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1- Introduction

Several financial models specify a factor structure for asset returns.
The question of unobservability of such factors' has favoured the
application of exploratory factor analysis, leaving the interpretation of
factors to the ex post empirical analysis of their correlation with obser-
vable macroeconomic indicators®. In this paper we derive some impli-
cations of factor models on observable variables, both from financial and
non-financial markets. From a factor model it isin fact possible to derive
reduced form models, involving either only asset returns or macroeco-
nomic variables and asset returns, i.e. observable variables. Within such
models it is possible to make inference on the number of latent factors.
Testing for the number of latent factors makes it possible to test com-
peting models such as the Capital Asset Pricing Model (CAPM) and the
Arbitrage Pricing Theory (APT).

Moreover the models involving asset returns and macroeconomic
variables can be exploited to estimate the relation of a specific economic
indicator with financial latent factors and to test its relevance, thus
assessing the connection between financial markets and the rest of the
economy.

All the models are special cases of the reduced rank regression model
of Anderson (1951), i.e. regression models where the regression coeffi-
cient matrix is not full rank (reduced rank) and its rank is equal to the
number of latent factors. The gaussian maximum likelihood problem for
these models has an analytic solution linked to canonical correlation
analysis, and thus favours maximum likelihood estimation and likeli-
hood ratio testing. Although gaussian maximum likelihood can be
reinterpreted as a special generalized method of moments or pseudo
maximum likelihood solution, the choice of likelihood ratio tests is not
robust to the misspecification of the probability model. Extension to
robust procedures are not analyzed in this paper, and appear an inte-
resting area for future research. Besides the present approach provides
a simple testing strategy which is optimal in the analyzed model.

1 Roll’s criti ue, for instance, has focused on the unobservabilitﬁ' of the market
portfolio of Capital Asset Pricing Models, see e.g. Gibbons and Ferson (1985).

2 A notable exception is the line of models initiated by Gibbons and Ferson
(1985), see also Ferson (1990).



The rest of the paper is organized as follows: section 1 introduces the
E factor model and discusses its relationship to the Arbitrage Pricing
Theory (APT) and Capital Asset Pricing Models (CAPM); section 2
analyses the relation between the two models and the statistical models,
while section 3 reviews maximum likelihood inference in reduced rank
regression models. Section 4 reports empirical application of these
methods to stock returns from the Milan Stock Exchange, comparing
them with corresponding inferences based on factor analysis; section 5
contains some concluding remarks.

2 - Latent factors and asset pricing

The empirical analysis of financial markets makes often use of linear
models in the factors; several theories are in fact nested within such
models. Two notable models in this class are the (intertemporal) Capital
Asset Pricing Models (CAPM) and the Arbitrage Pricing Theory (APT).

Both the static CAPM and the Consumption CAPM hold that one
factor (the market portfolio or the growth rate of consumption) is suf-
ficient in explaining asset returns variation. The Intertemporal CAPM,
on the whole, is consistent with the view of asset returns being functions
of state variables; optimal portfolio selection implies that prices (returns)
depend on the covariance of such variables with each marginal utility,
which could be approximated by a linear function of the state variables,
thus leading to a linear-in-the-factors model.

The APT assumes that the expected asset returns are generated by
a factor model:

Er oS =EAr)* L 0y (=12,m)

where r, is the i-th asset return at time ¢, E() denotes expectations
conditional on information known at time t -1, f,, is the h-th factor at
time ¢ for which E(f,)=0; the a; parameters are here assumed to be

constant through time. In matrix form
D E(r | f)=E(r)+of,
where r,=(r,....r.) s f=in - f)s =0yl i=1,.,n, h=1,..,k.

Ruling out arbitrage opportunities under certain assumptions
implies®

k
E(r) =2+ _21 afj)"jror
j=

2 E(r)=iAq+0A
where }, is usually interpreted as the return on the risk-free asset,
A=(,..oh) and i, =(1,...,1)" is a unit vector of dimension n.

The conditional CAPM* could be interpreted as a special case of (1)
(2), obtained by setting £ = 1 and
(3) fu=Tw = A= 2
where r,, is the return on the market portfolio. While the existence of

only one factor is consistent with the CAPM, it is possible that the single
factor does not coincide with the market return. Nevertheless evidence
of a single factor, in case of an observable risk free asset A, =7, and of

two factors, in the case of an unobservable portfolio r,, orthogonal to the
market portfolio Ay, =E,(r,), can be interpreted as consistent with the

CAPM; on the other hand more than 2 factors are usually interpreted
as evidence in favour of the APT. Both the CAPM and APT can be nested
within the unifying equation (1), as shown by Wei(1988)°, interpreting
the last factor as the market return.

Two important issues must be addressed in specifying the economic
implications of both financial models: the time constancy of A, and the

observability of /. We will always take the risk-free rate A, to be varying

through time. In the next section we will show how the different choices
with respect to these two basic questions hint at different statistical
models.

Empirical applications on the APT have either focused on extracting
the latent factors by factor analysis techniques, without specifying the
underlying state variables, or equated the k& factor with observable
variables on a priori ground, thus obtaining linear regression equations.

3 See Ross(1976), Connor (1984), Wei (1988).
4 See Gibbons and Ferson (1985), Burmeister and McElroy (1991).
8 See also Burmeister and McElroy (1991).
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While the former procedure has been questioned as leading to too many
factors®, the latter does not provide a test of the number of factors, which
can discriminate between alternative models as the APT and CAPM.
This paper follows a different approach to test the two competing
financial models. In the next section, in fact, we analyze the two basic
statistical models usually considered in applied work: the factor analysis
model and the regression model; it is found that the type of restrictions
(1) and (2) lead in both cases to reduced rank regression models which
thus represents an unifying scheme. The reduced rank structure allows
the researcher to test for the number of latent factors in asset returns
with or without macroeconomic indicators. Moreover it allows to asses
the relation between financial markets and each economic indicator
within the same model, i.e. characterized by the same number of factors.

3 - The statistical models

In this section we will assume that the implications of financial models
of the previous section on returns can be represented in the form

@ E(r, 1 f)=0odfi+})
If the risk free return A, is observed, r, can be set equal to the vector
of excess returns of the n assets with respect to the risk free rate A,. If

there is no risk free asset, then the last vector in parenthesis on the
right-hand-side of (4) can be expanded to contain the extra component

E(ro) = ha-
The two major specification problems in (4) concern the observability
of f,, and the time constancy of A,. Let us first con sider the latter; if there

is no time variation in A, = A eq. (4) becomes

() E(r\f)=p+od,
where
6 p=o0l

Sometimes it does not seem reasonable to expect A, to be constant
through time. From eq. (2) one has ok, =E(r), which shows that, as ais
a constant matrix of parameters, A, can be in general a function of the
information set at time ¢ — 1. The simplest assumption in this respect is

6 See Conway and Reinganum (1988) and reference therein.
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A, =8¢,
where the s x1 vector g, contains observable variables in 71, s >k .
Substituing one has

Q) E(r)=adg,
or, considering eq. (4),

® E(r,|f) =08+,
where

©) ¢=0b

Equations (5) and (8) represent two possible formulations of the
financial models on which our analysis will be focused: the former relates
to the case of time-constant A,, while the latter represents the chosen

specification in the case of time-varying 2.

The second issue involved in the specification of the model is the one
regarding observability of the vector of factors f. If £, is observable, eq.

(5)and (8) specify linear regression functions; in other wordsthe relevant
reference statistical model in this case is a linear regression model. On
the other hand if f, is unobservable the statistical model of reference for

eq. (5) and (8) is a factor analysis model, see e.g. Anderson (1984)%. Note
that interpreting f, as latent factors in (8) specifies a mixed model with

both observable and unobservable variables which can still be accom-
modated in a factor analysis model.

The two reference statistical models, the factor analysis model and
the linear regression model, are therefore analyzed in the following
subsection under the restrictions (5) (6) and (8) (9).

3.1 - Implications on the factor analysis model

The usual formulation of the factor analysis model is the following
(10) re=u+af,+¢

where pin an x 1 vector of constants, ande, and f, arei.i.d. normal random

variables with zero mean and covariance matrices E(f,f,) =1, E(f£,) =0,

7 The same sort of assumption is made e.g. in Gibbons and Ferson (1985).

8 Some empirical works based on the former model are Chan, Chen and Hsieh
(1985), Chen, Roll and Ross (1986), Sweeney and Warga (1986), Huberman and
Kandell (1987) and Hamao (1988); Brown (1988) and Costa (1990) for the case
of Italy are applications of the latter model.
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E(ge’) =Y =diag(y,, ..., ¥,). It is easy to see that relation (5) can be nested
within such a statistical model; eq. (8) seems more at odds with (10);
nevertheless one can generalize model (10) in the following way

(11) r,=0g, +0of, +¢

where [e,

e ba(o(s 7))

It is easy to see that the statistical models (10) and (11) nests both (5)
and (8). Note that (5) imposes a restriction on the constant p of model
(10), and (8) imposes the restriction (9) on the coefficient matrix ¢in (11).

Consider now the partition r,=(r,’,ry’)" ; the following proposition

states thatin both (10) and (11), the conditional model forr, with respect

to r, is a regression model, with matrix of regression coefficients of

reduced rank £, equal to the number of factors.

Theorem 1
Letr,=(r’,,r’,) be a partition of r, in (10), with r,,, r, of dimension n,;x 1

and n,x 1, respectively, n,, n,> k. Let (6) also hold and let o, o, be of full
rank k. Then the model of r,, conditional on r, is normal with

oA T
a2) E, )=o)

and positive definite conditional covariance matrix A,,. The matrix of
regression coefficients 6= 0,3” has dimensions 7, x(n,+1) and reduced

rank k.
Analogously if (9) holds, for the same partition of r, in (11) the model of

r,, conditional on r, is normal with conditional mean
Fu
(13) E(’nlrm,g,)=0hﬁ{glj
and positive definite conditional covariance matrix A, ,. Again the matrix
0=a,B’ of dimensions n, X (n,+5) has reduced rank k.
Proof See appendix.

The previous proposition asserts that the statistical models (10) and
{11) imply conditional regression models for the observables, in which
the regression coefficient matrix is of reduced rank % equal to the number
of latent factors. This implication will form the basis of the tests pre-
sented in this paper.®

An immediate consequence of theorem 1 can be obtained marginali-
zing with respect to f,.

Corollary 2
Consider the regression model
(14) r= 08 +¢
the model (7) imposes the reduced rank restriction
) o =00
on the regression coefficient matrix ¢.

Finally let us note that the present approach generalizes the work of
Gibbons and Ferson (1985). The two authors, in fact, specify a regression
model for r, on information variables g, of the form
(15) ' E(r)=23g,

On the other hand from the economic model E,(r,) = od,; therefore solving
for A, one can show that A, =a’dg, where a=o(c’o)”, and thus
E(r)=0a0’dg, i.e. the financial models impose a reduced rank structure
oo’ on ¢ in the regression model r, = ¢g, +¢,. Gibbons and Ferson derive
analogous restrictions on ¢; they express the dependence among the
coefficients partitioning r, in (r,,r,) where r,, is k x 1, and representing
the ¢ coefficients for r,, as functions of the ones for r,,. Note, however,

that one can represent the restrictions (9) of ¢ in (14) directly as reduced
rank restrictions. This allows to obtain the maximum likelihood solution
of (14) analytically, see section 3 and does not imply any choice of par-
tition for r,.

9 One must note that the parameters of the conditional and of the marginal
models will not in general be variation independent, and therefore the analysis
of the conditional model will not be as efficient as the analsis of the full model.
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3.2 - Implications on the linear regression model

If the factors f, are observable, the economic model (5) can be nested

within a multivariate regression model of the form

f:
(16) r,=(ouu)(lj+€r
where e~ i.i.d. N(0,Q). Analogously (8) canbe nested within the enlarged
model
I
(17 r,=(o,0) 2 +g

The assumption of observability of the factors f, is generally coupled

with the identification of the factors with some observable variables,
often taken to be macroeconomic indicators. In order to identify such
factors, several financial models are usually quoted; Present Value
Models®®, for instance, suggest correlations between stock prices,
expected dividend yields and variables connected to the intertemporal
rate of substitution; on the other hand Consumption Capital Asset
Pricing Models”’ predict co-movements between stock returns and the
growth rate of consumption.

The following proposition illustrates how (5) and (8) restrict the
coefficient matrices of the statistical models (16) and (17) to be of reduced
rank.

Theorem 3
If f, is observable (5) (6) restrict the coefficient matrix in the regression

model (16) to be of reduced rank k
(18) rt=aﬁ’(-§]+€t

where B =(/,,))’, that is 6 = of’ is of dimensions n x (k + 1) and of reduced
rank k.

10 See Shiller (1981) inter alia.
11See e.g. Breeden (1979)._

Analogously (8) and (9) restrict the coefficient matrix in model (17) to
be of reduced rank k
(19) / r,=aﬁ’[£’)+e,
where B =(/,,8); the matrix 6 =af’ is of dimensions n x(k+s) and of
reduced rank k.

Proof By substitution.

Observe again that the reduced rank structure of eq. (18) and (19) can
be exploited to test for the number of factors k. Note that when including
variablesin f, and g, as regressors in (17) there is no need to specify which

variable enters which vector, as the variables are treated symmetrically.
The assumption that the factors f, can in fact be identified with a

specified set of observable variables seems a rather restrictive one. Often
the econometrician has a certain number of variables as possible can-
didates for the factors, but no definite single choice. A very simple
hypothesis in this respect would be to assume
(20) fi=1h,
where h, is a p x 1 vector of observable variables and 1 is a k x p matrix
of coefficients, with p > k. In other words the underlying factors f, are
linear combinations of observable variables. Note that under assumption
(20) the researcher is allowed to proceed in a general to specific fashion
in the search for the set of indicators. It is simple to show that under
assumption (20) theorem 3 is still valid; more precisely

Corollary 4
Under the assumptions of theorem 3 and (20), eq. (18) and (19) are still
valid when substituting #, for £, that is

(18") = aﬁ(’;) vt

where in this case B=(t,A)’, 6=0f" is of dimensions n x(p +1) and of
reduced rank k; analogously

h,
-l

where B =(1,8), 0=0f is n X (p +5) and reduced rank k.
Proof By substitution.



An economically interesting question of own right concerns the
relevance of each economic indicator in #,; note that if a variable is

incorrectly included in k,, the corresponding column of tis actually a zero

column. Hypothesis of the type R B = O therefore turn out to be of interest,
which can also be formulated as
21) B=Hy

In the section 4 we will therefore analyze hypotheses of the form (21)
as specification tests with respect to (20).

3.3 - Asset returns and macroeconomic dynamics

While both theory and empirical evidence suggest that asset returns
are hardly serially correlated, macroeconomic variables exhibit strong
temporal dependence. Often a vector autoregressive data generating
process is assumed as a possible model for the dynamics of macroeco-
nomicindicators; such a process nests, forinstance, a structural dynamic
system unrestricted reduced form. In this subsection we try to
accommodate dynamics for the macroeconomic indicators specifyed in
g and h,. Let m, be a I x 1 vector of macroeconomic variables generated

by the following model
(22) AL)m =W, +7f+&
where A(L)=1-AL—AL*~...—A,L"is a finite matrix polynomial in the

lag operator L, i, is a vector of constants, f, and &, are assumed i.i.d.
normal uncorrelated random vectors E(EE,) =X =diag(c},...,07) and
E(Ee,)=0. It is well known that the stationarity of the system is linked

to the roots of the determinantal equation | A(z) |=0, given the assum-
ption that both £, and &, are serially uncorrelated. Note that we are now

back to the assumption that f, is unobservable. In the empirical

application we assume that such roots are all outside the unit circle, i.e.
that the system is stationary. Nevertheless specification (22) is general
enough to analyze non stationary - and possibly cointegrated - systems,
thus providing an interesting area of future research.

Theorem 1 can be applied to (10), (22) obtaining the following pro-
position, a proof of which is reported in the appendix.
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Corollary 5
In the statistical models (10), (22) or (11), (22) the conditional models of
(r,Im) and (r, | m,, g,) are of the type (12) and (13), with r, in place of r,,

and m, =(m’,m,_,’,...,m,_,") in place of r,, i.e.

E(r,\m)=0f'm, E(r,lm,g)= Otﬁ[fj

Therefore the rank of the regression matrix of returns on current and
lagged values of macroeconomic indicators is also equal to the number
k of underlying factors; a reduced rank regression of these variables can
then also serve as a test of the theories.

4 - Inference in reduced rank regression models

The reduced rank model has been analyzed extensively in the stati-
stical literature (Anderson 1951,76, Khatri 1976, Izemnan 1975, Tso
1981, Johansen 1989, 91), while it has not received much emphasis in
the financial literature. The maximum likelihood problem in the reduced
rank regression model is solved by calculating the canonical variates
between the independent and dependent variables, after conditioning
on the other variables w, at the outset. The analytic solution provides

the means of constructing simple likelihood ratio tests of the various
restrictions; the rank constraint makes it possible to test for the number
of factors, while other restrictions can be tested conditionally on the
number of underlying factors. Several tests and maximum likelihood
estimators are reviewed in the following subsections.
Consider the following regression model
4 y= o B x + & w + g t=1,...,T
nx1 nxk kxp  px1 Axs  gx1 nx1

where ¢, is a vector gaussian white noise, ¢, |x,, w, ~N(0,Q). It is easy to

see that the models of the previuos section (see (12) (13) (14) (18) (19))
are nested within (24).

The identification problem of o and P is evident in the reduced rank
model (24): given a pair of x and p matrices, all the possible pairs o* = o™
and B* =B are observationally equivalent, where § is any non-singular
matrix, as of’ and a*B*’ are equal. Non-the-less the column spaces of
both o and B can be identified, that is up to a normalizing rotation'.

12 Which consists in a choice of &, and thus is shared by both a and §. /h/::f_u
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Such a normalization can be chosen so as to either obtain B=(/,,3,")’ or
B’S.B =1, where S, is defined in the following. Both normalizations

impose k? identification restrictions; the number of parameters contai-
ned in of’ is therefore equal to nk +kp —k>

The maximum likelihood problem in reduced rank regressions is
solved analytically by the canonical correlation problem between y, and

x, conditional on w,, as shown e.g. in Anderson (1951) and Tso (1981).
Consider the log likelihood of model (24)

T T 1
InL(o, B, 8,Q) = —"7 In@2m) -7 In| Q| 53,62,
The likelihood function can be concentrated with respect to 8 simply
regressing y, and x, on w, and considering the residuals
Ryt =% —Mwa;LW, R,.=x —waM;;lth
where

T
1
M,,=7 Zla,b,’ ab=y,x,w
=

The concentrated likelihood function is therefore

T
InL(0, B, Q) = const —31n| Q —%E}(R,, —of’R )R, —aB'R,)

For fixed B one can maximize InL with respect to a regressing R,, on
B’R, obtaining
&(B) =S, BBSB)" QP)=S,,~S,BBS.B)'B’S,
where
1 T
S;,b =7 21 l?mjeh, =:A4;b.w Cl,b ==Jt,)
t=1
The likelihood function concentrated with respect to o and 8 is
InL(B) = const —<1n | S,, —S,.B(B’SP)'B’S,, |

which can be maximized by minimizing the determinant on the right
hand side. From the properties of determinants

|S”I | B‘(Sx- B S"S;;s")ﬁ

(25) 1S,,— S),ﬁ(B’Snﬁ)_IB,Sxyl = 1B’ B

12

Minimizing (25) is tantamount to solving the canonical correlation
problem between y and x conditional on w, i.e. it corresponds to the
eigenvalue problem'

(26) S~ 5,558, =0

wyx
where the ordered eigenvalues u, 24,2 ... 2u, are the squared canonical
correlations'. The maximum likelihood estimator of B is given by the &
eigenvectors associated with the first £ canonical correlations.

The maximized likelihood function is thus proportional to, for‘given
k,

InL_ (k)=c =215 1-L5 in(1-u)
marlk) =cONSt =3 |5, 1 =5 2 u;

The likelihood ratio test of the hypothesis k <d within the unrestricted
model k = p is given by*®

. L (k<d
Ql(d)=—21n( (k< ))=—T $ n(-u) d=0,1,...p—1

i=d+1

Leax(k = p)
while the likelihood ratio tests of the hypothesis k <d versus k£ =d+11is
just

LEsd)

- Lm
Qz(d)z—ZIH(Z-—de—”)):—Tln(l"u4+1) d=0,1,...,p-1
The test statistics 0], 0, are asymptotically distributed as x* under

general hypothesis ¢, the degrees of freedom being equal to the number
of restrictions, v, =(n—d)(p —d) and v,=(n —d)+(p —d) -1 respectively.
Applying Bartlett corrections one obtains the statistics

0d)=~(T-4¢n+p+3) £ -

0d)=~(T=3(n +p+3)Jin(1—1,.,) d=0,1,...p~1

13 See appendix.
14 See Tso (1981), pg. 187.

15 Here we assume that p <n. In case p > n one just needs to intechange p and
n, as the rank of off’ is at most equal to the minimum between the number of
rows and the number of columns.

16 See e.g. Anderson (1984); these hypothesis do not cover the nonstationary
case, as in tests for cointegration, see Johansen (1989, 1991).
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which are again y* distributed with v, and v, degrees of freedom
respectively.

The Q,(d) statistics provide a sequence of conditional tests. On the
other hand an alternative consistent testing procedure is obtained
considering the sequence of test statistics Q,(0), 0;(1), 0,(2) Q\(p —1) and
choosing for k the first value for which Q,(k) is not significant at the
specified significance level”. Asymptotically an incorrect smaller
dimension £ would never be chosen, while the probability of choosing

the correct value is at least equal to 1 —a. In the following we rely on the
latter procedure.

4.1 - Specification tests

Once the rank of 6 = af” has been selected, it would be interesting to
test linear restrictions on B, as e.g. exclusion restrictions in equation (9°),
which would correspond to the irrelevance of some of the chosen inde-
pendent variable with respect to the factor model. Consider the following
linear hypothesis in explicit form

27) B=Hy
which is equivalent to the implicit form
RB=0

where H is a known matrix of dimensions (p xq),R =H,, and_I indicates
the orthogonal complement of a matrix, that is H:H'H=0, (H, H,)span
Re.

The exclusion hypothesis of one of the variables included in x, from
the model , for example, corresponds to R =(1,0,...0)" the following

equivalent formulations, for which it is easy to verify the orthogonality
of the given matrices

0.0
1.0
(10...08=0 B=| | v
0 . 1

17See e.g. Pantula (1989) and reference therein.

14

. Under the restrictions (27) the likelihood function can be maximized
just along the lines of the previous section, see Johansen (1989, 1991);
the relevant eigenvalue problem becomes

| u'S;—S:,S;,‘S;, E0
whereS; =H'S H,S, =H’S,,, withu >u; >... 2 u_ ordered eigenvales; the
maximum likelihood estimator of y is given by the first & eigenvectors.
The maximized likelihood function is '

3
InL,(k, H) = const =515, | -3 3 In(1 - u)
i=1

and the likelihood ratio test of the restrictions (27) leads to the statistic
k k
w05(k)=-T _):] In(1-u)+T ¥ In(1-u)
i= i=1

which is again asymptotically y* distributed with v, = (p — ¢)k degrees of
freedom.

4.2 - A test based on the constant term

Both the CAPM and the APT specification restrict the vector of con-
stant to lie in the column space of o, that is
(6) H=0A

Such a restriction appears in (12) and it is in fact testable. The
unrestricted model with no constraints on the constant can be estimated
as in the section 3.1 simply setting w, = 1. Let the maximized likelihood

function be denoted by
In Loy, (k) = const =31S | —gél In(1-4,)
The.lik.elihood ratio test of the restrictions (6) is therefore based on the
statistic
Q,,'(k)z—Té',lln(l —ﬂi)+Tié,lln(1 —u)=TI|S,14T1S,,|
which is asymptotically x* distributed with n —k degrees of freedom. The

rejection of the restrictions (6) would imply e.g. "preferred habitat”
effects in the market.
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5 - An empirical application

In the empirical analysis we considered 29 monthly asset returns’®
from the Milan Stock Exchange, from the period January 1972 -
December 1989, the choice of monthly returns being linked to the
availability of macroeconomic indicators only on a monthly basis. Pre-
vious studies indicate that the Italian Stock Market was too thin before
the 1980s (see Baccolini and Lusignani, 1991); on the other hand
homogeneous macroeconomic time series are available only for the last
decade; we therefore selected the sample January 1980 to December
1989 as our sample period.

In the specification of the models of section 2 one can easily meet a
dimensionality problem, as many variables are considered simulta-
neously (r,, g, 4, m,). Although a general to simple approach would

suggest to consider all variables at one time, the empirical ratio of the
number of parameters to degrees of freedom forced us to break down the
analysis.

We therefore first analyzed the autocorrelation structure of returns
and checked for the presence of deterministic calendar effects. Table 1
reports the first 12 autocorrelations of the assets returns for the period
February 1972 - December 1989: 32 over the 348 calculated autocorre-
lations (about 9%) are outside the interval +2/Vn, thus indicating a
slightly greater rejection rate than expected. Since 9 significant
autocorrelations were detected at lag 12 in the univariate analysis, a
multiple regression of 7, on r,_, and a constant and 11 seasonal dummies

was estimated in order to check for a seasonal multivariate dependence
at lag 12. The relevant statistics reported in table 2 do not indicate any
significant effect. Also restricting the model to deterministic seasonal
factors, no apparent significant deterministic seasonal components were
detected, see table 3%°.

18 The analyzed returns, measured in percentage points, are the following
common stocks: Eridania, Alleanza, Generali, RAS, SAI, Toro, Comit, Banco di
Roma, Medibanca, Burgo, Italcementi, Montedison, Pirelli, Rinascente, Alitalia
Priv., Italcable, SIP, Acqua Marcia, IFI Priv., Pirelli & C., SME, STET, Risa-
namento Napoli, Fiat, Olivetti, Falck, Cantoni, Ciga, Pacchetti.

19 Even if the value of June is not strictly insignificant; similar results were
obtained in Paruoclo and Costa (1989).
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We therefore considered model (10) (12) as a tentative first model for
returns. Exploratory factor analysis applied on the given 29 returns
indicated 6 or 7 factors according to the 1% or 5% critical values for the
likelihood ratio criterion, see table 4. The reduced rank regression model
(12) was fitted with n, = 15 and n, = 14; the results indicate, instead, only

1 factors, see table 5. The reduced rank regression approach seem the-

refore to uncover much fewer significant factors. :
Turning to models with macroeconomic variables one needs to specify

8 h, or m,, see (8), (20) and (22). The following macroeconomic indicators

were considered in the empirical analysis: the inflation rate (INFL), the
logarithm of the industrial production index (PI), the interest rates on
the 3 month Treasury Bills (BOT), the interest rates on government
bonds (BTP), the logarithm of the US dollar - Italian lira exchange rate
(USD), the logarithm of the deutsche mark - lira exchange rate (DM),
the oil price index (OIL), the Milan Stock Exchange index (MIB), the
discount rate changes (DTUS), the logarithm of money (M2). For the
choice of the macroeconomic indicators see, e.g., Hamao, 1986. The
monthly time series of some of these variables in the decade 1980 - 1989
are shown in figures 1, 2 and 3.

The difference between BOT and BTP was also included in place of
the latter, in accordance with the notion of interest rates being cointe-
grated with a stable differential®. The inclusion of such a variable allows
us to evaluate the influence of the term structure of interest rates on
assets returns. Both the graphical analysis and tests for unit roots
suggest that most the macroeconomic variables are non-stationary, see
table 6. In order to obtain stationary variables we considered first dif-
ferences of the variables.

The industrial production index and M2 show, moreover, a strong
seasonal pattern; these series were filtered fitting a regression model in
first differences on seasonal dummies, thus retaining interpretability of
the seasonally adjusted series, even though the hypotheses of constant
seasonal factors does not seem to be a very good approximation for M2.
Figures 2 and 3 show both the seasonally unadjusted and the seasonally
adjusted series.

20 All possible other cointegrating relations have been neglected in the empirical
application.
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The analysis of model (18’) or (19°) reveals that the vectors of returns
r, and the vector of indicators 4, should present the same autocorrelation

structure as the variables are linearly related. As indicated by the
previous analysis, r, is hardly autocorrelated, while there is no reason

to believe the set of macro-indicators to be serially uncorrelated; we
therefore projected the above variables on a constant and own lags using
fitted residuals as our choice of k.. The results of the reduced rank

regression of r, on k, and a constant are reported in table 7. Basing
inference on the number of factors on the statistics Q,(j), as illustrated

in section 3, one is lead to choose 3 relevant factors at the 1% significance
level or 4 at the 5% significance level.

In this model it is possible to investigate the relevance of each
macroeconomic indicator within the chosen specification on the basis of

the ,Q;(k) statistics. Table 8 reports the specification tests of type (21)

with H being set to the identity matrix without a column corresponding
to the chosen variable. Such a choice corresponds to the exclusion of the
variable from the vector 4,.

The results indicate that the inflation rate (INFL), the exchange rates
(DM, USD) and the oil price (OIL) are not relevant in the identification
oflatent factors®’. On the contrary the Milan stock exchange index (MIB),
the 3 months Treasury Bills interest rate (DBOT) and money (DM2)
appear to be relevant; moreover the interest rate differential BOT-BTP
seems to be only marginally significant. Both the number of factors and
the significance of additional macroeconomicindicatorsbesides the stock
market index favour an APT model for the italian stock returns.
Macroeconomic dynamics can be explicitly incorporated into the
model considering (22) and corollary 5. Table 9 reports the results on
the number of factors in such a model; the Q, statistics suggests 3 to 4

factors, which is still less than the number indicated by factor analysis
and is in accordance with the previous model. On the whole the reduced
rank regression approach seems to lead to a smaller number of signifi-
cant factors.

21 The above results must be taken with care, as each hypotheses is tested
independently against the full model.
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6 - Conclusions

In this paper several models are derived from a k factor model for
asset returns and a linear specification for the relationship between
latent factors and macroeconomic indicators. All the derived models can
be cast in the reduced rank regression model. In such a model the
maximum likelihood estimator for the parameters of interest is found
by canonical correlation analysis; several tests for the number of latent
market factors can be based on the likelihood ratio principle, as all the
models can be easily estimated. The search for the number of factors
underlying returns structure and the consequent inference on alterna-
tive assets price theories, as the APT and the CAPM, is straightforward
as each one implies a different number % of the latent factors.

The empirical application of some of the inferential procedures
outlined in the paper on a sample of monthly returns of assets from
Milan Stock Exchange has lead to interesting results. While the appli-
cation of usual factor analysis procedures indicates 6 to 7 latent factors,
reduced rank regression techniques indicate fewer significant factors.
Among the included macroeconomic indicators only the inflation rate
and the exchange rates are not relevant in the identification of the latent
factors. The results are, on the whole, consistent with an APT price
generation scheme.
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Appendix

Proof of theorem 1
Consider the distribution of r, in model (10):

~ [m) [[u]] (oaa,’ +¥ ooy
rt - N > ’ ’
L K, 0,0 a0, +Y,
The conditional distribution r,, | r,, is normal with conditional mean
E(ry, 1 ry) = i+ 04007 (050 + ¥ (ry — )
=p*+ouB,ry
where B," = a,’(0,0,” +'¥,) ', and conditional variance

Aiz=Var(ry, | ry) = oo’ + ¥, — 0,057 (0,0, + ¥, o0’
Under (6) p, = oyA, b, = oA, and therefore

E(ry, 1 73) = A+ 0,05 (0,00" + %)) (r — 0A) =
=0, ry + o4 =Bl = 0B, ’ry, + o B, =
r r
~ap.5| )= ?]
where B,=(, - B,’0y)A is a k x 1 vector.
Analogously consider the distribution of r, conditional on g,

[m}g B N[(¢')s [aloq’+‘1‘, 0,0’ D
ry 1! o, 7 oy’ oo’ +',

The conditional distribution r, | ,,,g, is again normal with conditional
mean

E(r,1ry,8)=0g+0,0, (0n0 +\Pz)_1 (ry—9,8)

=¢,*g,+ 0B, ’r,
and the same conditional variance A,,. Under (9) one obtains ¢, = o5,
¢, = 0,8 which, substituting in the previous expression, implies
E(r, |ry,8)=0o4(,—B/o)dg +ap’'r, =

ol
=B, B,) N =B .
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where B," = (I, — B,0,)8 is a k X5 matrix.

Q.E.D.

Proof of corollary 5
We will sketch the proof for the analogue of (13); the analogue of (12)
follows then by setting g, =1. Let m,_, =(m,_,",...,m,_’)", A*= Ay,....A),

m,=(m ,m, "y, A =(,-A%). Note that m,_, and g, may have elements in
common, or even coincide. Letalso A = (o, ¥)’. The distribution of (r,’, m,”)’
conditional on the past is

r, g, , (¥ 0
9 SRR (R R )

from which follows that the distribution of r, | m,, g, is normal with con-

ditional expectation

E(r,\m,g)=ay@E+YY)" (m—A*m,_)+0g,=
=y E+YY) " (m,—A*m,_ )+ odg, =
=of}’m,+0B,’g = (m .8’

Q.E.D.
Theorem A.1
The minimum (maximum) of the function f(x) = |x’Mx|/|x’Nx]| is
found by solving the eigenvalue problem |A. N - M| = 0
Proof [see e.g. Johansen (1989)]
Since
In(f(x)) =In|x’Mx| — In|x Nx|
consider In|x’Mx| and the increment A of x; one has
Injl(x +h)YM(x +h)] = In|(x’Mx) (x "Mx)™! (x’Mx +x’Mh + h’Mx + ’Mh)| =

= Injx’Mx] + InJ + (x’Mx)"'(x’Mh+h’Mx+h’Mh)|
The last matrix on the right hand side is of the form I - B(C+C’+D). The
matrix A =B"YC +C’+D)B'” is symmetric and can be decomposed as
VAV’. Since | +B(C+C’+D)E|I +A E|I-VAV’ /I — A | one has

In|(x+hYM(x+h)] = Injx’Mx| + _ilm(z + A) = Ijx’Mxl + ,5;:11,.
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Now
tr(A)=tr(BHC +C’ +D)B™) = 1r(BVIBY(C + C’ + D)) = tr(B(C +C" + D)) = tr(BC) +1r(BC") + tr(BD)

Since B is symmetric, tr(BC")=tr(B’C")=tr(C’B’) =tr(BC) and thus

Inj(x+A)YM&x+h) = Inlx’Mx] + 2or(BC) + tr(BD)
For small values of
In|(x +h)yM(+h) — Inlx’Mx] = 2ur((Mx) (x’Mh)+O0( k P)
Therefore the derivative with respect to x is
Btr((J\t’Mx)_,1 (’Mh)) M (M)
ox
and the derivative of In f(x) 1s
M x(x’Mx)" — 2N’x(x’Nx)™"
Setting it to zero, the condition for x to be a stationary point is
(A.) M’x(x’Mx)" = N’x(x'Nx)*

The matrix of eigevalues A and of eigenvectors V of the problem
|AN — M| =0 satisfy
(A2) V'MV = A

(A3) VNV =T

(A4) NVA = MV

Substituting (A.2) into (A.4) one gets NV(V'MV)=MV or, from (A.3),
NV(V’NVY'=MV(V’MV)" thus showing that the matrix V satisfies the

first order condition (A.1). Therefore x can be set equal to a suitable
submatrix of V.
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Table 1- Number of significant returns autocorrelations for the 29
stocks; lags 1 to 12; + indicates positive autocorrelations greater than
2\n and — indicates negative autocorrelations less than 2\n.

la] 1 2 3 4 5 6 7 8 9 10 | 11 | 12

+1 1 1 7 . . 4 5 . 1 . . 9

Table 2 - Wilk’s A for the hypotheses =0, ®=0and I'=0=0 in
r,=W+Tr,_,+®D,+¢, D, are seasonal dummies

sample period 1973.2 - 1989.12
Hypothesis Wilks A F, n,m Pr(F>F)
r=0 0.00448327 1.0377 841, 0.2482
= 0.09443436 1.1399 2897.159 0.0627
r=0=¢ 0.00061840 1.0655 319, 0.0917
1414.019
1160,
3345.959
sample period 1980.1 - 1989.12
Hypothesis Wilks A F. n,m Pr(F>F))
r=0 0.00002209 0.9720 841, 0.6706
b= 0.00755709 1.0604 1192.622 0.2740
r=0=¢ 0.00000083 0.9791 319, 0.6456
558.1564
1160,1395.23
1
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Table 3 - Wilk’s X for the hypotheses T=0in r,= u+ID,+¢,; sample

Table 5 - Likelihood ratio test in reduced rank regression

re=0o0p(ry’, 1y +€; n, =15, n,=14.

period is 1972.2 1989.12.
monthly Wilks A F, n, m Pr(F>F)
dummies
January 0.834994 1.1925 29, 175 0.2421
February 0.893347 0.7294 29,175 0.8509
March 0.824142 1.2876 29, 175 0.1628
April 0.804973 1.4620 29, 175 0.0717
June 0.799139 1.5167 29, 175 0.0542
July 0.821990 1.3068 29, 175 0.1495
August 0.859814 0.9839 29, 175 0.4957
September 0.879341 0.8280 29, 175 0.7192
October 0.884143 0.7907 29, 175 0.7686
November 0.868323 0.9151 29, 175 0.5951
December 0.852155 1.0469 29, 175 0.4091
all 0.162253 1.1106 319, 0.1043
1836.795

Table 4 - Likelihood ratio test in factor analysis.

Hy k=j Hge k=p 2.() vy Pr(xz>Ql)
0 15 264.85047 225 0.03524
1 189.35026 196 0.62018
2 144.95116 169 0.90974
3 105.81639 144 0.99279
4 72.15284 121 0.99987
5 50.47726 100 0.99999
6 34.03070 81 0.99999
7 23.26108 64 0.99999
8 14.83220 49 0.99999
9 8.51379 36 0.99999
10 4.18512 25 0.99999
11 1.87613 16 0.99999
12 0.64080 9 0.99991
13 0.00302 4 0.99999

Hy k=j% |Hy k=j+1 0:()) vz Prid>Q,)
0 1 75.50021 29 0.00001
1 2 44.39910 27 0.01880
2 3 39.13477 25 0.03571
3 4 33.66355 23 0.07018
4 5 21.67558 21 0.41841
5 6 16.44655 19 0.62731
6 7 10.76962 17 0.86829
7 8 8.42888 15 0.90544
8 9 6.31842 13 0.93379
9 10 4.32866 11 0.95930
10 11 2.30899 g 0.98559
11 12 1.23533 7 0.99009
12 13 0.63777 5 0.98621
13 14 0.00302 3 0.99996

Hy k=j" | He k=p —2InA() df Pr¢>—21nx)
5 29 354.04 271 0.0005
6 29 287.64 247 0.0386
7 29 235.56 224 0.2849
Hy k=j | Hpe k=j+1] -2InA() df Pr(x*>—21In)
5 6 66.40 24 0.0000
6 7 52.08 23 0.0005
7 29 235.56 224 0.2849

* Results have been obtained by SAS Factor procedure for the period 1980.02 -

1989.12.
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Table 6 - ADF unit root tests for some macroeconomic indicators; criti-

cal values 5% -2.89 1% -3.51

Table 8 - Specification tests for each macroeconomic indicator.

Variable Sample # lags t Variable #Qsk =3) | Prob(x’(3) >4Q5)
period

INFL 80.2/89.12 4 -1.86 DBOT, 16.5016 0.0024

BOT 81.2/89.12 12 -1.36 DINFL, 6.4367 0.1688

I%I'Iz'l:' 21.333.12 lg -1.241 DPI, 7.9401 0.0938
1.2/89.12 1 1.22 0

PI 73.2/88.12 12 -0.98 DM2, 15.1580 02(5);1;
BTP-BOT 80.6/89.12 4 -3.03 DDM, 6.5976 .

DUSD, 5.6101 0.2302

DOIL, 6.7168 0.1516

ikeli ; i . DMIB, 46.3810 0.0000

Table 7 - Likelihood ratio test in the reduced rank regression DTUS 0.9387 0.0554

r,=0of’(h’, 1)’ +¢, the macroeconomic indicators are BOT —B'TP 11,0334 0.0269

DBOT,, DINFL,, DPI,, DM2,,DDMK,, DDOLL,, DOIL,, DMIB,, DTUS,, BOT ~ BTP,
h, is the residuals from a VAR; period is 1980.2 - 1989.12.

g . 2 Table 9 - Likelihood ratio tests in the reduced rank regression
Ho: k=j\Hy: k=p Q.0) Prix’> Q) r,=of'(m,’, 1)’ +¢, the variables in m, are the ones of table 7.
0 10 460.7194 0.0000
1 360.6948 0.0001
2 279.8360 0.0022 . .
3 216.8625 0.0395 He k=j|Hi k=n o0 Vi Prix’>Q)
4 159.6935 0.2788
0 29 1605.98842 | 1189 0.00000
2 110.2734 0.7265 1 1365.93758 | 1120 0.00000
§ 789854 d.8312 2 1210.21703 | 1053 0.00045
Z e To8 99387 3 1083.35388 | 988 0.01810
25.8669 0.9761 4 969.36870 925 0.15128
9 11.8100 0.9224 5 857.91884 | 864 0.55195
; = : 6 770.93611 805 0.80082
o k=i 2 20 Prix’>Qy) 7 686.86042 | 748 | 094615
8 606.89865 693 0.99176
0 1 100.1246 0.0000
f]j 2 80.8588 0.0000 9 531.59932 640 0.99932
3 62.9735 0.0018 P _ )
3 4 57.1689 0.0040 He k=) 0.() v, Prix”> Q)
4 5 49.4201 0.0142
0 1 240.05084 69 0.00000
2 6 31.2879 0.3044 1 2 155.72055 67 0.00000
6 7 29.5096 0.2884 2 3 126.86315 65 0.00001
z 8 23.6088 0.4841 3 4 113.98518 63 0.00009
5 v 14.0569 0.8994 4 5 111.44986 61 0.00009
9 10 11.8100 0.9224 5 6 86.98273 59 0.01035
The value 0.0000 in this table and in the following ones indicates a probability 6 7 84.07569 57 0.01134
value less than 0.0001. '87 g ggggégg gg gg%ggé
9 | 10 63.27562 51 0.11613
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Fig. 1 - Interest and inflation rate, January 1980 - December 1989.
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Fig. 2 - Industrial production index, seasonally adjusted and unadju-
sted January 1980 - December 1989.
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Fig. 3 - In(M2); seasonally adjusted and unadjusted January 1980 -
December 1989.

31



