A New Automatic Pattern Recognition Approach for the Classification of Volcanic Tremor at Mount Etna, Italy

M. Masotti¹, S. Falsaperla², H. Langer², S. Spampinato², R. Campanini¹

¹ Medical Imaging Group, Department of Physics, University of Bologna ² Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania

Outline

- 1. Introduction
- 2. Data and Methods
- 3. Results
- 4. Discussion

Mount Etna Volcanic Tremor Automatic Pattern Recognition Approach

Outline

1. Introduction

2. Data and Methods

3. Results

4. Discussion

Mount Etna

Volcanic Tremor Automatic Pattern Recognition Approach

Mount Etna

Mount Etna is the largest active volcano in Europe:

- Type: Basaltic stratovolcano
- Location: Sicily, Italy (3350 m a.s.l.)
- Latest eruptions: 2001, 2002, 2004

Mount Etna's volcanic monitoring represents a key issue

Mount Etna Volcanic Tremor Automatic Pattern Recognition Approach

Volcanic Tremor

For basaltic volcanoes (e.g. Mount Etna)...

 Volcanic tremor is a persistent seismic signal marking different states of the volcano's activity:

Pre-eruptive

Lava fountain

Eruptive

Post-eruptive

 Volcanic tremor provides reliable information for alerting governmental authorities during a crisis and permits surveillance even when direct access to the eruptive theatre is not possible

Matteo Masotti, et al.

Mount Etna Volcanic Tremor Automatic Pattern Recognition Approach

Automatic Pattern Recognition Approach

How to develop an automatic classifier able to recognize different states of the volcano's activity from the analysis of its volcanic tremor?

Data Collection & Labeling

Feature Extraction

April 5, 2006 – EGU General Assembly

Matteo Masotti, et al.

Data Features Classification

Outline

1. Introduction

2. Data and Methods

3. Results

4. Discussion

Matteo Masotti, et al.

Data Features Classification

Data :: Collection

Analysis is performed over 01 July–15 August, 2001

Seismograms are recorded at the 3–component station ESPD:

- 142 seismograms for the East–West (EW) component
- 142 seismograms for the North–South (NS) component
- 142 seismograms for the Vertical (Z) component

Matteo Masotti, et al.

Data Features Classification

Data :: Labeling

Seismograms are labeled according to their recording date...

Data Features Classification

Features

Features are computed by...

- 1. Calculating the spectrogram of each seismogram (10 min., 0–15 Hz)
- 2. Averaging the rows of each spectrogram (62–dimensional feature vector)

Matteo Masotti, et al.

Data Features Classification

Classification

For classification, a Support Vector Machine (SVM) classifier is chosen...

- SVM finds the hyperplane

 w · x + b = 0
 maximizing the margin
 between the two classes
 in the training set
- If feature vectors are not linearly separable, the problem is mapped into a higher feature space by means of a kernel function Φ(x)

Matteo Masotti, et al.

Cross–Validation Leave–One–Out

Outline

- 1. Introduction
- 2. Data and Methods
- 3. Results
- 4. Discussion

Cross–Validation Leave–One–Out

Cross–Validation :: Data Partitioning

First, performances are studied using cross-validation + random subsampling...

Matteo Masotti, et al.

Cross–Validation Leave–One–Out

Cross–Validation :: Performances

By repeating 100 times train and test...

- 1. Global average classification performances: $(94.7 \pm 2.4)\%$
- 2. Single–class average classification performances: (%)

		Predicted Class			
		PRE	FON	ERU	POS
Actual Class	PRE	$\textbf{94.2}\pm5.2$	5.4 ± 4.8	0.4 ± 1.3	0.0 ± 0.0
	FON	20.2 ± 12.6	76.4 ± 13.7	$\textbf{3.4} \pm \textbf{5.1}$	0.0 ± 0.0
	ERU	0.0 ± 0.3	0.3 ± 1.3	$\textcolor{red}{\textbf{99.6}} \pm 0.4$	0.1 ± 0.6
	POS	0.0 ± 0.0	$\textbf{0.0}\pm\textbf{0.0}$	0.0 ± 0.0	$\textbf{100.0}\pm0.0$

3. Similar results when EW, NS, and Z are taken into account separately

Matteo Masotti, et al.

Cross–Validation Leave–One–Out

Leave-One-Out :: Data Partitioning

Second, performances are studied using leave-one-out...

Matteo Masotti, et al.

Cross–Validation Leave–One–Out

Leave-One-Out :: Performances

By repeating 142 times (on each single component) train and test...

Matteo Masotti, et al.

Misclassified Events Intra–class Variability

Outline

- 1. Introduction
- 2. Data and Methods
- 3. Results
- 4. Discussion

Misclassified Events Intra-class Variability

Intra-class

variability

April 5, 2006 – EGU General Assembly

Misclassified Events

Focusing on the Z component for brevity... (but analogous considerations can be drawn for EW and NS)

- Misclassifications are mostly concentrated near class transitions
- Reasonably because of:

Ζ

1. Intrinsic fuzziness in the transition from one volcanic state (i.e. class) to the other

2. Human imprecisions in labeling

Matteo Masotti, et al.

Misclassified Events Intra-class Variability

Intra–Class Variability :: PRE and FON

Focusing on the Z component for brevity... (but analogous considerations can be drawn for EW and NS)

PRE variability: quite high some PRE events are similar to FON events

FON variability: high many FON events are similar to PRE or ERU events

April 5, 2006 – EGU General Assembly

Matteo Masotti, et al.

Misclassified Events Intra-class Variability

Intra–Class Variability :: ERU and POS

Focusing on the Z component for brevity... (but analogous considerations can be drawn for EW and NS)

ERU variability: quite low few ERU events are similar to FON events

POS variability: low very few POS events are similar to PRE events

Matteo Masotti, et al.

Summary and Conclusions

Summarizing...

- Volcanic tremor recorded at Mount Etna is automatically classified
- Data: 01 July–15 August, 2001
- Features: Spectrogram—based
- Classifier: Support Vector Machine (SVM)
- Classification error: < 6%

Concluding...

- Practical utility: on–line classification
- Practical/Scientific utility: off—line classification of huge (past) databases
- Practical/Scientific utility: the SVM classifier is a mathematical tool linking volcanic tremor to different states of the volcano's activity in a reproducible way

Matteo Masotti, et al.