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1. Introduction

The empirical analysis of consumer behaviour has been extensively researched
in the literature for a considerable time, giving rise to a number of issues which, to
a great extent, can be grouped into two main research approaches. !

The first concerns the attempt to represent the preference of the consumers,
through the estimation of increasing general and flexile functional forms, consid-
ering alternative levels of disaggregate expenditure data and commodities. These
contributions have emphasised the nature and limits of the different generalizations
of the functional forms, assuming almost the same base assumptions. According to
these hypotheses the consumer tends, in a static contezt and with predefined budget
constraints, to optimise an objective function.

The second research approach deals with the informative and "technological”
changes in the economic consumer environment, focusing on how budget constraints,
dynamic structures and heterogeneity of preferences may provide a direct influence
on consumption.

From a more specific statistical point of view, demand analysis has focused on the
investigation of the empirical relationship between consumption and the following:
the rate of saving, the intersectorial and production activity linkage, the dynamics
with other macroeconomic aggregates, the economic and social regional systems, the
household characteristics, with the aim of poirting out the most evident structural
and evolving patterns.

The quarterly time series of consumption data recently made available for the
period 1970:1-1990:4 (benchmark 1985), are divided into 50 groups of commodities
and services, and 8 categories 2, collected from diary records of the Family Ex-
penditure Survey. These, along with and the corresponding quarterly time series
estimates of the national economic accounts, allow for further research on consumer
behaviour,

Coincidental to the interest in developing research in demand analysis, since the
end the seventies there has been increasing concern among statisticians and econo-
metricians in the long-run equilibrium behaviour of time series that are difference
stalionary processes (see, among others, Granger 1981, Hendry 1986).

In the light of the recent data on Italian consumption, and the methodological
context of integration and cointegration, which defines a uniform approach within
which it is possible to analyse time series that present common stochastic trends
and seasonals, the purpose of this paper is to examine the quarterly time series of

"For a recent survey on demand analysis referring to lalian contributions, see Bollino and Rossi
{1987), and the papers collected in the special issue of Siudi ¢ Informazioni, 1987 n 4. As regards
Lo the new topics on the theory of consumption in relation to the aspect of statistical survey
adequacy, see Filippueei (1992).

?Our analysis focuses on the following expenditures categories at 1985 constant prices: 1. Food,
Beverage and Tobacco; 2. Clothing and Foolwear; 3. Rent, Fuel Power; 4. Furniture, Household
Eguipinent and Services; 5. Heaith; 6. Transport and Communicalions; 7. Recrealion, Educalion,
efc.; B. Other Goods and Services .

consumption for the eight categories of expenditures, made available by Istat, for
both the time series of family budget surveys and national accounts. The main
ahm is to estimate the order of integration at zero and seasonal frequencies of the
series to determine whether the different conceptual definitions existing between
the two sources of data indicate a common pattern of actual coherence. It should
be pointed out that both the statistical methods of estimation, which have slowly
changed through time, as well as the limits imposed by the availability of time series
for only a relatively short period of time and the contextual presence of seasonal
and trend components in the data, call for some caution in evaluating our results,
which should be considered as a first step in the ongoing statistical analysis of the
time series on consumption in Haly. :

The paper is organised as follows. Section 2 briefly examines the available data on
private consumption, pointing out their mair characteristics and statistical aspects.
Section 3 introduces the notion of seasonal integration. Section 4 reviews the tests
proposed for testing the presence of unit roots at both seasonal and zero frequencies.
Section 5 explains how these can be put together so as to form a testing sequence.
Section 6 presents the empirical results and section 7 contains a few concluding
remarks.

2. Some general remarks on the Italian consumption quar-
terly time series

The quarterly time series drawn from the Household Expenditure Survey differ
in many respects from those reported in the National Accounts. This circumstance
limits the comparability of the two sources, even if both aim at the measurement of
private consumption as economic aggregate. As it is known, while the Family Budget
estimates are the results of questionnaires which are designed to gather exaustive
detail on household expenditures, the National Accounts data are obiained through
an indirect estimation procedure and fully represent the aggregate expenditure level
which a community bears to directly satisfy individual needs.

The consumption estimates determined by the Household Expenditure Survey
should constitute the most informative data set for the National Accounts estimates.
This linkage is, however, weaker thar it may seem because the former, besides
referring to different populations, tend to underestimate the expenses for durable and
semidurable commodities. This aspect rather limits the possibilities of the survey
as an exhaustive information base, with the consequence that only the National
Accounts category of Food, Beverage and Tobacco depends, to a great extent, on the
observed household expenditures (Innocenzi 1989 a, 1989 b; Istat 1990 a, 1990 b).

Another aspect which prevents comparability is the different procedures used
to estimate the quarterly series. While, in fact, the quarterly estimates for the
Household Expenditure Survey are obtained by aggregating the monthly reported
survey data to the relevant quarter, the National Accounts consumption aggregates



are the result of a procedure which distributes the annual estimates across the
quarters by using specific indicators.

(ienerally, the indicator series drawn from the Household Expenditure Survey
are extensively employed to estimate the distribution of the Nattopal Account series
over time, with the exception of the Rent, Fuel, Power and Transpert and Commu-
nications categories, for which they are used to distribute series whose weight is less
than one third.

Moreover, the latter differ even for the backward-in-time estimates, giver bench-
marck revisions and a different aggregation level for the expenditure categories as
well. This imnplies that, in spite of the fact that the two sources of data have a com-
mon conceptual definition, they underlie estimation methods which imply differences
not always and not only connected with the consumer related populations.

In particular, while the diversification in the two sources of data here considered
(benchmarck 1985) is rather reasonable for the Food, Beverage and Tobacco, and
Rent Fuel and Power categories for which ihe Household Expenditure Survey data
are on average 10% lower, the same percentage rises up to 30% for durable goeds
consumptions (Tassinari e Mantegazza, 1992). These concluding remarks are largely
in agreement with the results of Tassinari and Viviani (1990). Their empirical
investigations have suggested that while there exists a substantial agreement between
the two sources as regards expenditures for commodities with an income elasticity
less than unit, the same does not hold for the expenditure groups which include
the consumer durables and the so-called household inventories and services which
present an elastic income response (Furniture, Household Equiment and Services,
Recreation, Education, efc.). Moreover other contributions suggest that the time
structure of some consumption categories is affected by step outliers connected with
survey methodeiogy changes which imply a different weight to the total variance of
the series of the trend and seasonal components (Daddi and Viviani, 1992).

3. Seasonal Integration

The following definition, by Engle et al. (1989), provides a useful extension of
the notion of integration, initially introduced for non-seasonal stochastic processes:

Def. 1 Let y; denote an indeterministic process; then y; is said to be integrated of
order d at frequency A, denoted y, ~ [5(d), if it has a spectrum, f(w), taking the
form:

J(w) o {w = )7,

in 2 neighbourhood of A,

According to this definition the random walk is a process integrated at frequency
A = 0; as another example consider the cyclical process (1 — ¢y L — $2 L% )y, = ¢, with
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¢ = 2cos A, 2 = ~1 and ¢ ~ WN(0,0%): when X € (0,7), we have y, ~ I)(1),
since the spectrum is proportional to (cosw — cos A)~? and thus it is infinite at
w=A When A =0, yy ~ Ip{2); finally, when A = w, gy ~ I,(2). For a definition
encompassing Def. 1, see Joyeux (1992).

Let us now consider a process which is observed s times a year, with s even
(typically it will be s = 4 for quarterly data and 12 for monthly data); this process
15 said to be seasonal if its specirum shows concentration of power at the seasonal
frequencies \; = 2x5/s, 5 = 1,...,5/2

There are several ways in which seasonal behaviour may arise; we will assume
that they are particular cases of the following data generating process:

Y(L)ye = pe + 0, t=1,...,T, ()

where ¥(L} is a lag polynomial of degree p and ¢, ~ WN{0,0%); p, is the component
respousible for the deterministic behaviour:

= 48+ Bt

J=1

where the Sj,’s are seasonal dummies taking value one in season j and zero otherwise;
u; are the seasonal means. Segmented trends may also be allowed in ;.

The process is stationary if 1( L} has all its roots lying outside the unit circle and
1s seasonal when some roots are a complex conjugate pair at seasonal frequencies;
for instance the process generated by y, = tpy,_q + € with [if] < 1 has a spectrum
reaching its maximum value (27)" 121 — ¥} at frequencies 0, 7/2 and 7 corre-
sponding to the roots ¥~1/4, the complex pair i1 and —p~1/* respectively. As
¥ — 1 the spectrum is unbounded at those frequencies.

When some or all the roots of the autoregressive polynomial are on the unit
circle, we can factorize the AR polynomial as follows:

P(L)$L)ye = p+ e (2

where (L} is a nonstationary AR polynomial whese roots are unily in modulus
and ¢(L) is a stationary AR polynomial of order ¢. 3 is an integrated seasonal
process if the spectrum is unbounded at seasonal frequencies A; = 2rj/s. The
leading cases of interest are: (1) (L) = S(L) = 1+ L 4 --- 4 L*"!, the seasonal
summation operator; {ii) ¢(L) = A, = 1 — L*, the seasonal difference operator; {iti)
w(L) = AN, =(1—- L)1 - L.

Let us consider process (2} in case (i) with s = 4 (quarterly data): the seasonal
summation operator can be factorised as S(L) = (1 + L)(1 +1L)(1 ~ ¢L) whence
it can be seen that the roots are the complex pair +i and -1; correspondingly
the power spectrum is unbounded at the fundamental frequency =/2 and at the
harmonic frequency . Two cycles thus combine in a multiplicative fashion and
are responsible for the seasonal behaviour: the first is defined at the fundamental



frequency, corresponding to a one-year period; the second is defined at the harmonic
frequency and has a two-quatters period®,

The dyuamic properties of an integrated seasonal process differ in many respects
from those characterising a stationary one: first and {foremost all shocks are persis-
tent and may have a permanent impact on the seasonal pattern; furthermore, the
variance increases as we move away from the beginning.

The seasonal difference operator Ay, = AS(L) has four unit roots 1, -1 and
the complex pair +¢; thus it is also integrated of order 1 at frequency 0. When
p(L) = AA, = A*5(L) the process is To(2), Ij2(1) and I.(1).

For these leading cases we envisage the need of a more synthetic notation. Hence,
we introduce the following definition, also by Engle et al. (1989}:

Def. 2: (Secasonal integration) y; is seasonally integrated of orders dy and d,, denoted
i~ Sl{do, d,), if A'“’S(L)d'y, is stationary and invertible.

According to this definition the process AA,ye = p + 0(L)e, i3 51(2, 1) provided
that #(L) has all its roots outside the unit circle (i.e. |#(e™*)|?¢? is bounded away
frem zero and infinity Yw).

An alternative definition of the order of seasonal integration, corresponding to a

different factorization of the @(L) polynomial, has been considered by Osborn ef al.
(1988):

Def. 3: y, is integrated of erders d and D, denoted y¢ ~ I(d, D), if (1 — L)¥(1 -
L)Py, = AYAPy, admits a stationary and invertible Wold representation.

Def. 3 is more in line with standard ARIMA terminology. Of course, if 3, ~
I(d, D) then it is also y, ~ ST(d+1, D) and vice versa; nevertheless, Def. 2 maintains
the distinction between integration at seasonal and nonseasonai frequencies and thus
will be adopted here.

4. Testing for seasonal integration

The subject of testing for seasonal integration relative to integralion al zero
frequency has received little attention. This may be related to the availability of
seasonally adjusted data. However, it has been argued that the use of such data
may unduly influence the inferences on the order of integration at frequency zero:

%In general S(L) has (s — 2)/2 pairs of complex roots at frequencies Aj=2r5/s,5=1,...,5/2
together with a root -1 at 2x/s.

10

due to the nature of the adjustment filters, it usually results in increased evidence
supporting the null of integration (see Ghysels, 1990).

This section aims at reviewing the main tests proposed for seasonal integration,
Some are straightforward extensions of zero-frequency unit root tests, whereas others
are especially tailored to deal with integration at each of the frequencies A;, j =
1,...,s8/2.

4.1. Augmented Dickey-Fuller (ADF) Test

Said and Dickey (1981) addressed the question of testing for a unit root at
frequency zero when the data generating process is approximated by the finite au-
toregression (1); for this purpose they consider the reparametrization:

p-1

Ay = i+ 9P - + E ¢}Ay,_j + &,

=1

where ¢* = —(1) and u’)} ==

Testing for the presence of root 1 in the autoregressive polynomial is equivalent
to testing Hy : ¥* = 0 which is done considering the studentized statistic associated
with the OLS estimate of ¥*. The distribution of the test statistic is tabulated by
Fuller (1979) and varies according to whether pe =0, g¢ = gt or p; = p + ft.

An amended version of the ADT test has been advocated by Dickey et al. (1986);
this is tailored for processes containing a deterministic seasonal compounent in
and the authors show that removal of seasonal means bas no effect on the limit
distribution of the test statistics?.

The testing sequence in [makunnas (1990) counsiders four ways in which the
ADF test, with correction for seasonal means, can be employed for inferences on
wnit roots:

1. Hp:y~ SI(1,0) vs. Hy iy~ SI{0,0): ADF test on ..

. Hy:m~ S1(2,0) vs. Hy 1y ~ SI{1,0): ADF test on the Ay, series.
. Ho:yi~ SK2,1) vs. Hy i3 ~ 51(1,1): ADF test on the Ayy, series.
iv. Ho:ye~ SI{1,1) vs. Hy:y ~ SI(0,1): ADF test on the S(L}y, series.

These tests are understood to provide valuable information so long as the main-
tained order of integration ai seasonal frequencies d, is correct.

4.2. Dickey-Hasza-Fuller (DHF) Test

Dickey et al. (1984) consider the problem of testing Hg : y. ~ ST(1,1) against

“The insensitiveness to the presence of delerministic seasonality has also been observed by
Osborn el al.
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the alternative $7(0,0). Thus the null mode] would be (2) with ¢(L) = A4 whereas
the atternative model is:

(1 =@, L)L)y — i) = &

with [, < 1 and my = Tj_, m;Sje (m is related to gy by pe = mg/P(1)).

The authors propose the following two-step procedure: a) let ¥; = ye — i
denote the deviations from the estimated seasonal means; estimate the ¢-th order
autoregression #(L)A,Y; = & to get consistent estimates of the ¢;’s under the null;
b) denote @ = [p,, ¢y, ... v &,y by a first order Taylor expansion around the true

arameter value the residuals evaluated at & = 1, 1se 009, can be expressed as
p 1 17y P

@) = ¢ (8) — (LYol —,) — i A-Lyi—j(ﬁgj - $;) 1

=1

where 1, is the remainder. Hence, in terms of the transformed variable Z, = Y; —
Yy — - &SqY,_, = ¢(L)Y;, the expression suggests regressing the residuals
A,{b(L)Y, = A,Z, on Z_, and g lagged values of A,Y, to get an estimate of the
coefficient @, — 1. A test of the hypothesis @, = 1 is provided by the studentised
statistic on the OLS estimate of the coefficient associated with Z;-,; its critical
values are given in table 7 by Dickey et al. (1984). It should be stressed that
the seasonal mean model contemplated by the authors does not have a time trend
component.

If the DHF test is carried out on the first differences of the original series Ay,
then we test SI(2,1) versus SI(1,0).

4.3. Hylleberg, Engle, Granger and Yoo (HEGY) test

The testing schemes considered so far ignore the possibility that the series is
integrated at some but not all of the seasonal frequencies; this situation is remedied
by Hylleberg et al. who consider the null y; ~ $7(1,1) and break it up according
to the decomposition of the seasonal difference operator: Ag = (1 — L)(1 + L)(1 +
L)1 —<L).

Assuming that the data are generated by the finite autoregression (1), then the
authors show that by a Lagrange expansion of #(L} around the roots 1, -1 and +:
it is possible to write: ‘

LAy = T 211+ maZapa + TaZygoa + TaZse + e &y (3)

where 2y, = S(L)y, Zo: = —(1 - L + L= LMy, and Z3y = —(1 - L’)yt.

The usefulness of this parametrization is related to the connections between the
roots of the polynomial (L) and the parameters m;’s (i = 1,2,3,4) in (3): ¥(1) =0
implies that #; = 0 so that the null of a zero frequency unit root can be tested
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against m; < O (corresponding to the stationary alternative (1) > 0); similarly
w(—1) = 0 (a unit root at frequency x) implies m = 0, whereas the stationary
alternative »(—1) > 1 implies that #z < 0. The null hypothesis that the series is
1.12(1), 1.e. |#(i)] = 0 corresponds to both 73 and =4 being equal to zero; if either
%5 or 74 is different from zero, ther the process is stationary at » /2.

Equation (3) can be estimated by least squares and the t-statistics associated
with the parameters x; (¢ = 1,2,3,4) can be used to test the presence of unit
roots at the corresponding frequencies. Simnce the null Ho : (73 = 0) N (x4 = 0} is
two-dimensional, when testing for I,/;(1), the authors suggest using an F-statistic,
Alternatively one may first perform a two sided test of 7y = 0 and, if not significant,
compite a test of 73 = 0 against the alternative x3 < 0.

Representation (3) opens the way to tesling a number of hypotheses:

o Ho:yi~ SI{1,1) vs. Hy :ye ~ SI{0,0}, in which case all the x;’s are tested;

o Hy : 3 ~ SI(1,1) vs. Hy ty ~ SI(0,1): the maintained hypothesis is
7y = 13 = 74 = 0 (i.e. the process is integrated at all seasonal frequencies),
and 7, is tested. This is equivalent to carrying out an ADF test on the S(L)y
series.

e Hy:yi~ SI{1,1) vs. Hy iy ~ SI{1,0): the maintained hypothesis is relative
to the presence of a zero frequency wnit root (7 = 0), so that 3,73 and 7,
are tested.

o Ho: 4t~ SI(0,1) vs. Hy : yc ~ S1(0,0): the maintained hypothesis is m #0;

o Ho:y~ S1(1,0) vs. Hy : 9 ~ SI{0,0): the maintained hypothesis is 73 # 0
and either w3 or w4 is different from zero.

e When m = n3 = 7y = 0, it is possible to write $(L}AZ = ~Tal2t-1 + €&
and the distribution of the test of the hypothesis a3 = 0 is the mirror of the
Dickey-Fuller distribution.

# Similarly when it is maintained that 7y = xy = my = 0 then we have ¢"(L){1 -
L2)Z3y = #3737 + € and the test statistic for Ho : 73 = 0 is the mirror of
the DHF distribution when s = 2.

e The same testing sequence can be adopted on the first differences of y! for
instance we can test Hy : w ~ SJ(2,1) vs. Hy @y ~ SI(2,0); under the
maintained hypothesis x; = 3 = 74 = 0 we can lest y; ~ SI(2,1) against
y ~ SI(1,1) (this is equivalent to the ADF on the transformed series Ayy:),
and so on and so forth,

The distribution of the test statistics for »; = 0 (i = 1,2,3,4) is invariant
whether Z;,(j = 1,2,3,4, j # i), is included in the regressors set. However, it
changes according to the nature of the deterministic component; Hylleberg et al.
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tabulate critical values for the one-sided i-tests on ny, 7w, and w3, for the two-sided
t-tests on 7y and for the F-test of the hypothesis (73 = 0) N (x4 = 0) under five
assumptions concerning the deterministic component: 1. g, = 0, ii. pe = i, iii.
= ioy B Ve o= g+ By Vo g = iy #5; S + Bt (see tables 1a and 1b on
page 227).

For the series under investigation it is deemed relevant to consider stationary
alternatives whose deterministic components are represented by iii. and v.

4.4, The Hasza-Fuller (HF) test

The test proposed by Hasza and Fuller (1982) is based on the regression:

q
Y= Piye-r + Fadyima + Faly-, + E ¢ AA Y- + €

i=1

The null is that y, is SI{2, 1} which in terms of the 3’s is expressed as Hy :
Bi = 1,8 = 0 and B3 = [; in fact under Hy, AAy, = Tl 6;A0y; + &,
where the roots of the AR polynoinial are outside the unit circle. HF consider
an F-type statistic ('1’,(3_)3 in their notation} for testing Hy against the alternative
Hy iy ~ 81(0,0), and tabulate the critical values,

They also consider two more F-statistics based on the regression:

¥ = Bty + By + BaAy, + 2 piSi+ Bt + €.
=1

The first is the F-statistic for the hypothesis Ao : {1 = 1,/ = 0,83 = 1,55 =
0,5 =1t,...,s} (denoted by (Ds:i_tf_)q); the second tests Hy: f; = 1,5, =0, 3 =1
(test ‘PS?_),{_“). The alternative is that y,; is stationary with a deterministic seasonal
component and a linear time trend. Unfortunately the data generation mechanism
considered is far too simple, since it allows only for WN disturbances. Moreover the
presence of deterministic seasonality but no time trend is not considered under the
alternative hypothesis.

Dickey and Pantula (1987) have argued that such F-type tests result in decreased
power since they fail to account for the one sided nature of the alternative hypothesis.

4.5. Osborn, Chui, Smith and Birchenhall {(OCSB) Test

In analogy with the DHF test, Osborn et al. consider the Taylor series expansion
of {1 -, L)(1 — p,L*)$(L)Y; = €, about @, = @, = 1, where Y, is the original series
after subtraction of seasonal means, and propose the following two-stage testing
strategy: a) regress AA,Y: on ¢ lagged values to get estimates of the #,’s; b} consider
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the regression model:

g
AAYI = B2+ B2Z5e-a + ZajAAaY!—j + € (4)

j=1

whete Z = $(L)AY, Zyy = H(LIAY: fr= ¢y —1 and fo = ¢, — L.

QCSB consider the F statistic for testing 4 = 8, = 0, according to wkich
the process ts SJ(2,1) against the alternative that the process is stationary with
deterministic seasonals {they label this statistic as HF due to the similarity of the
testing problem?®).

They also consider the t siatistics on 8) and fB;: a test of Hp : 8; = 0 is a test
for the need of differencing by means of A, whereas a test of Hy: A3 = 0 is a test
for the need of differencing by A,.

When the maintained hypothesis is #; = 0 then the { statistic on 8, is a test of
51(2,1) versus SI(1,1); i.e., of the need for differencing the data by A after seasonal
differences were taken (this is close to an ADF test on A,Y;). When it is maintained
that 4, = 0, then the ¢ statistic on 3, is equivalent to a DHF test performed on
the first order differences (5I(2, 1)vs.5I(1,0)). The critical values are given in their
paper.

A final point should be noted: according to the Taylor series expansion the
variable on the right hand side of (4) should be AA,$(L)Y; instead of AA,Y;; the
authors’ motivation for their choice of the former is the argument that it does not
affect the test statistics, since there are g lagged values of the dependent variable on
the left hand side. :

5. Illustrations of the Testing Strategy

This section illustrates how the results of the previous section can be assembled
so as to produce a testing sequence. Following Dickey and Pantula (1987) it is
customary to adopt a global tep down strategy which involves starting from the
highest, order of seasonal integration, $1(2, 1), and testing down to the lower orders.
This is the path followed by Ilmakunnas (1990) and Osborn ef al. {1988). The
rationale is that such testing procedure enables preservation of the nominal size of
the test.

Beginning from S1{2,1), according to which the data generating process (d.g.p.)
is (2) with (L) = Ay, several routes may be undertaken:

e SI1{2,1) — SI(2,0): under the alternative the d.g.p. is (2) with (L) = A%
this can be tested by means of the HEGY on the A series when the maintained
hypothesis is that =y = 0.

5The anthors stress however that the advantage of their version of the HF test over the original
is the consideration of a stationary alternative around seasonal means with no time trend.
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¢ §1(2,1) — SI{1,1): under the alernative the d.g.p. is (2) with (L} =
Ay this is tested by the ADF test on the Ay series, which is equivalent to
performing the HEGY test on the A series when the maintained hypothesis is
7y = w3 = w4 = 0 and by the OCSB ‘4’ ratio on #; when f; = 0.

e SI(2,1) — S1(1,0): under the alternative the d.g.p. is (2) with (L) = A
(stationary at seasonal frequencies); this is tested by the DHF test on the A
series, the HEGY on the A series when all x;'s are tested and by the OCSB

"t ratio on J; when 8 = 0.

e S5J(2,1) — 57(0,0): under the alternative the d.g.p. is {2) with ©(L) =1
(i.e. the process is stationary at all frequencies); this is tested by the F-test
for Ay = B, = 0, the version of the HF test proposed by OCSB.

Supposing 57(2,0) has been accepted, we may wish to test against just one unit
root at frequency zero, that is $7(1,0). The ADF on the A series and the HEGY
on A series when 73, 73, w4 # 0 provide a way of doing so.

Suppose instead that the null 57{2, 1) has been rejected in favour of S(1,1). We
can now follow three distinct directions, according to whether we reduce by one the
order of seasonal integration, the order of integration at frequency zero, or both. In
the first case (S1{1,1) — 51(0,1)) we can use the ADF test on the S(L) series
which is equivalent to the HEGY on m; when all the remaining 7;’s are set to zero.
In the second (S7(1,1) — S1(1,0)) we use the HEGY on the original series when
x, = 0. Finally, the OCSB test on 8, with #; = 0, the DHF and the HEGY on y,,
when all the ,’s are tested, provide the means of testing 57(1,1) versus SI(0,0).

To complete the sequence we need to consider 51(1,0) —s S7(0,0) and
$1(0,1) —> S1(0,0). The former s tested by the ADF, the OCSB test on 3; with
B2 # 0, and by the HEGY when 73 = #3 = 74 = 0 is maintained. The latter is
tested by the HEGY on w3, 73, w4 when =; # 0.

In the interpretation of the results it ought to be kept in mind that some tests
rely on a specific maintained hypothesis and are not valid per se, but so long as the
hypothesis holds true.

Furthermore, some testing schemes invotve ample discontinuity between the null
and the alternative (i.e. the order of integration is reduced by more than one, as in
the DHF and OCSB) and therefore some doubt ought to be cast on their outcome.

6. Test Results

The testing sequence considered in the previous section has been applied 1o the
quarterly series on consumer expenditures at 1985 prices arising from two sources:
the National Accounts (CN series) and the Household Expenditure Survey (BF
series). For the latter we have also restricted the sample period to 73:1-90:4 in order
to eliminate the effect on infetences of the first three years, characterised by a rather
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different seasonal pattern; since inferences on seasonal integration underwent only
minor changes we omit the presentation of test results.

Let us start by considering the HEGY test on the first order differences. The
results are reporied in tables 1 to 3, from which it can be seen that the null of
integration at frequency zero is accepted only for the first differences of the series
CN1,ON3,CN6,BF2, BF6 and BFT. Nothing ot very little (as is cases CNG
and HF5) is changed depending on whelher or not the deterministic component
contains a time trend. As far as integration at the seasonal frequencies is concerned,
the evidence is less homogeneous. Most series are integrated at frequency r {two
cycles per year) with a few notable exceptions: C N5, BF2 and BF'5; moreover, the
-tests for the joint hypothesis #3 = x4 = 0 is significant in several cases. This
evidence on the unit roots at seasonal frequencies may not be conclusive due to the
fact that we have, inappropriately in most cases, filtered the series by means of the
A operator. CN1,CN3, BF6 and BFT are stationary at frequency /2, but are
Io(2) and I.(1). Conversely, BF2 is stationary at frequency x, but is [o(2) and
1',,/2(1).

When we test Hy : 3 ~ S7(2,1) versus the alternative Hy : 3 ~ SI(1,1) by
means of the ADF on the seasonal differences A4, the null is accepted only for series
CN3, and BF2, BF6 and BFT, regardless of the sample period (see table 3). This
evidence is not completely in line with that emerging from the OCSB test on f;
with B, = 0, which is significant for series CN2, CUNB, and for all BF series (table
7). This is due to the fact that the maintained hypothesis (82 = 0) may not hold,

Based on these results we are tempted to conclude that the presence of a second
unit root at zero frequency in most A series is not warranted by the data. Thus it
makes no sense to lock at the HEGY ¢ tests on w3, 73, ¢ when xy = 0; also we rule
out route 57(2,1) — SJ(2,0).

According to the DHF test (table 6) on the A series we would reject the null
S1(2,1) in favour of the alternative S{(1,0) in all cases but ('N6; again this may
be only a reflection of the absence of a second unit at frequency zero and calls for a
more thorough investigation at scasonal frequencies.

Thus it becomes interesting to look at the HEGQY on the original series (tables
4-5): the test on 7y is never significant and therefore we accept the null concerning
the presence of one unit root at the zero frequency.

If we then turn our attention to the seasonal frequencies, we find that restricting
71 to zero makes little difference on the t-statistics on 73, 73 and my (as we would
expect from the asymptotic independence of the regressors Z;,¢ = 1,2,3,4). We
may attempt a broad taxonomy of our series by distinguishing the following classes
of processes:

1. Processes which are S/(1,1): CN2,® CN6,CN8 and BF4.
2. Processes which are f5(1), J2y2(0) and I,(1): CN4,CNT and BF1.

5The attribution of (N2 is uncertain because the F-test is not significant while the t-lest on
LT is.
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3. Processes whicl are fo(1), 1,/2(1) and 7,(0): CN5, BF3 and BFS5.
4. Processes which are S1(1,0): BF8.

Note that integration at seasonal {requencies is accepted more often when dealing
with C'¥ series rather than BF series; recalling that the former consist originally of
yearly data that are distributed across the quarters recurring mainly to the latter,
so that we would expect that the order of integration would not differ significantly.
A possible explanation is that the distribution technique produces a smoothing
effect which induces higher persistence and autocorrelation in the series, thus having
undesirable effects on unit root tests.

The consequence of the previous analysis on univariate time series modelling is
that the usual transformations by the filters Ay, AA,, and S(1) are in most cases
not completely satisfactory as they may give rise to a strictly non-invertible pro-
cess al the seasonal frequencies. Now, non-invertibility is believed to be less of a
problem with respect to non-stationarity (for instance the forecasting performance
is unaffected); however, in order to capture the autocorrelation structure, long au-
toregressions may be required at the expenses of model parsimony.

Our analysis is of course subject to the usual caveat: in particular, it is a well
known fact that with 84 observations the unit root tests considered have low power
against the alternative of a root close to but below unity.

A final peint to make concerns the relative merits of the tests proposed for
seasonal integration: it is implicit in the above discussion that the HEGY test
provides the most vatuable information since it looks for integration separately at
each frequency of interest; on the other hand both the DHF and the OCSB tests
appear to be “overshooting” this analytic target in that they induce acceptance or
rejection of integration at all frequencies. Moreover, the filtering of the regressors
by means of an estimated lag polynommal, which may be subject to misspecification,
has unknown effects on inferences on unit roots.

7. Concluding Remarks

The quarterly series on consumption covering the period 1970:1-1990:4 are char-
acterised by a strong seasonal pattern whose nature is interesting not only in itsell,
but also for both univariate and muliivariate Lime series modelling (e.g., cointegra-
tion analysis). .

The paper has dealt with the problem of determining the order of seasonal in-
tegration of these series, which have been classified accordingly. It turns out that
integration at seasonal frequencies cannot always be taken for granted and that just
one unit root exists at frequency zero in most cases. However, the relevance of these
findings should be considered in the light of the fundamental skepticism surrounding
unit roet tests.
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Perhaps the most interesting result is that the nature of the seasonal movements
of the 'V series differs from that of the twin BF series; in particular, the evidence
for integration at seasonal frequencies (after allowing for deterministic seasonals}) is
stronger for the former. This result adds to the many discrepancies found between
the two sources of data on consumption; but it bears different implications, in that
it cannot always be associated with the operational concepts or to the estimation
process; rather they are attributable either to the properties of the technique adopted
for the distribution of the CN data over the quarters (for which the BF series play
a2 major - semetimes exclusive - role) or to the nature of the seasonality- of the
indicator series.
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Appendix

Table 1: HEGY fest - ON A series

Variable Auxiliary RSt Wimg “hims ‘i | CFiwma N om
Regressors
AlnCN1 DS -2.79 -1.63 -2.81 -2.30% 7.02*
AlnCN1 DS -1.60 -2.95 -2.58%
AlnCNi DS+T -3.39 -1.56 -2.72 -2.30% 6.76*
AlnCN1 DS4+T -1.39 -2.79 -2.67%
AInCN2 DS -3.60% | -2.62 -1.65 -2.81* 5.69
AlnCN2 DS -2.55 -1.82 -3.00%
AlnCN2 DS+T -3.82% | -2.55 -1.64 -2.78* 5.57
AlnCN2 DS+T -2.98 -1.17 -2.45%
AlnCN3 DS -2.4% -2.96 -1.55 -3.31% 6.67*
AlnCN3 DS -2.88 -1.44 -3.46%
AlnCN3 DS+T -3.26 -2.94 -1.67 -3.40%* 7.16*
AlnCUN3 DS+T -2.42 -1.14 -3.59%
AlnCHN4 DS -3,79% | -2.58 -3.59% | -1.24 7.42%
AlnCN4 DS -2.47 -3.98* | -1.82
AlnCN4 DS+T -3.93% | -2.54 -3.22 -1.18 7.03%
AlnCN4 DS+T -2.52 -3.55 -1.19
AlnCN35 DS -3.77F | -3.33* 0.77 -2.91% 4.64
Aln!N5 DS -3.01 | -0.89 | -2.75%
AlnCN5 DS+T -4.53* | -3.50% | -0.70 -2.91% 4.58
AlnCN5 DS+T -3.54* 0.08 -2.62%
AlnCNG DS -3.38% | -1.12 -1.26 1.27 1.37
Aln N8 ns -0.95 -1.62 0.84
AlnCONé DS4+T -3.36 -1.12 -1.25 1.06 1.33
L Aln NG DS4+T -1.17 -1.49 1.27
AlnONT DS -3.85% | -2.14 -3.69% | -2.16% 10.39*
AlnCONT Ds -2.11 -3.19 -2.55%
AlnCONT DS+T -3.75% | -2.12 -3.70% | 2207 10.37%
AlnCONT DS+T -2.26 -3.28 -2.29*
AIMCNS DS -3.53* | -0.18 0.93 -0.09 0.44
AlnCNS DS -0.06 0.83 -0.29
Aln NS DS+T -3.68* | -0.22 0.93 -0.09 0.44
L AlnCN3 DS4+T -0.07 0.81 -0.30
Notes: IS denotes that seasonal dummies S;;,7 = 1,2,3,4 are included in the

regression; DS+ T denotes that the deterministic component includes a linear trend.
The cells for ‘t':71 are empty when the maintained hypothesis is 73 = 0.

»*

significant at the 5% value,
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Table 2: HEGY {test - BF A sertes
Vartable Auxiliary ‘', i ‘thima Wiy | ‘Flimenomg
Regressers

Aln BF1 DS -4.07* | -2.57 | -3.82% { 0.56 7.62% |
Aln BF1 DS -2.32 | -3.76% | 0.60
Aln BF1 DS4+T -4.37% | -2.53 -3.85% 0.59 7.73%
Ain BF} DS+T -2.37 | -3.73% | 0.69
AlnBF2 DS 337 | -4.05% | -3.43 | -0.66 6.06
Aln BF2 s -4.01% | -3.27 -0.79
Aln BF2 DS+T -3.35 -6.00% | -3.40 -0.64 5.95
Aln BF2 DS4T -3.98% 1 -3.25 -0.7%
Aln BF3 DS -4.14*% [ -2.74 -2.29 1.81 4.57
Aln BF3 DS -2.41 -2.57 1.64
Aln BF3 DS4+T -4.09% | -2.71 -2.27 1.83 4.54
ANln BF3 DS+T -2.3%9 -2.53 1.66
Aln BF4 Ds -3.75% | 2,47 -2.58 1.75 5.21
Aln BF4 Ds -2.22 -2.64 1.97
Aln BF4 DS+T -3.90% [ -2.45 -2.55 1.65 4.92
AlnBF4 DS+T -2.21 -2.62 1.95
Aln BFS DS -3.46 -3.44% | -1.99 1.85 3.93
AlnBFS DS -3.26% | -2.14 1.93
Aln BF5 DS+T -3.7R* | -3.53% | -1.94 1.75 3.60
Aln BF5 DS+T -3.21% | -2.12 1.94
Alu BF8 DS -3.47 | -2.10 | -4.06* | 0.52 8.45%
Aln BFé DS -1.96 -3.87* 0.52
Aln BF6 DS+T -3.53 -2.08 -4.01% 0.52 8.23*
Aln BF6 D&+T -1.94 -3.85% 0.53
Aln BFT DS -2.45 -2.19 -4 89% 1.92 14.56%
Aln BFT DS -2.11 -5.33* 1.66
Aln BF7 DS+T -2.43 -2.17 -4.83* 191 14.30*
Aln BFT DS+T -2.09 -5.26% 1.66
Aln BF8 DS -4.65% | -3,99% | -4.89% ]| -2.36* 17.45%
AlnBFS DS -4.31% | -5.06% | -1.64
Aln BF8 DS+T -4.66% | -3.92% | -4.85% | -2.41* 17.37%
AlnBF8 DS+T -4,26% | -5.01* | -1.65

Notes: IDS denotes that seasonal dummies 5,7 = 1,2,3,4 are included in the

regression; DS+ T denotes that the deterministic component includes a linear trend.
The cells for ‘t’:m; are empty when the maintained hypothesis is 7 = 0.

* significant at the 5% value.
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Table 3: ADF tlest on A4 series
[ Variable || # |P<#H [IM] # ] 7 |P<#H [LM]
Asln CONT || -3.19 0.02 6.56 || -3.84 | -2.13 0.02 7.75
AgInCON2Z || -3.88 0.00 1.02 || -4.14 | -1.39 0.01 1.22
AgIn N3 || -2.48 0.13 3.67 || -3.09 | -1.80 0.11 3.78
AygInCON4 [ -442 0.00 5.21 || -4.62 | -1.28 0.00 5.45
AsInCN5 || -3.47 0.01 4.65 |} -4.14 2.17 0.01 5.53
AyInCONG || -3.48 0.01 .11 || -3.46 0.21 105 0.13
AIn ONT Y -3.61 0.01 0.28 | -3.54 | -0.18 0.04 0.27
Agln CNB || -3.59 0.01 1.38 1| -3.74 1.05 0.02 1.57

Agin BF1 || -3.99 0.00 0.95 || -4.26 | -1.42 0.01 1.64
Asdn BF2 || -3.25 0.02 0.15 || -3.26 | -0.48 0.08 0.17
Asln BF3 || -4.07 0.00 0.51 || -4.02 | -0.47 0.01 0.51
Aqdln BF4 | -3.83 0.00 0.40 || -4.04 | -1.25 0.01 0.44
Ayln BFS || -3.47 001 2.32 || -3.76 1.54 0.02 1.78
AglnBF6 || -3.22 0.02 1.29 || -3.32 | 0.83 0.07 1.61
Asln BFT || -2.77 0.07 0.28 || -2.74 | -0.32 0.23 0.26
Ayln BFS || -4.62 0.00 0.11 || -4.61 0.56 0.02 0.1%

Notes: F;, is the t-statistic of the ¢* parameter in the regression model:
M Br

4 q
L LT R VO, Y} V. V. P
=1 k=1

g = 2 for CN series; g = 4 for BF series.
Fr and 74 are the t-statistic of the ¢* and 2 paramneters in the regression:

4 q
Adgye = Z Sy + Bt 4 6" Aqyi—1 + Z‘f’IAA-i?!a—k + €.
=1 k=1

The distribution of £, and 7+ is tabulated by Fuller {1976); that of 74 is tabu-
lated by Dickey and Fuller (1981). g = 2 for CN series; g = 4 for BF series,
By P < 7. and P < 7r we denote the lower tail probability of the relevant
Dickey-Fuller distribution; LM denotesthe value of the Lagrange Multiplier test
statistic for the nll of residual autocorrelation up to lag 4, which is distributed
as x2 with 4 d.f.
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Table 4: HEGY test - CN series

Variable | Auxiliary | ‘t:m “thwe | ‘timy ‘thag | ‘Fimsnomg
Regressors

InCN1 DS -2.27 | -3.00 0.58 | -3.08% 4.97
InCAN1 DS -3.03* 0.74 | -3.20%
inCN1 DS4T -0.50 | -2.98 0.58 | -3.05* 4.90
In CN1 DS4T -1.53 -0.29 | -3.64*
InCNZ DS -2.68 | -1.94 0.56 | -3.40* 6.00 -
InCN2Z DS -1.88 0.67 | -3.45*%
InCN2 DS4+T -2.44 | -1.99 0.56 | -3.46% 6.19
InCCN2 DS+T -2.53 0.75 | -3.22*%
InCN3 DS -3.1% | -4.57* 1.33 | -4.09* 9.31%
InCN3 DS -4.80¥ 1.31 | -4.30%
InCN3 DS+T -1.41 | -4.57* 1.33 | -4.05% 9.17%
InCN3 DS+T -2.91% 1.11 | -3.57%
InC’N4 DS -1.77 | -2.65 -1.49 | -3.21% 6.60*
InC’N4 DS -2.64 -1.35 | -3.21*
InCN4 DS+T -2.25 | 211 -1.56 | -3.21* 6.70*
InCN4 DS4T -2.53 -1.62 | -3.35%
InCN5 DS -2.41 | -4.10* 1.49 | -2.56% 4.48
InCN5 DS ~4.19*% 1.60 | -2.77%
In NS DS+T -2.52 | -4.12* | 1.33 | -2.66% 4.64
InCNS DE+T -3.47* 1.54 | -2.60*
InCNG6 Ds -0.17 | -1.43 -1.32 0.24 0.89
InCNG Ds -1.44 -1.32 0.24
InCNG6 DS4T -2.22 | -1.46 -1.17 -0.31 0.73
in(N6 DS4T -1.11 -1.61 -0.17
InCNT DS -0.35 | -2.91 -0.38 | -4.35% "~ 9.61%
InCONT DS -2.92 -0.41 | -4.37*
InCNT DS+T -1.77 { -2.92 -0.52 | -4.27F 9.36%
InCNT DS+T -2.10 -1.03 | -4.41%
InCN§ DS 0.61 0.03 0.66 0.42 0.32
InCN8 DS 0.03 0.68 0.48
InCN8 DS+T -2.07 | -0.05 0.72 0.50 0.40
InCN8 DS+T -0.22 0.72 0.59

Notes: 1S denotes that seasonal dumniies S;¢,; = 1,2, 3,4 are included in the

regression; DS+T denotes that the deterministic component includes a linear
trend. The cells for *t":r; are empty when the maintained hypothesis is m = 0.
* significant at the 5% value.

23



Table b: HEGY test - BF series

Table 6: DHF test

I Variable TDHF || Variable DBF |
InCN1 -2.63 In BF1 -3.82
AlnCN1 -434* || AlmBF1 -5.76%
InCN2  -4.40% Iln BF2  -5.02%
AlnCN2Z 450%Y || AlnBF2 -5.209%
InCN3 -3.05 In BF3 -2.32
AlnCN3 -5.90% | AlnBF3  -4.82%
InCN4  -2.92 In BF4  -4.49%
AlnCN4 -533* ) AlInBF4 -4.95*
In(C’NS -0.31 In BFS -2.52
AlnCNs  -5.03* | AlnBF5 -5.24*
InCN6  -0.48 InBF6  -2.20
AlnCNEe -1.12 AlnBF6 -b.54¥
InCN7 -4.26% In BF7 -3.653
AlnCNT -589% || AlnBFT -6.34*%
InCN8 -0.31 In BF8 -4.29%
AlnCN8 -5.03* Aln BF8  -7.60%

Notes: DHE is the {-statistic of the o parameter

in the regression models:

1.

q
My i =adiy+ Zakﬂ.4yt_) + €,

k=1

Variable | Auxiliary ‘47 T O ‘i ‘i  CFimanomy
Regressors

In BF1 ns -2.40 | -2.31 -3.40 -1.87 7.87%

In BF1 DS -2.31 -3.40 -1.88

In BF1 DS4T -3.17 | -2.49 | -3.65% | -1.89 8.81*

InBF1 DS4T -2.27 -3.35 -1.87

InBF2 DS -2.52 | -3.27% | -2.16 -2.11% 4.75

InBF2 DS -3.14% | -1.94 -2.08%

In BF2 DS4T -3.21 | -3.32% | -2.32 -2.06% 5.00

In BF2 DS4T -3.14% | -1.95 -2.08*

In BF3 DS -0.55 | -3.14% | -3.12 -0.80 5.30

InBF3 DR -3.16% | -3.12 -0.80

InBF3 DS4+T -1.83 | -3.20* | -3.15 -0.74 5.32

In BF3 DS+T -3.14*% | -3.11 -0.80

In BF4 DS -2.53 | -2.46 -2.99 -0.45 4.61

In BF4 DS -2.53 -3.28 -0.65

InBFf4 DS+T -2.80 | -2.49 -3.02 -0.39 4.66

In BF4 DS4T ~2.47 -3.13 -0.59

In BF5 DS -0.11 | -3.48% | -2.82 0.14 4.00

in BF5 DS -3.50% | -2.84 0.14

in BF5 DE4+T -3.06 | -3.25% | -2.69 0.56 3.8

InBF5 DS+T -3.40% | -2.75 0.24

in BFé DS 0.18 | -2.15 -3.43 -2.680* 10.431*

in BF6 DS - -2.17 -3.47 -2.64%

In BFG DS4T -2.03 | -2.22 -3.69% | -2.45% 11.05%

In BFE DS4+T -2.16 -3.44 -2.55%

In BFY DS -0.91 | -3.53% | -4.45% | -1.92 13.21%

In BF7 DS -3.56% | -4.40% | -1.93

In BF7 DS+T -1.98 | -3.59* | -4.52* | -1.84 13.35*

In BF7 DS+T -3.53% | -4.39% | -1.92

InBF8 DS 0.31 | -4.22% | -4.54% | -1.24 16.33*

InBFg DS -4.24% | -5.58% § -1.22

ln BF8 DS+T -1.95 | -4.07* | -5.56*% | -0.94 16.01*

In BF§ DS+T -4.26* | -5.59* | -1.25

otes: DS denotes that seasonal dumunies 5,,,7 = 1,2,3,4 are included in the

regression; DS4T denotes that the deterministic component includes a linear

trend.

* significant at the 5% value.
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where V; = y —~ Z; ;8 and Z, = Yy -~

$1Yemt = -+ = dg¥iog. $x is estimated by
a regression of B4Y: on its ¢ = 4 lagged
values.

q

AAGZ = oZi_y + Zakamn_i +ee
k=1

where Z7 = AY, — J”A}/t_: - =

af)qAYt_q; :f;k is estimated by a regression
of AALY: onits g = 4 lagged values.

* significant at the 5% value.
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Table 7: OCSB test
Variable | €A | vl | o8| Uik | TAOA
=015 =0

In N1 1.11 -2.27% -1.60 -2.57* 3.94%
InCN2 -0.51 -5.11% -2.13* -5.61* 16.12*
InCN3 | -0.52 -2.76% -1.50 -3.15% 5.05%
InCN4 | -0.24 -2.69% -1.54 -3.32% 5.47T*
InCN5 -1.38 -0.37 1.48 -0.64 1.16

InCNe6 -2.11* | -0.39 -2.24% -0.79 2.55

InCN7 0.33 -4.80% -1.37 -4.70% 12.24*
InCN8 -1.11 -0.26 -1.18 -0.26 0.71

In BF1 -1.37 -4.54* -3.05% -5.50* 16.29*%
In BF2 -2.10* | -4.72% -3.23* -5.48% 17.93%
In BF3 -0.71 -3.60* -2.45% -4.61* 10.80*
In BF4 -1.85*% | -3.53* -3.30* -4 56* 12.56%
In BF5 -1.38 -3.93% -3.34% -5.17* 14.57*
In BFé -0.82 -3.98* -2.60%* -4.84* 11.99*
In BF7 -0.92 -5.79% -1.85* -6.14* 19.25*
In BF8 ~2.08% | -5.97* -3.91* -7.19* 29,24 *

* significant at the 5% value.
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