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Abstract

We consider a class of second order ultraparabolic differential equations in the form

∂tu =
m∑

j=1

Xj(AXu)j + X0u,

where A is a bounded, symmetric and uniformly positive matrix with measurable coeffi-
cients, under the assumption that the operator

∑m
j=1 X2

j +X0−∂t is hypoelliptic and the
vector fields X1, . . . , Xm and X0−∂t are invariant with respect to a suitable homogeneous
Lie group. We adapt the Moser’s iterative methods to the non-Euclidean geometry of the
Lie groups and we prove an L∞loc bound of the solution u in terms of its Lp

loc norm.

Keywords: hypoelliptic equations, measurable coefficients, Moser’s iterative method.

1 Introduction

Consider second order partial differential equations in the form

LAu :=
m∑

i,j=1

Xj (aij(x, t)Xiu) + X0u− ∂tu = 0, (1.1)

where (x, t) = (x1, . . . , xN , t) denotes the point in RN+1, and 1 ≤ m ≤ N . The Xj ’s in (1.1)
are smooth vector fields on RN , i.e.

Xj(x) =
N∑

k=1

bj
k(x)∂xk

, k = 0, . . . , m,

and any bj
k is a C∞ function. In the sequel we always denote by z = (x, t) the point in RN+1,

and by A the m×m matrix A = (ai,j)i,j=1,...,m. Moreover we will use the following notations:

X = (X1, . . . , Xm) , Y = X0 − ∂t, divXF =
m∑

j=1

XjFj , (1.2)
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for every vector field F = (F1, . . . , Fm), so that the expression LAu reads

LAu = divX(AXu) + Y u.

Finally, when A is the m×m identity matrix, we will use the notation

L :=
m∑

k=1

X2
k + Y (1.3)

We say that a curve γ : [0, T ] → RN+1 is L-admissible if it is absolutely continuous and
satisfies

γ′(s) =
m∑

k=1

λk(s)Xk(γ(s)) + µ(s)Y (γ(s)), a.e. in [0, T ],

for suitable piecewise constant real functions λ1, . . . , λm, µ, with µ ≥ 0. We suppose that:

[H.1] there exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)
such that

(i) X1, . . . , Xm, Y are left translation invariant on G;

(ii) X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homogeneous of degree
two;

[H.2] for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L-admissible path γ : [0, T ] →
RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

We also assume the following uniform ellipticity condition:

[H.3] the coefficients aij , 1 ≤ i, j ≤ m, are real valued, measurable functions of z. Moreover
aij(z) = aji(z), 1 ≤ i, j ≤ m, and there exists a positive constant µ such that

µ−1|ξ|2 ≤
m∑

i,j=1

aij(z)ξiξj ≤ µ|ξ|2,

for every z ∈ RN+1 and ξ ∈ Rm.

We next give some comments about our hypotheses. We first note that, under the as-
sumptions [H.1]-[H.2], L belongs to the class introduced by Kogoj and Lanconelli in [20] (of
course, [H.3] is trivially satisfied by the identity matrix). We recall that [H.1]-[H.2] yield the
well known Hörmander condition [17]:

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, for every z ∈ RN+1, (1.4)

then L is hypoelliptic (i.e. every distributional solution to Lu = 0 is a smooth, classic solution;
see, for instance, Proposition 10.1 in [20]). Moreover, the fundamental solution Γ(·, ζ) of L,
shares the main properties of the fundamental solution of the heat equation (see [20]). Due
to this last fact, the operator L will be called principal part of LA.

Let us point out that several meaningful examples of operators of the form (1.1) belong
to the class considered in this paper.
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Example 1.1 Parabolic operators on Carnot Groups. Operators in the form LA =
divX(AX·) − ∂t satisfy assumptions [H.1]-[H.3] when the vector fields X1, . . . , Xm are the
generators of a homogeneous Carnot group C =

(
RN , ·, δ̃λ

)
. In that case X0 = 0, ∆C =∑m

k=1 X2
k is the sub-Laplacian on C and L is its heat operator

L = ∆C − ∂t. (1.5)

The operations of G =
(
RN+1, ◦, δλ

)
are (x, t)◦ (ξ, τ) = (x · ξ, t+ τ) and δλ(x, t) =

(
δ̃λx, λ2t

)
.

The theory developed by De Giorgi-Nash-Moser [28, 29], [30], in the study of uniformly
parabolic equations has been applied in [37] to divergence form equations ∂tu = divX(AXu)
by Saloff-Coste and Stroock.

Related results have been given by Bonfiglioli, Lanconelli and Uguzzoni in [4], where the
analogous non-divergence form operator

∑
aijXiXj−∂t is considered. They assume that the

coefficients aij are Hölder continuous, and prove the existence and some pointwise estimates
of the fundamental solution and of its derivatives. Under the same assumptions, Bonfiglioli
and Uguzzoni prove in [5] a Harnack inequality for the positive solutions to

∑
aijXiXju = ∂tu

and for the relevant elliptic equation
∑

aijXiXju = 0. We finally recall that, in [7, 8], Bra-
manti, Brandolini, Lanconelli and Uguzzoni extend the results proved in [4, 5] to Hörmander
operators in the form

∑
aijXiXj −∂t, without making the hypothesis that Lie

{
X1, . . . , Xm

}
is stratified.

Example 1.2 Kolmogorov-Fokker-Planck operators. Consider the equation
m∑

i,j=1

∂xi

(
aij∂xju

)
+ 〈Bx,∇u〉 = ∂tu, (1.6)

where B is a constant N × N real matrix. In this case we have Xj = ∂xj , j = 1, . . . , m
and X0 = 〈Bx,∇〉. We recall that assumptions [H.1]-[H.2] are equivalent to the following
algebraic condition on matrix B: There exists a basis of RN such that B has the form

B =




0 0 . . . 0 0
B1 0 . . . 0 0
0 B2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Bek 0




(1.7)

where Bj is a mj ×mj+1 matrix of rank mj+1, j = 1, 2, . . . , k̃ with

m =: m1 ≥ m2 ≥ · · · ≥ mek+1
≥ 1, and m1 + · · ·+ mek+1

= N.

The Lie group product related to Kolmogorov equations is

(x, t) ◦ (ξ, τ) =
(
ξ + e−τBx, t + τ

)
, (x, t), (ξ, τ) ∈ RN+1,

and the dilations are

δλ = diag
(
λIm1 , λ

3Im2 , . . . , λ
2ek+1Imek+1

, λ2
)
, λ > 0, (1.8)

where Imj denotes the mj ×mj identity matrix (see Propositions 2.1 and 2.2 in [23]).
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We explicitly remark that Kolmogorov operators do not belong to the class considered in
the Example 1.1, since the vector fields ∂x1 , . . . , ∂xm do not satisfy the Hörmander condition
(1.4). On the other hand, this kind of operators arise in many applications. Indeed, the
following equation

∂tf − 〈v,∇xf〉 =
n∑

i,j=1

∂vi

(
aij(·, f)∂vjf

)
, t ≥ 0, x ∈ Rm, v ∈ Rm

where the collision operator at the right hand side of the equation can take either a linear or
a non linear form, arises in kinetic theory (see, for instance, [11], [35], [9] and [24]). Equations
of the form (1.6) occur in mathematical finance as well. More specifically, the following linear
equation

S2∂SSV + f(S)∂MV − ∂tV = 0, S, t > 0, M ∈ R
with either f(S) = log S or f(S) = S, arises in the Black & Scholes theory when considering
the problem of the pricing of Asian options (see [2]), and in the stochastic volatility model
by Hobson & Rogers (see [16] and [12]).

Kolmogorov-Fokker-Planck operators have been studied by many authors. A systematic
study of their principal parts has been carried out in [22], and [23]. We also quote the papers
[39], [18], [13] [34], [33], [38], [25], [26], for the study of Kolmogorov operators with Hölder
continuous coefficients aij , satisfying the uniformly ellipticity assumption [H.3]. The classical
iterative method introduced by Moser [28, 29] has been used in the paper [32] concerning the
equation (1.6) with measurable coefficients, and a pointwise upper bound for the solutions is
proved. We also recall that the methods and results of [32] have been extended to Kolmogorov
type operators on non-homogeneous Lie groups by Pascucci and the authors in [10].

Example 1.3 Link of groups. The notion of link of homogeneous groups has been intro-
duced by Kogoj and Lanconelli in [20, 21]. If ∆G is a sub-Laplacian on a Carnot group G
and Y is a first order partial differential operator which is transverse to G (in the sense of
Definition 4.5 of [21]), then

L = ∆G + Y

is left translation invariant, and homogeneous of degree two on the new homogeneous group
obtained by linking G with the Kolmogorov group related to Y .

The simplest example of that operator is

L = (∂x + y∂s)2 + (∂y − x∂s)2 + x∂w − ∂t, (1.9)

defined for (x, y, s, w) ∈ R4. The operator acts on the variables (x, y, s, t) as the heat equation
on the Heisenberg group, and on the variables (x, y, w, t) as a Kolmogorov operator. In this
case L = X2

1 + X2
2 + Y , where Y = x∂w − ∂t, X1 = ∂x + y∂s, X2 = ∂y − x∂s. We recall that,

as an application of the procedure of linking of groups, sequences of homogeneous groups of
dimension and step arbitrarily large have been constructed in [21].

Few results concerning the regularity of the solutions of LAu = 0 have been proved
for operators of this kind. Bramanti and Brandolini consider in [6] operators in the form
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LA =
∑m

i,j=1 aij(x)XiXj +a0Y where aij and a0 belong to the class V.M.O. of the Vanishing
Mean Oscillation functions. They extend the general theory of function spaces developed by
Folland [14], Rothschild and Stein [36] for Hörmander operators.

In this paper we use the iterative method introduced by Moser to prove an L∞loc bound
of the solution u of (1.1) in terms of its Lp

loc norm. It is well known that the Moser itera-
tion is based on a combination of a Caccioppoli type estimate with the classical embedding
Sobolev inequality. The method has been adapted to the non-Euclidean geometry of the
operators considered in the Example 1.1 by Saloff-Coste and Stroock [37]. The Caccioppoli
type inequalities plainly extend to this kind of operators and give some L2

loc bounds of the
first order derivatives X1u, . . . , Xmu of the solution u of (1.1). The Moser procedure can be
accomplished by using the so called Sobolev-Stein inequalities.

In our more general case that argument fails since, even if the Caccioppoli type inequalities
still give an L2

loc bound of X1u, . . . ,Xmu, we cannot rely on the Sobolev-Stein inequalities, due
to the fact that some information on the norm of X0u is needed to conclude the procedure.
This problem has been previously encountered in the study of Kolmogorov operators [32]
and has been solved by using a suitable Sobolev-type inequality which only holds for the
solutions to (1.1). We extend here the technique used in [32] to the general class of operators
satisfying assumptions [H.1]-[H.3]. The main idea is to prove a Sobolev type inequality by
using a representation formula for the solution u in terms of the fundamental solution of the
principal part L of LA. More specifically, if u is a solution to (1.1), then

Lu = (LA − L)u = divXF, (1.10)

where

Fi =
m∑

j=1

(δij − aij) Xju, i = 1, . . . , m.

Since the Fi’s depend only on the first order derivatives Xju, j = 1, ...,m, the Caccioppoli
inequality yields an H−1

loc -estimate of the right hand side of (1.10). Thus, by using some
potential estimate for the fundamental solution of L, we prove the needed bound for the Lp

loc

norm of u.
We conclude this introduction with a couple of remarks. We recall that Saloff-Coste and

Stroock accomplish the Moser method in [37] by proving an invariant Harnack inequality.
They rely on the Poincaré type inequality due to Jerison [19], but a similar inequality which
is suitable for our operators LA has not yet established. On the other hand, the method
introduced by Aronson in [1], in the study of uniformly parabolic equations, only relies on
the local upper bound proved by Moser and provides an pointwise bound of the fundamental
solution in its whole domain. That method has previously adapted by Pascucci and Polidoro
[31] to homogeneous Kolmogorov operators, and we plan in a future study to further extend
the same method to the operators LA considered here.

The plan of the paper is the following. In Section 2 we introduce some notations and
our main result (see Theorem 2.2), in Section 3 we prove the Caccioppoli and Sobolev type
inequalities and in Section 4 we prove the pointwise bounds of the positive solutions. Section
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4 also contains related results concerning positive super and sub-solutions (see Propositions
4.2 and 4.4), changing sign solutions (see Proposition 4.3).

Acknowledgement. We thank E. Lanconelli for his interest in our work and for some
useful discussions.

2 Notations and main results

We first introduce some notations, then we state our main results. We refer to the monograph
[3] for a detailed treatment of the subject. A Lie group G =

(
RN+1, ◦) is said homogeneous

if a family of dilations (δλ)λ>0 exists on G and is an automorphism of the group:

δλ(z ◦ ζ) = (δλz) ◦ (δλζ) , for all z, ζ ∈ RN+1 and λ > 0.

As we stated in the Introduction, hypotheses [H.1]-[H.2] imply the Hörmander condition (1.4).
Moreover the dilation δλ induces a direct sum decomposition on RN

RN = V1 ⊕ · · · ⊕ Vk, (2.1)

as follows. If we denote x = x(1) + x(2) + · · ·+ x(k) with x(j) ∈ Vj , then

δλ

(
x(1) + x(2) + · · ·+ x(k), t

)
=

(
λx(1) + λ2x(2) + · · ·+ λkx(k), λ2t

)
. (2.2)

The decomposition (2.1) is well known when considering Carnot groups C =
(
RN , ·, δ̃λ

)
. In

that case V1 = span
{
X1(0), . . . , Xm(0)

}
, Vj = [Vj−1, V1] for j = 2, . . . , k, and [Vk, V1] =

{
0
}
.

Note that some of the Vj ’s may be the trivial space
{
0
}
, as in the case of Kolmogorov

operators occurs. Indeed, according to (1.8) and (2.1), we have RN = V1 ⊕ V3 ⊕ · · · ⊕ V
2ek+1

,

with dimV2j−1 = mj , for j = 1, . . . , k̃ + 1. We explicitly note that Vj =
{
0
}

for every even j.
The natural number

Q := dimV1 + 2dimV2 + · · ·+ k dimVk + 2 (2.3)

is usually called the homogeneous dimension of G with respect to (δλ).
Since G =

(
RN+1, ◦) is a homogeneous Lie group, we have X∗

j = −Xj for j = 1, . . . , m
and Y ∗ = −Y . Thus we can give the following

Definition 2.1 A weak solution of (1.1) in a subset Ω of RN+1 is a function u such that
u,X1u, . . . , Xmu, Y u ∈ L2

loc(Ω) and
∫

Ω
−〈AXu,Xϕ〉+ ϕY u = 0, ∀ϕ ∈ C∞

0 (Ω). (2.4)

Here 〈·, ·〉 denotes the scalar product in Rm. In the sequel we will also consider weak sub-
solutions of (1.1), namely functions u such that u,X1u, . . . , Xmu, Y u ∈ L2

loc(Ω) and
∫

Ω
−〈AXu, Xϕ〉+ ϕY u ≥ 0, ∀ϕ ∈ C∞

0 (Ω), ϕ ≥ 0. (2.5)

6



Moreover u is a weak super-solution of (1.1) if −u is a sub-solution. Clearly, if u is a sub and
super-solution of (1.1), then it is a solution.

We define the unit cylinder

R1 =
{

(x, t) ∈ RN+1 |
N∑

j=1

x2
j < 1, |t| < 1

}
,

and, for every z0 ∈ RN+1 and r > 0, we set

Rr(z0) := z0 ◦ δr (R1) = {z ∈ RN+1 | z = z0 ◦ δr(ζ), ζ ∈ R1}. (2.6)

Our main result is the following

Theorem 2.2 Let u be a non-negative weak solution of (1.1) in Ω. Let z0 ∈ Ω and r, %,
0 < r

2 ≤ % < r, be such that Rr(z0) ⊆ Ω. Then there exists a positive constant c which only
depends on the operator LA such that, for every p > 0, it holds

sup
R%(z0)

up ≤ c

(r − %)Q

∫

Rr(z0)
up (2.7)

(Q is defined in (2.3)). Estimate (2.7) also holds for every p < 0 such that up ∈ L1(Rr(z0)).

We next recall some useful facts about homogeneous Lie groups. We first explicitly
note that [H.1] and (1.4) imply that span

{
X1(0), . . . , Xm(0)

}
= V1; then we may assume

m = dimV1 and Xj(0) = ej for j = 1, . . . , m where {ei}1≤i≤N denotes the canonical basis of
RN . We set

|x|G =




k∑

j=1

mj∑

i=1

(
x

(j)
i

) 2k!
j




1
2k!

, ‖(x, t)‖G =
(
|x|2k!
G + |t|k!

) 1
2k!

,

and we observe that the above functions are homogeneous of degree 1, on RN and RN+1,
respectively, in the sense that

∣∣∣
(
λx(1) + · · ·+ λkx(k)

)∣∣∣
G

= λ|x|G, ‖δλ(x, t)‖G = λ‖(x, t)‖G,

for every (x, t) ∈ RN+1 and for any λ > 0. We define the quasi-distance in G as

d(z, ζ) := ‖ζ−1 ◦ z‖G, for all z, ζ ∈ RN+1. (2.8)

We finally recall that, for every compact set K ⊂ RN+1 there exist two positive constants c−K
and c+

K , such that

c−K |z − ζ| ≤ d(z, ζ) ≤ c+
K |z − ζ| 1k , for all z, ζ ∈ K, (2.9)

(here | · | denotes the usual Euclidean modulus, see for instance, Proposition 11.2 in [15]).

We finally recall some useful facts on the fundamental solution of the hypoelliptic opera-
tors defined in (1.3). If Γ(·, ζ) is the fundamental solution of L with pole at ζ ∈ RN+1, then
Γ is smooth out of the diagonal of RN+1 × RN+1 and has the following properties:
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i) for any z ∈ RN+1,Γ(·, z) and Γ(z, ·) belong to L1
loc(RN+1);

ii) for every ϕ ∈ C∞
0 (RN+1) and z ∈ RN+1 we have

L
∫

RN+1

Γ(z, ζ)ϕ(ζ)dζ =
∫

RN+1

Γ(z, ζ)Lϕ(ζ)dζ = −ϕ(z);

iii) LΓ(·, ζ) = −δζ (Dirac measure supported at ζ);

iv) Γ(z, ζ) ≥ 0, and Γ(x, t, ξ, τ) > 0 if, and only if, t > τ ;

v) if we define Γ∗(z, ζ) := Γ(ζ, z), then Γ∗ is the fundamental solution of the adjoint L∗ of L;

vi) there exists a constant C > 0 such that

Γ(z, ζ) ≤ C‖ζ−1 ◦ z‖2−Q
G , ∀ z, ζ ∈ RN+1.

vii) Γ(z, ζ) = Γ(ζ−1 ◦ z, 0) =: Γ(ζ−1 ◦ z), for every z, ζ ∈ RN+1, z 6= ζ;

viii) Γ(δλ(z)) = λ−Q+2Γ(z), for every z ∈ RN+1 \ {0}, λ > 0.

(see Theorem 2.7, Proposition 2.8 and Corollary 2.9 in [20]). Moreover the following upper
bound for Γ holds

Γ(x, t) ≤ Ct−
Q−2

2 exp
(
−|x|

2
G

C t

)
, ∀ (x, t) ∈ RN × R+, (2.10)

for some positive constant C (see [20], section 5.1).

We define the L-potential of the function f ∈ L1(RN+1) as follows

Γ(f)(z) =
∫

RN+1

Γ(z, ζ)f(ζ)dζ, z ∈ RN+1. (2.11)

Let us explicitly write the potential Γ(Xjf) of any f ∈ C∞
0 (RN+1), for j = 1, . . . , m. It holds

Γ(Xjf)(z) =
∫

RN+1

XR
j Γ(η)f(z ◦ η−1)dη

where XR
j denotes the right invariant vector fields that agrees with Xj at the origin. Also

note that XR
j Γ is a δλ-homogeneous function of degree 1−Q. We finally remark that

∫

RN+1

XR
j Γ(η)f(z ◦ η−1)dη =

∫

RN+1

X
(ζ)
j Γ(ζ−1 ◦ z)f(ζ)dζ, (2.12)

where the superscript in X
(ζ)
j indicates that we are differentiating w.r.t. the ζ variable.

We next recall a result that extends the classical potential estimates to homogeneous Lie
groups (see, for instance, Proposition (1.11) in [14]). As a plain consequence, we see that the
above definition is well posed.
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Theorem 2.3 Let α ∈]0, Q[, and let G ∈ C(RN+1 \ {0}) be a δλ-homogeneous function of
degree α−Q. Consider f ∈ Lp(RN+1) for some p ∈]1, +∞[. Then the function

Gf (z) :=
∫

RN+1

G(ζ−1 ◦ z)f(ζ)dζ

is defined almost everywhere and there exists a constant c = c(Q, p) such that

‖Gf‖Lq(RN+1) ≤ c ‖f‖Lp(RN+1),

where q is defined by
1
q

=
1
p
− α

Q
.

Corollary 2.4 Let f ∈ L2(RN+1). There exists a positive constant c = c(Q) such that

‖Γ(f)‖L2eκ(RN+1) ≤ c‖f‖L2(RN+1),

‖(ΓX1f, . . . ,ΓXmf)‖L2κ(RN+1) ≤ c‖f‖L2(RN+1),

where κ̃ = 1 + 4
Q−4 and κ = 1 + 2

Q−2 .

Proof. It is an immediate consequence of Theorem 2.3 and of the homogeneity of Γ and of(
XR

1 Γ, . . . , XR
mΓ

)
. ¤

As in [32], [10], we can use the fundamental solution Γ as a test function in the definition
of sub and super-solution.

Lemma 2.5 Let v be a weak sub-solution of LAu = 0 in Ω. For every ϕ ∈ C∞
0 (Ω), ϕ ≥ 0,

and for almost every z ∈ RN+1, we have

−
∫

Ω
〈AXv, X(Γ(z, ·)ϕ)〉+

∫

Ω
Γ(z, ·) ϕY v ≥ 0.

An analogous result holds for weak super-solutions.

Proof. For every ε > 0, we set

χε(z, ζ) = χ

(‖ζ−1 ◦ z‖G
ε

)
, z, ζ ∈ RN+1,

where χ ∈ C1([0, +∞[, [0, 1]) is such that χ(s) = 0 for s ∈ [0, 1], χ(s) = 1 for s ≥ 2 and
0 ≤ χ′ ≤ 2. By (2.5), for every ε > 0 and z ∈ RN+1, we have

0 ≤ −
∫

Ω
〈AXv, X(Γ(z, ·)χε(z, ·)ϕ)〉+

∫

Ω
Γ(z, ·)χε(z, ·)ϕY v = −I1,ε(z) + I2,ε(z)− I3,ε(z),
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where

I1,ε(z) =
∫

Ω
〈AXv, X(Γ(z, ·))〉χε(z, ·)ϕ,

I2,ε(z) =
∫

Ω
Γ(z, ·)χε(z, ·) (−〈AXv, Xϕ〉+ ϕY v) ,

I3,ε(z) =
∫

Ω
〈AXv, Xχε(z, ·)〉Γ(z, ·)ϕ.

Consider the first integral. Since ϕχε(z, ·)AXv → ϕAXv in L2(RN+1), as ε → 0, Corollary
2.4 and (2.12) give

I1,ε(z) →
∫

Ω
〈AXv,X(Γ(z, ·))〉ϕ,

as ε → 0, for almost every z ∈ RN+1. The same argument applies to the second and third
integrals. In particular, we find I3,ε(z) → 0 as ε → 0, then the proof is accomplished. ¤

3 Caccioppoli and Sobolev inequalities

We recall the notations (1.2), (2.6) and, by simplicity, we shall write Rr instead of Rr(0).

Theorem 3.1 [Caccioppoli type inequalities] Let u be a non-negative weak solution of
(1.1) in R1. Let p ∈ R, p 6= 0, p 6= 1/2 and let %, r be such that 1

2 ≤ % < r ≤ 1. If up ∈ L2(Rr)
then Xup ∈ L2(R%), and there exists a constant c, only dependent on the operator LA, such
that

‖ (X1u
p, . . . , Xmup) ‖L2(R%) ≤

c
√

µ(µ + ε)
ε(r − %)

‖up‖L2(Rr), where ε =
|2p− 1|

4p
. (3.1)

Proof. We first consider the case p < 1, p 6= 0, p 6= 1/2. We preliminarily assume that u ≥ u0

for some positive constant u0. This assumption will be removed in the sequel. We let v = up

and we note that, since u is a weak solution to LAu = 0 and u ≥ u0, then v,Xv, Y v ∈ L2(Rr).
For every ψ ∈ C∞

0 (R1) we consider the function ϕ = u2p−1ψ2. Note that ϕ and Xϕ ∈ L2(R1),
then we can use ϕ as a test function in (2.4). We find

0 =
p

2

∫

R1

〈AXu, Xϕ〉 − ϕY u

=
p

2

∫

R1

(2p− 1)u2p−2ψ2〈AXu,Xu〉+ 2ψu2p−1〈AXu,Xψ〉 − u2p−1ψ2Y u

=
∫

R1

(
1− 1

2p

)
ψ2〈AXv,Xv〉+ vψ〈AXv,Xψ〉 − ψ2

4
Y (v2) =

(using the identity
ψ2Y (v2) = Y (ψ2v2)− 2v2ψY ψ

10



and applying the divergence theorem)

=
∫

R1

(
1− 1

2p

)
ψ2〈AXv, Xv〉+ vψ〈AXv, Xψ〉+

v2ψ

2
Y ψ.

Setting ε = |2p−1|
4p and using the estimate

vψ |〈AXv,Xψ〉| ≤ εψ2〈AXv,Xv〉+
v2

4ε
〈AXψ, Xψ〉,

we finally obtain

ε

∫

R1

ψ2〈AXv, Xv〉 ≤ 1
4

∫

R1

v2

(
1
ε
〈AXψ,Xψ〉+ 2 |ψY ψ|

)
. (3.2)

The thesis follows by making a suitable choice of the function ψ in (3.2). More precisely,
we set

ψ(x, t) = χ (‖(x, 0)‖G) χ
(
|t| 12

)
(3.3)

where χ ∈ C∞(R, [0, 1]) is such that

χ(s) = 1 if s ≤ %, χ(s) = 0 if s ≥ r, |χ′| ≤ 2
r − %

.

We observe that
|∂tψ| , |Xjψ| ≤ c1

r − %
, j = 0, 1, . . . , m (3.4)

where c1 is a positive constant only depending on the operator. Then, accordingly to (3.2),
we obtain

ε

µ

∫

R%

|Xup|2 ≤ ε

∫

Rr

ψ2〈AXup, Xup〉

≤ 1
4

∫

Rr

u2p

(
mc2

1µ

ε(r − %)2
+

4c1

r − %

)
≤ c2

(r − %)2
(
1 +

µ

ε

)∫

Rr

u2p,

(3.5)

and this proves (3.1). In order to remove the assumption that inf u > 0 it is sufficient to
apply estimate (3.5) to the solution u + 1

n , n ∈ N and to rely on the monotone convergence
theorem.

We next consider the case p ≥ 1. We proceed as in the proof of Lemma 1 in the paper
[27] by Moser. For any n ∈ N, we define the function gn,p on ]0,+∞[ as follows

gn,p(s) =

{
sp, if 0 < s ≤ n,

np + pnp−1(s− n), if s > n,

then we apply the same argument used above to the function vn,p = gn,p(u). By using

ϕ = gn,p(u)g′n,p(u)ψ2, ψ ∈ C∞
0 (R1)

11



as a test function in (2.4), we find

ε

∫

R1

ψ2〈AXvn,p, Xvn,p〉 ≤ 1
4

∫

R1

v2
n,p

(
1
ε
〈AXψ, Xψ〉+

1
2
|ψY ψ|

)
,

where ε = |2p−1|
4p . The claim then follows by letting n →∞. For more details we refer to [27]

or [32]. ¤

Next Proposition extends Theorem 3.1 to super and sub-solutions. We omit the proof,
since it follows the same lines of Theorem 3.1.

Proposition 3.2 Let u be a non-negative weak sub-solution of (1.1) in R1. Let %, r be such
that 1

2 ≤ % < r ≤ 1, and p ≥ 1 or p < 0. If up ∈ L2(Rr) then Xup ∈ L2(R%) and there exists
a constant c, only dependent on the operator LA, such that

‖ (X1u
p, . . . , Xmup) ‖L2(R%) ≤

c
√

µ(µ + ε)
ε(r − %)

‖up‖L2(Rr), where ε =
|2p− 1|

4p
.

The same statement holds when u is a non-negative weak super-solution of (1.1) and
p ∈]0, 1/2[.

Theorem 3.3 [Sobolev type inequalities for super and sub-solutions]. Let v be a
non-negative weak sub-solution of (1.1) in R1. Then v ∈ L2κ

loc(R1), κ = 1 + 2
Q−2 , and there

exists a constant c, only dependent on the operator LA, such that

‖v‖L2κ(R%) ≤
c

r − %

(‖v‖L2(Rr) + ‖ (X1v, . . . , Xmv) ‖L2(Rr)

)
, (3.6)

for every %, r with 1
2 ≤ % < r ≤ 1.

The same statement holds for non-negative super-solutions.

Proof. Let v be a non-negative sub-solution of LAu = 0. We represent v in terms of the
fundamental solution Γ. To this end, we consider the cut-off function ψ introduced in (3.3).
For every z ∈ R%, we have

v(z) = vψ(z) =
∫

Rr

[〈X(vψ), XΓ(z, ·)〉 − Γ(z, ·)Y (vψ)] (ζ)dζ = I1(z) + I2(z) + I3(z), (3.7)

where

I1(z) =
∫

Rr

[〈Xψ, XΓ(z, ·)〉v] (ζ)dζ −
∫

Rr

[Γ(z, ·)vY ψ] (ζ)dζ,

I2(z) =
∫

Rr

[〈(Im −A) Xv, XΓ(z, ·)〉ψ] (ζ)dζ −
∫

Rr

[Γ(z, ·)〈AXv, Xψ〉] (ζ)dζ,

I3(z) =
∫

Rr

[〈AXv, X (Γ(z, ·)ψ)〉 − Γ(z, ·)ψY v] (ζ)dζ

12



(here and in the sequel Im denotes the m × m identity matrix). Since the function v is a
weak sub-solution of (1.1), it follows from Lemma 2.5 that I3 ≤ 0, then

0 ≤ v(z) ≤ I1(z) + I2(z) for a.e. z ∈ R%.

To prove our claim it is sufficient to estimate v by a sum of L-potentials.
We start by estimating I1. Denote by I ′1 and I ′′1 the first and the second integral in I1,

respectively. Then I ′1 can be estimate by Corollary 2.4 (and using (2.12)) as follows

‖I ′1‖L2κ(R%) ≤ c‖vXψ‖L2(RN+1) ≤
c

r − %
‖v‖L2(Rr),

where the last inequality follows from (3.4). Here and in the sequel we use the notation
‖F‖L2(Ω) = ‖ (F1, . . . , Fm) ‖L2(Ω), for every F ∈ L2(Ω,Rm). To estimate I ′′1 we use the first
statement of Corollary 2.4:

‖I ′′1 ‖L2κ(R%) ≤ meas(R%)1/Q‖I ′′1 ‖L2eκ(R%) ≤ c‖vY ψ‖L2(RN+1) ≤
c

r − %
‖v‖L2(Rr).

We can use the same technique to prove that

‖I2‖L2κ(R%) ≤
c

r − %
‖Xv‖L2(Rr),

for some constant c = c(Q, µ), thus our first claim is proved.

A similar argument proves the thesis when v is a super-solution. In this case, we introduce
the following auxiliary operator

L̃ := divXX + Ỹ , Ỹ = −X0 − ∂t.

Since Rr is a domain which is symmetric with respect to the time variable t, we can use the
change of variable (x, t) 7→ (x,−t) and find that

∫∫

Rr

(
−〈A(x,−t)Xv(x,−t), Xϕ(x, t)〉 − ϕ(x, t)Ỹ v(x,−t)

)
dx dt ≤ 0,

for every ϕ ∈ C∞
0 (Rr), ϕ ≥ 0. Note that the fundamental solution Γ̃ of L̃ satisfies the

assumptions of Corollary 2.4, then we deduce from the above inequality and Lemma 2.5 that
∫∫

Rr

(
−〈A(ξ,−τ)Xv(ξ,−τ), X(Γ̃(x, t, ξ, τ)ψ(ξ, τ))〉 − Γ̃(x, t, ξ, τ)ψ(ξ, τ)Ỹ v(ξ,−τ)

)
dξ dτ ≤ 0,

for almost any (x, t) ∈ Rr, with ψ as in (3.3). Then the claim follows from the same argument
used above, by a representation formula analogous to (3.7), written in terms of Γ̃ instead of
Γ. For more details we refer to [32] or [10]. ¤
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4 The Moser method

We start this section with some preliminary remarks. We first note that a transformation of
the form

ζ 7−→ z0 ◦ δr(ζ), r > 0, z0 ∈ RN+1, (4.1)

preserves the class of differential equations considered. More specifically, if u is a weak
solution of (1.1) in the cylinder Rr(z0) then the function v(ζ) = u(z0 ◦ δr(ζ)) is a solution
to the equation divX(ÃXv) + Y v = 0 in R1 where Ã(ζ) = A(z0 ◦ δr(ζ)) satisfies hypothesis
[H.3] with the same constant µ as A.

SinceG =
(
RN+1, ◦) is a homogeneous Lie group, we have det(Jτz) = 1, and det(δλ) = λQ,

so that
∫

Ω
f(z ◦ w)dw =

∫

τz(Ω)
f(ζ)dζ,

∫

Ω
f(δλw)dw = λ−Q

∫

δλ(Ω)
f(ζ)dζ, (4.2)

for every f ∈ L1(Ω) (here τz(w) = z ◦ w).

Lemma 4.1 There exists a positive constant c̄ such that, for every positive %, r with r
2 ≤ % <

r and z0 ∈ RN+1, it holds

Rc̄(r−%)(z) ⊆ Rr(z0), ∀z ∈ R%(z0). (4.3)

Proof. By the change of variables z = z0 ◦δr(ζ), it suffices to prove (4.3) for z0 = 0 and r = 1.
We next recall the expression (2.2) of the dilations (δλ), and note that only positive integer
power of λ there occur, as a consequence we find

R% ⊆
{

(x, t) ∈ RN+1 |
N∑

j=1

x2
j ≤ %2, |t| ≤ %

}
, ∀% ∈]0, 1[.

Hence,
min {|w − z| : w ∈ R%, z ∈ ∂R1} ≥ 1− %,

and, if we apply the first inequality in (2.9) (with K = R1), we find

min {d(w, z) : w ∈ R%, z ∈ ∂R1} ≥ c−K(1− %).

In other terms,

B(z, c−K(1− %)) :=
{
w ∈ RN+1 : d(w, z) ≤ c−K(1− %)

} ⊂ R1, for every z ∈ R%.

Then the thesis is a consequence of the following inclusion

Rs(z) ⊂ B(z, ks), where k = max
{
d(w, 0) : w ∈ R1

}

which is a direct consequence of (2.6) and of the fact that B(z, ks) = z ◦ δks (B(0, 1)). ¤
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Proof of Theorem 2.2. As said before, we first prove the claim in the unit cylinder R1.
Namely, we show that there exists a positive constant c1, only depending on the Lie group
G =

(
RN+1, ◦, δλ

)
and on the constant µ in hypothesis [H.3], such that

sup
R1/2

up ≤ c1

∫

R1

up (4.4)

for every positive solution u of LAu = 0. As a consequence we have that

sup
Rθ/2(z)

vp ≤ c1

θQ

∫

Rθ(z)
vp

for every positive solution v of LAv = 0 in Rθ(z), where z ∈ RN+1 and θ > 0. Indeed, the
change of variable u(ζ) = v (z ◦ δθ (ζ)) is in the form (4.1), and (4.2) holds. As a consequence,
if v is a positive solution of (1.1) in Rr(z0), and we set θ = c̄(r − %), where c̄ is the constant
in Lemma 4.1, we find

sup
R%(z0)

vp ≤ c1

c̄Q(r − %)Q

∫

Rr(z0)
vp,

and the Theorem is proved.

We are left with the proof of (4.4). We first consider the case p > 0 which is technically
more complicated. Combining Theorems 3.1 and 3.3, we obtain the following estimate: if
q, σ are two positive constants verifying the condition

|q − 1/2| ≥ σ,

then there exists a positive constant cσ = c(σ,Q, µ), such that

‖uq‖L2κ(R%) ≤
cσ

(r − %)2
‖uq‖L2(Rr), (4.5)

for every %, r, 1
2 ≤ % < r ≤ 1, where κ = 1 + 2

Q−2 .
Fixed a suitable σ > 0 as we shall specify later and p > 0, we iterate inequality (4.5) by

choosing

%n =
1
2

(
1 +

1
2n

)
, pn =

pκn

2
, n ∈ N ∪ {0}.

We set v = u
p
2 . If p > 0 is such that

|pκn − 1| ≥ 2σ, ∀n ∈ N ∪ {0}, (4.6)

we obtain from (4.5)

‖vκn‖L2κ(R%n+1 ) ≤
cσ

(%n − %n+1)2
‖vκn‖L2(R%n ), ∀n ∈ N ∪ {0},

that can be written in the equivalent form

‖v‖
L2κn+1

(R%n+1)
≤

(
cσ

(%n − %n+1)2

) 1
κn

‖v‖L2κn
(R%n ), ∀n ∈ N ∪ {0}.
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Iterating this inequality, we obtain

‖v‖
L2κn+1

(R%n+1 )
≤

n∏

j=0

(
cσ

(%j − %j+1)2

) 1

κj

‖v‖L2(R1),

and letting n go to infinity, we get

sup
R1/2

v ≤ c̄σ ‖v‖L2(R1), where c̄σ :=
∞∏

j=0

(
cσ

(%j − %j+1)2

) 1

κj

is a finite constant, dependent on σ. Thus, we have proved (4.4) with c1 = c̄2
σ, for every p > 0

which verifies condition (4.6).
We now make a suitable choice of σ > 0, only dependent on the homogeneous dimension

Q, in order to show that (4.4) holds for every positive p. We remark that, if p is a number of
the form

pj =
κj

κ + 1
, j ∈ Z,

then (4.6) is satisfied with σ = (2Q− 2)−1, for every j ∈ Z. Therefore (4.4) holds for such a
choice of p, with c1 only dependent on Q,µ. On the other hand, if p is an arbitrary positive
number, we consider j ∈ Z such that

pj =
κj

κ + 1
≤ p < pj+1. (4.7)

Hence, by (4.4), we have

sup
R1/2

u ≤
(

c1

∫

R1

upj

) 1
pj ≤ c

1
pj

1 meas(R1)
1

pj
− 1

p

( ∫

R1

up

) 1
p

so that, by (4.7), we obtain

sup
R1/2

up ≤ c
p
pj

1 meas(R1)
p
pj
−1

∫

R1

up ≤ cκ
1 meas(R1)κ−1

∫

R1

up.

This concludes the proof of (4.4) for p > 0.

We next consider p < 0. In this case, assuming that u ≥ u0 for some positive constant
u0, estimate (2.7) can be proved as in the case p > 0 or even more easily since condition (4.5)
is satisfied for every p < 0. On the other hand, if u is a non-negative solution, it suffices to
apply (2.7) to u+ 1

n , n ∈ N, and to let n go to infinity, by the monotone convergence theorem.
¤

We end this section with some further statements in the spirit of Theorem 2.2.

Proposition 4.2 Let z0 ∈ Ω and r, %, 0 < r
2 ≤ % < r, be such that Rr(z0) ⊆ Ω.

(i) If u is a non-negative weak sub-solution of (1.1) such that up ∈ L1(Rr(z0)), for p ≥ 1
or p < 0, then (2.7) holds;

(ii) if u is a non-negative weak super-solution of (1.1), with p ∈]0, 1
2 [, then (2.7) holds.

In this case, the constant c in (2.7) also depends on p.
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Proof. Proceeding as in the proof of Theorem 2.2, we obtain that

sup
R%(z0)

u ≤
(

c

(r − %)Q

∫

Rr(z0)
up

) 1
p

, ∀p ≥ 1, (4.8)

inf
R%(z0)

u ≥
(

c

(r − %)Q

∫

Rr(z0)
up

) 1
p

, ∀p < 0, (4.9)

where c = c(Q, µ). Estimate (4.9) is meaningful only when up ∈ L1 (Rr(z0)). ¤

Proposition 4.3 Let u be a weak solution of (1.1) in Ω. Let z0, %, r as in Theorem 2.2.
Then, we have

sup
R%(z0)

|u| ≤
(

c

(r − %)Q

∫

Rr(z0)
|u|p

) 1
p

, ∀p ≥ 1, (4.10)

where c = c(Q,µ).

Proof. We consider a sequence (gn)n∈N in C∞(R, [0, +∞[) with the following properties:

gn(s) ↓ max(0, s), s ∈ R, as n →∞,

and, for every n ∈ N, gn is a monotone increasing, convex function which is linear out of a
fixed compact set. Then, (gn(u)) and (gn(−u)) are sequences of non-negative sub-solutions
of (1.1), which converge to u+ = max(0, u) and u− = max(0,−u) respectively (see Lemma 1
in [27] for a detailed proof of the above statement). Thus, the thesis follows applying (4.8)
of to gn(u), gn(−u) and passing at limit as n goes to infinity. ¤

The following result restores the analogy with the classical result by Moser. Denote
R−

r (x0, t0) = Rr(x0, t0) ∩ {t < t0}, then

Proposition 4.4 Let u be a non-negative weak sub-solution of (1.1) in Ω. Let z0 ∈ Ω and
r, %, 0 < r

2 ≤ % < r, be such that R−
r (z0) ⊆ Ω. Suppose that up ∈ L1(R−

r (z0)), for p < 0 or
p ≥ 1. Then there exists a positive constant c, which only depends on the operator LA, such
that

sup
R−% (z0)

up ≤ c

(r − %)Q

∫

R−r (z0)
up.

Proof. As in [32], we follow the lines of the proof of Theorem 2.2, by using the following two
estimates:

‖Xup‖L2(R−% ) ≤
c
√

µ(µ + ε)
ε(r − %)

‖up‖L2(R−r ), where ε =
|2p− 1|

4p
, (4.11)

and
‖up‖L2κ(R−% ) ≤

c

r − %

(
‖up‖L2(R−r ) + ‖Xup‖L2(R−r )

)
, (4.12)
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for every real p 6∈ [0, 1[ and for any %, r such that r
2 ≤ % < r.

The Sobolev type inequality (4.12) can be proved exactly as Theorem 3.3, since the
fundamental solution Γ(x, t, ξ, τ) vanishes in the set

{
τ > t

}
.

In order to prove the Caccioppoli type inequality (4.11) we follow the method used in the
proof of Theorem 3.1, by setting v = up and using ϕ = χn(t)u2p−1ψ2 as a test function in
(2.5), where ψ ∈ C∞

0 (R1) and χn(t) is defined as

χn(s) =





1, if s ≤ 0,

1− ns, if 0 ≤ s ≤ 1/n,

0, if s ≥ 1/n,

for every n ∈ N. Then, by letting n →∞, we find
∫

R−1

(
1− 1

2p

)
ψ2〈AXv,Xv〉+ ψ〈AXv,Xψ〉+

v2ψ

2
Y ψ ≤ 0.

After that, we follow the same line used in the proof of Theorem 3.1 and we obtain (4.11). ¤
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[21] , Link of groups and homogeneous Hörmander operators, to appear on Proc. of
Amer. Math. Soc., 1 (2006).

[22] L. P. Kupcov, The fundamental solutions of a certain class of elliptic-parabolic second
order equations, Differencial′nye Uravnenija, 8 (1972), pp. 1649–1660, 1716.

[23] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend.
Sem. Mat. Univ. Politec. Torino, 52 (1994), pp. 29–63. Partial differential equations, II
(Turin, 1993).

19



[24] P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London
Ser. A, 346 (1994), pp. 191–204.

[25] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators
with unbounded coefficients in RN , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997),
pp. 133–164.

[26] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv.
Differential Equations, 2 (1997), pp. 831–866.

[27] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for
elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), pp. 457–468.

[28] , A Harnack inequality for parabolic differential equations, Comm. Pure Appl.
Math., 17 (1964), pp. 101–134.

[29] , On a pointwise estimate for parabolic differential equations, Comm. Pure Appl.
Math., 24 (1971), pp. 727–740.

[30] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80
(1958), pp. 931–954.

[31] A. Pascucci and S. Polidoro, A Gaussian upper bound for the fundamental solutions
of a class of ultraparabolic equations, J. Math. Anal. Appl., 282 (2003), pp. 396–409.

[32] , The Moser’s iterative method for a class of ultraparabolic equations, Commun.
Contemp. Math., 6 (2004), pp. 395–417.

[33] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type,
Matematiche (Catania), 49 (1994), pp. 53–105.

[34] , A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck
equations, Arch. Rational Mech. Anal., 137 (1997), pp. 321–340.

[35] H. Risken, The Fokker-Planck equation: Methods of solution and applications, Springer-
Verlag, Berlin, second ed., 1989.

[36] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent
groups, Acta Math., 137 (1976), pp. 247–320.

[37] L. Saloff-Coste and D. W. Stroock, Opérateurs uniformément sous-elliptiques
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[38] J. I. Šatyro, The smoothness of the solutions of certain degenerate second order equa-
tions, Mat. Zametki, 10 (1971), pp. 101–111.

[39] M. Weber, The fundamental solution of a degenerate partial differential equation of
parabolic type, Trans. Amer. Math. Soc., 71 (1951), pp. 24–37.

20


