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Abstract

We propose the use of a classical tool in PDE theory, the parametrix method, to build
approximate solutions to generic parabolic models for pricing and hedging contingent claims. We
obtain an expansion for the price of an option using as starting point the classical Black&Scholes
formula. The approximation can be truncated to any number of terms and easily computable
error measures are available.

1 Introduction and motivation

Under the standard dynamically complete market hypotheses, the forward price Ot = f(St, T − t)
computed at time t of an European option expiring at time T with payoff H(ST ), where the
underlying asset S evolves according to the stochastic differential equation

dSt = µ(t, St)dt + σ(t, St)dWt, (1.1)

is given by
Ẽt(H(ST )) (1.2)

where Ẽ represents the expected value with respect to the martingale measure under which the
dynamics of the forward price of the underlying is driftless. Accordingly, in the case of null riskless
interest rate, f is also the solution of the Cauchy problem

{
∂tf = σ2

2 ∂SSf,

f(x, 0) = H(x).
(1.3)

From both (1.2) or (1.3) we have the representation

f(St, t) =

∫

R

H(x)Γ(St, t;x, 0)dx, (1.4)
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where Γ(S, t;x, 0) is the transition density of St from (x, 0) which corresponds to the so called
“fundamental solution” of the PDE in (1.3).

As a matter of fact the fundamental solution Γ is explicitly known only for a rather small set of
models. Among these the most relevant cases are the arithmetic and geometric Brownian motions
(Gaussian and log-normal densities), the general linear case (affine models studied e.g. in [7]), the
square root process (e.g. [3]) and classes of models derived via transforms from these models (see
e.g. [1]). In view of the paramount advantages, both in terms of understanding and computation
time, given by the existence of an analytical solution for (1.3), actual modeling has largely been
restricted to this rather small set of diffusions. On the other hand the analytical tractability of
these models is not accompanied by good statistical properties in the sense that the distributions
implied by these models give poor fit to actual market data.

This motivates a growing interest for models whose solution can be computed only by numerical
methods (deterministic or Montecarlo based). A major problem which severely limits the use of
these models is that, while their practical relevance has been found in the valuation of exotic or
very far from the money vanilla options, the numerical burden implied by their use for such payoffs
is still by far too big to allow widespread application. It is to be noticed that such a burden
can be excessive even in the case of standard model when applied to the computation of hedging
parameters for some exotic payoff.

Even if we do not consider the numerical problem, a second relevant obstacle to the imple-
mentation of more statistically satisfactory but less tractable models is that the lack of analytical
solution severely restricts the ability of the practitioner to understand, pending the reaction times
allowed by the market, the implications of a given model and its possible weak points. This is
relevant, in particular, when a real time position risk management is required.

A third and connected problem with analytically untractable models is that they do not allow
for an easy valuation of the consequences of model misspecification. In an applied milieu where
model risk management is becoming a central portion of the financial decision making process, such
weakness is rapidly becoming an heavy burden for elastic but not tractable models.

The standard practitioner’s way out of these problems has been a clever and often very creative
use of inconsistent behaviours. In practice solvable models are implemented with clear understand-
ing of their inadequacies, ad hoc fixtures are used in order to (and with the hope of) avoiding the
consequences of these inadequacies.

Among the most frequently applied fixtures we quote:

1. Parameter recalibration: model parameters which should be constant in the model are peri-
odically recalibrated so that the model replicates observed prices.

2. Use of different models for pricing and hedging derivatives which should share the same risk
neutral distribution: As an example, even with recalibration simple models are not capable of
correct pricing for options expiring the same day but with different strikes. As a consequence
different values for the same parameter are used when hedging different options with the same
expiry date but different strikes.

3. Computation of “greeks” for parameters which should be constants of the model (e.g. the
vega).
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4. Initial conditions recalibration. This is quite frequent in interest rates and credit risk models.
As an instance: in HJM inspired models the term structure of interest rates is an initial con-
dition of the model. This condition is an input of the model only at inception date, afterward
the model specifies all possible shapes for the future term structure and the probabilities of
these. It is often the case that among these shapes we cannot find the observed one. In this
case the model is restarted from the observed term structure.

From these attitudes, and similar ones, it sprung a lot of practitioner’s lore which is now standard
in the market. Just to quote some examples which shall be discussed in what follows we cite smile
fitting, that is, the attitude of using different volatilities for different strikes on the same day and
the connected use of “skew correction” for hedging parameters like the delta.

This correction, which can take various shapes (see e.g. [4]), tries to account for the change
of implied volatility which may accompany the change in moneyness of a given option. In a
particular specification, often termed “sticky delta”, if ∆BS is the Black&Scholes’ delta, vega is
the standard Black&Scholes’ vega and σ(K/S)S is the derivative, w.r.t. the price, of the volatility
used for evaluating the option with strike K with moneyness K/S, we have a skew corrected delta
computed as

∆ = ∆BS + vega ∗ σ(K/S)S .

While inconsistent, these behaviours are often sensible and hold up to market strains, at least
up to the unpredictable moment when they break down: the current unsatisfactory state of corre-
lation modeling in applied credit risk modeling is an example of this. It should then be a purpose
of research either to offer tools for avoiding such ad hoc behaviours or to offer tools for reinterpret-
ing them in a consistent way which could point out their effettive scope of validity and possible
extensions thereof.

Two possible ways out of this problem can be suggested. The first one is to extend the class of
analytically solvable models; the second one is to develop tools capable of calibrating analytically
computable approximations to non analytically computable models and to evaluate the error of
this approximation.

This paper is concerned with the second alternative. We suggest the use of a classical tool in
PDE theory: the parametrix expansion. A parametrix expansion can be used to build an approxi-
mate fundamental solution to a generic parabolic PDE using as starting point the explicit solution
of a simpler parabolic PDE. The approximation can be truncated to any number of terms and easily
computable error measures are available. A comprehensive presentation of the parametrix method
for uniformly parabolic PDEs can be found, for instance, in [10]: in [5] a more recent presentation
of this technique applied to a wider class of (possibly degenerate) PDEs can be found.

While well-known in the classical theory of parabolic PDEs, the parametrix series is, as far as we
know, unknown in the field of mathematical finance (with the exception of [2]). Apart from being a
tool for the approximate solution to pricing problems, the parametrix series can be of use as a tool
for model risk management and as a way to unify a number of sparse results about approximate
option valuation already available in the financial literature under a common principle. A welcome
bonus of the parametrix is that, far from being an abstract mathematical tool, it yields to an
interesting financial interpretation.

The paper is organized as follows. In Section 2, we give a heuristic derivation of the parametrix
series, connected to the evaluation of pricing and hedging errors implied by the use of a “wrong”
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model. We also give a financial interpretation to the derivation of the parametrix. In Section 3,
we formally introduce the parametrix series, derive it under conditions suitably general but easy
to assess in the case of financial application and present explicit valuations of error terms: in this
section our main results, the forward and backward parametrix expansion Theorems 3.6 and 3.14,
are stated. In Section 4, we use the parametrix series to approximate the solution for already
solvable models and compare the resulting approximations with exact results.

2 A heuristic derivation of the parametrix series

The purpose of this section is to stress the financial intuition underlying the meaning and the
derivation of the parametrix expansion. In so doing it is sufficient for us to work in the one
dimensional (space variable) case. In the following section the parametrix will be derived in its full
generality for the case of any finite number of space variables.

We begin by noticing that a parametrix expansion can be computed both for the standard
parabolic PDE implied in a valuation problem and for its adjoint PDE. While the fundamental
solutions of the two equations are strictly related, the two parametrix approximations are distinct
and offer two slightly different and very interesting financial interpretations so we will discuss both.

Let us start by sketching the derivation of the parametrix for the standard parabolic PDE. We
are interested in the fundamental solution Γ = Γ(z; ζ) where z = (x, t) and ζ = (ξ, τ) ∈ R×R of L

Lu = a(z)∂xxu− ∂tu = 0, (2.1)

that is: LΓ(·; ζ) = 0 in R
2 \ {ζ} and for every suitable function H(x) a classical solution of the

Cauchy problem {
Lu = 0, x ∈ R, t > 0,

u(x, 0) = H(x), x ∈ R,
(2.2)

is given by

u(x, t) =

∫

R

H(ξ)Γ(x, t; ξ, 0)dξ. (2.3)

In financial terms, formula (2.3) gives the (forward) price at time to maturity t for an European
option expiring at time to maturity 0 with payoff H.

Suppose now that a is such that equation (2.2) cannot be solved explicitly. It is then inviting
to find an approximation formula for (2.3) whose first term is given by, or at least similar to, the
Black&Scholes formula. In the sequel we assume ζ = (ξ, 0) and use the notation zj = (xj , tj) for
j ∈ N.

The parametrix approximation is based on two ideas. The first one is to locally approximate
Γ(z; ζ) by the so-called parametrix Z(z; ζ) = Γζ(z; ζ) where Γw is the fundamental solution to the
“frozen” operator1

Lw = a(w)∂xx − ∂t. (2.4)

1The context of this paper suggests us to use, as a parametrix, the fundamental solution of the heat equation which
is strictly connected with the Black&Scholes formula. However it is to be noticed that, in principle, the fundamental
solution of any solvable parabolic PDE could be used as a starting point. Ideally that parametrix should be used
which solves the parabolic problem “most similar” to the problem under analysis.
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The second idea is that of supposing that the fundamental solution Γ of L is in the form (recall
that ζ = (ξ, 0))

Γ(z; ζ) = Z(z; ζ) +

t∫

0

∫

R

Z(z; z0)Φ(z0; ζ)dz0. (2.5)

In order to identify Φ we notice that from LΓ = 0 in R×]0, t[, we get

0 = LZ(z; ζ) + L

t∫

0

∫

R

Z(z; z0)Φ(z0; ζ)dz0. (2.6)

But formally it holds

L

t∫

0

∫

R

Z(z; z0)Φ(z0; ζ)dz0 = −Φ(z; ζ) +

t∫

0

∫

R

LZ(z; z0)Φ(z0; ζ)dz0 (2.7)

so that

Φ(z; ζ) = LZ(z; ζ) +

t∫

0

∫

R

LZ(z; z0)Φ(z0; ζ)dz0. (2.8)

Formula (2.8) yields an iteration on Φ so that:

Φ(z; ζ) = LZ(z; ζ) +

t∫

0

∫

R

LZ(z; z0)LZ(z0; ζ)dz0 +

t∫

0

∫

R

LZ(z; z1)

t1∫

0

∫

R

LZ(z1; z0)Φ(z0; ζ)dz0dz1

= LZ(z; ζ) +

t∫

0

∫

R

LZ(z; z0)LZ(z0; ζ)dz0

+

∞∑

n=0

t∫

0

∫

R

LZ(z; zn+1)

tn+1∫

0

∫

R

LZ(zn+1; zn) · · ·
t1∫

0

∫

R

LZ(z1; z0)LZ(z0; ζ)dz0 · · · dzndzn+1.

(2.9)

In terms of formula (2.3) this implies an expansion of the option price given by:

u(z) =

∞∑

n=0

un(z) (2.10)

where

u0(z) =

∫

R

H(ξ)Z(z; ξ, 0)dξ,

u1(z) =

t∫

0

∫

R

Z(z; ζ)Lu0(ζ)dζ, (2.11)

5



and in general, for n ∈ N,

un(z) =

t∫

0

∫

R

Z(z; ζ)LUn−1(ζ)dζ, Un−1(z) :=

n−1∑

k=0

uk(z). (2.12)

Indeed, by (2.5) and (2.9), we have

u1(z) =

∫

R

H(ξ)

t∫

0

∫

R

Z(z; z0)LZ(z0; ξ, 0)dz0dξ =

t∫

0

∫

R

Z(z; z0)L

∫

R

H(ξ)Z(z0; ξ, 0)dξ

︸ ︷︷ ︸
=u0(z0)

dz0,

that proves (2.11). Moreover

u2(z) =

∫

R

H(ξ)

t∫

0

∫

R

Z(z; z1)

t1∫

0

∫

R

LZ(z1; z0)LZ(z0; ξ, 0)dz0dz1dξ =

=

t∫

0

∫

R

Z(z; z1)

t1∫

0

∫

R

LZ(z1; z0)L

∫

R

H(ξ)Z(z0; ξ, 0)dξ

︸ ︷︷ ︸
=u0(z0)

dz0dz1

=

t∫

0

∫

R

Z(z; z1)

(
L

t1∫

0

∫

R

Z(z1; z0)Lu0(z0)dz0

︸ ︷︷ ︸
=u1(z1)

+Lu0(z1)

)
dz1,

and this proves (2.12) for n = 2. The general case can be proved by induction.

This is the expansion which is usually used in the classical PDEs’ theory to prove the existence of
a fundamental solution to L. Before interpreting the result let us examine the equivalent expansion
derived from the adjoint PDE. The use of the adjoint parametrix seems to be convenient by several
points of view: first of all, we are able to derive an approximating expansion whose first term is given
exactly by the Black&Scholes formula, while the subsequent terms can be expressed as solutions to
suitable Cauchy problems related to constant coefficients operators. Secondly, the approximating
terms generated in this way are convolutions of a Gaussian function Γz(z; ·) for fixed z: this seems
to be convenient from a numerical point of view since we may rely upon several known efficient
numerical techniques. We define the backward parametrix

P (z; ζ) = Γz(z; ζ). (2.13)

In the next section we prove that the solution to the option pricing problem has an expansion of
the form (2.10) where now

u0(z) =

∫

R

H(ξ)P (z; ξ, 0)dξ, (2.14)
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and

un(z) =

t∫

0

∫

R

P (z; ζ)LUn−1(ζ)dζ, Un−1(z) :=

n−1∑

k=0

uk(z), n ∈ N. (2.15)

The main differences between the two parametrix expansions hinted before are now clear. Each
term in the expansion is an “expected value” with respect to the distributions with density Z(z; ζ)
or P (z; ζ). But, while P (z; ζ) is the same Gaussian density for each value of the integration variable
(z is frozen and the integration is performed varying ζ) and so is a true PDF, Z(z; ζ) is a different
Gaussian (different variance) for each value of the integrating variable ζ.

Let us examine the first term of the expansion for the parametrix Z:

u0(z) =

∫

R

H(ξ)Z(z; ξ, 0)dξ. (2.16)

Since the explicit expression of Z(z; ξ, 0) = Γ(ξ,0)(z; ξ, 0) is known,

Γ(ξ,0)(x, t; ξ, 0) =
1√

4πt a(ξ, 0)
exp

(
− (x− ξ)2

4ta(ξ, 0)

)
, t > 0, (2.17)

we see that u0 in (2.16) is very similar to the solution of a Cauchy problem for a constant coefficients
operator. On the other hand, the integration in (2.16) is performed with respect to the variable
ξ which also appears in L(ξ,0) as the point where the operator L is frozen. Hence the first term
of the expansion is an “expected value” of the terminal payoff which uses as density a Gaussian
with a different volatility (corresponding to the “true” diffusion coefficient) for each point in the
integration range. Due to this reason this “state dependent” Gaussian is not a density as it is
nonnegative but does not integrate, in general, to one (it is obviously possible to normalize it).

This seems quite sensible a starting point and can obviously compared with standard “implied
volatility” approximations. With implied volatility we use a different Gaussian distribution (for
logS) for each strike. Here the suggestion is to use the same distribution but with a different
volatility for each terminal value of the stock. As we will see in the empirical section of the paper,
this rough, zero order, approximation can give good results for interesting payoffs.

Let us now pass to the adjoint parametrix expansion zero order term:

u0(z) =

∫

RN

H(ξ)P (z; ξ, 0)dξ.

Here the interpretation is straightforward: the zero order term is simply the Black&Scholes option
value. Indeed since

P (z; ζ) = Γ(x,t)(x, t; ξ, 0),

then the parametrix P (z; ζ) is the same density for the full range of the integrating variable ξ and
is the terminal log-price density corresponding to the heat operator frozen at (x, t).

Notice, however, that a different ”volatility” value is used for each initial pair (x, t). Accordingly,
if we compute the derivative of the option w.r.t. the price S = ex we have that the Delta for the
zero order approximation is given, with the obvious notation, by

∆ = ∆BS + vega ∗ ∂σ
∂S
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It is clear how this way of computing the Delta is a direct reinterpretation of the skew corrected
delta introduced above.

Next we consider the following terms in the expansions. Both expansions are similar in that each
new term is an expected value. The difference that makes the adjoint parametrix more readable
is that in that case the term is a true expected value (with respect to the same “frozen” Gaussian
P (z; ζ)) while in the case of the standard parametrix, Z(z; ξ, 0) does not correspond to an exact
density.

Since each new term can be read as the value (exact or approximate) of a new option in a
Black&Scholes world, it is interesting to understand the meaning of such options. The solution
to this problem comes from the understanding how the L operator (the original operator for both
expansions) acts.

In both expansions L acts on the first argument of both P and Z that is, on the argument not
involved in the expectation integral. Moreover (cf. (2.12)) the operator L in the term of order n
acts on the “option approximation” derived up to order n− 1.

Each action of the L operator can be interpreted as a check of the fact that the approximation
of order n − 1 satisfies LUn−1 = 0. In other words LUn−1 is a measure of the error implied in
supposing that Un−1 satisfies LUn−1 = 0. This represents a “transaction cost” for the new option.
This error is a function of the variable on which L acts and the term un is then computed as the
expected value of the error using the P density or the Z “density”.

We see how the parametrix expansion partitions the value of a given option computed in a non
Black&Scholes world (the governing PDE is not the heat equation) into a series of option values
each computed in the Black&Scholes world. This is exact in the case of the adjoint parametrix
and approximately exact, if we recall that Z is not a density, in the standard parametrix case. The
transaction cost for each option is a valuation of the error made by valuing the option implied in
the previous term in the Black&Scholes world and not in the world described by L.

In the following section we will see how it is possible to bound the overall error derived by trun-
cating the series at the nth term with explicit and easily computable bounds uniformly decreasing
in n. Moreover in the applications section we will see how the iterative nature of the parametrix
series definition allows a fast implementation of the valuation algorithm.

Even at this intuitive level we see how the parametrix series can become a useful tool in model
risk management. Suppose a risk manager is willing to use a price model based on a given operator
L which is believed to faithfully represent the statistical properties of observed underlying and
options prices. It is likely that this operator will not yield to explicit computation. The risk
manager can then compute a number of terms in the parametrix series each of which will be the
value of a (Black&Scholes) option and will be hedgeable as such. The risk manager will also be
able to compute a measure of error, which, as we will see in the next section, will be interpretable
as the value of another option computed in the Black&Scholes world. As such it will be easy for the
risk manager to interpret this option/error value as the price of the approximate model valuation
and hedge it, if necessary.
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3 Forward and backward parametrix expansion

In this section we present the parametrix expansion in its full generality. Consider a parabolic
differential equation in the form

Lu :=
N∑

i,j=1

aij(z)∂xixj
u+

N∑

i=1

bi(z)∂xi
u+ c(z)u − ∂tu = 0, (3.1)

where A(z) = (aij(z)) is a symmetric and positive definite matrix. Throughout the section we
systematically denote by z = (x, t) and ζ = (ξ, τ) the points in R

N+1. We also denote by
λ1(z), . . . , λN (z) the eigenvalues of A(z) and set

m := inf
i=1,...,N

z∈RN+1

λi(z), M := sup
i=1,...,N

z∈RN+1

λi(z)µ(z).

Our main hypotheses are the following:
[H1] M,m are positive and finite2;

[H2] the coefficients of L are bounded functions: moreover, aij ∈ C1, 1
2 (RN+1) that is

|aij(x, t) − aij(x
′, t′)| ≤ α

(
|x− x′| + |t− t′| 12

)
, (x, t), (x′, t′) ∈ R

N+1, i, j = 1, . . . ,N, (3.2)

for some positive constant α.

As a consequence of [H1] we have the usual uniformly parabolicity condition:

m|η|2 ≤
N∑

i,j=1

aij(z)ξiξj ≤M |η|2, ∀ξ ∈ R
N , z ∈ R

N+1. (3.3)

It is known that, under the above hypotheses, the operator L has a fundamental solution Γ(z; ζ).
Given w ∈ R

N+1, we denote by Γw(z; ζ) the fundamental solution to the frozen operator Lw defined
by

Lw =

N∑

i,j=1

aij(w)∂xixj
− ∂t; (3.4)

then we have Γw(z; ζ) = Γw(z − ζ) where

Γw(x, t) := Γw(x, t; 0) =
(4πt)−

N
2

√
detA(w)

exp

(
−〈A−1(w)x, x〉

4t

)
, x ∈ R

N , t > 0. (3.5)

Given a constant µ > 0, we also denote by Γµ the fundamental solution to the heat operator

µ

N∑

i=1

∂xixi
− ∂t.

2Equivalently we may use by M := sup
z∈RN+1

µ(z) and m := inf
z∈RN+1

µ(z) where µ(z) is the Euclidean norm of A(z)

in R
N+1 ×R

N+1 (also equal to the Euclidean norm of (λ1(z), . . . , λN(z)), the vector of the eigenvalues of A(z)). This
gives less precise, but more easily computable, estimates.
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Lemma 3.1. For every z, ζ, w ∈ R
N+1 with z 6= ζ, it holds

(m
M

)N
2

Γm(z; ζ) ≤ Γw(z; ζ) ≤
(
M

m

)N
2

ΓM (z; ζ).

Proof. We only prove the second inequality in the case ζ = 0. The thesis follow directly from
condition (3.3) keeping in mind formula (3.5): indeed we have

Γw(z) ≤ 1

(4πtm)
N
2

exp

(
− |x|2

4tM

)
=

(
M

m

)N
2

ΓM (z).

Lemma 3.2. For every ε, µ > 0 and n ∈ N ∪ {0} it holds

( |x|√
t

)n

Γµ(x, t) ≤
(n
ε

)n
2

(µ+ ε)n
(
µ+ ε

µ

)N
2

Γµ+ε(x, t),

for any x ∈ R
N and t > 0.

Proof. Setting a = |x|√
t
, we have

( |x|√
t

)n

Γµ(z, 0) = an(4πµt)−
N
2 exp

(
− a2

4µ

)
≤ (4πµt)−

N
2 exp

(
− a2

4(µ+ ε)

)
sup
R+

Φ,

where

Φ(a) = an exp

(
−

(
1

4µ
− 1

4(µ+ ε)

)
a2

)
. (3.6)

The thesis follows since a straightforward computation shows that Φ attains a global maximum at

ā =

√
2nµ(µ+ε)

ε
and

Φ(ā) =

(
2nµ(µ+ ε)

eε

)n
2

≤
(n
ε

)n
2

(µ+ ε)n.

3.1 Forward parametrix expansion

For z 6= ζ, we define the forward parametrix

Z(z; ζ) = Γζ(z; ζ). (3.7)

Notation 3.3. In order to avoid confusion, when necessary, we write L(z) in order to indicate that
the operator L is acting in the variable z.

We remark explicitly that

L
(z)
ζ Z(z; ζ) = 0, for z 6= ζ. (3.8)

We first prove some preliminary result will be crucial in the development of the parametrix expan-
sion.
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Lemma 3.4. For every ε > 0 and i, j = 1, . . . ,N it holds

|∂xi
Γw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ), (3.9)

∣∣∂xixj
Γw(z; ζ)

∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2

+2

ΓM+ε(z; ζ), (3.10)

for any z, ζ, w ∈ R
N+1 with t > τ .

Proof. For sake of simplicity, we prove the above estimates in the case ζ = 0. We have

|∂xi
Γw(z)| =

1

2

∣∣(A−1(w)x
)
i

∣∣
t

Γw(z) ≤

(by Lemma 3.1)

≤ 1

2m
√
t

(
M

m

)N
2 |x|√

t
ΓM (z)

and (3.10) follows applying Lemma 3.2 with µ = M and n = 1.
Moreover

∣∣∂xixj
Γw(z)

∣∣ =
1

2t

∣∣∣∣A
−1(w)ij +

1

2t

(
A−1(w)x

)
i

(
A−1(w)x

)
j

∣∣∣∣ Γw(z) ≤ 1

2t

(
1

m
+

|x|2
2m2t

)
Γw(z),

and (3.9) easily follows by Lemmas 3.1 and 3.2 with µ = M .

Lemma 3.5. For every positive ε, we have
∣∣∣L(z)Z(z; ζ)

∣∣∣ ≤ ηε√
t− τ

ΓM+ε(z; ζ), ∀z, ζ ∈ R
N+1, t > τ, (3.11)

where

ηε :=αN2

(
2

ε

)3

2
(
M + ε

m

)N
2

+2 (
M + ε+

√
ε

2

)
+ β

N

2
√
ε

(
M + ε

m

)N
2

+1

+ γ

(
M + ε

m

)N
2 √

t− τ

(3.12)

and
β := sup

i=1,...,N

z∈RN+1

|bi(z)|, γ := sup
z∈RN+1

|c(z)|

and α is the constant in (3.2).

Proof. For t > τ , we have

|LZ(z; ζ)| = |(L− Lζ)Z(z; ζ)| ≤ I1 + I2 + I3

where

I1 =

N∑

i,j=1

|aij(z) − aij(ζ)|
∣∣∂xixj

Z(z; ζ)
∣∣ ≤

11



(by (3.2))
≤ αN2

(
|x− ξ| +

√
t− τ

)
max

i,j

∣∣∂xixj
Z(z; ζ)

∣∣ ≤

(by Lemma 3.4)

≤ αN2

ε

(
M + ε

m

)N
2

+2 (
1 +

|x− ξ|√
t− τ

)
ΓM+ε(z; ζ) ≤

(by Lemma 3.2)

≤ αN2

ε

(
M + ε

m

)N
2

+2 (
M + 2ε

M + ε

)N
2

(
1 +

M + 2ε√
ε

)
ΓM+2ε(z; ζ)

≤ αN2

ε
3

2

(
M + 2ε

m

)N
2

+2 (
M + 2ε+

√
ε
)
ΓM+2ε(z; ζ).

Moreover, by Lemma 3.4, we have

I2 =

N∑

i=1

|bi(z)| |∂xi
Z(z; ζ)| ≤ β

N

2
√
ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ);

finally, by Lemma 3.1, we have

I3 = |c(z)|Z(z; ζ) ≤ γ

(
M + ε

m

)N
2

ΓM+ε(z; ζ).

We can now state the forward parametrix expansion theorem.

Theorem 3.6. Assume hypotheses [H1] and [H2]. Then for every ζ ∈ R
N+1, the following

expansion of the fundamental solution Γ holds

Γ(z; ζ) = Z(z; ζ) +

∫ t

τ

∫

RN

Z(z;w)Φ(w; ζ)dw, t > τ, (3.13)

where

Φ(z; ζ) =

+∞∑

k=1

(LZ)k(z; ζ), (3.14)

with

(LZ)1(z; ζ) = L(z)Z(z; ζ),

(LZ)k+1(z; ζ) =

∫ t

τ

∫

RN

L(z)Z(z;w)(LZ)k(w; ζ)dw,

12



and, for every T > 0, the series in (3.14) converges uniformly in the strip R
N×]τ, τ+T [. Moreover,

for every positive ε, we have the following estimate for the approximation truncated at the n-th term:

∣∣∣∣Γ(z; ζ) − Z(z; ζ)−
n−1∑

k=1

∫ t

τ

∫

RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣

≤
√

2

π

(
M + ε

m

)N
2

fn

(
ηε

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(3.15)

for t > τ , where ηε is defined in (3.12),

fn(η) = e
η2

2 (η + 1)

(
η2

2

)[n+1

2 ]

[
n+1

2

]
!
, (3.16)

and [a] denotes the integer part of a ∈ R.

Remark 3.7. We remark explicitly that, when η = ηε

√
2π(t− τ) � 1 in (3.16), then the rate

of convergence of the parametrix approximation is very fast. This is the case, for instance, when
t − τ � 1, i.e. for short time to maturity. Also note that (3.15) is a global estimate w.r.t. the
spatial variables.

As a consequence of Theorem 3.6, we have the following forward parametrix expansion for
solutions to the Cauchy problem for L.

Corollary 3.8. The solution to the Cauchy problem

{
Lu(x, t) = 0, x ∈ R

N , t > 0,

u(x, 0) = H(x), x ∈ R
N ,

(3.17)

has an expansion of the form (2.10)-(2.11)-(2.12).

The proof of Theorem 3.6 is based on the following preliminary result.

Lemma 3.9. For every ε > 0 and k ≥ 1 the following estimate for the term (LZ)k in (3.14) holds:

|(LZ)k(z; ζ)| ≤
ΓE

(
1
2

)k

ΓE

(
k
2

) ηk
ε

(t− τ)1−
k
2

ΓM+ε(z; ζ), ∀z, ζ ∈ R
N+1, t > τ, (3.18)

where ηε is defined in (3.12) and ΓE denotes the Euler’s Gamma function.

Proof. We prove (3.18) by induction on k. The case k = 1 was proved in Lemma 3.5. Let us now
assume that (3.18) holds for k and prove it for k + 1. We have

|(LZ)k+1(z; ζ)| =

∣∣∣∣
∫ t

τ

∫

RN

L(z)Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣ ≤

13



(by Lemma 3.5, the inductive hypothesis and denoting (y, s) = w)

≤ ηk+1
ε

ΓE

(
1
2

)k

ΓE

(
k
2

)
∫ t

τ

1
√
t− s(s− τ)1−

k
2

∫

RN

ΓM+ε(x, t; y, s)ΓM+ε(y, s; ξ, τ)dyds =

(by the reproduction property3 for ΓM+ε and by the change of variable s = (1 − r)τ + rt)

=
ηk+1

ε

(t− τ)1−
k+1

2

ΓE

(
1
2

)k

ΓE

(
k
2

)
∫ 1

0

1

r1−
k
2

√
1 − r

dr ΓM+ε(z; ζ),

and the thesis follows by the known properties4 of the Euler’s Gamma function.

Proof. (of Theorem 3.6)
Estimate (3.18) directly implies the convergence of the series (3.14) uniformly in Sτ,τ+T for every
fixed ζ ∈ R

N+1 and T > 0. This also implies that Φ solves the integral equation

Φ(z; ζ) = L(z)Z(z; ζ) +

∫ t

τ

∫

RN

L(z)Z(z;w)Φ(w; ζ)dw.

The hard part of the proof consists in showing that

G(z; ζ) := Z(z; ζ) +

∫ t

τ

∫

RN

Z(z;w)Φ(w; ζ)dw, t > τ,

is a fundamental solution of L: this is based on the study of some singular integral and can be
performed following the classical theory (see, for instance, [10] or the more recent exposition in [6]).

Next we prove (3.15):

∣∣∣∣Γ(z; ζ) − Z(z; ζ) −
n−1∑

k=1

∫ t

τ

∫

RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣ ≤
∞∑

k=n

∫ t

τ

∫

RN

Z(z;w) |(LZ)k(w; ζ)| dw

(by Lemma 3.1, estimate (3.18) and the reproduction property)

≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)
∞∑

k=n

∫ t

τ

ΓE

(
1
2

)k

ΓE

(
k
2

) ηk
ε

(s− τ)1−
k
2

ds

3For every x, ξ ∈ R
N and τ < s < t, it holds

Z

RN

ΓM+ε(z; y, s)ΓM+ε(y, s; ζ)dy = ΓM+ε(z; ζ).

4It holds
Z

1

0

1

r1− k

2

√
1 − r

dr =
ΓE

`

1

2

´

ΓE

`

k
2

´

ΓE

`

k+1

2

´ .

14



(using the properties of the Gamma function5)

=

(
M + ε

m

)N
2

ΓM+ε(z; ζ)

√
2

π

∞∑

k=n

(
ηε

√
2π(t− τ)

)k

k!!
. (3.19)

Then estimate (3.15) follows from some elementary computation. Indeed, if n is even then
[

n+1
2

]
=

n
2 and we have

∞∑

k=n

ηk

k!!
=

∞∑

k= n
2

η2k

(2k)!!
+

∞∑

k= n
2
+1

η2k−1

(2k − 1)!!
≤

∞∑

k= n
2

η2k

(2k)!!
+

∞∑

k= n
2
+1

η2k−1

(2k − 2)!!
=

(since (2k)!! = 2kk!)

=
∞∑

k= n
2

1

k!

(
η2

2

)k

+
∞∑

k= n
2

η2k+1

2kk!
= fn(η),

with fn as in (3.16) and using the fact that

∞∑

k=n

ηk

k!
=
eηηn

n!
.

The case of n odd can be treated analogously and is omitted.

As a byproduct of the parametrix method, we obtain the following upper Gaussian estimate of
the fundamental solution.

Theorem 3.10. For every ε > 0, we have

Γ(z; ζ) ≤
(
M + ε

m

)N
2

(
1 + ηε

√
2π(t− τ)

)
eπ(t−τ)η2

ε ΓM+ε(z; ζ), z, ζ ∈ R
N+1, t > τ,

with ηε as in (3.12).

Proof. By Theorem 3.6 we have

Γ(z; ζ) = Z(z; ζ) +

∞∑

k=1

∫ t

τ

∫

RN

Z(z;w)(LZ)k(w; ζ)dw;

therefore, as in (3.19), we get

Γ(z; ζ) ≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)

∞∑

k=0

(
ηε

√
2π(t− τ)

)k

k!!
,

5Recall that
ΓE

`

1

2

´k

ΓE

`

k
2

´ =
(2π)

k−1

2

(k − 2)!!

15



and the thesis follows since ∞∑

k=0

ηk

k!!
≤ (1 + η)e

η2

2 ,

for η > 0.

3.2 Backward parametrix expansion

We begin by stating the dual version of Lemma 3.4.

Lemma 3.11. For every ε > 0 and i, j = 1, . . . ,N it holds

|∂ξi
Γw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2

+1

ΓM+ε(z; ζ),

∣∣∂ξiξj
Γw(z; ζ)

∣∣ ≤ 1

ε(t− τ)

(
M + ε

m

)N
2

+2

ΓM+ε(z; ζ),

for any z, ζ, w ∈ R
N+1 with t > τ .

The proof is analogous to that of Lemma 3.4. In the sequel we assume the following additional
hypothesis which allows to introduce the adjoint operator of L:

[H3] the derivatives ∂xi
aij , ∂xixj

aij, ∂xi
bi are bounded functions.

We define as usual the adjoint operator L̃ of L:

L̃u =

N∑

i,j=1

aij∂xixj
u+

N∑

i=1

b̃i∂xi
u+ c̃u+ ∂tu (3.20)

where

b̃i = −bi + 2

N∑

j=1

∂xi
aij , c̃ = c+

N∑

i,j=1

∂xixj
aij −

N∑

i=1

∂xi
bi. (3.21)

Then we have ∫

RN+1

ϕLψ =

∫

RN+1

ψL̃ϕ, ∀ϕ,ψ ∈ C∞
0 (RN+1),

and the following classical result holds (cf. for instance [10] Cap. 1 Theor. 15):

Theorem 3.12. There exists a fundamental solution Γ̃ of L̃ and it holds

Γ(z; ζ) = Γ̃(ζ; z), z, ζ ∈ R
N+1, z 6= ζ. (3.22)

For z 6= ζ, we define the backward parametrix

P (z; ζ) = Γz(z; ζ). (3.23)

16



By Theorem 3.12, the backward parametrix satisfies

P (z; ζ) = Γz(z; ζ) = Γ̃z(ζ; z), (3.24)

and, analogously to (3.8), we have

L̃(ζ)
z P (z; ζ) = 0, for z 6= ζ.

Next we recall Notation 3.3 and state the dual version of Lemma 3.5.

Lemma 3.13. Under hypothesis [H3], for every positive ε, we have
∣∣∣L̃(ζ)P (z; ζ)

∣∣∣ ≤ η̃ε√
t− τ

ΓM+ε(z; ζ), ∀z, ζ ∈ R
N+1, t > τ, (3.25)

where

η̃ε :=αN2

(
2

ε

)3

2
(
M + ε

m

)N
2

+2 (
M + ε+

√
ε

2

)
+ β̃

N

2
√
ε

(
M + ε

m

)N
2

+1

+ γ̃

(
M + ε

m

)N
2 √

t− τ

(3.26)

where
β̃ := sup

i=1,...,N

z∈RN+1

|̃bi(z)|, γ̃ := sup
z∈RN+1

|c̃(z)|.

The proof, analogous to that of Lemma 3.5, is based on Lemma 3.11 and is omitted.

Theorem 3.14. Assume hypotheses [H1], [H2] and [H3]. Then for every ζ ∈ R
N+1, the following

expansion of the fundamental solution Γ holds

Γ(z; ζ) = P (z; ζ) +

∫ t

τ

∫

RN

P (z;w)Ψ(w; ζ)dw, t > τ, (3.27)

where

Ψ(z; ζ) =

+∞∑

k=1

(LP )k(z; ζ), (3.28)

with

(LP )1(z; ζ) = L(z)P (z, ζ),

(LP )k+1(z; ζ) =

∫ t

τ

∫

RN

L(z)Z(z;w)(LP )k(w; ζ)dw,

and, for every T > 0, the series in (3.14) converges uniformly in the strip R
N× ]τ, τ+T [. Moreover,

for every positive ε, we have the following estimate for the approximation truncated at the n-th term:

∣∣∣∣Γ(z; ζ) − P (z; ζ) −
n−1∑

k=1

∫ t

τ

∫

RN

P (z;w)(LP )k(w; ζ)dw

∣∣∣∣ ≤

√
2

π

(
M + ε

m

)N
2

fn

(
η̃ε

√
2π(t− τ)

)
ΓM+ε(z; ζ)

for t > τ , where η̃ε is defined in (3.26) and fn in (3.16). As a consequence, the solution to the
Cauchy problem (3.17) has an expansion of the form (2.14)-(2.15).
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Proof. Proceeding as in the “forward case”, one can prove that

Γ̃(ζ; z) = Γ̃z(ζ; z) +

∫ t

τ

∫

RN

Γ̃w(ζ;w)Φ̃(w; z)dw, t > τ, (3.29)

where

Φ̃(ζ; z) =
+∞∑

k=1

Ik(ζ; z), (3.30)

with

I1(ζ; z) = L̃(ζ)Γ̃z(ζ; z),

Ik+1(ζ; z) =

∫ t

τ

∫

RN

L̃(ζ)Γ̃w(ζ;w)Ik(w; z)dw,

and the series converges uniformly on the strips. Moreover an error estimate analogous to (3.15)
holds. In order to conclude the proof, it suffices to invoke Theorem 3.12 and prove that the terms
of the expansions (3.27)-(3.28) and (3.29)-(3.30) coincide, that is

∫ t

τ

∫

RN

P (z;w)(LP )k(w; ζ)dw =

∫ t

τ

∫

RN

Γ̃w(ζ;w)Ik(w; z)dw (3.31)

for every k ∈ N.
For k = 1, recalling (3.24), we have

∫ t

τ

∫

RN

Γ̃w(ζ;w)I1(w; z)dw =

∫ t

τ

∫

RN

P (w; ζ)L̃(w)P (z;w)dw,

so that the thesis follows immediately integrating by parts since we have no contribution at borders.
Indeed, denoting w = (y, s), formally we have

∫ t

τ

∫

RN

Γw(w; ζ)∂sΓz(z;w)dw = Ī −
∫ t

τ

∫

RN

∂sΓw(w; ζ)Γz(z;w)dw,

where

Ī =

∫

RN

Γ(y,t)(y, t; ξ, τ)Γ(x,t)(x, t; y, t)dy −
∫

RN

Γ(y,τ)(y, τ ; ξ, τ)Γ(x,t)(x, t; y, τ)dy = 0

since Γ(x,t)(x, t; y, t) = δx(y) and Γ(y,τ)(y, τ ; ξ, τ) = δξ(y). On the other hand the above argument
can be made rigorous by performing the integration by parts on a thinner strip Sτ+δ,t−δ and then
applying the dominated convergence theorem as δ → 0+ combined with the summability estimate
(3.25).

For k = 2, we have
∫ t

τ

∫

RN

Γz0
(z0; ζ)

∫ t

t0

∫

RN

L̃(z0)Γz1
(z1; z0)L̃

(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫

RN

Γz0
(z0; ζ)

(
L̃(z0)

∫ t

t0

∫

RN

Γz1
(z1; z0)L̃

(z1)Γz(z; z1)dz1

+

∫

RN

Γ(y,t0)(y, t0; z0)L̃
(y,t0)Γz(z; y, t0)dy

)
dz0 ≡ J1 + J2,

18



where, using again that Γ(y,t0)(y, t0; z0) = δx0
(y), we get

J2 =

∫ t

τ

∫

RN

Γz0
(z0; ζ)L̃

(z0)Γz(z; z0)dz0 =

(proceeding as in the case k = 1)

=

∫ t

τ

∫

RN

L(z0)Γz0
(z0; ζ)Γz(z; z0)dz0;

on the other hand

J1 =

∫ t

τ

∫

RN

Γz0
(z0; ζ)L̃

(z0)

∫ t

t0

∫

RN

Γz1
(z1; z0)L̃

(z1)Γz(z; z1)dz1dz0 =

(by parts as before)

=

∫ t

τ

∫

RN

L(z0)Γz0
(z0; ζ)

∫ t

t0

∫

RN

L(z1)Γz1
(z1; z0)Γz(z; z1)dz1dz0

−
∫

RN

Γ(y,τ)(y, τ ; ξ, τ)

∫ t

τ

∫

RN

L(z1)Γz1
(z1; y, τ)Γz(z; z1)dz1dy =

(since Γ(y,τ)(y, τ ; ξ, τ) = δξ(y))

=

∫ t

τ

∫

RN

L(z0)Γz0
(z0; ζ)

∫ t

t0

∫

RN

L(z1)Γz1
(z1; z0)Γz(z; z1)dz1dz0−

∫ t

τ

∫

RN

L(z1)Γz1
(z1; ζ)Γz(z; z1)dz1.

Combining the expressions of J1 and J2, eventually we obtain

∫ t

τ

∫

RN

Γz0
(z0; ζ)

∫ t

t0

∫

RN

L̃(z0)Γz1
(z1; z0)L̃

(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫

RN

L(z0)P (z0; ζ)

∫ t

t0

∫

RN

L(z1)P (z1; z0)P (z; z1)dz1dz0,

which concludes the proof. As before the previous argument should be made rigorous by some
approximating procedure. The general case can be straightforwardly achieved by induction.

4 Numerical tests

In this section we validate the parametrix expansion by testing its computational performance on
some well-known non-constant volatility model. The following examples are some of the simplest
non-trivial cases commonly used in practice. While more complicated models could have been
considered, here we only aim to present some preliminary test and refer to a forthcoming paper
for a more detailed and extensive analysis of the numerical efficiency of the parametrix method
for computing option prices and the related greeks. Moreover we emphasize that in the particular
examples examined below, we merely consider parametrix approximations of order zero or one,
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which involve only up to two terms in the expansion; it is clear that better results can be obtained
by using higher order approximations.

The expression of the first term of the expansion, as given in (2.16), is

u0(z) =

∫

R

H(ξ)P (z; ξ, 0)dξ

where H is the payoff function and P (z; ξ, 0) = Γz(z; ξ, 0) is the backward parametrix whose
expression is explicitly given in (3.5): specifically it is a Gaussian function corresponding to the
fundamental solution of a constant coefficients parabolic equation. The expression of the second
term u1 of the expansion is given in (2.15) with n = 1.

As a first example, we consider the CEV model that assumes the following dynamic for the
underlying asset:

dSt

St
= µdt+ σS−α

t dWt

with α ∈ [0, 1[. The key feature of the model is the inverse relationship between volatility level and
stock price; for α = 0 we recover the standard Black&Scholes dynamic. We recall that closed form
formulas for option prices in the CEV model are available (cf., for instance, Epps [8]) so that we
can obtain exact error estimates for the parametrix approximation. Figure 1 reports the differences
uk − u between the approximated prices uk for k = 0, 1 and the exact CEV price corresponding
to σ = 30%, r = 0.05 and α = 0.25 of a Call option with strike K = 1 and maturity T = 0.5. In
this case the parametrix expansion gives very good results with an absolute error of the order of
10−3: since the at-the-money price u1(1) = 0.0964, this corresponds to a relative error of the order
of 0.1%.
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Figure 1: Price differences of Call options with strike K = 1 in the CEV model for different values
of the underlying asset, ranging from 0.5 to 1.5, and for α = 0.25, r = 0.05, σ = 30%, K = 1,
T = 0.5.

For a more refined testing in Figure 2 we also report the the implied volatilities in the CEV
model and in the first order backward parametrix approximation.
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Figure 2: Implied volatilities in the CEV model and in the first order backward parametrix ap-
proximation.

As a second experiment we consider a local volatility model with the following specification of
the volatility function

σ(x, t) = 0.2

(
1 +

x2

1 + t

)
. (4.1)

As in the first example we have a two dimensional problem, however in this case there is no available
closed formula for option prices. Therefore we compare the parametrix performance with a Monte
Carlo approximation with a very large number of simulations and standard variance reduction
techniques. Figure 3 shows the surface of Call prices, with strike K = 1, as a function of time to
maturity and stock price in the first order backward parametrix and Monte Carlo approximations.
Figure 4 plots the corresponding implied volatilities: this figure enlightens the fact that, according
to formulas (3.15)-(3.16), the parametrix method gives best results for short times to maturity.
The more relevant errors correspond to deep in/out of the money values for which the Monte Carlo
approximation seems to be not completely reliable.

As a final test, we examine the slightly more demanding problem of the valuation of a Call option
in a path-dependent volatility model. Specifically we consider an extension of the local volatility
model in which the volatility is defined as a function of the whole trajectory of the underlying asset
(and not only of the spot price). Path dependent volatility was first introduced by Hobson&Rogers
[11] and recently generalized by Foschi and one of the authors [9]. A key feature is that it generally
leads to a complete market model; moreover there are evidences about the effectiveness of the
model and superior in the hedging performance with respect to standard stochastic volatility.

In order to briefly introduce the path-dependent volatility model, we consider an average weight
ψ that is a non-negative, piecewise continuous and integrable function on ] − ∞, T ]. We assume
that ψ is strictly positive in [0, T ] and we set

Ψ(t) =

∫ t

−∞
ψ(s)ds.
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Then we define the average process as

Yt =
1

Ψ(t)

∫ t

−∞
ψ(s)Zsds, t ∈ ]0, T ],

where Zt = log(e−rtSt) denotes the log-discounted price process: the Hobson&Rogers model cor-
responds to the specification ψ(t) = eλt for some positive parameter λ. Then by Itô formula we
have

dYt =
ϕ(t)

Φ(t)
(Zt − Yt) dt,

and assuming the following dynamic for the log-price

dZt = µ(Zt − Yt)dt+ σ(Zt − Yt)dWt,

we obtain the pricing PDE

σ2(z − y)

2
(∂zzf − ∂zf) +

ϕ(t)

Φ(t)
(z − y)∂yf + ∂tf = 0, (t, z, y) ∈ [0, T [×R

2. (4.2)

The idea is that, in case of large movements of the underlying asset far from its “normal trend”, a
path-dependent volatility model is designed to automatically increase the level of volatility in order
to undertake market dynamics in a more natural way.

Note that (4.2) is not a uniformly parabolic PDE, since the quadratic form associated with the
second order part is represented by the singular matrix

(
σ2

2 0
0 0

)
,

so that our results (in particular, Theorem 3.14) do not directly apply. However we recall that
the parametrix method has been adapted in [6] to a class of PDEs including (4.2). Therefore the
results of the present paper are likely to be potentially extended to the more general setting of
(4.2). The empirical findings confirm this belief as it is apparent by Figures 5 and 6: we consider
options with strike K = 1, in the Hobson&Rogers model with λ = 1 and the following specification
of the volatility function

σ(z − y) = max{η
√

1 + 5(z − y)2, 3},
where η = 0.25. Figures 5 and 6 respectively show the surface of Call prices as a function of time to
maturity and stock price in the first order backward parametrix and Monte Carlo approximations
for different values of y, namely y = 0.1 and y = −0.2. Since prices of at-the-money options are of
the order of 0.1, also in this case we find that the relative errors are of the order of 0.1%.

Acknowledgement. We thank Paolo Foschi and Valeria Volpe for having helped us in performing
the numerical tests of this section.
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Figure 3: Call prices in the local volatility model with σ specified in (4.1) and K = 1: Monte Carlo
and first order backward parametrix approximations.

0.8
0.9

1
1.1

1.2
0.4

0.6

0.8

1

0.2

0.22

0.24

0.26

0.28

S0
T

Im
pl

.v
ol

.

Parametrix
MC

Figure 4: Implied volatilities in the local volatility model with σ specified in (4.1): Monte Carlo
and first order backward parametrix approximations.
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Figure 5: Price differences of Call options, with strike K = 1, in the path-dependent volatility
model: Monte Carlo and first order backward parametrix approximations for y = 0.1.
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Figure 6: Price differences of Call options, with strike K = 1, in the path-dependent volatility
model: Monte Carlo and first order backward parametrix approximations for y = −0.2.
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