ, τ) ∈ RN+1, R ∈]0, 1] we set (ξ∗, τ∗) = (E(−R2T )ξ, τ −
TR2), H∗(ξ, τ, R) = HR(ξ∗, τ∗, TR2), and we define

Osc(u, ξ, τ, R) = sup
H∗(ξ,τ,R)

u− inf
H∗(ξ,τ,R)

u (5.1)

Lemma 5.1. There exist two constants ρ, δ1 ∈]0, 1[, only depending on the operator L, such that

Osc(u, ξ, τ, δR) ≤ ρ Osc(u, ξ, τ, R),

for every positive solution u to Lu = 0 in H∗(ξ, τ, R) and for every δ ∈]0, δ1].

Proof. Denote
m(R) = inf

H∗(ξ,τ,R)
u M(R) = sup

H∗(ξ,τ,R)

u

and, analogously, m(δR) and M(δR) be respectively the infimum and the supremum of u in H∗(ξ, τ, δR).
We set

S̃ =
{

(x, τ∗) ∈ SδR(ξ∗, τ∗) : u(x, τ∗) ≥ M(R) + m(R)
2

}
.

We examine the following two cases.

Case 1 Suppose that meas(S̃) ≥ meas(SR(ξ∗, τ∗))
2

. We consider the function u−m(R). We obviously
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have u −m(R) ≥ 0 and L(u −m(R)) = 0 in H∗(ξ, τ, R). As a consequence of the comparison principle
we find

u(z)−m(R) ≥
∫

SR(ξ∗,τ∗)
G(z, y, τ∗)(u(y, τ∗)−m(R))dy,

for every z ∈ H∗(ξ, τ, R). On the other hand, by Theorem 4.3, there exist a positive κ such that
∫

SR(ξ∗,τ∗)
G(z, y, τ −R)(u(y, τ∗)−m(R))dy ≥

∫
eS
G(z, y, τ∗)(u(y, τ∗)−m(R))dy

≥ M(R)−m(R)
2

∫
eS
G(z, y, τ∗)dy ≥ M(R)−m(R)

2

∫
eS

κ

RQ
≥ κ meas(S̃)

2 RQ
(M(R)−m(R)),

for every z ∈ H∗(ξ, τ, δR). Thus,

m(δR)−m(R) ≥ κ meas(SR(ξ∗, τ∗))
4 RQ

(M(R)−m(R)).

Since it is not restrictive to assume that κ ≤ 4
meas(S) , by (4.4), we have

M(δR)−m(δR) ≤ M(R)−m(δR) ≤
(

1− κ meas(S)
4

)
(M(R)−m(R)).

This proves the claim, with ρ = 1− κ meas(S)
4

.

Case 2 Suppose that meas(S̃) <
meas(SR(ξ∗, τ∗))

2
. We set

S̃′ =
{

(x, τ∗) ∈ SδR(ξ∗) : u(x, τ∗) <
M(R) + m(R)

2

}

and we note that meas(S′) ≥ meas(SR(ξ∗,τ∗))
2 . We now consider the function M(R) − u, which is non-

negative and satisfies L(M(R)− u) = 0. As in the previous case, we find

M(R)− u(z) ≥ κ meas(SR(ξ∗, τ∗))
4 RQ

(M(R)−m(R))

for every z ∈ H∗(ξ, τ, δR). Hence

M(δR) ≤ κmeas(S)
4

m(R) + (1− κ meas(S)
4

)M(R),

and

M(δR)−m(δR) ≤ M(δR)−m(R) ≤
(

1− κ meas(S)
4

)
(M(R)−m(R)).

This completes the proof.

Proof of Theorem 1.2. We follow the line of the proof of Theorem 5.4 in [13]. We fix any δ ∈]0, δ0[, (δ0

is the constant in Proposition 4.3) and three positive constants α, β, γ such that α < β < γ < 1 and that
γ ≥ β+1/2. There exists (x̄, t̄) ∈ H+ such that u(x̄, t̄) = min

H+
u. It is not restrictive to assume u(x̄, t̄) = 1.

We consider, for every r ∈ [0, βR2T ], the function

v(x, t) =
∫

SR(ξ,τ,r)

G(x, t, y, r)u(y, r)dy , ∀(x, t) ∈ HR(ξ, τ, R2T )
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(recall the definition (4.3) of SR(ξ, τ, r)). Since u ≥ 0, by the comparison principle, we obtain u(x, t) ≥
v(x, t), for every (x, t) ∈ HR(ξ, τ, R2T ), then

u(x̄, t̄) ≥
∫

SR(ξ,τ,r)

G(x̄, t̄, y, r)u(y, r)dy. (5.2)

Let δ′ = δ+δ0
2 and consider, for any λ > 0, the set

S(r, λ) = {y ∈ Sδ′R(ξ, τ, r) : u(y, r) ≥ λ} .

Then inequality (5.2) and Proposition 4.3 imply that

1 = u(x̄, t̄) ≥
∫

S(r,λ)

G(x̄, t̄, y, r)u(y, r)dy ≥ λκ meas(S(r, λ))
RQ

. (5.3)

We set

K =
1
2

(
1 +

1
ρ

)
r(λ) =

R

δ

(
4

κλ(1− ρ)meas(S)

) 1
Q

(5.4)

where ρ is the constant in Lemma 5.1. Note that, by (4.2), r(λ) is such that

meas
(
H∗

δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r)
)

=
4 RQ

κλ(1− ρ)
, (5.5)

for every r ∈ [t− (δr(λ))2, t].
We next prove the following statement. Let λ > 0 and (x, t) ∈ Hδ′R(ξ, τ, R2T ) with t ≤ τ + βR2T

be such that u(x, t) ≥ λ and that H∗
r(λ)(x, t, r(λ)2T ) ⊂ Hδ′R(ξ, τ, R2T ). Then there exists (x′, t′) ∈

H∗
r(λ)(x, t, r(λ)2T ) such that u(x′, t′) ≥ Kλ. Indeed, from (5.3) it follows that

meas
(
S

(
t,

λ

2
(1− ρ)

))
≤ 2 RQ

λκ(1− ρ)

so that, by (5.5), there is a (ξ′, τ ′) ∈ H∗
δr(λ)(ξ, τ, (δr(λ))2T ) such that u(ξ′, τ ′) < λ

2 (1 − ρ). The claim
then follows from Lemma 5.1.

We next show that there exists a positive constant M0 such that u(x, t) ≤ M0 for every (x, t) ∈ H−.
The thesis then follows, since u(x̄, t̄) = min

H+ u = 1. Fix a positive M and suppose that there is a
z0 ∈ H− such that u(z0) > M . Then, by the preceding paragraph, there exists a (possibly infinite)
sequence

(
zj

)
such that

u(zj) ≥ M Kj , zj+1 ∈ H∗
rj

(zj , T r2
j ), where rj = r(M Kj),

provided that
H∗

rj
(zj , T r2

j ) ⊂ Hδ′R(ξ, τ, TR2). (5.6)

If we prove that (5.6) holds for every j ∈ N, we find a sequence u(zj) which is unbounded and we get
a contradiction with the continuity of u. In order to show that (5.6) holds for any j ∈ N we denote
zj = (xj , tj) and we remark that

tj > t0 −
j−1∑

i=0

Tr2
i ≥ t0 − TR2

δ2

(
4

Mκ(1− ρ)meas(S)

) 2
Q

∞∑

i=0

K− 2i
Q ,

for any j ∈ N. Hence, if we set

T0 =
TR2

δ2

(
4

Mκ(1− ρ)meas(S)

) 2
Q

∞∑

i=0

K− 2i
Q ,
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we can choose a sufficiently big constant M such that tj > t0 − T0 ≥ τ for every j ∈ N. We next note
that

d(zj+1, zj) := ‖z−1
j ◦ zj+1‖ ≤ c0rj , ∀j ∈ N,

where c0 = max
z∈H∗

1 (0,0,1),r∈[0,1]
‖z−1 ◦r (0, 0)‖. Besides,

d(zj , z0) ≤
j∑

i=1

Ci
T0

d(zi, zi−1),

where CT0 is the constant in (2.7). Hence

d(zj , z0) ≤ c0
R

δ

(
4

κM(1− ρ)meas(S)

) 1
Q

∞∑

i=1

Ci
T0

K− i
Q .

Since the constant CT0 in (2.7) goes to 1 as T0 → 0, it is possible to choose M so big that CT0 < K
1
Q and,

then, the series
∑∞

i=1 Ci
T0

K− i
Q is convergent. We finally remark that ζ0 belongs to H− and that H− is

a compact subset of int(Hδ′R(ξ, τ, TR2)), we can then choose a positive M0, that depends on α, δ, δ0 but
does not depend on R, such that (5.6) holds for any j ∈ N. This accomplishes the proof. ¤

In order to prove a non-local Harnack inequality we consider the cone Kη defined as

Kη =
{
δ(λ)(x,−1) : λ > 0, |x| ≤ η

}
, Kη(z0) = z0 ◦ Kη, (5.7)

and we state the following

Proposition 5.2. There exist three positive constants η,M and T0, such that, if u : RN×]t0, t1[→ R is
a positive solution to Lu = 0, then

u(ξ, τ) ≤ M u(x, t),

for every (x, t) ∈ RN×]t0, t1[ and (ξ, τ) ∈ Kη(x, t) such that τ ≥ max
{
t− T0,

t+t0
2

}
.

Proof. It is a simple corollary of Theorem 1.2, with α ≤ 1/2 ≤ β and T0 = T/2. It is sufficient to consider
a cylinder H∗

R(x, t, R2T ) ⊂ RN×]t0, t1[ such that (ξ, τ) ∈ H−
R (x, t, R2T ).

6 Non-local results

In this section we prove a non local Harnack inequality for positive solutions to Lu = 0 defined in a strip
RN×J , where J is an interval of R. The method was introduced by Aronson [1] and used by Aronson and
Serrin [2] in the study of uniformly parabolic operators, then it has been extended by Polidoro [28] to the
non-Euclidean setting of homogeneous Kolmogorov operators. The idea is to use repeatedly the (local)
Harnack inequality stated in Proposition 5.2. Here we set the problem in the theory of the optimal control
for linear systems with quadratic cost, and we generalize the result in [28], since we drop the homogeneity
property of the translation group.

Consider (x, t), (y, s) ∈ RN+1 with t > s, and let γ : [0, t− s] → RN+1 be a curve such that




γ̇(τ) =
p0∑

j=1

λj(τ)Xj + Y (γ(τ))

γ(0) = (x, t), γ(t− s) = (y, s),

(6.1)

40



where X1, . . . , Xp0 and Y are defined in (1.6) and the controls λ1, . . . λp0 belong to L2([0, t − s]). If we
denote γ(τ) = (γ(τ), t− τ), with γ : [0, t− s] → RN , then (6.1) can be state in the equivalent form

{
γ̇(τ) = BT γ(τ) + A

1
2 λ(τ)

γ(0) = x, γ(t− s) = y,
(6.2)

where λ(τ) = (λ1(τ), . . . , λp0(τ), 0, . . . , 0)T ∈ RN . It is known that the condition H1 implies the existence
of a path γ that solves (6.2) (see [19], Theorem 5, p. 81). Among the paths γ satisfying (6.2), we look
for the one minimizing the total cost

C(λ) =
∫ t−s

0

|λ(s)|2ds. (6.3)

The general control theory provides the optimal control and gives the explicit expression of the optimal
cost. Our main result is the following

Theorem 6.1. Let T0,M be the constants in Proposition 5.2 and let u : RN×]s − T0, s + T0[→ R be a
positive solution to Lu = 0. Then

u(y, s) ≤ M1+ 1
h 〈C−1(t−s)(x−E(t−s)y),x−E(t−s)y〉u(x, t),

for every (x, t) ∈ RN×]s, s + T0[ (h is a positive constant depending only on T0, A and B).

The first step in the proof of Theorem 6.1 is the following

Lemma 6.2. There exist two positive constants h, η such that, if γ : [0, σ] → RN is a solution to (6.2),
and ∫ σ

0

|λ(τ)|2dτ ≤ h

then (γ(τ), t− τ) ∈ Kη(x, t) for every τ ∈ [0, σ].

Proof. The explicit solution to (6.2) is

γ(τ) = E(−τ)x +
∫ τ

0

E(ρ− τ)A
1
2 λ(ρ)dρ. (6.4)

If we decompose
γ(τ) =

(
γ(0)(τ), γ(1)(τ), . . . , γ(r)(τ)

)T
,

with γ(j)(s) ∈ Rpj , for j = 0, . . . , r, then a direct computation shows that (γ(τ), t− τ) ∈ Kη(x, t) if, and
only if,

|(γ(τ)− E(−τ)x)(j)| ≤ η τ j+ 1
2 , (6.5)

for j = 0, . . . , r (here |v| denotes the Euclidean norm of v). By Lemma 2.1, we find

|(γ(τ)− E(−τ)x)(j)| ≤ cj

∫ τ

0

(ρ− τ)j |λ(ρ)|dρ ≤ c′j τ j+ 1
2

(∫ τ

0

|λ(ρ)|2dρ

) 1
2

for j = 0, . . . , r, for some positive constants c′0, . . . , c
′
r only depending on σ,A and B. Hence

|(γ(τ)− E(−τ)x)(j)| ≤ c′j
√

h τ j+ 1
2 j = 0, . . . , r

for every τ ∈ [0, σ], and (6.5) follows by choosing h is sufficiently small. This accomplishes the proof.
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Lemma 6.3. Let T0,M and η be the constants in Proposition 5.2, let h be the constant in Lemma 6.2
and let (x, t), (y, s) ∈ RN+1 be such that s < t < s + T0. Suppose that u : RN×]s − T0, s + T0[→ R is a
positive solution to Lu = 0, and that γ : [0, t− s] → RN is a solution to (6.2). Then

u(y, s) ≤ M1+
C(λ)

h u(x, t),

where C(λ) is the total cost of the control corresponding to γ.

Proof. If
∫ t−s

0
|λ(τ)|2dτ ≤ h, then the result is an immediate consequence of Lemma 6.2. If the above

inequality is not satisfied, we set

k = max
{

j ∈ N : j h <

∫ t−s

0

|λ(τ)|2dτ

}
. (6.6)

and define
σj = inf

σ>0

∫ σ

0

|λ(τ)|2dτ > j h, j = 1, . . . , k.

Note that 0 < σ1 < · · · < σk < t− s, so that

t− σj > s > max
{

t− T0,
t + (s− T0)

2

}
, for j = 1, . . . , k. (6.7)

By Lemma 6.2 (γ(σ1), t− σ1) ∈ Kη(x, t), then u(γ(σ1), t− σ1) ≤ M u(x, t).
We next repeat the above argument: Lemma 6.2 ensures that (γ(σ2), t − σ2) ∈ Kη(γ(σ1), t − σ1).

Moreover (6.7) holds, then Proposition 5.2 gives u(γ(σ2), t− σ2) ≤ Mu(γ(σ1), t− σ1) ≤ M2 u(x, t). We
repeat the above argument until, at the (k + 1)-th step, we find

u(y, s) ≤ Mu(γ(σk), t− σk) ≤ Mk+1 u(x, t).

The thesis then follows from (6.6).

Proof of Theorem 6.1. Consider the Hamiltonian function H related to the control problem (6.2) in the
interval [0, t− s]:

H(x, q, λ) = q BT x + q A
1
2 λ + q0|λ|2, q = (q1, . . . , qN ), x = (x1, . . . , xN )T . (6.8)

The classical control theory for autonomous linear systems states that the optimal control is given by

q0 = −1
2
, λ(τ) =

(
A

1
2

)T

q(τ)T for some solution to q̇ = −q BT (6.9)

(see [19], Theorem 3, p. 180). We use the above identity in (6.2), and we compute the explicit solution:

γ(τ) = E(−τ)
(
x + C(τ)q(0)T

)

for some constant vector q(0) that is determined by the condition γ(t− s) = y. We find

q(0)T = C−1(t− s)(E(t− s)y − x),

hence the optimal control is

λ(τ) =
(
A

1
2

)T

E(τ)TC−1(t− s)(E(t− s)y − x)

and the optimal cost is

C(λ) =
∫ t−s

0

|λ(τ)|2dτ = 〈C−1(t− s)(x− E(t− s)y), x− E(t− s)y〉.

The conclusion follows from Lemma 6.3.
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Proof of Theorem 1.5. By Theorem 6.1 we have

Γ(x, t) ≥ Γ
(

0,
t

2

)
M−1− 1

h 〈C−1( t
2 )x,x〉, for every (x, t) ∈ RN × R+. (6.10)

We next claim that there exist two positive constants T1 and c1 such that

Γ
(

0,
t

2

)
≥ c1√

det C(t) , ∀ 0 < t < T1. (6.11)

Indeed, from Remark 2.3 and from the explicit expression (1.10) of Γ−Λ and Γ+ we get

Γ
(

0,
t

2

)
≥ Λ−NΓ−Λ

(
0,

t

2

)
− C

(
t

2

)α
2

Γ+

(
0,

t

2

)
≥ c2 − c3

(
t
2

)α
2

√
det C (

t
2

) .

The claim (6.11) then follows form the fact that det C(t) is an increasing function, by (1.8). As a
consequence of (6.10) and (6.11) we then find

Γ(x, t) ≥ c1√
det C(t)M−1− 1

h 〈C−1( t
2 )x,x〉, for every (x, t) ∈ RN×]0, T1[. (6.12)

We next show that there exist tree positive constants T2, c
′ and c′′ such that

c′ 〈C−1(t)x, x〉 ≤ 〈C−1 (t/2)x, x
〉 ≤ c′′ 〈C−1(t)x, x〉 (6.13)

for every x ∈ RN , 0 < t < T2. By the above inequalities and (6.12) we obtain

Γ(x, t) ≥ c1√
det C(t)M−1− 1

h 〈C−1(t)x,x〉 (6.14)

for every (x, t) ∈ RN×]0,min {T1, T2} [. We next use (2.12) to prove (6.13). We have

1− cT
t
2

1 + cT t
· 〈C

−1
0

(
t
2

)
x, x〉

〈C−1
0 (t)x, x〉 ≤ 〈C−1

(
t
2

)
x, x〉

〈C−1(t)x, x〉 ≤ 1 + cT
t
2

1− cT t
· 〈C

−1
0

(
t
2

)
x, x〉

〈C−1
0 (t)x, x〉 ,

for every x ∈ RN and t ∈]0, T [ such that t < 1
cT

. We next use the second identity in (2.10)

〈C−1
0

(
t
2

)
x, x〉

〈C−1
0 (t)x, x〉 =

〈C−1
0

(
1
2

)
D

(
1√
t

)
x,D

(
1√
t

)
x〉

〈C−1
0 (1)D

(
1√
t

)
x,D

(
1√
t

)
x〉

,

and the claim (6.14) follows from the fact that the constant matrices C−1
0

(
t
2

)
and C−1

0 (1) are strictly
positive. From (1.10) and (6.14) we easily find that

Γ(x, t) ≥ c− Γ−(x, t), ∀x ∈ RN , 0 < t < min {T1, T2} ,

for some two positive constants µ and c−, thus the proof is accomplished if T ≤ min {T1, T2}. If not,
we apply repeatedly the reproduction property of the fundamental solution (2.20) and we conclude the
proof after a finite number of steps.

We now use Theorem 1.5 and the uniqueness result by result by Di Francesco and Pascucci ([11],
Theorem 1.6) to prove Theorem 1.6.
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Proof of Theorem 1.6. We first show that, if u be a non-negative solution of Lu = 0 on the strip
RN×]0, T [, then

u(x, t) ≥
∫

RN

Γ(x, t, ξ, τ)u(ξ, τ)dξ (6.15)

for every (x, t) ∈ RN×]0, T [ and 0 < τ < t. For every n ∈ N, we consider the function ϕn(x, t) =
1 − ηn(x, t), where ηn is defined in (2.48). We recall that, for every n ∈ N, ϕn ∈ C∞0 (RN ), 0 ≤ ϕn ≤ 1,
ϕn(x, t) = 1 if ‖(x, t)‖ ≤ n

2 and ϕn(x, t) = 0 if ‖(x, t)‖ ≥ n. For every (x, t) ∈ RN×]0, T [ and 0 < τ < t,
we set

un(x, t, τ) =
∫

RN

Γ(x, t, ξ, τ)ϕn(ξ)u(ξ, τ)dξ.

Clearly, we have that Lun(·, τ) = 0 in RN×]τ, T [ and

lim
(x,t)→(y,τ)

un(x, t, τ) = ϕn(y)u(y, τ) ≤ u(y, τ)

for every y ∈ RN . We then recall that ϕnu is a compactly supported continuous function and use the
upper bound (1.21) of Γ. We obtain

lim
|x|→+∞

(
sup

τ≤t≤T
un(x, t, τ)

)
= 0

hence, by the maximum principle, we get

0 ≤ un(x, t, τ) ≤ u(x, t) + ε (6.16)

for every (x, t) ∈ RN×]τ, T [ and for any positive ε. Thus, being Γ and u positive, we find

lim
n→+∞

un(x, t, τ) =
∫

RN

Γ(x, t, ξ, τ)u(ξ, τ)dξ

and (6.15) plainly follows from (6.16).
In order to conclude the proof, we note that, for every s ∈]0, t[ there exist two positive constants

k1, k2, only depending on s, t and on the constant µ in (1.22), such that

Γ−(0, t, ξ, τ) ≥ k2e
−k1|ξ|2

for every τ ∈ [0, s] and ξ ∈ RN . We then have

c−T k2

∫

RN

e−k1|ξ|2u(ξ, τ)dξ ≤ c−T

∫

RN

Γ−(0, t, ξ, τ)u(ξ, τ)dξ

(by Theorem 1.5) ≤
∫

RN

Γ(0, t, ξ, τ)u(ξ, τ)dξ ≤ (by (6.15)) ≤ u(0, t)

We next conclude the proof of the Theorem. Let u, v be two non negative solutions to the solution
of the Cauchy problem (1.19). By integrating the above inequality with respect to τ ∈]0, s[, we obtain

c−T k2

s

∫ s

0

∫

RN

e−k1|ξ|2 |u(ξ, τ)− v(ξ, τ)|dξdτ ≤ u(0, t) + v(0, t),

then Theorem 1.6 in [11] implies that u ≡ v in RN × [0, s[. This accomplishes the proof.
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