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Abstract

We study the rigidity of complete, embedded constant mean curvature surfaces in
R

3
. Among other things, we prove that intrinsic isometries of such a surface extends

to isometries of R
3

or its isometry group contains an index two subgroup of isometries
that extend, when the surface has finite genus.
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1 Introduction.

In this paper we discuss some global results for certain complete, embedded surfaces M

in R
3 which have constant mean curvature1. If this mean curvature is zero, we call M

a minimal surface and if it is nonzero, we call M a CMC surface. Our main theorems
deal with the rigidity of complete, embedded constant mean curvature surfaces in R

3 with
finite genus.

Recall that an isometric immersion f : Σ → R
3 of a Riemannian surface Σ is congruent

to another isometric immersion h : Σ → R
3, if there exists an isometry I : R

3 → R
3 such

that f = I ◦ h. Also recall that an isometric immersion f : Σ → R
3 is rigid, if whenever

h : Σ → R
3 is another isometric immersion, then f is congruent to h.

In general, if f : M → R
3 is an isometric immersion of a simply-connected surface

with constant mean curvature HM and f(M) is not contained in a round sphere or a
plane, then there exists a smooth one-parameter deformation of the immersion f through
non-congruent isometric immersions with mean curvature HM ; this family contains all
isometric immersions of M into R

3 with constant mean curvature HM . Thus, the rigidity

∗This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.

1We require that M is equipped with a Riemannian metric and that the inclusion map i : M → R
3

preserves this metric.
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of simply-connected, constant mean curvature immersed surfaces fails in a rather natural
way. On the other hand, the main theorems presented in this paper affirm that some
complete, nonsimply-connected, embedded constant mean curvature surfaces in R

3 are
rigid. More precisely, we prove the following theorems.

Theorem 1.1 (Finite Genus Rigidity Theorem) Suppose M ⊂ R
3 is a complete,

embedded constant mean curvature surface of finite genus. If M has bounded Gaussian
curvature and M is not a helicoid, then any isometric immersion of M into R

3 with the
same constant mean curvature is congruent to the inclusion map of M into R

3.

Theorem 1.2 (Finite Genus Isometry Extension Theorem) Let M ⊂ R
3 be a com-

plete, embedded constant mean curvature surface of finite genus and let σ : M → M be an
isometry. Then the following statements hold.

1. If the isometry σ : M → M fails to extend to an isometry of R
3, then the isometry

group of M contains a subgroup of index two, consisting of those isometries which
do extend to R

3. In particular, if σ fails to extend, then σ2 extends.

2. If M has bounded curvature or if M is minimal, then σ extends to an isometry of
R

3.

The first relevant result in the direction of revealing the rigidity of certain constant
mean curvature surfaces is a theorem of Choi, Meeks, and White. In [2] they proved that
any properly embedded minimal surface in R

3 with more than one end admits a unique
isometric minimal immersion into R

3. One of the outstanding conjectures in this subject
states that, except for the helicoid, the inclusion map of a complete, embedded constant
mean curvature surface M into R

3 is the unique such isometric immersion with the same
constant mean curvature up to congruence. Since extrinsic isometries of the helicoid extend
to ambient isometries, the validity of this conjecture implies the closely related conjecture
that the intrinsic isometry group of any complete, embedded constant mean curvature
surface in R

3 is equal to its ambient symmetry group. These two rigidity conjectures were
made by Meeks; see Conjecture 15.12 in [7] and the related earlier Conjecture 22 in [6] for
properly embedded minimal surfaces. The theorems presented in this paper demonstrate
the validity of these rigidity conjectures under some additional hypotheses.

The proofs of Theorems 1.1 and 1.2 rely on the classification of isometric immersions
of simply-connected constant mean curvature surfaces in R

3. A key ingredient in the proof
of these theorems is our Dynamics Theorem for CMC surfaces in R

3 which is proven in
[11]. Among other things, this Dynamics Theorem implies that, under certain hypotheses,
a CMC surface in R

3 contains a Delaunay surface2 at infinity. The fact that Delaunay

2The Delaunay surfaces are CMC surfaces of revolution which were discovered and classified by De-
launay [3] in 1841. When these surfaces are embedded, they are called unduloids and when they are
nonembedded, they are called nodoids.
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surfaces are rigid is applied in the proofs of our main theorems.
Additionally, using techniques similar to those applied to prove Theorems 1.1 and 1.2,

we also demonstrate the following related rigidity theorem. This theorem is well known
in the special case that the surface also has finite topology (see for example, [4]).

Theorem 1.3 Suppose that M ⊂ R
3 is a complete, embedded CMC surface with bounded

Gaussian curvature. If for some point p ∈ M , the genus of the intrinsic balls BM (p,R)
grows sublinearly in R, then any isometric immersion of M into R

3 with constant mean
curvature HM is congruent to the inclusion map of M into R

3.

This paper is organized as follows. In Section 2 we provide the statement and the
necessary background to understand our new Dynamics Theorem. Next, we discuss the
known isometric classification of simply-connected constant mean curvature surfaces in
R

3. Finally, in Section 4 we demonstrate Theorems 1.1, 1.2 and 1.3.

Acknowledgements The authors would like to thank Brian Smyth for helpful discussions
on the rigidity of Delaunay surfaces.

2 Background on the Dynamics Theorem.

Before stating our Dynamics Theorem for CMC surfaces in R
3, we discuss the definitions

needed to understand it. This is a theorem that we proved in [11]. The statement and proof
of this theorem were motivated by the related Dynamics Theorem for minimal surfaces in
R

3 in [8].

Definition 2.1 Suppose W is a complete flat three-manifold with boundary ∂W = Σ
together with an isometric immersion f : W → R

3 such that f restricted to the interior
of W is injective. We call the image surface f(Σ) a strongly Alexandrov embedded CMC

surface if f(Σ) is a CMC surface and W lies on the mean convex side of Σ.

We note that, by elementary separation properties, any properly embedded CMC

surface in R
3 is always strongly Alexandrov embedded. Furthermore, by item 1 of The-

orem 2.3 below, any strongly Alexandrov embedded CMC surface in R
3 with bounded

Gaussian curvature is properly immersed in R
3. We remind the reader that the Gauss

equation implies that a surface M in R
3 with constant mean curvature has bounded Gaus-

sian curvature if and only if its principal curvatures are bounded in absolute value; thus,
M having bounded second fundamental form is equivalent to M having bounded Gaussian
curvature.

Definition 2.2 Suppose M ⊂ R
3 is a strongly Alexandrov embedded CMC surface with

bounded Gaussian curvature.

3



1. T (M) is the set of all connected, strongly Alexandrov embedded CMC surfaces
Σ ⊂ R

3, which are limits of compact domains ∆n in the translated surfaces M − pn

with limn→∞ |pn| = ∞, ~0 ∈ Σ, and such that the convergence is of class C2 on
compact subsets of R

3. Actually we consider the immersed surfaces in T (M) to
be pointed in the sense that if such a surface is not embedded at the origin, then
we consider the surface to represent two different surfaces in T (M) depending on a
choice of one of the two preimages of the origin.

2. ∆ ⊂ T (M) is called T -invariant, if Σ ∈ ∆ implies T (Σ) ⊂ ∆.

3. A nonempty subset ∆ ⊂ T (M) is called a minimal T -invariant set, if it is T -
invariant and contains no smaller T -invariant subsets; it turns out that a nonempty
T -invariant set ∆ ⊂ T (M) is a minimal T -invariant set if and only if whenever
Σ ∈ ∆, then T (Σ) = ∆.

4. If Σ ∈ T (M) and Σ lies in a minimal T -invariant subset of T (M), then Σ is called
a minimal element of T (M).

With these definitions in hand, we now state our Dynamics Theorem from [11]; in the
statement of this theorem, B(R) denotes the open ball of radius R centered at the origin
in R

3.

Theorem 2.3 (Dynamics Theorem for CMC surfaces in R
3) Let M be a connected,

noncompact, strongly Alexandrov embedded CMC surface with bounded Gaussian curva-
ture. Then:

1. M is properly immersed in R
3. More generally, Area(M ∩ B(R)) ≤ cR3, for some

constant c > 0.

2. T (M) is nonempty.

3. T (M) has a natural metric dT (M) induced by the Hausdorff distance between compact

subsets of R
3. With respect to dT (M), T (M) is a compact metric space.

4. Every nonempty T -invariant subset of T (M) contains minimal elements of T (M).
In particular, since T (M) is itself a nonempty T -invariant set, T (M) always con-
tains minimal elements.

5. A minimal T -invariant set in T (M) is a compact connected subspace of T (M).

6. If M has finite genus, then every minimal element of T (M) is a Delaunay surface
passing through the origin.
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3 Background on Calabi’s and Lawson’s Rigidity Theorems.

In this section we review the classical rigidity theorems of Calabi and Lawson for simply-
connected constant mean curvature surfaces in R

3. The rigidity theorem of Lawson is
motivated by the earlier result of Calabi [1] who classified the set of isometric minimal
immersions of a simply-connected Riemannian surface Σ into R

3; we now describe Calabi’s
classification theorem.

Suppose f : Σ → R
3 is a isometric minimal immersion and Σ is simply-connected. In

this case the coordinate functions f1, f2, f3 are harmonic functions which are the real parts
of corresponding holomorphic functions h1, h2, h3 defined on Σ. For any θ ∈ [0, π), the
map fθ = Re(eiθ(h1, h2, h3)) : Σ → R

3 is an isometric minimal immersion of Σ into R
3; the

immersions fθ are called associate immersions to f . Many classical examples of minimal
surfaces arise from this associate family construction. For example, simply-connected
regions on a catenoid are the images of regions in the helicoid under the associate map for
θ = π

2 ; in this case the corresponding coordinate functions on these domains are conjugate
harmonic functions and consequently, the catenoid and the helicoid are called conjugate
minimal surfaces. Calabi’s classification or rigidity theorem states that if Σ is not flat,
then for any isometric minimal immersion F : Σ → R

3, there exists a unique θ ∈ [0, π)
such that F is congruent to fθ, i.e. there exists an isometry I : R

3 → R
3 such that as

mappings, F = I ◦ fθ. This notion of rigidity does not mean that the image surface f(Σ)
cannot be congruent to the image of an associate surface fθ(Σ), where θ ∈ (0, π). For
example, let f : C → R

3 be a parametrization of the classical Enneper surface and let fπ

2

be the conjugate mapping. Then the images of these immersions are congruent as subsets
of R

3 but these immersions are not congruent as mappings. In fact, the rotation Rπ

2

counter clockwise by π

2 in the usual parameter coordinates C for Enneper’s surface is an
intrinsic isometry of this surface which does not extend to an isometry of R

3 and f ◦ Rπ

2

is congruent to the immersion fπ

2

.
Lawson’s Rigidity Theorem that we referred to in the previous paragraph appears in

Theorem 8 in [5]. We will not need his theorem in its full generality and we state below
the special case which we will apply in the next section.

Theorem 3.1 (Lawson’s Rigidity Theorem for CMC surfaces in R
3) If f : Σ →

R
3 is an isometric CMC immersion with mean curvature H and Σ is simply-connected,

then there exists a differentiable 2π-periodic family of isometric immersions

fθ : Σ → R
3

of constant mean curvature H called associate immersion to f . Moreover, up to congru-
ences the maps fθ, for θ ∈ [0, π], represent all isometric immersions of Σ into R

3 with
constant mean curvature H and these immersions are non-congruent to each other if f(M)
is not contained in a sphere.
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4 Proofs of the main theorems.

Our rigidity theorems are motivated by several classical results on the rigidity of certain
complete embedded minimal surfaces. The first relevant result in this direction is a the-
orem of Choi, Meeks, and White [2] who proved that any properly embedded minimal
surface in R

3 with more than one end admits a unique isometric minimal immersion into
R

3; their result proved a special case of the conjecture of Meeks [6] that the inclusion
map of a properly embedded, nonsimply-connected minimal surfaces in R

3 is the unique
minimal immersion of the surface into R

3 up to congruence.
We now prove the following important special case of Theorem 1.1 regarding properly

embedded minimal surfaces.

Theorem 4.1 If M is a connected, properly embedded minimal surface in R
3 with finite

genus which is not a helicoid, then the inclusion map of M into R
3 represents the unique

isometric minimal immersion of M into R
3 up to congruence.

Proof. If M has more than one end, then the result of Choi, Meeks, and White implies
that M satisfies the conclusions of the theorem.

Suppose M has finite genus, one end and M is not a helicoid. The main theorem of
Meeks and Rosenberg in [10] then implies that M is asymptotic to a helicoid H with a
finite positive number of handles attached or M is a plane. Since Theorem 4.1 holds for
planes, assume now that M is not a plane. Since M is asymptotic to a helicoid H, any
plane P orthogonal to the axis of H intersects M in an analytic set with each component
of M ∩P having dimension one and such that outside of some ball in R

3, M ∩P consists of
two proper arcs asymptotic to the line H ∩ P . Since M is a helicoid with a finite positive
number of handles attached, elementary Morse theory implies that for a certain choice of
P , M ∩ P is a one-dimensional analytic set with a vertex contained in the intersection
of two open analytic arcs in M ∩ P . An elementary combinatorial argument implies that
P ∩M contains a simple closed oriented curve Γ bounding a compact disk whose interior
is disjoint from M . It follows that the integral of the conormal to Γ has a nonzero dot
product with the normal to P . The existence of Γ implies that for at least one of the
coordinate functions xi of M , the conjugate harmonic function of xi is not well-defined
(for example, if Γ lies in the (x1, x2)-plane, then the conjugate harmonic function of the x3-
coordinate function is not well-defined on M). From our discussion of the Calabi Rigidity
Theorem in the previous section, it follows that the inclusion map of M into R

3 is the
unique isometric minimal immersion of M into R

3 up to congruence. This completes the
proof of the theorem. 2

Recall that a recent result of Meeks, Perez, and Ros [8] proves that if M is a complete,
connected, embedded minimal surface with finite genus and countably many ends, then
it is properly embedded in R

3. Moreover, the Structure Theorem of minimal laminations
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described in [10] implies that if M has bounded curvature, then it is likewise properly
embedded in R

3 (also see [9] or [12] for a proof of this result). Thus, Theorem 4.1 together
with the aforementioned results implies the following.

Theorem 4.2 Suppose that M is a complete, connected, embedded minimal surface in
R

3 with finite genus and M is not a helicoid. If M has countably many ends or has
bounded curvature, then the inclusion map of M into R

3 is proper and represents the
unique isometric minimal immersion of M into R

3 up to congruence.

We will now apply the above theorems and the results described in Sections 2 and 3
to prove Theorems 1.1, 1.2 and 1.3.

Let M ⊂ R
3 be a complete, embedded constant mean curvature surface of finite genus.

Proof of Theorem 1.1. Suppose M has bounded Gaussian curvature and it is not a
helicoid. We want to show that the inclusion map i : M → R

3 is the unique isometric
immersion of M into R

3 with constant mean curvature HM .
If M is a minimal surface, then Theorem 1.1 follows from Theorem 4.2. Suppose

M is a CMC surface. Without loss of generality we will assume HM = 1. By item 4
of Theorem 2.3, T (M) contains an embedded Delaunay surface Σ. More precisely, for
n ∈ N, there exist compact annular domains ∆n ⊂ M and points pn ∈ ∆n such that the
translated surfaces ∆n−pn converge C2 to Σ on compact subsets of R

3. For concreteness,
suppose g1 denotes the inclusion map of Σ into R

3. First we show that the immersion g1

is rigid.
Let π : Σ̃ → Σ denote the universal covering of Σ. Consider Σ̃ with the induced

Riemannian metric and let f = g1 ◦ π : Σ̃ → R
3 be the related isometric immersion. Let

fθ : Σ̃ → R
3 be the associate immersion for angle θ ∈ [0, π], given in Theorem 3.1; note

f0 = f . Suppose g2 is another isometric immersion of Σ into R
3 which is not congruent

to g1. This implies that g2 ◦ π is congruent to f
θ

for a certain θ ∈ (0, π].

Let γ̃ ⊂ Σ̃ be a lift3 of the shortest geodesic circle γ ⊂ Σ. We will prove that for any
θ ∈ (0, π] the endpoints of fθ(γ̃) are distinct, which means that the associate immersions
to g1 do not exist. We will accomplish this by describing the geometry of fθ(γ̃).

Note first that if A represents the second fundamental form of f and Aθ the one of fθ,
it follows from Theorem 8 in [5] (see also [13]) that these forms are related by the following
equation. Recall that the mean curvature of Σ is equal to HM which we are assuming to
be one.

Aθ = cos(θ)(A − HMI) + sin(θ)J(A − HMI) + HMI, (1)

where I is the identity matrix and J is the almost complex structure on M .

3The curve eγ is a compact embedded arc in eΣ which is the image of a lift of map γ : [0, 1] → Σ.
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A computation shows that for the geodesic γ̃ and the immersion fθ, the curvature kθ

and torsion τθ of fθ(γ̃)(t) are given by

kθ = 〈Aθ(γ̃
′(t)), γ̃′(t)〉 and τθ = −〈Aθ(γ̃

′(t)), J(γ̃′(t))〉. (2)

Furthermore, since γ̃ is a lift of the shortest geodesic circle in Σ, there exist s ≤ 0 <

2 ≤ r, r + s = 2 such that in the γ̃′, Jγ̃′ basis, the second fundamental form along γ̃ is
expressed as the matrix

A =

(
r 0
0 s

)
.

Consequently, equations 1 and 2 imply that

kθ = cos(θ)(r − 1) + 1 and τθ = sin(θ)(1 − r). (3)

In particular, kθ and τθ are constants. If θ 6= π, then fθ(γ̃) is contained in a helix, while if
θ = π it is contained in circle of radius R = |2 − r| = |s| < |r|. Since the length of fπ(γ̃)
is 2π

r
, it follows that in either case the endpoints of fθ(γ̃) are distinct.

Since the compact annuli ∆n − pn converge C2 to the embedded Delaunay surface Σ
as n → ∞, we conclude that the associate immersions for θ ∈ (0, π] are not well-defined
on ∆n − pn for n large. By Theorem 3.1, Theorem 1.1 now follows. 2

Remark 4.3 In the above proof, we showed that any Delaunay surface is rigid. However,
the same computations prove that if f represents the inclusion map of a nodoid into R

3,
then the associate immersions fθ, θ ∈ (0, π) are never well-defined and the associate
immersions fπ are well-defined for an infinite countable set of nodoids.

Proof of Theorem 1.2. If M has bounded curvature, then Theorem 1.1 implies The-
orem 1.2. So, assume now that M does not have bounded Gaussian curvature and let
i : M → R

3 be the inclusion map. We will show that if an intrinsic isometry of σ : M → M

fails to extend to an ambient isometry of R
3, then M is a CMC surface, the associate

surface iπ is well-defined and i ◦ σ is congruent to iπ. It then follows that when M has
an intrinsic isometry which does not extend, then the composition of any two isometries
which do not extend, extends to an isometry of R

3 and so, there is an homomorphism
from the group Isom(M) of intrinsic isometries of M onto the group Z2. The theorem
then follows from this discussion. Assume that σ : M → M is an isometry that does not
extend to R

3.
The local picture theorem on the scale of curvature (see Section 7 in [8]) states that

there exists a sequence of points pn ∈ M and positive numbers εn, λn such that:

1. limn→∞ εn → 0, limn→∞ λn = ∞ and limn→∞ λnεn = ∞.
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2. The component Mn of M ∩ B(pn, εn)) that contains pn is compact with ∂Mn ⊂
∂B(pn, εn).

3. The second fundamental forms of the surfaces M̃n = λnMn ⊂ λnB(pn, εn) ⊂ R
3 are

uniformly bounded and are equal to one at the related points p̃n.

4. The translated surfaces M̃ − p̃n converge with multiplicity one to a connected, prop-
erly embedded minimal surface M∞ ⊂ R

3 with bounded curvature and genus zero.

First suppose that M∞ is not a helicoid. In this case, up to congruence, it has a unique
isometric minimal immersions into R

3 by Theorem 4.1. It follows that if M is minimal,
then it has a unique isometric immersion into R

3. Thus, to complete this case assume that
M is not minimal. Suppose M is a CMC surface, and i ◦ σ is congruent to iθ for some
θ ∈ (0, π]. Then a rescaling argument and equation (1) imply that (M∞)θ is well-defined
which contradicts Theorem 4.1 unless θ = π. Hence, when M∞ is not a helicoid and M is
CMC, then θ = π.

It remains to prove our claim in the case when M∞ is a helicoid and to do this we
will use the embeddedness property of M . In this case i ◦ σ : M → R

3 must be congruent
to an associate immersion iθ : M → R

3, where θ ∈ (0, π] and θ 6= π if M is minimal. It

follows that the associate minimal surfaces (M̃ − p̃n)θ can be chosen to approximate a
large region of the related associate surface (M∞)θ to the helicoid M∞. If θ 6= π, then

(M∞)θ intersects itself transversely which means that (M̃ − p̃n)θ is not embedded. This
is a contradiction which proves that intrinsic isometries of M must extend to ambient
isometries of R

3 when θ 6= π. As observed earlier, this completes the proof of the theorem.
2

Proof of Theorem 1.3. Suppose M ⊂ R
3 is a complete, embedded surface with constant

mean curvature HM , bounded Gaussian curvature and the genus of BM (p,R) is growing
sublinearly in R. We want to show that any isometric immersion of M into R

3 with
constant mean curvature HM is congruent to the inclusion map of M into R

3. First note
that M has bounded curvature, which implies M is properly embedded in R

3 (see [9] for
the proof of this result or the proof of item 1 in Theorem 2.3 which is given in [11]). The
hypothesis that the genus of BM(p,R) grows sublinearly in R implies that there exist
points pn ∈ M which diverge in R

3 and a related divergent sequence of positive numbers
Rn, such that there is a uniform bound on the genus of the balls BM (pn, Rn). The proof
of item 2 of Theorem 2.3 implies that there exist compact domains ∆n ⊂ M − pn which
converge C2 on compact subsets of R

3 to a strongly Alexandrov embedded CMC surface
M∞ of finite genus. With some extra care taken in the choice of the domains ∆n, item
4 of Theorem 2.3 implies such a M∞ can be produced which is a Delaunay surface. By
the proof of Theorem 1.1, we observe that the fact that M∞ is a Delaunay surface implies
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that the inclusion map of M into R
3 is the unique isometric immersion of M into R

3 with
the constant mean curvature as M . This completes the proof of Theorem 1.3. 2

Remark 4.4 The conclusions of the Finite Genus Rigidity Theorem (Theorem 1.1) should
hold without the hypothesis that M have bounded Gaussian curvature. This improvement
would be based on techniques we are developing in [11] to prove curvature estimates for cer-
tain embedded CMC surfaces in R

3 and the conjectured properness of complete, embedded
finite genus minimal surfaces in R

3.
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