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[1] We applied an automatic pattern recognition technique,
known as Support Vector Machine (SVM), to classify
volcanic tremor data recorded during different states of
activity at Etna volcano, Italy. The seismic signal was
recorded at a station deployed 6 km southeast of the summit
craters from 1 July to 15 August, 2001, a time span
encompassing episodes of lava fountains and a 23 day-long
effusive activity. Trained by a supervised learning algorithm,
the classifier learned to recognize patterns belonging to four
classes, i.e., pre-eruptive, lava fountains, eruptive, and post-
eruptive. Training and test of the classifier were carried out
using 425 spectrogram-based feature vectors. Following
cross-validation with a random subsampling strategy,
SVM correctly classified 94.7 ± 2.4% of the data. The
performance was confirmed by a leave-one-out strategy,
with 401 matches out of 425 patterns. Misclassifications
highlighted intrinsic fuzziness of class memberships of
the signals, particularly during transitional phases.
Citation: Masotti, M., S. Falsaperla, H. Langer, S. Spampinato,

and R. Campanini (2006), Application of Support Vector Machine

to the classification of volcanic tremor at Etna, Italy, Geophys. Res.

Lett., 33, L20304, doi:10.1029/2006GL027441.

1. Introduction

[2] Continuous seismic monitoring has become a key
tool for the surveillance of active volcanoes. On basaltic
volcanoes like Etna, the interpretation of the persistent
background radiation (called volcanic tremor) is of partic-
ular importance as its characteristics disclose insights into
magma dynamics. Yet, the continuous acquisition of signals
comes with the problem of accumulating a large mass of
data difficult to handle on-line as well as off-line. Conse-
quently, the automatic processing of data is the goal of any
analysis encompassing the unrelenting flow of signals. To
this purpose, we considered the application of an automatic
classification of volcanic tremor following a supervised
classification scheme. In this scheme, a data set which is
used to determine the controlling parameters of the classifier
(i.e., the training set) is prepared. Then, parameters are
tuned through an iterative process during which the classi-
fier is said to learn the classification problem. Eventually,
the classifier is applied to test data, i.e., patterns which were
not used during the learning phase, but are supposed to
belong to the same parent population of the training set. A

well-known approach for such an automatic supervised
classification is Artificial Neural Networks (ANN) [e.g.,
Langer et al., 2003; Scarpetta et al., 2005]. They generate
arbitrarily complex mapping functions, but turn out to be
sensitive to overfitting, giving excellent performance on the
training set, yet being unstable on the test set.
[3] Here, we discuss the application of Support Vector

Machine (SVM hereafter), an automatic classifier largely
adopted by the pattern classification community and recently
applied by two of us (R. Campanini and M. Masotti) in
medical applications [Bazzani et al., 2001; Campanini et
al., 2004; Angelini et al., 2006]. SVM is a supervised
classification method where nonlinearly separable classifi-
cation problems are converted into linearly separable using
a suitable transformation of the patterns. Apart from the low
complexity of the resulting classification curve, an impor-
tant benefit of the SVM approach over automatic classifiers
based on non-linear discrimination functions is that this
classification curve is the farthest from the border of the
classes to separate. As a result, SVM tends to be less prone
to problems of overfitting than other methods do. We
outline basic characteristics of SVM in section 3, and
address the interested reader to textbooks like Duda et al.
[2000] and Hastie et al. [2002].

2. Tremor Data Analysis

[4] By 17 July, 2001 a volcano unrest began at Etna after
five days of intense tectonic seismicity heralding the open-
ing of the eruptive fractures. Episodes of lava fountains –
with duration ranging from hours to about one day – shortly
preceded and accompanied the onset of the lava effusion as
well. Lava flows poured out in Valle del Leone, Valle del
Bove, and middle-upper southern flank of the volcano
(Figure 1). The effusive activity stopped on 9 August after
the emission of �25 � 106 m3 of lava and 5–10 � 106 m3

of pyroclastics [Behncke and Neri, 2003]. Our seismic data
analysis covered the time-span from 1 July to 15 August,
2001, and included 16 days before the onset and 7 days after
the end of the flank eruption. The data were recorded at the
digital station ESPD, deployed 6 km southeast from the
summit craters (Figure 1). ESPD belonged to the permanent
seismic network run by Istituto Nazionale di Geofisica
e Vulcanologia. The station was a Lennartz PCM 5800,
equipped with a Lennartz LE-3D broadband (20s), three-
component seismometer. The signal was sampled at a
frequency of 125 Hz, and transmitted by digital telemetry
to Catania, where it was stored on a PC-based acquisition
system. We chose this station for: (i) its continuity of
acquisition and good signal-to-noise ratio throughout the
time span investigated, and (ii) the broadband character-
istics of the recordings unavailable for the other stations.
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Over the 46 days inves t iga t ed , we ex t r ac t ed
142 time series with duration of 10 min from Z and NS
components and 141 from EW, achieving a total of 425 time
windows. As the data targets for our application had to be
representative of the range of signal characteristics in each
class, the duration was reduced up to 2 min in a few cases
(i.e., during the seismic swarm between 12 and 17 July) to
exclude earthquakes from volcanic tremor. Then, the seis-
mic records were divided into four distinct classes: pre–

eruptive (PRE) between 1 and 16 July, lava fountains (FON)
both in the pre-eruptive (4, 5, 7, 12, 13, and 16 July) and
eruptive stages (17 July), eruptive (ERU) between 17 July
and 8 August, and post-eruptive (POS) between 9 and
15 August. Based on this separation, the class ERU encom-
passed the time series recorded throughout the whole flank
eruption with the only exception of those related to the
episodes of lava fountains.
[5] Previous investigations found that spectrogram anal-

ysis is particularly informative to discriminate different
styles of volcanic activity [Falsaperla et al., 2005].
Accordingly, we calculated the Fast Fourier Transform
and obtained spectrograms from successive time windows
of 1024 points, with overlap of 50%. Each spectrogram had
a range of frequencies between 0.24 and 15 Hz, with
resolution of approximately 0.24 Hz. By considering each
spectrogram as a distinct pattern associated with an a priori
defined class, our resulting data set was composed of
153 PRE, 55 FON, 180 ERU, and 37 POS. Figures 2a
and 2b depict a typical seismic record and spectrogram for
each class. The frequency range of the signal was usually
between 0.5 and 3 Hz throughout the whole time span
analyzed. Spectrograms relative to the pre-eruptive stage
had already warm colors in the frequency range between 0.5
and 2 Hz. In comparison, the episodes of lava fountains had
higher energy of the signal. However, the highest values of
the energy radiation characterized the eruptive stage, espe-
cially in the bands between 1 and 2 Hz (Figure 2b). Finally,
the post-eruptive stage marked a condition of relatively low
energy radiation (cooler colors prevailing).

3. The SVM Classifier

[6] SVM is a powerful supervised classification tech-
nique developed by V. Vapnik in the late 1990s [Vapnik,

Figure 1. Eruptive field at Etna in 2001. C.C. stands for
Central Craters. The square marks the location of the
seismic station ESPD.

Figure 2. From left to right, examples of pre-eruptive, lava fountain, eruptive, and post-eruptive patterns: (a) time series,
(b) spectrograms, and (c) corresponding 62-dimensional feature vectors. The examples are taken from the Z component.
PSD stands for power spectral density.
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1998], and ever since extensively adopted and successfully
used within the pattern recognition community. In our SVM
application, each spectrogram of volcanic tremor repre-
sented a pattern belonging to a given class; it had frequency-
time dimensions of 62 � 145 points, except for those
calculated over time series of 2 min whose frequency-time
dimensions were of 62 � 28 points. To work with a
homogeneous number of features, we averaged the rows
of each spectrogram, ending up with a vector xi of
62 features (Figure 2c). To accomplish its classificationgoal,
SVM requires a set of l labeled patterns (xi, yi) 2 RN � Z,
i = 1, . . ., l, where xi is the N-dimensional feature vector
associated with the i-th pattern (in this work, a 62–
dimensional spectrogram–based feature vector), and the
integer label yi assigned to its class membership (in this
work, the volcanic state associated with the i-th pattern,
namely PRE, FON, ERU, or POS). R and Z are the realm of
real and integer numbers, respectively. The training of the

automatic classifier implies the determination of a decision
function f: RN ! Z, such that the l labeled patterns of the
training set are all correctly classified or, at least, the error
rate (empirical risk) over this set is minimized. The SVM
performance is evaluated on a diverse test set (i.e., a set of
patterns not used during the training) by comparing the a
priori class membership y of each new pattern analyzed with
the class membership f(x) assigned.
[7] For a two-class classification problem, i.e., y 2

{1; �1}, the decision function f: RN ! {1; �1} determined
during the SVM training is the so-called maximal margin
hyperplane, namely the hyperplane which causes the largest
separation between itself and the border of the two classes
under consideration (Figure 3a). This border is defined by a
few patterns, the so-called support vectors (Figure 3a). As
the hyperplane calculated by SVM is the farthest from the
classes in the training set, it is also robust in presence of
previously unseen patterns, achieving better generalization
capabilities. Throughout the training, SVM computes the
maximal margin hyperplane as

f xð Þ ¼ sgn w 	 xþ bð Þ ¼ sgn
Xl
i¼1

yiai x 	 xið Þ þ b

 !
ð1Þ

where the vector of weights w is calculated in terms of the
scalars ai and b by solving a quadratic programming
problem [Vapnik, 1998]. After the training is completed,
the classification of a new pattern x is achieved according to
the integer value (i.e., ±1) resulting from f (x) in equation 1.
The ai coefficients are non-zero only for the small fraction
of training patterns (the so-called support vectors) which
contribute to the determination of the maximal margin
hyperplane. Consequently the number of dot products x 	 xi
which must be actually computed in equation (1) is sensibly
smaller than l, and thus assigning a label to x is quite fast.
[8] When patterns are not linearly separable in the feature

space, a non-linear transformation f(x) is used to map
feature vectors into a higher dimensional feature space
where they are linearly separable [Vapnik, 1998]. With this
approach, classification problems – which appear quite
complex in the original feature space – can be tackled by
using simple decision functions, namely hyperplanes
(Figures 3b and 3c). To implement this mapping, the dot
products x 	 xi of equation (1) are substituted by a non-linear
function K(x, xi)� f(x) 	 f(xi) named kernel [Vapnik, 1998].
Admissible and typical kernels are the linear K(x, xi) = x 	 xi,
the polynomial K(x, xi) = (g x 	 xi + r)d, the exponential
K(x, xi) = exp(� gj|x � xij|2), etc., where g, r, and d are
kernel parameters selected by the user.
[9] The two–class approach described above can be

easily extended to any k-class classification problem by
adopting methods such as the one-against-all or the one-
against-one, which basically construct a k–class SVM
classifier by combining several two-class SVM classifiers
[Weston and Watkins, 1999]. In this work, with k = 4, we
used the one–against–one approach. This method con-
structs k(k � 1)/2 SVM classifiers where each one is trained
on patterns from two classes only. A test pattern x is then
associated with the class to which it is more often associated
by the different SVM classifiers.

Figure 3. (a) Maximal margin hyperplane found by SVM;
the green bordered patterns on the two margins are called
support vectors, and are the only ones contributing to the
determination of the hyperplane. (b and c) Transformation
of a non-linear classification problem into a linear one
applying the kernel function f.
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[10] Although SVM conveys the same basic concepts of
other methods with supervised learning, the SVM classifiers
have numerous advantages over the latter. Being the solu-
tion of a quadratic programming problem, the decision
function f found by SVM is unique, hence no local minima
solutions occur. By using low-complexity and largest
margin decision functions (i.e., using maximal margin
hyperplanes), it can be demonstrated that the solution found
by SVM is the one with the best trade-off between accuracy
on training patterns and generalization capabilities [Vapnik,
1998]. Furthermore, the results achieved using SVM are
repeatable, as there is no need for random initialization of
weights.

4. Results

[11] We evaluated the SVM performances using cross–
validation with a random sub-sampling strategy [Efron and
Tibshirani, 1993]. Accordingly, a training set (ca. 80% of
the entire data set) and a test set (ca. 20%) were randomly
selected 100 times. This partition corresponded to fivefold
cross-validation, which is recommended as a good com-
promise between bias and variance of the prediction error
[Hastie et al., 2002]. The rationale behind the use of this
evaluation strategy was that, with respect to a traditional
training-validation-test scheme, larger portions of the
dataset could be used for training; furthermore, classifica-
tion performances were estimated as average error rate over
the 100 test repetitions, preventing problems arising from
spurious splits of the data set. For each repetition, SVM was
trained with 123 PRE, 44 FON, 144 ERU, and 30 POS.
Then, it was tested on 30 PRE, 11 FON, 36 ERU, and
7 POS. After an initial trial-and-error experimentation, we
opted for a polynomial SVM kernel with degree 3 (d = 3,
g = 10, r = 0). Classification results showed that, on the
entire test set, the class membership assigned by SVM
matched the actual class membership 94.7 ± 2.4% of the
times. In particular, 94.2 ± 5.2% of PRE, 99.6 ± 0.4% of
ERU, and 100.0 ± 0.0% of POS were correctly recognized.
Conversely, FON were correctly recognized for about 76.4 ±
13.7%, whilst for 20.2 ± 12.6% of the times were
misclassified as PRE. Similar classification performances

were achieved on average when the data of the three
components EW, NS, and Z were taken into account
separately. By considering the EW component only, for
example, we obtained a score of 92.0 ± 5.1% of correct
classification. For the NS and Z components, the corre-
sponding scores were 95.6 ± 4.1% and 93.7 ± 4.2%,
respectively.
[12] For further assessing the classification accuracy, we

applied a leave-one-out strategy [Efron and Tibshirani,
1993]. In this case, SVM was trained with the whole data
set of patterns, except the one used for test. Training and test
were then repeated a number of times equal to the number
of patterns considered (425), by changing the test pattern in
a round-robin manner. The classification results obtained
with this procedure matched the actual class membership for
401 out of 425 cases, i.e., 94.4%. Figure 4 depicts how each
single pattern was classified by SVM, whilst Table 1
provides the scores for each class, summed over the three
components.

5. Discussion

[13] Misclassifications were mostly concentrated near
class transitions, particularly between PRE and FON. In
Figure 4, we observed that misclassifications were generally
not isolated, but rather marked the transition from one
volcanic state to the other. This is the case, for example,
of the misclassifications associated with the transition
between PRE and the first or third FON, as well as those
located at the transition between PRE and ERU on 17 July,
2001. A possible reason for that may be the intrinsic

Figure 4. Classification results of the leave-one-out strategy for the (a) EW, (b) NS, and (c) Z component. The colors
identify the a priori classification: PRE (green), FON (black), ERU (red), POS (blue). Patterns are time-ordered; gaps
correspond to missing data. The arrows on top are time markers.

Table 1. Confusion Matrix of the Leave-One-Out Strategy

Summed Over the EW, NS, and Z Componentsa

PRE FON ERU POS

PRE 145 4 0 2
FON 12 41 2 0
ERU 0 3 157 0
POS 1 0 0 36

aRows and columns read as a priori and assigned class membership,
respectively. Correct classifications in bold in the diagonal elements.
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fuzziness (i.e., the ambiguity of the event class membership)
particularly in the transition from one stage to the other.
This yield a non-null intra-class variability likely responsi-
ble for the misclassifications afore-mentioned. In particular,
by looking at the plots of the different feature vectors (such
as those in Figure 2c), we noted that the intra-class
variability of PRE and FON was quite high, with a high
number of PRE very similar to FON and vice versa.
Conversely, the intra-class variability of ERU and POS
was much lower, with just a few ERU similar to FON
and very few POS similar to PRE.

6. Conclusions

[14] By achieving less than 6% of classification error on
volcanic tremor data recorded at Etna in 2001, SVM
performances are quite interesting. Useful applications can
be envisaged for on-line processing of data. Off-line clas-
sifications of large, past data sets are affordable as well, and
may take into account additional classes identified by time-
history reports. Besides, the identification of different states
of the volcano using just simple spectrograms makes this
approach a useful tool for monitoring also other volcanoes
where the state of the system can be associated with typical
volcanic tremor patterns. Finally, SVM results can be used
as a starting point for in-depth investigations on the critical
definition of state transitions.
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