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1 Introduction

In time series analysis, it is often assumed that the data generat-
ing process can be decomposed into various unobservable com-
ponents representing the trend, cyclical fluctuations, seasonal
eflects and irregulars. These latent variables are estimated by
applying linear filters or systems of weights to the observations,
in a moving manner. The filters can be arranged in matrix form
such that, applied to the vector of observations, produce the cor-
responding estimated values. If the linear filters are symmetric,
say of length 2m+1, with m positive integer, and applied to a se-
ries of length N > 2m 41, then it is evident that the components
cannot be estimated for the first and last m observations. How-
ever, since for policy and decision making is of great importance
to have estimates of the latent variables up to and including the
most recent observations, asymmetric filters must be applied to
the beginning and ending m values of the series. The entire pre-
dictor matrix is here shown to be invariant with respect to a lin-
ear transformation called ¢ and which results from pre- and post-
multiplication of a given matrix by two permutation matrices of
suitable dimensions. In particular, we show that the predictor
matrix is centrosymmetric and that it is formed by a subma-
trix of symmetric weights (to be applied to central observations)
which is t-invariant or, equivalently, rectangular centrosymmet-
ric, and by submatrices of asymmetric weights (to be applied to
initial and final observations) which are the f-transform of each
other.

We would like to remark that the ¢-transformation has been
improperly (see, for example, Farebrother, [7]) referred to either
as a ‘reflection’ by Weaver [23] or as a ‘rotation’ by Krafft and
Schaever [11]. In this paper, we define and study the proper-
ties of the ¢-transformation and highlight its role in time series
filtering.



Section 2 introduces the {-transformation, and derives its ba-
sic properties; section 3 deals with the problem of time series
linear filtering by means of the smoothing matrices that repre-
sent the transformations acting on the data to produce smooth
estimates of the latent variables. Finally, section 4 provides ex-
amples of the role of the ¢-transformation on most often applied
trend smoothers.

2 The t-transformation and centrosym-

metric matrices

Let R™*™ denote the set of m x n. real matrices and let A € R™*?
be the matrix of generic element a;;,1=1,... ,m,j=1,...,n
with m,n < co. The t-transformation is defined as follows:

t : Rmxn . Rmxn
A — t(A)
such that
Qi M Gmpl—in+l—j (1)
fori=1,...,mandj=1,... ,n.

The action of ¢t on A can be described by means of two permu-
tation matrices of equal form but different dimensions. Precisely,
if A € R™*", then

t(A) = ELAE, (2)

where E; € R*** is the permutation matrix with ones on the
cross diagonal (bottom left to top right) and zeros elsewhere. In
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other words, t acts on A reversing the order of its rows by pre-
multiplication for E,,, and then reversing the order of its columns
by postmultiplication for E,.

Definition (Weaver [23]). If A € R™*" and ai; = mt1—int1-5,
foralli=1,...,mand j=1,...,n then A is rectangular cen-
trosymmetric.

Centrosymumetric matrices can be found in many applications
in statistics and time series analysis. The most commonly known
are: the permutation matrices like Ex, used, among others, for
the computational solution of various linear model estimation
problems (see Kontoghiorghes [10}); the symmetric Toeplitz ma-
trices R € R™*™ of generic element r;; = ripr 46 = Tji, 4, ] =
l,...,mk=1,...,m—1 for the autocorrelation of stationary
time series (see Trench [18], [19] and [20]); the commutation ma-
trix K, € R™*™ guch that Kp,vecA = K,..vecAT, where
vecA is the vector obtained by stacking the column of the matrix
A one underneath the other (see Magnus and Neudecker [14]).
Furthermore, Iosifescu’s [12] and Kimura’s [9] transition matri-
ces for some Markov chain in genetic problems are centrosym-
metric. Recently, (rectangular} centrosymmetric matrices also
can be viewed as a particular case of (generalized) reflexive ma-
trices whose properties have been recently employed in linear
least-squares problems (Chen [3]). Concerning the properties

of centrosymmetric matrices, useful references can be found in
Andrew [1].

2.1 Properties of the ¢-transformation

The t-transformation inherits desirable properties from the prop-
erties of the permutation matrix E; which is: (a) symmetric (b)



orthogonal and (c) a reflection, i.e.
E.YEIYE and B2 €1,

where I is the identity matrix of order k. These (basic) proper-
ties are:

1. ¢ is linear.

2. Ae R t(t(A)) = A.

3. AeR™ t-1(A) =1 (A).

4. A e Rt (AT) = (t(A)T

5. A e R™™ t(A) = E;'AE,

6. A € R™" B e R™ ¢(AB) =t(A)t(B).

7. A € R™™ ¢ (A™) = [t (A)]".

8. A,B € R™*™ det {AB} = det {t(A)} det {t (B)}.

9. A € R™™ rank {A} =m,t (A7) = [t (A)]".

Proofs.

1. (a) t(A+B)=E,(A+B)E, = E,AE, + E,BE, =
t{A)+t(B).

(b) t(AA) = E,, (MAA)E, = AE,LAE, = A (A).
. t(t(A)) = En (EnAE,) E, = (EnEm) A (E,E,) = A.
. It follows by 2, given =1 : R™*"* — R™", t (A} — A.

. It follows by (a) and (b )
. t(AB) = E,ABE, = E,AE,E,BE, =t (A)t(B).
. The proof is by induction. For n = 1, it trivially holds.
For n+ 1, t(A™!) =t (A"A) = by 6 = t (A"}t (A) = for the
inductive hypothesis = [t (A)]"t (A) = [t (A)]**".
8. By the Theorem of Binet and Cauchy: det {AB} =
det {E;'AE,E'BE,,} = det {t (A)}det {t(B)}.
9. t(A"Y) = E,A"'E,, = E;’]A"'E;! = (E,AE,)”!
(t(A)™"

2
3
4. t (A7) = E,ATE, _ETATET (EnAE,)T = (t(A)T.
5
6
7
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Here in the following, we briefly comment the most relevant
of the above properties.

Coordinate systems. Property 5 states that a relation of
similitude holds between a square matrix A and ¢ (A). Hence A
and t (A) represent the same linear transformation with respect
to different bases. In particular, if A represents a linear transfor-
mation f : R™ — R™, v — [ (v), with respect to the canonical
basis £ = {e1,--- ,en}, where e; € R™, Vj = 1,--- ,m is the
m-dimensional vector with all null components except for the
j-th, is chosen, then ¢ (A) represents the same linear transfor-
mation with respect to the basis £ = {en, -+ ,e1}. E, can be
interpreted as the changing basis matrix from £ to £ having,
as columns, the components of the vectors of the basis &' taken
with respect to the basis £.

Linear transformations. Concerning the action of A €
R™*™ and ¢t (A) on a same vector vl = [ v Vg e Up ], we
have that Av = w, where w’ = [ wp Wy e Wy ] On the
other hand, t (A)v = Eh,AE,,v = E,,Av" = E,,z" = z, where

V*Tz[vm Ui *°° vl],z*T={zm Zm—1 - 21],and

z'=[21 2z -+ zm |. Hence, the components of w and of z
are the coordinates of the same vector f (v) taken with respect
to the bases £ and &€’ respectively.

Eigenvalue and eigenvectors. Another relevant conse-
quence of 5 is that A and ¢ {A) have the same spectrum, o (A}.
Notice that if A, is the eigenspace of A corresponding to the
eigenvalue A, then t (\A,) is the eigenspace of ¢ (A) correspond-
ing to the same eigenvalue and it coincides with the subspace of
R™ spanned by the transformed of the eigenvectors spanning A,
i.e. if Ay = {v € R™, Av = Av} then

Ay) = {t{(vy e R™t(A)t(v) = At (v)}. In fact, Av =
M = E,AELE.vE; = AEvE; = t(A)t(v) = At{v) =
o (A) C o (t(A)). Ontheother hand t{A)w = aw = EpAE,w =



aw = EnEnAEw = Eow = AE,w = aE,,w = AE,,,wE, =
oE,wE; = At(w) = at(w) that means that t (w) is an eigen-
vector for A corresponding to the eigenvalue oo . Hence o (t (A)) C
o (t{A)) that together with 0 (A) C o (t(A)) complete the
proof. Further results for centrosymmetric matrices can be found
in Nield (1994). ‘
Projections. It follows by 4 and 7 that if P is an orthogonal
projection matrix, i.e. symmetric and idempotent, then ¢ (P)
is an orthogonal projection matrix too. In particular, if P €
R™*™ is an orthogonal projection matrix on a subspace § € R",
then t(P) € R™" is the orthogonal projection matrix onto the
subspace t (§) € R"™ spanned by a set of all the ¢t-transformed
vectors of a basis of §. In fact, let & = span{a;,---,a,} =
C(A), where A € R" P p < n, is the matrix whose columns
span S. Hence P = A (ATA)_1 AT and by 4, 6 and 9, ¢{(P) =

t(A(ATA)TAT) =t (A) [t (ATA)] T H(A) =

=t(A) [t (A)T¢t (A)] lt(A)T that is an orthogonal projec-

tion matrix onto the subspace
1(85) =C(t(A)) = spani{t(a)), -t (ap)}.

Convolutions. The important properties in time series fil-
tering are 6 and 7, since matrix product is equivalent to lin-
ear filters convolution. As we will see in the following, the
t-transformation allows an easy and useful description of the
structure of the smoothing matrix that represents the transfor-
mation acting on the data to produce smooth estimates of the
latent variables. The relevance of property 6 is that if A and
B are smoothing matrices of a given structure, than AB is still
a smoothing matrix and it conserves the structure of A and B.
The same holds when repeatedly smoothing a vector of obser-
vations by the same filter; in this case, property 7 is applied.
These properties are crucial for the construction and study of
filters resulting from the convolution of well-known systems of
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weights.

3 Smoothing matrices and the role of
the t-transformation

In time series analysis, a useful way to estimate the trend under-
lying the data is by fitting locally a polynomial function, such
that any fitted value at a time point ¢ depends only on the ob-
servations corresponding to time points in some specified neigh-
borhood of ¢. Such a fitting curve is smooth by construction.
Let us denote a time series as the set

{(tj’yj)rjzlﬂ”' =N}

where each target point ¢; is the time the observation y; is
taken. Any transformation s acting on the time series to produce
smooth estimates is a smoother.

Usually s depends on a smoothing parameter, say 1, which 1s
selected according to the variability of the data and the amount
of smoothing desired. The value of the smoothing parameter
determines the number of observations averaged to obtain each
estimate. In particular, if  — 0, then the neighborhoods are
made of only one observation and the result of the smoothing is
an interpolation, whereas if  — oo, then all the observations are
considered and smoothing produces a constant line correspond-
ing to the mean of the series.

Any linear smoother can be represented by a squared matrix,
let us call it S, in such a way that

$ RN L RmY
y — y =S8y

e}



where y € R” is an N-dimensional vector corresponding to the
input data and ¥ € R" is the N-dimensional vector representing
the smoothed values.

As long as s depends on the smoothing parameter, so does S
and the relation between the original series and the correspond-
ing smoothed estimates becomes

¥y =S,y

It is crucial to remark that linearity holds only for fixed 5. In
fact, smoothers such that their smoothing parameters are se-
lected by means of data dependent optimization criteria are non-
linear.

Let now wyj,h,j = 1,---, N, denote the generic element of
the smoothing matriz S,. The wy;’s are the weights to be applied
to the observations y;,j = 1,..., N, to get the estimate %, for
eachh=1 ., N, te

N
Yn = E WhiylYs-
i=1

These weights depend on the shape of the weight function as-
sociated to any smoother. Once the smoothing parameter has
been selected, the ws;’s for the observations corresponding to
points falling out of the neighborhood of any target point are
null, such that the estimates of the N — 2m central observations
are obtained by applying 2m+ 1 symmetric weights to the obser-
vations neighboring the target point. The estimates of the first
and last m observations can be obtained by applying asymmet-
ric weights of variable length to the first and last m observations
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respectively, i.e.

M

g = Z Whp—jYnj, h=m+1,... , N —m (3)
j=—m
{central observations)

Up = prryr,pﬂl,...,m (4)
r=1

(initial observations)

g
gq = qu.N+1—zyN+l—z ygq=N-m+1,... N (5)
z=1

(final observations)

where 2m + 1 is the length of the time invariant symmetric filter
and m, and m, are the time-varying lengths of the asymmetric
filters.

Hence, the smoothing matrix S, has the following structure,

i we o 1
{mx2m) (mxN—2m)
'WS
Sn = (N—2mxN} (6)
O we
{rmxN-—2m) (mx2m)

where O is a null matrix and W?, W* W are submatrices
whose dimensions are shown in parentheses.

In particular, W* is a (2m + 1)-diagonal matrix (in the same
sense of a tridiagonal matrix) and its row elements are the sym-
metric weights wy ,_; in (3) while the rows of the matrices W*
and W are the sets of asymmetric weights w,, and wyn41-2
in (4) and (5) respectively. The length of the symmetric filter,
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as well as that of the asymmetric filters, depends on: (a) the
shape of the smoother chosen to fit the data, (b} the value of the
smoothing parameter and, (c¢) the number of decimals chosen for
each weight, if the smoother is a continuous function, e.g., as we
will see, the Gaussian kernel.

In the following section we highlight the role of the ¢-transfor-
mation in the analysis of the smoothing matrices.

4 The t-transformation in time series
filtering

Smoothing matrices of the form (6) are centrosyrmetric, i.e.
t(S,) =8, (7)

and their submatrices of symmetric weights are rectangular cen-
trosymmetric,

W = t (W), (8)

Furthermore, the submatrices of asymmetric weights for the first
and last observations are the ¢-transform of each other,

We =t (W), (9)

The consequences of the above relations are important from
both computational and theoretical viewpoints. In fact, relation
(9) allows to halve the dimension of any smoothing problem by
considering only m instead of 2m asymmetric filters. In partic-
ular, this reduction is substantial, especially when dealing with
long filters that asymmetrically weight a considerable number of
initial and end observations. On the other hand, theoretically, it
becomes significant when asymmetric weights are derived on the

-
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basis of assumptions that are different from those corresponding
to symmetric weights. It is desirable to have asymmetric filters
for end points that converge monotonically to the symmetric
ones.

Examples of well-known smoothers for fixed values of the
smoothing parameter of the form (6) are: (1) the locally weighted
regression, or loess, that uses local polynomials of a degree d
generally estimated by ordinary or weighted least squares and,
hence, satisfies the criterium of best fit to the data; (2) the cu-
bic smoothing splines, which search for an optimal compromise
between the degree of fitting to the data and that of smoothing
with respect to a second degree polynomial; (3) the Gaussian ker-
nel, a locally weighted average where the weight function is the
Gaussian standard distribution; and (4) the Henderson filters,
whose weights derive from the graduation theory and minimize
smoothing with respect to a third degree polynomial within the
span of the filter. A detailed mathematical description of each
smoother and the derivation of its weights are given in Dagum
and Luati [5] and [6].

Next, we briefly introduce the centrosymmetric smoothing
matrices associated to each of the above smoothers.

The symmetric and asymmetric weights of loess are given by
the 1 x (2m + 1) row vector (Dagum and Luati [5])

S, = ] (TTW,T;) 7 TIW,

where t; is a (d + 1)-dimensional row vector of elements of the
target point ¢; with exponents 0,1,... ,d; T; is an (2m + 1) X
(d + 1) matrix of points belonging to the neighborhood of ¢; with
exponents 0,1,... ,d; and W, is an (2m + 1) x (2m + 1) matrix
of the weights for the observations corresponding to the points
in the neighborhood of ¢;.

The influential matrix (Wahba [22]) associated to a fixed
smoothing parameter Ay of a cubic smoothing spline is given

13



-1
Sy, = [IN - D7 (%B-{»DDT) D}
0

where Iy 1s the N x N identity matrix and B and D are (N — 2)x
(N —2) and (N — 2) x N matrices, respectively (see Dagum and
Capitanio [4]).

For the Gaussian kernel (see Wand and Jones [21}), the generic
weights wp; to be applied to the observations y;, j =1,... | N,
to get the estimate of the observation y;, are given by

forh=1,...,N.
The symmetric weights of the 9-term Henderson filter can be
obtained from the general formula (Henderson [8])

315 [(g — 1) = n?] (¢° — n*) [(g + 1)* — n?] (3¢% ~ 16 ~ 11n?)

hy, = 8q(q2 — 1) (4¢% — 1) (4¢® — 9) (442 — 25)

by making ¢ == 6 such that the values h, are obtained for each
n from —4 to 4. The explicit form of the asymmetric weights,
which do not follow the above assumptions, is derived by Laniel
|13} based on the work of Musgrave {16].

To illustrate the effect of the {-transformation in time series
filtering, we consider the Gaussian kernel and the Henderson fil-
ter. Fig. 1 and 2 show the smoothing matrix (6) associated
to a 13-term Gaussian kernel and to a 9-term Henderson filter

_
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Q000 QOO0 QOO Q000 G001 Q07 QOB 0061 Q12 0184 G212 0184 012 Q081 a0
Qo0 0000 000t Q00 Q00 Q001 G007 Q0 QO Q15 Q19 Q217 Q19 015 QoA

Qoo Qoo0 000J Q00 Q000 Q0D GO GJ07 0S Q065 0133 a2 4231 a2 a1
Q000 Q000 ao0od QO Q000 Q000 Q000 QOR QOB QS Q077 Q153 Q2R 0257 Q23
0000 Q000 000 Q0O Q000 Q000 Q00 Q000 Q02 GO11 0038 Q100 015 0XR A3

Figure 1: Smoothing matrix S of the 13-term Gaussian kernel
smoother for a time series of 15 data points.

to be applied to series of 15 observations, with values approxi-
mated to three decimals. It is evident that these matrices are
centrosymmetric as well as those with the symmetric weights.
The submatrices with the asymmetric weights for first and last
observations are the t-transform of each other. Fig. 3 and 4
illustrate the path of the asymmetric and symmetric weights of,
respectively, the 13-term Gaussian kernel and the 9-term Hen-
derson filter for the last observations. It is apparent that the
asymmetric weights for the last observations monotonically con-
verge to the symmetric weights.
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Figure 4: Convergence of asymmetric to the symmetric weights of

Figure 2: Smoothing matrix S of the 9-term Henderson filter for a the 9-term Henderson flter.

time series of 15 data points.
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