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Regions of interest �ROIs� found on breast radiographic images are classified as either tumoral mass
or normal tissue by means of a support vector machine classifier. Classification features are the
coefficients resulting from the specific image representation used to encode each ROI. Pixel and
wavelet image representations have already been discussed in one of our previous works. To
investigate the possibility of improving classification performances, a novel nonparametric,
orientation-selective, and multiresolution image representation is developed and evaluated, namely
a ranklet image representation. A dataset consisting of 1000 ROIs representing biopsy-proven
tumoral masses �either benign or malignant� and 5000 ROIs representing normal breast tissue is
used. ROIs are extracted from the digital database for screening mammography collected by the
University of South Florida. Classification performances are evaluated using the area Az under the
receiver operating characteristic curve. By achieving Az values of 0.978±0.003 and 90% sensitivity
with a false positive fraction value of 4.5%, experiments demonstrate classification results higher
than those reached by the previous image representations. In particular, the improvement on the Az

value over that achieved by the wavelet image representation is statistically relevant with the
two-tailed p value �0.0001. Besides, owing to the tolerance that the ranklet image representation
reveals to variations in the ROIs’ gray-level intensity histogram, this approach discloses to be
robust also when tested on radiographic images having gray-level intensity histogram remarkably
different from that used for training. © 2006 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2351953�
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I. INTRODUCTION

Breast cancer is one of the most devastating causes of death
among women from all over the world.1 The detection of this
disease at early stage is critical, since primary prevention is
thus far impossible. To this purpose, screening mammogra-
phy is undoubtedly the most effective tool, even though ra-
diologists still miss up to 10%–30% of breast cancers.2 In the
last years, computer-aided detection �CAD� systems have
been expressly introduced in order to help them in the inter-
pretation of radiographic images.3–5 By detecting suspicious
regions independently from the human reader, those systems
provide the radiologist with a second opinion that serves as a
cue, yet leaving the final decision between follow-up or bi-
opsy strictly to him. Recent studies illustrate that, when used
in this way, CAD systems improve the radiologists’ effi-
ciency by as much as 5%–15%.6–8

Together with microcalcifications, masses are the most
common lesions associated with the presence of breast can-
cer. In radiographic images, they appear as thickenings of
breast tissue with size ranging from 3 to 30 mm.9 In order to
detect them, a large number of the computer-aided mass de-
tection algorithms so far developed follow the scheme de-
picted in Fig. 1�a�. Regions of interest �ROIs� are first en-
coded by means of a specific image representation, e.g., a

pixel image representation, a wavelet image representation,
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etc. Features are extracted from ROIs as they appear in the
image representation domain, then submitted to the classifier.
Typical features refer explicitly to shape, border, size, con-
trast, and texture of the regions under analysis. As an ex-
ample, texture features in combination with linear discrimi-
nant analysis have been used by Wei et al.,10 thus achieving
90% sensitivity with a false positive fraction �FPF� value of
approximately 35% �Az=0.86�. On the same database, tex-
ture features in combination with convolution neural net-
works yielded 90% sensitivity with an FPF value of 31%
�Az=0.87�, as described by Sahiner et al.11 Features based on
the geometry, intensity, gray levels, and gradients of ROIs
have been investigated by Kupinski et al.,12 in combination
with neural networks �Az=0.97�. Te Brake et al. designed a
number of features aimed at capturing ROIs characteristics
like intensity, isodensity, location, and contrast.13 By measur-
ing the suspiciousness of each ROI using an artificial neural
network, 75% sensitivity has been achieved with 0.1 false
positive per image.

Unfortunately, masses vary considerably in shape, border,
size, contrast, and texture. It turns out that identifying a com-
mon set of features effective for every kind of mass is ex-
tremely difficult. In some recent works we proposed an al-
ternative approach to mass detection which does not refer
explicitly to the shape, border, size, contrast, or texture of

14–17
ROIs. As evident from Fig. 1�b�, ROIs are simply en-
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coded by means of a specific image representation. Encoded
ROIs are thus submitted to the classifier as they appear in the
image representation domain. More specifically, they are di-
rectly classified by means of a support vector machine
�SVM� classifier, an artificial intelligence technique based on
Vapnik’s statistical learning theory.18,19 To investigate in de-
tail the performances of this approach, several image repre-
sentations have already been evaluated in one of our recent
works,20 namely a pixel image representation, a discrete
wavelet image representation, and an overcomplete wavelet
image representation.

With the purpose of improving classification perfor-
mances, a novel image representation is proposed and evalu-
ated in this paper. Being based on a recently developed trans-
form known as ranklet transform,21 in the following it will be
referred to as ranklet image representation. Recently,
Smeraldi et al. showed the feasibility of using the nonpara-
metric, orientation-selective, and multiresolution properties
of this transform for image classification tasks.22,23 They
used this image representation to encode the appearance of
image frames in face identification problems. However, in
order to emphasize the descriptive power of ranklet features,
they addressed the classification task by using particularly
simple classifiers, namely density estimation and hypothesis
testing schemes. Conversely, for the study presented herein,
we propose to combine the ranklet properties together with a
more sophisticated classifier such as SVM, which, in turn, is
much more suited for handling very high dimensional feature
spaces and achieving better classification performances. Our
main objective in the present study is hence to investigate
this innovative approach thoroughly in mammography.

II. MATERIALS AND METHODS

A. Image databases

Evaluation and optimization of the ranklet image repre-
sentation in combination with SVM is performed using ROIs

FIG. 1. Different approaches to computer-aided mass detection. The tradi-
tional approach based on �1� ROIs encoding by means of a specific image
representation, �2� feature extraction from ROIs as they appear in the image
representation domain, and �3� classification is shown in �a�. The alternative
approach adopted in this work and based on the direct classification of
encoded ROIs is shown in �b�.
extracted from the digital database for screening mammog-

Medical Physics, Vol. 33, No. 10, October 2006
raphy �DDSM� collected by the University of South
Florida.24 From the DDSM benign and malignant cases, a
total of 1000 diagnosed masses are extracted using the pro-
vided ground truth annotations: 4% of them with subtlety
rating 1, 12% with 2, 20% with 3, 24% with 4, and 40% with
5; here, rating 1 corresponds to subtle mass, whereas rating 5
to obvious mass. A square crop centered on the location of
each annotated mass is selected. The size is chosen so that
70% of its area is occupied by the annotated mass and the
remaining 30% by background. This choice is rather arbi-
trary, nevertheless, initial investigations demonstrated that
this factor is not particularly relevant for the proposed
system. Since SVM deals exclusively with dimensionally ho-
mogeneous vectors, all the crops containing a mass are
bilinearly resized to an arbitrarily prefixed size of
64�64 pixels. For our CAD system, this choice has already
been demonstrated to offer a good tradeoff between the
cropped image’s detail preservation and computational
complexity.15 Similarly, for the nonmass class, a total of
5000 square crops are extracted from the DDSM normal
cases. The whole dataset is therefore composed of 6000 re-
gions with pixel size 64�64. To allow a direct comparison,
the crops used in this paper are exactly the same as those
used in our previous work20 to evaluate different image rep-
resentations.

Once the ranklet image representation’s and classifier’s
parameters are tuned, a test of the full CAD system is per-
formed on a set of digital radiographic images coming out
from an IMS Giotto Image MD full field digital mammogra-
phy �FFDM� system. This dataset includes 78 radiographic
images with one tumoral mass and 100 normal. They have
been collected both in the course of the clinical evaluation of
the FFDM system and subsequently during the regular clini-
cal examinations. Locations of masses have been marked by
expert radiologists and collected together with radiographic
images. Unfortunately, subtlety is not provided.

B. The ranklet image representation

The nonparametric property of the ranklet transform de-
rives from its being based on the relative rank of pixels
rather than on their intensity values. In particular, being
based on nonparametric techniques such as the rank trans-
form, the Wilcoxon test, and the Mann-Whitney test, some
details will be given on that. Its orientation-selective prop-
erty, instead, derives from its being mainly modeled on Haar
wavelets. In analogy to the wavelet transform, in fact, ranklet
coefficients can be computed at different orientations by ap-
plying vertical, horizontal, and diagonal Haar wavelet sup-
ports to each image under analysis. To this purpose, Haar
wavelet supports will be introduced and their relationship
with the ranklet transform will be clarified. Similarly, its
multiresolution property derives from the feasibility of cal-
culating the ranklet coefficients at different resolutions by
stretching and shifting the aforementioned Haar wavelet sup-
ports. To this purpose, a suitable stretch and shift scheme

will be proposed.
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1. Nonparametric and orientation-selective
properties

Suppose a set Z of p1 , . . . , pN pixels is given. The so-
called rank transform � substitutes each pixel intensity value
with its relative order among all the other pixels, namely
with its rank.25 As an example

Z = �55 99 25 153

26 75 92 200

21 64 88 154
� ⇒ �Z = �4 9 2 10

3 6 8 12

1 5 7 11
� .

In case the set Z contains pixels with equal intensity values,
mid ranks are introduced. They are computed assigning to
each group of pixels with an equal intensity value the aver-
age of the ranks they occupy. The rank transform is closely
related to the so-called Wilcoxon test. Given the same set Z
of p1 , . . . , pN pixels, suppose it is split into two subsets T and
C, with n and m pixels each, so that n+m=N. To state
whether the n pixels in T have intensity values significantly
higher than the m pixels in C, the entire set of the N pixels is
ranked by applying the rank transform � on Z. The Wilcoxon
test WS is then defined as the sum of the n ranks in T,
namely, as WS=�p�T�Z�p�.26 The n pixels in T are thus
judged to have intensity values significantly higher than the
m pixels in C if the Wilcoxon test is above a critical value �.
In order to deal with something equivalent to the Wilcoxon
test, but with an immediate interpretation in terms of pixels
comparison, the Mann-Whitney test WXY is defined as WXY

=WS−n�n+1� /2.26 As can be easily demonstrated, the value
of the Mann-Whitney test WXY is equal to the number of
pixel pairs �pi , pj�, with pi�T and pj �C, such that the in-
tensity value of pi is higher than pj. Its values range therefore
from 0 to the number of pairs �pi , pj��T�C, namely nm.

After having provided the basis for the nonparametric
property of the ranklet transform, suppose that an image is
constituted by the aforementioned set Z of p1 , . . . , pN pixels.
In order to compute the Mann-Whitney test, a possible
choice in dividing the N pixels is to split them into two
subsets T and C, of size n=m=N /2, thus assigning half of
the pixels to the subset T and half to the subset C. With this
in mind, it is possible to define the two subsets T and C
being inspired by the three Haar wavelet supports depicted in
Fig. 2. In particular, for the vertical Haar wavelet support
�hV�, the two subsets TV and CV are defined; similarly for the

FIG. 2. The three Haar wavelet supports hV, hH, and hD. From left to right,
the vertical, horizontal, and diagonal Haar wavelet supports.
horizontal and diagonal ones. It is worth noting that the ar-

Medical Physics, Vol. 33, No. 10, October 2006
bitrariness that characterizes the selection of the two subsets
T and C is crucial in order to freely choose the two subsets
based on the Haar wavelet supports. This forms the basis for
the orientation-selective property of the ranklet transform.

The definition of the ranklet transform is now almost
straightforward. Given an image constituted by the set Z of
p1 , . . . , pN pixels, the horizontal, vertical, and diagonal ran-
klet coefficients can be computed as

Rj =
WXY

j

nm/2
− 1, j = V,H,D, where − 1 � Rj � + 1.

�1�

Here, WXY
j is computed by splitting the N pixels into the two

subsets T j and C j differently for each j=V ,H ,D, as dis-
cussed previously for the Haar wavelet supports. As depicted
in Fig. 3, the geometric interpretation of the ranklet coeffi-
cients Rj is thus quite simple. Suppose that the image we are
dealing with is characterized by a vertical edge with the
darker side on the left, where CV is located, and the brighter
side on the right, where TV is located. RV is then close to +1,
as many pixels in TV have higher intensity values than the
pixels in CV. Conversely, RV is close to −1 if the dark and
bright sides are reversed. Note also that horizontal edges or
other patterns with no global left-right variation of intensity
give a value close to 0. Similar considerations can be drawn
for the other ranklet coefficients, namely RH and RD.

2. Multiresolution property

The close correspondence between the Haar wavelet
transform and the ranklet transform leads directly to the ex-
tension of the latter to its multiresolution formulation. Simi-
larly to what is done for the bidimensional Haar wavelet
transform, the ranklet coefficients can be computed at differ-
ent resolutions by simply stretching and shifting the Haar
wavelet supports. The multiresolution ranklet transform of an
image is thus a set of triplets of vertical, horizontal, and
diagonal ranklet coefficients, each one corresponding to a
specific stretch and shift of the Haar wavelet supports. As an
example, suppose that the multiresolution ranklet transform
of an image with pixel size 8�8 is performed at resolutions
�8, 4, 2�, namely using Haar wavelet supports with pixel size
8�8, 4�4, and 2�2, as shown in Fig. 4. Suppose also that
the horizontal and vertical shifts of the Haar wavelet sup-
ports along the horizontal and vertical dimensions of the im-
age are of 1 pixel. The multiresolution ranklet transform of
the image is then composed by 1 triplet RV,H,D of ranklet
coefficients deriving from the ranklet transform at resolution
8, 25 triplets from that at resolution 4, and 49 triplets from
that at 2. To generalize the calculation to arbitrary image
sizes and resolutions, the number nT of triplets RV,H,D at each
resolution is thus computed as nT= �I+1−S�2, where I and S
represent the linear dimension of the image and that of the

Haar wavelet support, respectively.
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C. SVM classification

One intrinsic drawback of the proposed approach is that
the number of classification features is very high. It is
thereby of fundamental importance to use a classifier able to
deal with such high dimensional feature spaces. To this pur-
pose, SVM is chosen.

SVM constructs a binary classifier from a set of l training
samples that consists of labeled patterns �xi ,yi��RN� �±1�,
with i=1, . . . , l.18,19 In order to separate the two classes, it
selects the maximal margin hyperplane, namely the hyper-
plane which causes the largest separation in the feature space
between itself and the borderline training samples of the two
classes. The decision function is thus computed as f�x�
=sgn(	i=1

l yi�i�x·xi�+b), where the coefficients �i and b are
calculated by solving a quadratic programming problem.
Note that, since the coefficients �i are sparse, as known from
SVM theory,18,19 the number of dot products x·xi that must

FIG. 3. Ranklet transform applied to two synthetic images. The applic
RV=−0.59 for the synthetic images shown in �a� and �b�, respectively. Conv
Haar wavelet supports �hH ,hD� results in RH=0 and RD=0, regardless of th

FIG. 4. Multiresolution ranklet transform of an image with pixel size 8�8

�8, 4�4, and 2�2.
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be actually computed is sensibly smaller than l. As a result,
SVM is particularly well suited for classification problems
with very high dimensional feature spaces. When samples
are not linearly separable in the feature space, a nonlinear
transformation ��x� is used.27 In order to implement this
mapping, the dot products x·xi are substituted by
��x� ·��xi�
K�x ,xi�, commonly referred to as kernel func-
tions. Admissible and typical kernels are the linear kernel
K�x ,y�=x·y, the polynomial kernel K�x ,y�= �	x·y+r�d, etc.

To evaluate and optimize the classification performances
of the ranklet image representation in combination with
SVM, a 10-fold cross-validation procedure28 is adopted
while using DDSM crops. The dataset is partitioned into ten
distinct and homogeneous random partitions. Nine of the
partitions are used for training, whereas the remaining for
test. Training and test are repeated ten times by permuting
the test partition in a round-robin manner. For each permu-

of the vertical Haar wavelet support �hV� results in RV= +0.59 and
y, due to symmetry reasons, the application of the horizontal and diagonal
thetic image analyzed.

solutions �8, 4, 2�, namely, using Haar wavelet supports with pixel size 8
ation
ersel
at re
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tation, SVM is trained with 900 mass crops and 4500 non-
mass crops, then tested, respectively, on 100 and 500. Clas-
sification results are presented by performing the receiver
operating characteristic �ROC� curve analysis of the
system.29 The ROC curves and their associated areas Az are
estimated using the ROCKIT software by Metz et al.30 On
the other hand, performances of the full CAD system are
estimated on FFDM radiographic images and presented in
terms of free-response operating characteristic �FROC�
curves.31

III. TESTS AND RESULTS

Four main tests are carried out. The first three are in-
tended to evaluate and optimize the ranklet image represen-
tation in combination with SVM. To this purpose, DDSM
crops are considered. The highest classification result
achieved will be compared with those reached by the three
best-performing image representations yet developed and
evaluated, namely a pixel �PixHRS�, a discrete wavelet
�DwtHS3�, and an overcomplete wavelet �OwtS2� image
representation.20 For the pixel image representation, each
ROI is encoded by concatenating its gray-level intensity val-
ues. As far as the discrete wavelet and overcomplete wavelet
image representations are concerned, instead, classification
features are represented by the wavelet coefficients resulting
from the application of the discrete wavelet and the over-
complete wavelet transform to each ROI, respectively. Also,
in the fourth test, the best ranklet image representation’s and
classifier’s configuration will be implemented on the full
CAD system for testing on FFDM radiographic images.

The ranklet image representations will be indicated as
RankletS{RES1,RES2,. . .}, in the following. The prefix Ranklet
stands for its being a ranklet image representation, whereas
the post-fix S for its having correspondent features �i.e., ran-
klet coefficients� scaled in the interval �−1,1�. This last prop-
erty, in particular, is automatically assured by the definition
of ranklet coefficients given in Eq. �1�. An eventual integer
number on the right side of the post-fix S indicates the de-
gree of the polynomial SVM kernel used for classification.
This corresponds to the parameter d discussed in Sec. II C
When none, a linear SVM kernel is used instead. The sub-
script �RES1,RES2,. . .� indicates the resolutions at which the
multiresolution ranklet transform is performed. In particular,
for the sake of conciseness, the ranklet resolutions �16, 14�
are broadly categorized as low resolutions, the ranklet reso-
lutions �12, 10, 8, 6� as intermediate resolutions, and the
ranklet resolutions �4, 2� as high resolutions.

The multiresolution ranklet transform of a 64�64 crop
results in a huge amount of ranklet coefficients, specifically
when high resolutions are considered. The reason for that
relies in the square law that links the number nT of triplets
RV,H,D to each resolution, i.e., nT= �I+1−S�2. The 6000 crops
of the image database are thus required to be further resized
from their original 64�64 pixel size. After initial experi-
mentation, the new pixel size is chosen to be 16�16. See
Table I, just to get an idea of the number of features hence

involved. Here, the correspondence between some of the
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resolutions at which the multiresolution ranklet transform
can be performed on 16�16 crops and the relative number
of ranklet coefficients computed is shown. As regards the
other parameters of the polynomial SVM kernel �i.e., 	 ,r�
and the regularization parameter C of SVM �see Vapnik et
al.18,19�, they are arbitrarily set equal to unity, since classifi-
cation performances are found to be almost completely un-
affected by any change on them.

A. SVM kernels

The first test performed is intended to understand the in-
fluence of different SVM kernels on classification perfor-
mances. To this aim, original crops are resized from 64
�64 pixel size to 16�16 by means of bilinear resizing. The
multiresolution ranklet transform is then applied at resolu-
tions �16, 8, 4, 2� to the resized crops, thus producing 1428
classification features for each ROI. This choice is arbitrary,
nevertheless it is a reasonable starting point, since it spans
over the entire range of resolutions, from coarsest to finest.
Using as an image representation the resulting ranklet coef-
ficients, several SVM kernels are hence evaluated, namely
linear, polynomial with degree 2 and 3.

Figure 5 shows the results achieved using this procedure.
Classification performances are improved when the polyno-
mial degree of the SVM kernel is increased. More specifi-
cally, the linear SVM kernel �RankletS{16,8,4,2}� achieves av-
erage Az value of 0.946±0.004, the polynomial SVM kernel
with degree 2 �RankletS2{16,8,4,2}� of 0.974±0.003, and the
polynomial SVM kernel with degree 3 �RankletS3{16,8,4,2}�
of 0.978±0.003. In particular, the difference in the Az values
between the polynomial SVM kernels with degree 2 or 3 and
the linear SVM kernel is statistically significant �two-tailed p
value �0.0001�.

B. Ranklet resolutions

The second test performed is intended to comprehend the
effects of the multiresolution property on classification per-
formances. As for the previous test, original crops are resized
from 64�64 pixel size to 16�16 by means of bilinear re-
sizing. The multiresolution ranklet transform is then applied
to the resized crops by using several combinations of differ-
ent resolutions, namely some of those shown in Table I. The

TABLE I. Multiresolution ranklet transform of an image with pixel size
16�16. Number of resulting ranklet coefficients for each different combi-
nation of resolutions.

Resolutions # Ranklet coefficients

�16, 14, 12, 10, 8, 6, 4, 2� 2040
�16, 8, 4, 2� 1428

�16, 8, 2� 921
�16, 2� 678
�16, 4� 510

�16, 14, 12, 10� 252
�16, 8� 246
number of resulting classification features hence varies ac-
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cording to the resolutions at which the analysis is performed.
Owing to the results achieved in Sec. III A, a polynomial
SVM kernel with degree 3 is used.

Figure 6 shows, for instance, the results achieved by clas-
sifying the ranklet coefficients of resolutions �16, 14, 12, 10,

FIG. 5. ROC curves obtained varying SVM kernels. RankletS{16,8,4,2} �Az

values of 0.946±0.004� uses a linear SVM kernel. RankletS2{16,8,4,2}
�0.974±0.003� and RankletS3{16,8,4,2} �0.978±0.003� use a polynomial
SVM kernel with degree 2 and 3, respectively. The difference in the average
Az value of RankletS2{16,8,4,2} or RankletS3{16,8,4,2} and that of
RankletS{16,8,4,2} achieves statistical significance with two-tailed p value
�0.0001.

FIG. 6. ROC curves obtained varying ranklet resolutions.
RankletS3{16,14,12,10,8,6,4,2} �Az values of 0.976±0.003� and
RankletS3{16,8,4,2} �0.978±0.003� account for low, intermediate, and high
ranklet resolutions. RankletS3{16,2} �0.977±0.002� for low and high ranklet
resolutions. RankletS3{16,14,12,10} �0.957±0.004� for low ranklet resolutions.
The difference in the average Az value of RankletS3{16,14,12,10,8,6,4,2},
RankletS3{16,8,4,2} or RankletS3{16,2} and that of RankletS3{16,14,12,10}

achieves statistical significance with two-tailed p value �0.0001.
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8, 6, 4, 2� and �16, 8, 4, 2�. In other words, the whole range
of resolutions is considered, as for the �16, 14, 12, 10, 8, 6, 4,
2� case. At least, a sampled version of them is taken into
account, as for the �16, 8, 4, 2� case. In either ways, low,
intermediate, and high resolutions are all contemplated.
As evident from the ROC curve analysis, both those
image representations �RankletS3{16,14,12,10,8,6,4,2} and
RankletS3{16,8,4,2}� perform quite similarly, the former
achieving average Az values of 0.976±0.003, the latter of
0.978±0.003. The difference between their areas does not
reach statistical significance.

Figure 6 shows also the results achieved by classifying
the ranklet coefficients of resolutions �16, 2�, thus ignoring
all intermediate resolutions. Looking at the classification per-
formances, it is evident that intermediate resolutions are not
essential for classification purposes. The results obtained by
RankletS3{16,2� �i.e., average Az values of 0.977±0.002�, in
fact, are not significantly different from those obtained by
RankletS3{16,8,4,2} �i.e., average Az values of 0.978±0.003�.

In almost the same way, Fig. 6 shows the results achieved
by classifying the ranklet coefficients of resolutions
�16, 14, 12, 10�, thus ignoring all high resolutions. In this
case, it is evident that high resolutions are quite important
for classification purposes. The results achieved by
RankletS3{16,14,12,10} �i.e., average Az values of
0.957±0.004�, in fact, perform significantly worse than those
achieved by RankletS3{16,8,4,2} �i.e., average Az values of
0.978±0.003�, with two-tailed p value �0.0001. Similar re-
sults are found when low resolutions are ignored.

C. Histogram equalization

The third test performed is intended to investigate the
influence of histogram equalization on classification perfor-
mances: previous investigations on pixel and wavelet image
representations, in fact, demonstrated that the application of
histogram equalization on ROIs affects rather sensibly clas-
sification performances.20 Histogram equalization is a well-
known image processing technique whose aim is to spread
the histogram of the processed image over the entire range of
possible gray levels.32 As a result, the processed image
shows higher contrast. This aspect is explored for the ranklet
approach by first processing the original 64�64 pixels size
crops by means of histogram equalization. The resulting
crops are then resized to 16�16, transformed by means of
the multiresolution ranklet transform at resolutions �16, 8, 4,
2� and, finally, classified by SVM. As for the first test, the
number of resulting classification features is 1428. Again,
owing to the results achieved in Sec. III A, a polynomial
SVM kernel with degree 3 is used.

Figure 7 shows the results achieved by the above dis-
cussed image representation �RankletHS3{16,8,4,2}, the post-
fix H indicating crops submitted to histogram equalization�.
In this case, average Az values of 0.977±0.003 are reached.
This image representation is compared to the previously dis-
cussed RankletS3{16,8,4,2} �Az=0.978±0.003�, namely an
identical image representation with the only difference that

crops are not submitted to histogram equalization. Due to the
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high p value �i.e., 0.70� for the difference in their Az values,
the results achieved in either cases are almost the same.

D. Ranklet image representation implemented on the
full CAD system

The results described in Sec. III C seem to indicate that
the ranklet image representation is quite insensitive to varia-
tions on the gray-level intensity histogram of the crops. The
fourth and last test performed is thus intended to investigate
the actual beneficial effects of this property, specifically
when classification of ROIs by means of the ranklet image
representation is settled in the complete framework of the
CAD system. Of course, the system also relies on several
other steps, such as, for example, the segmentation of radio-
graphic images, detection of ROIs, and false positives
reduction.14–17 However, a detailed description of these steps
is out of the scope of this study.

The SVM classifier trained by means of the DDSM crops
encoded using the ranklet image representation
RankletS3{16,8,4,2} is considered. Also, the SVM classifier
trained by means of the same crops, but encoded using the
overcomplete wavelet image representation OwtS2, is con-
sidered. In this way, they are both trained using digitized
screen film radiographic images. In other words, they are
trained by means of crops whose gray-level intensity histo-
grams have some peculiar specifics, for instance, having
gray-level intensity values centered on 2400 and ranging ap-
proximately between 2000 and 2800, as shown in Fig. 9�a�.
A test set TDIGITAL, consisting of the FFDM digital radio-
graphic images described in Sec. II A, is considered as well.
As shown in Fig. 9�b�, their gray-level intensity histogram is
sensibly different from that of digitized DDSM radiographic

FIG. 7. ROC curves obtained applying histogram equalization.
RankletHS3{16,8,4,2} �Az values of 0.977±0.003� deals with crops submitted
to histogram equalization before the ranklet transform is performed. The
difference in its average Az value and that of RankletS3{16,8,4,2}
�0.978±0.003� does not achieve statistical significance.
images, for instance, having gray-level intensity values cen-
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tered on 32 100 and ranging approximately between 32 000
and 32 200. Nevertheless, by applying a sigmoidal look-up
table �LUT�,16 the gray-level intensity histogram of digital
radiographic images can be mapped into a histogram very
close to that of digitized ones. These resulting radiographic
images are collected in an independent test set referred to as
TDIGITAL+LUT. By testing our CAD system with the
RankletS3{16,8,4,2} SVM classifier both on TDIGITAL and
TDIGITAL+LUT, the typical result achieved is that depicted in
Figs. 10�a� and 10�b�. In other words, even though the train-
ing procedure is performed using digitized crops, the classi-
fication performances are almost identical on both digital
radiographic images and digital radiographic images pro-
cessed with LUT. In particular, approximately 70% sensitiv-
ity per image is achieved with 0.7 false positives on both
TDIGITAL and TDIGITAL+LUT; see the two correspondent
FROC curves in Fig. 11. Conversely, when testing our CAD
system with the OwtS2 SVM classifier, the typical situation
is that depicted in Figs. 10�c� and 10�d�. In other words, the
wavelet image representation achieves dramatically low clas-
sification performances when tested on digital images,
whereas higher classification performances when tested on
digital images processed with LUT. In particular, approxi-
mately zero sensitivity per image �e.g., 2.6%� and zero false
positives �e.g., 0.02� are constantly achieved on TDIGITAL,
whereas approximately 58% sensitivity per image is
achieved with 0.7% false positives on TDIGITAL+LUT; see

FIG. 8. ROC curves comparison. RankletS3{16,8,4,2} �Az value of
0.978±0.003� is one of the best ranklet image representations evaluated.
PixHRS �0.973±0.002�, DwtHS3 �0.948±0.004�, and OwtS2
�0.956±0.003� are the best pixel, discrete wavelet, and overcomplete wave-
let image representations previously developed and evaluated �Ref. 20�. The
difference in the Az value of RankletS3{16,8,4,2} and that of PixHRS does not
achieve statistical significance. Conversely, the difference in the Az value
between RankletS3{16,8,4,2} and DwtHS3 or OwtS2 is statistically relevant
with two-tailed p value �0.0001.
the two correspondent FROC curves on Fig. 11.
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IV. DISCUSSION

The performances presented show that RankletS3{16,8,4,2}
provides the best classification results among all the ranklet
image representations, namely an average Az value of
0.978±0.003 and 90% sensitivity with an FPF value of
4.5%. See Table II for a summary of the results reached by
the different ranklet image representations evaluated. Also,
for comparison purposes, the classification results achieved
by the previously developed image representations are re-
ported in Table III. By pairwise comparison, it turns out that
the improvement in the Az value with RankletS3{16,8,4,2}
over that of PixHRS �Az=0.973±0.002, 90% sensitivity with
an FPF value of 6%� does not reach statistical significance.
Conversely, by showing a two-tailed p value �0.0001, the
improvement over that of DwtHS3 �Az=0.948±0.004, 90%
sensitivity with an FPF value of 11%� and OwtS2 �Az

=0.956±0.003, 90% sensitivity with an FPF value of 7%� is
statistically significant. The ROC curves for classification in
the RankletS3{16,8,4,2} feature space and in the previously
developed ones are shown in Fig. 8. Also, Table II and Table
III show how the number of features affects the calculation

FIG. 9. Gray-level intensity histograms of two crops extracted, as an ex-
ample, from two different images. Digitized DDSM radiographic image �a�.
Digital FFDM radiographic image �b�.
times required by each image representation for the analysis
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of an entire radiographic image. Tests are performed on a
dual Intel Xeon 2.6 GHz PC. Even though the achieved cal-
culation times seem to indicate that all the image represen-
tations considered are quite reliable for real-time CAD
implementations, feature reduction techniques are currently
under investigation.

A. SVM kernels

From the results presented in Sec. III A it emerges that,
when dealing with the ranklet image representation, polyno-
mial SVM kernels perform better than linear SVM kernels.

Being computed as K�x ,y�= �x·y�, the inner products of
linear SVM kernels put emphasis specifically on correlations
among correspondent features. This is particularly useful
when dealing with monodimensional image representations,
such as, for example, PixHRS. In this case, in fact, correla-
tions among correspondent pixels are much more reliable as

33

FIG. 10. Ranklet image representation and overcomplete wavelet image rep-
resentation in action. RankletS3{16,8,4,2} SVM classifier tested on TDIGITAL
�a� and TDIGITAL+LUT �b�. OwtS2 SVM classifier tested on TDIGITAL �c� and
TDIGITAL+LUT �d�. The small square marks represent the radiologist’s inter-
pretation, whereas the large ones represent the automatic CAD’s analysis.
features than correlations among distant pixels. On the con-
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trary, when dealing with multiresolution image representa-
tions, such as, for example, DwtHS3, OwtS2, and
RankletS3{16,8,4,2}, correlations among distant features are
important as well as correlations among correspondent fea-
tures. In those cases, in fact, each pixel of the original sus-
picious region is represented many times in the feature vec-
tor, namely by a number of wavelet or ranklet coefficients,
which is proportional to the number of multiresolution levels
at which the analysis is performed. Being computed as
K�x ,y�= �x·y�2 or K�x ,y�= �x·y�3, polynomial SVM kernels
with degree 2 or 3 are thus in the condition of taking this
aspect into account, hence to provide better classification
performances.

B. Ranklet resolutions

By looking at the results presented in Sec. III B, it
emerges that low and high resolutions are quite important in
order to achieve high classification performances. Con-
versely, intermediate resolutions appear less important, since
they can be eliminated without sensibly affecting the classi-
fication results.

A practical explanation for that relies in the ability of low
and high resolutions in encoding characteristics which are

FIG. 11. FROC curves. RankletS3{16,8,4,2} SVM classifier tested on
TDIGITAL and TDIGITAL+LUT. OwtS2 SVM classifier tested on TDIGITAL and
TDIGITAL+LUT.

TABLE II. Results summary. Ranklet image representations: average Az val-
ues, FPF values at 90% sensitivity, and calculation times for the analysis of
an entire radiographic image.

Image representation # Features Az FPF �%� Time �s�

RankletS{16,8,4,2} 1428 0.946±0.004 15 30
RankletS2{16,8,4,2} 1428 0.974±0.003 6 30
RankletS3{16,8,4,2} 1428 0.978±0.003 4.5 30
RankletS3{16,14,12,10,8,6,4,2} 2040 0.976±0.003 4.5 45
RankletS3{16,2} 678 0.977±0.002 4.5 15
RankletS3{16,14,12,10} 252 0.957±0.004 13 5
RankletHS3{16,8,4,2} 1428 0.977±0.003 4.5 30
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particularly useful to discriminate ROIs containing masses
from those representing normal tissue. Low resolutions en-
code informations concerning the symmetry of the gray-level
intensity distribution that characterizes the image when ana-
lyzed at coarse resolutions. Owing to that, they are particu-
larly suited to encode informations concerning the presence
or absence in the suspicious region of a bright centered
nucleus surrounded by more heterogeneous structures char-
acterizing normal tissue. A typical signature indicating the
presence of a mass is thus represented by the existence, in
the feature vector, of vertical, horizontal, and diagonal low-
resolution ranklet coefficients with high absolute values,
namely approximately ±1. Conversely, high resolutions en-
code informations concerning the symmetry of the gray-level
intensity distribution that characterizes the image when ana-
lyzed at fine resolutions. Differently from low resolutions,
high resolutions are hence particularly suited to encode in-
formations concerning the presence or absence in the suspi-
cious region of a boundary delimiting the bright centered
nucleus. At those fine resolutions, a signature indicating the
presence of a mass is thus represented by vertical, horizontal,
and diagonal high-resolution ranklet coefficients �in particu-
lar, those arising from the analysis at the borders of the im-
age� with high absolute values.

C. Histogram equalization

As far as the results discussed in Sec. III C are concerned,
they show that histogram equalization is ineffective in im-
proving classification performances.

This result is consistent with the fact that the ranklet
transform deals with the relative rank of pixels rather than
with their intensity values. This provides an image represen-
tation that is very robust to gray-level intensity variations,
such as those provided by the application of histogram equal-
ization on suspicious regions. In particular, the application of
the ranklet transform to either a crop or an equalized crop
results in two very similar feature vectors. Owing to that, the
classification results achieved by either applying or not his-
togram equalization are almost identical.

D. Ranklet image representation implemented on the
full CAD system

According to the results presented in Sec. III D, when
using the ranklet image representation, the CAD system’s

TABLE III. Results comparison. Best performing ranklet, pixel, discrete
wavelet, and overcomplete wavelet image representations: average Az val-
ues, FPF values of 90% sensitivity, and calculation times for the analysis of
an entire radiographic image.

Image representation # Features Az FPF �%� Time �s�

RankletS3{16,8,4,2} 1428 0.978±0.003 4.5 30
PixHRS 256 0.973±0.002 6 5
DwtHS3 4032 0.948±0.004 11 90
OwtS2 2955 0.956±0.003 7 60
classifier must not be necessarily trained with crops extracted
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from radiographic images having the same intensity charac-
teristics as those used in test. On the contrary, it can be
trained with a set of radiographic images collected by a spe-
cific mammographic detector, then tested on a set of radio-
graphic images collected by a different mammographic de-
tector; this, without worsening its classification
performances.

Evidently, the reason for this important result relies again
in the tolerance of the ranklet image representation to varia-
tions in the ROIs’ gray-level intensity histogram. Conversely,
being based on sums and differences in gray-level intensity
content, the wavelet image representation is much less toler-
ant to histogram variations, and, in particular, to histogram’s
spread variations. Owing to that, being trained with crops
whose gray-level intensity histogram is centered on 2400 and
spread over the values 2000–2800, it is quite reasonable that
no marks are drawn on digital images whose gray-level in-
tensity histogram is centered on 32 100 and spread over the
values 32 000–32 200. Note, by the way, that identical con-
siderations could be drawn for PixHRS and DwtHS3 as
well. The results presented herein have a very important
practical implication. By using the ranklet image representa-
tion, in fact, the CAD system does not have to be repeatedly
tuned when radiographic images coming from different de-
tectors are considered. On the contrary, the same mass detec-
tion scheme can be applied to radiographic images coming
from different detectors or, eventually, acquired in different
exposure conditions. As a further result, this allows us to
exploit freely available mammographic image databases
�such as the DDSM� for training the system, then to test it on
sets of digital radiographic images collected in collaboration
with local hospitals.

V. CONCLUSION

The classification of breast tumoral masses and normal
tissue is targeted. Classification features are represented by
the coefficients that results from the specific image represen-
tation used in order to encode each ROI. Owing to its ability
in handling very high dimensional feature spaces, an SVM
classifier is chosen for the classification task.

To investigate whether better classification performances
can be achieved with respect to a pixel, a discrete wavelet,
and an overcomplete wavelet image representation previ-
ously presented,20 a novel image representation is developed
and evaluated, namely a ranklet image representation. Re-
sults demonstrate a great attitude. The best result achieved
shows an average Az value of 0.978±0.003 and 90% sensi-
tivity with an FPF value of 4.5%. The improvement over the
average Az value of the pixel image representation �Az

=0.973±0.002, 90% sensitivity with an FPF value of 6%�
does not reach statistical significance. Conversely, the im-
provement over the average Az value of the discrete wavelet
image representation �Az=0.948±0.004, 90% sensitivity
with an FPF value of 11%� and that of the overcomplete
wavelet image representation �Az=0.956±0.003, 90% sensi-
tivity with an FPF value of 7%� is statistically significant

with two-tailed p value �0.0001.
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Those high classification results acquire even more impor-
tance when the robustness of this image representation to
variations in the ROIs’ gray-level intensity histogram is con-
sidered. As discussed in this work, when using the ranklet
image representation, the CAD system’s SVM classifier is
�also� well suited to be trained on radiographic images col-
lected by a specific mammographic detector and tested on
radiographic images collected by a different one. As an ex-
treme example, the train set can be comprised of digitized
radiographic images, whereas the test set of digital radio-
graphic images. Owing to the different conditions that may
occur during the image acquisition procedure, and due to the
difficulties of collecting really homogeneous image data-
bases, this characteristic can be very useful in CAD systems.
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