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Abstract

The paper examines alternative strategies for pricing and hedging options
on German DAX-index. To this purpose an affine stochastic volatility
model is estimated directly on objective probability system through a three
step approach. Errors obtained by the implementation of the stochastic
volatility model and Black and Scholes with different historical and im-
plied volatility measures are compared and the performance is evaluated in
terms of out-of-sample pricing and hedging. The results for DAX-index op-
tions market support the estimation on the affine stochastic volatility model
in pricing as well as in hedging procedures.



L. INTRODUCTION

Deviations of actual option prices from the benchmark model of Black
and Scholes (Black and Scholes 1973) have been widely experienced since
volatility term structures and smiles have been observed in the interna-
tional derivative markets; since then, the effects of post crash fear on in-
vestors’ risk attitudes and the growing diffusion of optionalities embedded
in structured products called for a new approach in option pricing models.
Many recent papers, basing on extensions of the classical Black and Sc-
holes model (BS) and allowing for a time varying volatility, investigate dif-
ferent specifications of option pricing models consistent with the empirical
evidence of smile and smirk as well as the leverage effect and the volatil-
ity persistence. Among these an interesting setup consists in a two diffu-
sion equations system, explaining stock and volatility dynamics, known as
stochastic or exogenous volatility (SV) approach, whose implementation
involves many econometric issues. The main purpose of this study con-
sists in providing an evaluation of a specified stochastic volatility model on
option pricing and hedging. The performance of the proposed strategy is
assessed by means of comparison with alternative Black and Scholes imple-
mentations. The application is on German option exchange index (DAX)
which is the second largest in the world and is scarcely analyzed due to
prevalence of American literature. Moreover, an advantage for paper pur-
pose comes from the quotation in this market of an index based on implied
volatilities of options on German market index (VDAX), computed as lin-
ear interpolation of the implied volatilities of the two sub-indices nearest to
45 days maturity; we will consider it as a benchmark for volatility forecast-
ing.

The paper develops as follows. In section 2 the adopted SV model is
presented. Section 3 explains how and why SV parameters are directly es-
timated on objective probability system via a three step estimation strategy.
Section 4 provides estimation results, while section 5 and 6 present result of
the application on a large option dataset. Concluding remarks are provided
in section 7.



2. THE STOCHASTIC VOLATILITY MODEL

As a quite general setting, the Heston affine SV model is considered
(Heston 1993), which assumes the following structural data generating pro-
cess for the stock price S; and the volatility v;:

dlnS; = pdt+ /v (\/1 — pPdzy + pdzzt) (H
dn, = k (9 - 'U't) dt + U\/if_td22¢

where z; and 2o are two independent Wiener processes and the parameter
vector under objective probability is ¢ = (u, k,8, o, p)’. This model cap-
tures several characteristics of the stock return dynamics. The stechastic
volatility is modeled via an autonomous process v; with a drift mean revert-
ing to long run volatility level &, and a proportional to a constant factor o
variance. The coefficient p captures the (negative) association of price and
volatility instantaneous variations. In option pricing framework the struc-
tural dynamics is transformed in the risk neutral dynamic system under the
equivalent martingale measure €}, by means of no arbitrage arguments and
assumption of a volatility risk premium proportional to v, as follows:

dinS, = rdt+ i (V1= pdeg+ pd,zg)
dvy = [k(0—v) —nul dt + cr\/v—gdzg
The new patameter vector ¢< = (¢', )’ contains the further volatility
risk premium parameter, 7, subtracted to volatility drift. Given the strike
K, the time to expiration T' — ¢, the risk-free interest and dividend rates,

r and d, by means of the transform based approach (Heston 1993), it is
possible to obtain a closed price for the European call option,

C (S, K, T —t,r,d,v;) = e 4T 08, PP _ 7T g PL

where explicit formulations for the risk-neutral probability PlQ and P2Q
could be evaluated by the Fourier inversion of two underlying known char-
acteristic functions. Because of the Heston model’s weakness to explain fat
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tails and cross sectional smirkness, a jump process or a second volatility
factor have been recently included extending the (i) (Andersen, Benzoni
and Lund 2002, Pan 2002, Chernov, Gallant, Ghysels and Tauchen 2003).
Regarding this, it has been showed (Bakshi, Cao and Chen 1997) that
stochastic volatility and stochastic volatility with jump models are increas-
ingly better than BS model in the in-sample fit as well as in the out-of-
sample. But it has been also observed that adding other feature to a bivariate
SV specification (jump or stochastic interest rate) led to second order pric-
ing improvement and the bivariate specification could be considered quite
general and robust.

3. ESTIMATION STRATEGY

The implementation of SV formula needs, with respect to BS, param-
eters’ vector esiimates and volatility process filtration. Stochastic volatil-
ity continuous time model in option pricing framework can be estimated
with respect to the objective or directly to the risk neutral diffusion sys-
tem. There are anyway many problems in the direct estimation of the risk-
neutral specification due to highly non linearities in option pricing formula
and to the not observability of the risk-neutral dynamics especially when
market call/put options on the underlying index have tight liquidity or oth-
erwise when they do not exist at all. The strike prices of the contracts are
in fact set by the market makers and changed every day, making difficult to
construct a time series of every contract of a statistically sufficient length.
Moreover, it has been observed that parameters calibrated directly on op-
tions prices rarely have economic meaning, with negative consequence on
interpretability, and on-out-of sample performance (Bakshi et al. 1997). On
the other side, the alternative strategy to proceed is a three steps approach
based on estimation of the structural parameter of the objective system on
the underlying data.

The main difficulty in conducting inference for continuous time mod-
els from discretely sampled data is that a closed form expression for the
discrete transition density generally is not available nor simple to be nu-
merically computed. Simulation based procedures have been suggested in



the literature to estimate continuous time process’ parameters, such as the
Markov chain Monte Carlo approach (Eraker 1998), but when latent vari-
ables must be integrated out of the likelihood function, maximum likeli-
hood and Bayesian estimators become computationally too extensive and
more flexibility is given by method of moment techniques. In the paper
the Efficient Method of Moment (EMM) has been adopted as a reasonable
solution of this econometric problem due to its efficiency property (Gallant
and Tauchen 1996).

EMM rationale is based upon the main idea to find an analytically
tractable approximating function whose likelihood’s score is used to de-
duce moment conditions. EMM presumes that the score generator provides
an adequate statistical approximation to the transition density of the data.
The standard way to describe the conditional density is to reduce the rate
of retumn process y; to an innovation process z, = Y%, adopting a para-
metric AR structure for conditional mean, y,, and an ARCH-type process
for the conditional variance, o?. Therefore, letting 7 (-) the standard nor-
mal distribution, the transition density p (y: |z:—1, ¢ ) is approximated via
a K —th order orthogonal Hermite polynomial representation (Hx ), named
auxiliary function,

1 [Hx (2, 2:-1)]” n(21)
or [ [Hi (26, 2-1)]° n(u) du

which turns out to be a mixture of normal distributions able to capture
excess kurtosis and, to a lesser extent, asymmetry of returns. In short
the method proceeds as follows: supposing that y; is the observed vari-
able and z;_y = (y;—1,..., yt—r) the vector of its L past observations, if
Fr (ye |lTeq, £) is the approximating auxiliag function for the transition
density of observed data p (y |z;—1, ¢y ) and £ is the maximum likelihood
estimator of the parameter vector £, posing s7 (-) the score of auxiliary
function, the moment conditions are:

Ik (y: ’xt—lag) =

fsf (yta Ti—1, 5) p(yt |zt~'1: ¢0) d(yta mt—l) =0 (2)

Expectations in the (2), even if not analytically, could be computed
on the basis of the Central Limit Theorem, by averaging over a /V-length

Monte Carlo data series ; simulated from the structural model p (y; |4..1, ¢),
N

so that m (gb,g) = 3%,- ; . Sf (jijt (), T—1 (&) ,E) and the EMM esti-
t=L+
mator is

5= axgmin iy (08)' 2 7 ()}

where the optimal weighting matrix, I, corresponds to the estimated in-
formation matrix

L= 23 [o (30). 51 8).8)] [57 (3 (), 2 0).2)]

t=1

and n is the number of observations. EMM provides a way to test the good-
ness of fit of structural model; if the selected model is the true data gener-
ating process, then n [mN (&E)’fn—lm N (&;,E)] — X%ig—hf,) where
l¢ and Iy are the lengths of parameters vector. Moreover, if the auxiliary
model encompasses the structural one, EMM can be as efficient as maxi-
mum likelihood.

After estimating the structural diffusion equations parameters, furthers
steps of the strategy needs filtering the latent volatility process and calibrat-
ing volatility risk premium.

To this purpose, the filtered volatility could be obtained (Gallant and
Tauchen 1998) reprojecting a long simulated series conditional to EMM
parameters’ estimates on to the former semi-nonparametric (SNP) density
and looking on the second conditional moment. An alternative procedure
consists in finding a conditional model to reproduce all the details of the
unobservable data in terms of the observable ones for the two simulated
time series. In our opinion, it is quite natural to choose the volatility filter
specification into the ARCH-type class. Finally, the volatility risk premium
parameter could be directly calibrated on a subset of options data by means



Table 1: DAX Index Return. Summary Statistics

Mean Median Max Min St.Dev. Skew Kurtosis
Ui 0.044 0034 7.287 -9871 1.258 -0415 7.701

lag 1 2 3 4 5 6 7

o (e ye—i) 0014 -0.029 -0013 0009 0027 -0056 0.045
p(y2,y2;) 0167 0.161 0.158 0.39 0.38 0.105 0.118

of minimization of the gquadratic relative loss function

c(n,?&) ¢}’

mnd =

4. EMPIRICAL RESULTS

To perform the empirical test of the proposed strategy, DAX index and
call options prices have been used because of their relatively high liquidity
with respect to other traded options in European financial markets. The data
covers the period from January 1, 1990 to December 31, 2000'. Summary
statistics in table 1 show that empirical distribution of DAX rate of return
is skewed to the left with fat tails suggesting excess kurtosis. There is no
autocorrelation in rate of returns, while squared returns are autocorrelated.

Basing upon Akaike and Bayes information criteria a Semi Non Para-
metric specification (Gallant and Tauchen 1996} corresponding to an AR(0)-
ARCH(11)-H(4,0) auxiliary model has been chosen. For EMM estimation,
the structural system has been discretised using the Euler scheme, with 24
observations for each day, one for each hour, discarding the firsts 23 and
retaining the last one; 50,000 pseudo-observations have been simulated.

Results of EMM procedure (see Table 2) show that the affine stochastic
volatility mode! specification for DAX rate of return is not rejected. Skew-
ness is controlled by the negative correlation parameter and the amount of

1Al data are from Datastream,
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Table 2: Emm Estimates

Par Estim Std Err  rstat. Par Estim Std Err f stat.

g4 020101 0.01734 11.592 p -0.53665 0.00553 -96.954
k414211 0.16011 25.871 o 035202 000654 53.854
8 004043 0.00040 99.620 n -5.1 X?12) 10.568

kurtosis is explained by the volatility diffusion parameter o. The positive
mean reverting coefficient, k, guaranties a steady state distribution.

The conditional expected variance has been modelled following an ex-
ponential ARCH-X process, as in the following specification

E[log (v;)] = w + flog (v-1) + caye + Zp-102

The negative risk premium, calibrated on 225 near the money options
traded from 1 to 31 January, 2001, acts augmenting the drift of the volatility
process and, therefore, options prices.

5. PRICING PERFORMANCE

The proposed strategy has been empirically tested in out-of-sample per-
formance by means of the comparison with the benchmark formula of BS
with differently historical volatility measures computed respectively on 1,
2, 4 and 8 weeks windows (hlw, h2w, h4w and h8w) and the VDAX im-
plied volatility index (IV), that, while intrinsically not consistent in varying
volatility framework due to BS assumptions dependence, is widely con-
sidered to incorporate agents’ forward looking expectations. According to
existing literature (Bates 2003) and emulating the practitioners, each day
call prices have been computed backing out the volatility measures of the
day before for each strategy. Option database includes 3009 call prices on
DAX index traded from January 1, through June 30, 2001. Performances
were controlled, on different maturity and moneyness subclasses, through
mean absolute percentage (MAPE) and mean percentage (MPE) pricing er-
rors as precision and bias measures.
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The best performances in term of systematic errors correspond to h2w,
SV and IV forecasts, but, among these, the historical two-weeks window
strategy displays a quite relevant mean absolute percentage error meaning
that SV and IV should be preferred (Tab. 3); mean percentage errors are still
quite low both for SV and for IV strategies, respectively 2.10% and 5.61%.
Moreover SV out-of-sample pricing presents an overall mean absolute rel-
ative error of 14.59%, 1.63% less than IV with implied volatility while all
the historical measures produce less accurate prices. As expected, there is
a greater benefit in using SV instead of IV overall in medium and long ma-
turity options pricing, especially if deep in the money (Tab.4). IV formula
with implied volatility is significantly better than SV, excluded that for the
obvious short maturity near the money options by which is computed, for 2
to 6 months to maturity near the money options.

6. HEDGING PERFORMANCE

In judging the alternative strategies, hedging errors measures have been
empirically computed. The cash position achieving the derivative duplica-
tion for the hedge at time ¢, is

Xo(t) = C (¢, T —t) - X, () S, 3

Table 3: Pricing and Hedging Performances

Pricing Hedging
MPE MAPE MPE MAPE
hlw 989 4643 3.82 45.93
h2w 177  40.69 442 2411
hdw  11.45 38.31 5.67 18.22
h8w 2854  39.78 6.21 13.74
v 5.61 16.22 2.39 12.72
SV 2.10 14.59 0.09 0.42
12

Table 4: Pricing Errors by Moneyness and Maturity

| MAPE SV/IV ratio

Maturity

MPE - SV

tot
0.85
1.00
0.99
1.00
1.02

<2M  2/6M  6M/1Y >1Y

0.93
0.75
0.96
0.94
0.96

0.78
1.04

092

0.95
1.03
1.03
1.05
1.08
1.01

1.00
1.04

1.05

1.

0.79
0.94
0.82

092 090

02

tot

1.00

1.64

>1Y
16.08

6M/1Y

2/6M
-10.21

<2M

-3.25
-1.11
-1.72
-3.12
-3.48
-2.48

463
4.83

1.20
4.69
6.83
3.20

0.11

3.05

15

1.

476 431
5.73
12.49

272
9.07
395

6.02

2.10

Moneyness

< 0.94

13

0.94-0.97

0.97-1.03

1.03-1.06

>1.06

tot




where X (¢) is the number of shares of underlying. This has been imple-
mented for BS strategies posing X, (t) = A, (¢, T — £). Since in presence
of stochastic volatility the market is no more complete and z riskless hedg-
ing portfolio can not be assured due to volatility risk source, to preserve
comparability of results we choose to implement the single-instrument hedg-
ing obtained solving the standard minimum-variance hedging problem. For
SV strategy the following expression has been substituted in the formula

(3)

Xo(t) = As (8, T = )+ pol, (t,T — 1)

where A, (.} = -6—%41. Supposing that in practice discrete rebalancing takes
place at every time intervals At, at time ¢ + At the hedging error becomes

H(t + At) = X, (8) Sepnr + Xo (1) DA — C (¢t 4+ AL, T — t — At)

Rebalancing the portfolio once a week, hedging errors measures have
been computed for each strategy on the options database. Performances
controlled by means of percentage absolute and percentage errors are re-
ported in table 3 while in table 5 a skeptical view of gains by SV for dif-
ferent maturity and moneyness subclasses is presented. It can be viewed
that BS formula performs better with implied volatility than with historical
ones in hedging strategy as in pricing. The mean absolute percentage error
of SV hedging (0.09%) is widely less than every BS strategy; moreover it
diminishes, as expected, passing from out of the money to at and in the
money calls, and from long to short maturity. In summary, the empirical
evidence indicates that the proposed strategy allows relevant improvements
respect to BS formula in hedging as in pricing.

7. CONCLUDING REMARKS

In this paper alternative models for the German DAX-index options
market are examined. In particular the affine stochastic volatility option
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Table 5. Hedging Errors by Moneyness and Maturity

MAPE SV/V ratio

MPE - SV

Maturity

tot

<2M  2/eM 6M/1lY  >1Y

004 003

0.03
0.04
0.06
0.07
0.10
0.03

0.02
0.02
0.02

0.04

007 003
0.11

0.04

0.01
0.01
0.03
0.01

012 005
010 0.07

0.05

0.03
0.02

0.03

tot

0.10

6M/lY  >1Y

<2M  2/6M

0.17

0.08
0.06
.11
0.03
0.10
0.08

0.03
0.05
0.08
0.10
0.06
0.06

020 0.07

0.09
0.08
0.06
0.09

0.16
0.19
0.08
0.17

0.04
0.02
0.01
0.02

Moneyness

< 0.94
0.94-0.97

15

0.97-1.03

1.03-1.06

>1.06

tot




pricing model estimated under objective probability system is developed
and its performance is compared to the Black and Scholes model with stan-
dard volatility measures, such as historical and implied. In terms of out-of-
sample pricing the empirical evidence indicates wide improvements respect
to BS with historical measures by either implied volatility BS and SV mod-
els and SV relatively enhances the prediction of medium and long term
options’ prices. One week rebalancing hedging errors of SV model are
quite smaller than among all the others strategies. In summary, the affine
stochastic volatility option pricing model estimated under objective proba-
bility system is found to perform quite well either in pricing and hedging
German DAX-index options.
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