STRUCTURE THEOREMS FOR EMBEDDED DISKS WITH MEAN CURVATURE BOUNDED IN L^{P}

GIUSEPPE TINAGLIA

Abstract

After appropriate normalizations an embedded disk whose second fundamental form has large norm contains a multi-valued graph, provided the L^{p} norm of the mean curvature is sufficiently small. This generalizes to non-minimal surfaces a well known result of Colding and Minicozzi.

Introduction

In [8] Colding and Minicozzi proved that a minimal disk embedded in \mathbb{R}^{3} whose Gaussian curvature is large at a point contains a multi-valued graph around that point. This means that, locally, the disk looks like a piece of a suitably scaled helicoid (see Figure 1). This was later generalized in [20] to the constant mean curvature case. The structure theorem in [8] has been used as a key ingredient in their series of papers $[3,7,8,9,10]$ dealing with the geometry of embedded minimal surfaces of fixed genus. Moreover, the new ideas provided by their recent work have been applied by the authors to solve several longstanding problems in the field; see for instance [2, 5, 13, 14].

Figure 1. Half of the the helicoid
In this paper we discuss the geometry of disks embedded in \mathbb{R}^{3} for which the L^{p} norm of the mean curvature, $\|H\|_{L^{p}}$, is suitably bounded. We point out that $\|H\|_{L^{p}}$ is a natural quantity to consider as it appears, for instance, in such classical results as the monotonicity formulae [19] and related applications [11, 12]. Loosely speaking, the principle established in our main result is that an embedded disk whose second fundamental form is bounded but large at the origin and whose L^{q}-norm of

[^0]the gradient of the mean curvature is bounded, $q>2$, must contain a multi-valued graph if the L^{p}-norm of the mean curvature is suitably small. Here is a simplified version of the main theorem.

Theorem 0.1. Given $N \in \mathbb{Z}_{+}, T \geq 0, q>2$ and $p \geq 1$ there exist $C_{1}=C_{1}(N)>0$, $C_{2}=C_{2}(N, T, p, q)>0$, and $l=l(N, p)>1$ such that the following holds.
If $\Sigma \subset \mathbb{R}^{3}$ is an embedded disk with $0 \in \Sigma \subset B_{l}(0), \partial \Sigma \subset \partial B_{l}(0),\|H\|_{L^{p}} \leq C_{2}$, $\|\nabla H\|_{L^{q}} \leq T$, and

$$
\sup _{\Sigma \cap B_{l}(0)}\left|A_{\Sigma}\right| \leq 2 C_{1}=2\left|A_{\Sigma}\right|(0),
$$

then $\Sigma \cap B_{1}(0)$ contains an N-valued graph that forms around the origin.
Here $B_{l}(0)$ is the euclidean ball of radius l centered at the origin. We recall that if Σ is a surface and k_{1} and k_{2} are its principal curvatures, then the mean curvature is $H=\frac{k_{1}+k_{2}}{2}$. The norm of the second fundamental form is $\left|A_{\Sigma}\right|=\sqrt{k_{1}^{2}+k_{2}^{2}}$ and the Gaussian curvature is $K_{\Sigma}=k_{1} k_{2}$. A precise definition of an N-valued graph as well as a finer quantative version of Theorem 0.1 is to be found in Section 4.

Our new generalization of the Colding-Minicozzi structure theorem is intended as a first step towards classifying the singularities of the limit of a sequence of embedded disks with $\|H\|_{L^{p}}$ bounded. While this problem has been successfully studied for minimal disks $[3,6,10,16]$, it remains unsolved in this more general setting. In fact, if the norm of the second fundamental form of these disks is uniformly bounded, they do converge to a well defined surface, although not necessarily an embedded one. The main objective is therefore understanding what happens as the norm of the second fundamental becomes large. As with minimal surfaces, the answer to this question will surely provide new tools for the study of the global properties of surfaces with $\|H\|_{L^{p}}$ bounded.

The proof of Theorem 0.1 uses a new compactness argument which, somewhat unexpectedly, does not require a bound on the area.

1. Minimal Surfaces

1. Definition. Let $\Sigma \subset \mathbb{R}^{3}$ be a 2-dimensional smooth orientable surface (possibly with boundary) with unit normal N_{Σ}. Given a function ϕ in the space $C_{0}^{\infty}(\Sigma)$ of infinitely differentiable (i.e., smooth), compactly supported functions on Σ, consider the one-parameter variation

$$
\Sigma_{t, \phi}=\left\{x+t \phi(x) N_{\Sigma}(x) / x \in \Sigma\right\}
$$

and let $A(t)$ be the area functional,

$$
A(t)=\operatorname{Area}\left(\Sigma_{t, \phi}\right)
$$

The so-called first variation formula of area is the equation (integration is with respect to darea)

$$
\begin{equation*}
A^{\prime}(0)=\int_{\Sigma} \phi H \tag{1.1}
\end{equation*}
$$

where H is the mean curvature of Σ. When H is identically zero the surface Σ is a critical point for the area functional and it is called a minimal surface [17, 4]; concrete examples of minimal surfaces are planes, the helicoid and the catenoid.

In general, if Σ is given as graph of a function u then

$$
\begin{equation*}
H=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \tag{1.2}
\end{equation*}
$$

2. Limits of minimal surfaces. In this section we discuss limits of minimal surfaces. Some of this material is covered in great detail (including proofs) in [18, Section 4].

Let Σ be a surface in \mathbb{R}^{3} and let $\mathrm{T}_{p} \Sigma$ denote its tangent plane at p. Given $p \in \Sigma$ and $r>0$ we label by

$$
\begin{equation*}
D(p, r)=\left\{p+v / v \in \mathrm{~T}_{\Sigma},|v|<r\right\} \tag{1.3}
\end{equation*}
$$

the tangent disk of radius r. $W(p, r)$ stands for the infinite solid cylinder of radius r around the affine normal line at p,

$$
\begin{equation*}
W(p, r)=\{q+t N(p) / q \in D(p, r), t \in \mathbb{R}\} . \tag{1.4}
\end{equation*}
$$

Inside $W(p, r)$ and for $\varepsilon>0$, we have the compact slice

$$
\begin{equation*}
W(p, r, \varepsilon)=\{q+t N(p) / q \in D(p, r),|t|<\varepsilon\} . \tag{1.5}
\end{equation*}
$$

Definition 1.2. Let Σ_{n} be a sequence of surfaces embedded in an open set O. We say that Σ_{n} converges C^{k} with finite multiplicity to a surface Σ_{∞} on compact sets if for any $K \subset O$ compact there exist $r, \varepsilon>0$ such that
(1) for any $p \in \Sigma_{\infty} \cap K, \Sigma_{\infty} \cap W(p, r, \varepsilon)$ can be represented as the graph of a function $u: D(p, r) \rightarrow \mathbb{R}$;
(2) for all n large enough, $\Sigma_{n} \cap K \cap W(p, r, \varepsilon)$ consists of a finite number of graphs (independent of n) over $D(p, r)$ which converge to u in the usual C^{k} topology.

Given a sequence of subsets $\left\{F_{n}\right\}_{n}$ in an open domain O, its accumulation set is defined by $\left\{p \in O / \exists p_{n} \in F_{n}\right.$ with $\left.p_{n} \longrightarrow p\right\}$

The next two theorems are compactness theorems for sequences of embedded minimal surfaces. The first assumes a uniform bound on the area and on the norm of the second fundamental form while the second is slightly more general and does not assume a bound on the area. Their proofs are similar in nature. We will only sketch the proof of Theorem 1.4, pointing out where to use the uniform bound on the area to prove Theorem 1.3.

Theorem 1.3. Let Σ_{n} be a sequence of minimal surfaces embedded in an open set O. Suppose that Σ_{n} has an accumulation point and that there exist C_{1} and C_{2} such that

$$
\operatorname{Area}\left(\Sigma_{n}\right)<C_{1} \text { and } \sup _{\Sigma_{n}}\left|A_{n}\right|<C_{2}
$$

uniformly. Then, there exists a subsequence $\Sigma_{n_{k}}$ and a minimal surface Σ embedded in O such that $\Sigma_{n_{k}}$ converges smoothly with finite multiplicity to Σ on compact subsets of O.

Theorem 1.4. Let Σ_{n} be a sequence of minimal surfaces embedded in an open set O. Suppose that there exists a sequence $p_{n} \in \Sigma_{n}$ converging to a point $p \in O$ and that

$$
\sup _{\Sigma_{n}}\left|A_{n}\right|<C
$$

uniformly. Then, there exists a subsequence $\Sigma_{n_{k}}$ and a connected minimal surface Σ in O satisfying
(1) Σ is contained in the accumulation set of Σ_{n};
(2) $p \in \Sigma$ and $|A|\left(p_{n}\right)=\lim \left|A_{n}\right|\left(p_{n}\right)$;
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

Sketch of the proof of 1,2 and 3 . As p_{n} accumulates at $p \in O$, the uniform bound on the second fundamental form implies that there exists $r>0$ such that for ε small, $W\left(p_{n}, r, \varepsilon\right) \cap \Sigma_{n}$ consists of a collection of graphs, u_{n}^{k}, over $D\left(p_{n}, r\right)$ (a uniform bound on the area would give a bound for the number of graphs which is independent of $n)$. After going to a subsequence we can assume that $T_{p_{n}} \Sigma_{n}$ converges to a plane π and that the graphs u_{n}^{k} are graphs over π. Moreover, $\left|u_{n}^{k}\right|,\left|\nabla u_{n}^{k}\right|$ and $\left|\nabla^{2} u_{n}^{k}\right|$ are uniformly bounded. Since u_{n} is a minimal graph, thanks to the minimal graph equation we have uniform $C^{2, \alpha}$ estimates for u_{n}^{k}. In this situation, Arzela-Ascoli's Theorem implies that a subsequence of u_{n}^{k} converges C^{2} to a graph u. Due to the C^{2} convergence, u is also a minimal graph. An analytic prolongation argument allows us to construct a subsequence Σ_{k} and a maximal sheet Σ in the accumulation set of Σ_{k} which extends the graph u. By construction, the minimal surface Σ satisfies items 1 and 2 . Σ must be embedded because transversal self-intersections of it would give rise to transversal self intersection of Σ_{n} for n large and tangential self-intersections would contradict the maximum principle, thus we have 3 .

2. Compactness Theorem

In this section we prove more general compactness theorems which will be used in the proof of the structure theorem. We start generalizing Theorem 1.3 and 1.4 to more general surfaces. Before doing that, we need to establish some notation. Let f be a function defined over Σ and let $p \geq 1$, then $\|f\|_{L^{p}(\Sigma)}$ is the L^{p} norm of f, while $[f]_{\alpha}:=\sup _{\Sigma} \frac{|f(x)-f(y)|}{d_{i s t}(x, y)}$.

Theorem 2.5. Let Σ_{n} be a sequence of surfaces embedded in an open set O. Suppose that Σ_{n} has an accumulation point and that there exist C_{1}, C_{2}, and T such that

$$
\operatorname{Area}\left(\Sigma_{n}\right)<C_{1}, \sup _{\Sigma_{n}}\left|A_{n}\right|<C_{2} \text { and }\left[H_{n}\right]_{\alpha}<T \text { uniformly. }
$$

Suppose also that $\left\|H_{n}\right\|_{L^{p}\left(\Sigma_{n}\right)}$ is going to zero. Then, there exists a subsequence $\Sigma_{n_{k}}$ and a minimal surface Σ embedded in O such that $\Sigma_{n_{k}}$ converges C^{2} with finite multiplicity to Σ on compact sets of O.
Theorem 2.6. Let Σ_{n} be a sequence of surfaces properly embedded in an open set O. Suppose that there exists a sequence $p_{n} \in \Sigma_{n}$ converging to a point $p \in O$ and that there exist C and T such that

$$
\sup _{\Sigma_{n}}\left|A_{n}\right|<C \text { and }\left[H_{n}\right]_{\alpha}<T .
$$

Suppose also that $\left\|H_{n}\right\|_{L^{p}\left(\Sigma_{n}\right)}$ is going to zero. Then, there exists a subsequence $\Sigma_{n_{k}}$ and a connected minimal surface Σ in O satisfying
(1) Σ is contained in the accumulation set of Σ_{n};
(2) $p \in \Sigma$ and $|A|\left(p_{n}\right)=\lim \left|A_{n}\right|\left(p_{n}\right)$;
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

Their proofs are a slight modification of the proofs of Theorem 1.3 and 1.4. As before, the uniform bound on the second fundamental form implies that $W\left(p_{n}, r, \varepsilon\right) \cap$ Σ_{n} consists of a collection of graphs. In the proofs of Theorem 1.3 and 1.4 we needed the surfaces to be minimal in order to obtain uniform $C^{2, \alpha}$ estimates for these graphs. In fact, it can be shown that in order to obtain $C^{2, \alpha}$ estimates, it suffices to know that $\left\|H_{n}\right\|_{L^{p}\left(\Sigma_{n}\right)}$ and $[H]_{\alpha}$ are bounded. Once uniform $C^{2, \alpha}$ estimates are obtained we can apply Arzela-Ascoli Theorem to extract a subsequence of graphs which converges C^{2} to a graph. The fact that $\left\|H_{n}\right\|_{L^{p}\left(\Sigma_{n}\right)}$ is going to zero is ultimately used to show that the limit graph is minimal.

Recall that by the Sobolev embedding theorem, a bound on $\left\|\left|\nabla H_{n}\right|\right\|_{L^{q}\left(\Sigma_{n}\right)}, q>2$, gives a bound on $[H]_{\alpha}$. We could therefore restate Theorem 1.3 and 1.4 replacing the uniform bound on $[H]_{\alpha}$ with a uniform bound on $\left\|\nabla H_{n}\right\|_{L^{q\left(\Sigma_{n}\right)}}, q>2$. Furthermore, if $[H]_{\alpha}$ is not bounded uniformily, although we are not able to exctract a subsequence of graphs which converges C^{2} to a minimal graph, it is still possible to exctract a subsequence of graphs which converges C^{1} to a minimal graph. Moreover, an upper bound on the norm of the second fundamental form of the limit is still valid. In other words, the following theorem follows.

Theorem 2.7. Let Σ_{n} be a sequence of surfaces embedded in an open set O. Suppose that there exists a sequence $p_{n} \in \Sigma_{n}$ converging to a point $p \in O$ and that there exist C such that

$$
\sup _{\Sigma_{n}}\left|A_{n}\right|<C
$$

Suppose also that $\left\|H_{n}\right\|_{L^{p}\left(\Sigma_{n}\right)}$ is going to zero. Then, there exists a subsequence $\Sigma_{n_{k}}$ and a connected minimal surface Σ in O satisfying
(1) Σ is contained in the accumulation set of Σ_{n};
(2) $\sup _{\Sigma}|A|<C$;
(3) Σ is embedded in O;
(4) Any divergent path in Σ either diverges in O or has infinite length.

In the next theorem we use Theorem 2.7 to describe more accurately the accumulation set of a suquence of surface whose $\left\|H_{n}\right\|_{L^{p}}$ is going to zero.

Theorem 2.8. Let Σ_{n} be a sequence of surfaces embedded in $B_{n}(0)$ such that $0 \in$ $\Sigma \subset B_{n}(0), \partial \Sigma($ if non-empty $) \subset \partial B_{n}(0)$. Suppose that there exists a constant C such that $\sup _{\Sigma_{n}}\left|A_{n}\right|<C$ and that $\left\|H_{n}\right\|_{L^{p}}$ is going to zero as n goes to infinity then, up to a subsequence, the accumulation set of Σ_{n} is non-empty and it consists either of a connected complete properly embedded minimal surface Σ or of a collection of parallel planes.

Moreover, Σ_{n}^{1} converges C^{1} with multeplicity one to Σ^{1}, where Σ_{n}^{1} is the connected component of $\Sigma_{n} \cap B_{1}(0)$ which contains the origin and Σ^{1} is, depending on the accumulation set, the connected component of $\Sigma \cap B_{1}(0)$ which contains the origin or a unit disk centered at the origin.

Proof. Supposing that it is false, let Σ_{n} be a sequence of surfaces embedded in $B_{n}(0)$ such that $0 \in \Sigma_{n} \subset B_{n}(0), \partial \Sigma_{n} \subset \partial B_{n}(0)$ and $\left\|H_{n}\right\|_{L^{p}}<\frac{1}{n}$. Theorem 2.7 implies that there exists a complete connected embedded minimal surface, Σ, which contains the origin and it is contained in the accumulation set of Σ_{n}. Furthermore, Σ has bounded second fundamental form and therefore it is properly embedded, see [15]. If Σ_{n} has another accumulation point which is not in Σ then the same argument shows that there exists another complete connected properly embedded minimal surface, Σ^{\prime}, which is contained in the accumulation set of Σ_{n} and it is disjoint from Σ. The results in [1, 21] imply that they must be parallel planes.

Let $\varepsilon>0$ and let $T N(\varepsilon)$ be an embedded tubular neighborhood of Σ^{1} of size ε. Choose r and $\varepsilon, r>2 \varepsilon>0$ such that for any $p \in \Sigma, W(p, r, \varepsilon) \cap \Sigma_{n}^{1}$ consist of a collection of graphs. Let u_{0} be the minimal graph over $D(0, r)$ which locally rapresents Σ^{1}, and let u_{0}^{n} be the graph in $W(p, r, \varepsilon) \cap \Sigma_{1}^{n}$ containing the origin. From the way Σ has been obtained, u_{0}^{n} converges C^{1} to u_{0}. For any $q \in \partial W(0, r, \varepsilon)$ if we let u_{q} represents $W(q, r, \varepsilon) \cap \Sigma^{1}$ and u_{q}^{n} represents the connected component of $W(q, r, \varepsilon) \cap \Sigma_{n}^{1}$ which intersects u_{0}^{n}, then we can assume that u_{q}^{n} converges C^{1} to u_{q}. Since Σ is properly embedded, Σ^{1} is compact. After finitely many steps it is possible to continue u_{0}^{n} to get a one sheeted cover of Σ_{1}.

Loosely speaking, in the next theorems we describe the geometry away form the boundary of a surface whose L^{p} norm of the mean curvature is small.

Theorem 2.9. Given $C>0$ there exist $R=R(C)>2, \varepsilon=\varepsilon(C)>0$ such that the following holds.

Let Σ be a surface embedded in $B_{R}(0)$ such that $0 \in \Sigma \subset B_{R}(0), \partial \Sigma($ if non-empty $) \subset$ $\partial B_{R}(0)$ and $\|H\|_{L^{p}}<\frac{1}{R}$ then Σ^{1} is properly embedded and has an embedded tubular neighborhood of size ε.

Proof. Let us first show that Σ^{1} is properly embedded. Assuming false, let Σ_{n} be a sequence of surfaces embedded in $B_{n}(0)$ such that $0 \in \Sigma_{n} \subset B_{n}(0), \partial \Sigma \subset \partial B_{n}(0)$ and $\left\|H_{n}\right\|_{L^{p}}<\frac{1}{n}$. Theorem 2.8 implies that, after going to a subsequence, Σ_{n}^{1} converges C^{1} with multeplicity one to a compact properly embedded minimal surface. This implies that Σ_{n}^{1} must be properly embedded for n large. This contradicts our assumption and proves that Σ^{1} is properly embedded.

The fact that Σ^{1} is properly embedded implies that it admits an embedded tubular neighborhood. However, its size might depend on Σ^{1}. Arguing by contradiction and using a compacteness argument as above one can prove that the size of the tubular neighborhood does not depend on Σ^{1}. In fact, it becoming smaller would contradict the multiplicity one convergence.

Note that embeddedness is the only topological assumption. For instance, we are not assuming that the surface separates the ball or any restriction on the genus.

Another easy consequence of Theorem 2.9 is some bound on the area of an embedded surface with bounded L^{p} norm of the mean curvature and bounded second fundamental form. Although the area of such a surface is not necessarily bounded, we show that it is possible to bound the area of connected pieces which are sufficiently away from the boundary.

Corollary 2.10. Given $C>0$ there exist $K=K(C)>0$ and $R=R(C)>2$ such that the following holds.
Let $0 \in \Sigma$ be an embedded surface such that $\Sigma \subset B_{R}(0), \partial \Sigma \subset \partial B_{R}(0),\|H\|_{L^{p}}<\frac{1}{R}$ and $\sup _{\Sigma}|A|<C$ then the area of Σ^{1} is bounded by K.

In the following compactness theorem we prove that if the elements of the sequence in Theorem 2.9 are embedded disks, so is the limit.

Theorem 2.11. Given $C>0$ there exists $R=R(C)>2$ such that the following holds. Let Σ_{n} be a surface embedded in $B_{R}(0)$ such that $0 \in \Sigma \subset B_{R}(0)$, $\partial \Sigma($ if non-empty $) \subset \partial B_{R}(0)$ and $\sup _{\Sigma_{n}}\left|A_{n}\right|<C$. Suppose also that $\|H\|_{L^{p}}$ is going to zero as n goes to infinity and then Σ_{n} is simply connected. Then, up to a subsequence, Σ_{n}^{1} converges C^{1} to a properly embedded minimal disk Σ^{1}.

Proof. In light of Theorem 2.9, all that needs to be showed is that Σ_{n}^{1} is a disk. This will be discussed in the next section.

3. Weak Convex Hull Properties

In this section we prove a weak convex hull property for surfaces with bounded L^{p} norm of the mean curvature.

In the next lemma we prove that if Σ is surface contained in a compact set, its second fundamental form is bounded and its boundary is contained in a certain ball then, if the L^{p} norm of the mean curvature is small enough, the surface cannot live too far outside the ball. The proof is by contradiction and uses a compactness argument. The idea is that after taking a convergent subsequence, since the limit minimal surface satisfies a convex hull property, an analogous property has to be satisfied by the elements in the sequence. Notice that we need the elements of the sequence to be contained in a compact set otherwise one could take a sequence of spheres with radii going to infinity. The L^{p} norm of the mean curvature of these spheres is going to zero, $p>2$, but they do not satisfy any weak convex hull property.
Lemma 3.12. Given $l>1, \varepsilon>0$ and $1 \leq p<\infty$ there exists an $n=n(l, \varepsilon, p)>0$ such that the following holds.

Suppose Σ is a compact surface such that $\Sigma \subset B_{l}(0),\|H\|_{L^{p}}<\frac{1}{n}$ and $\sup _{\Sigma}|A|<C$ and let $\Sigma^{1} \subset \Sigma$ be a surface such that $\partial \Sigma^{1} \subset B_{1}(0)$. Then $\Sigma^{1} \subset B_{1+\varepsilon}(0)$.
Proof. The proof is a proof by contradiction. Assume that there exists a sequence of Σ_{n} and $\Sigma_{n}^{1} \subset \Sigma_{n}$ such that $\Sigma_{n} \subset B_{l}(0),\left\|H_{n}\right\|_{L^{p}}<\frac{1}{n}, \sup _{\Sigma_{n}}\left|A_{n}\right|<C, \partial \Sigma_{n}^{1} \subset B_{1}(0)$ and $\Sigma_{n}^{1} \not \subset B_{1+\varepsilon}(0)$. Let $p_{n} \in \Sigma_{n}^{1}$ such that

$$
\begin{equation*}
l \geq\left|p_{n}\right|=\max _{q \in \Sigma_{n}^{1} \cap \mathbb{R}^{3} \backslash B_{1}(0)}|q|>1+\varepsilon . \tag{3.6}
\end{equation*}
$$

After going to a subsequence we can assume that p_{n} converges to a point $p \in$ $B_{l}(0) \backslash B_{1+\varepsilon}(0)$. Consider $\delta \leq \frac{\varepsilon}{2}$ such that the connected component of $W\left(p_{n}, \delta, \delta\right)$ that contains p_{n} consists of a graph over $D\left(p_{n}, \delta\right)$. In particular, after going to a subsequence, the graph containing p_{n} would converge C^{1} to a minimal graph which is tangent to $B_{|p|}(0)$ and contained inside its convex side. This contradicts the maximum principle and proves the theorem.

In the case when $p=\infty$ a stronger weak convex hull property that does not require a bound on the second fundamental form and can be proved without using a compactness argument.
Lemma 3.13. Fix $l>1$ and let Σ be an embedded surface such that $\Sigma \subset B_{l}(0)$, $\sup _{\Sigma}|H|<\frac{1}{2 l}$. Let $\Sigma^{\prime} \subset \Sigma$ be a compact surface such that $\partial \Sigma^{\prime} \subset B_{r}(p), r>0$, then $\Sigma^{\prime} \subset B_{r}(p)$.
Proof. If Σ^{\prime} is not contained in $B_{r}(p)$ then there exists an $R, r<R<2 l$, such that Σ^{\prime} is contained inside $B_{R}(p)$ and it is tangent to its boundary. Let $k_{1}(q)$ and $k_{2}(q)$ be the principal curvatures at q. Clearly, $k_{1}(q)$ and $k_{2}(q)$ have the same sign, and $\left|k_{i}(q)\right| \geq \frac{1}{R}>\frac{1}{2 l}$. Consequently, $|H(q)| \geq \frac{1}{2 l}$. This contradicts the assumption and proves the lemma.

4. Structure Theorem

In this section we prove the structure theorem for embedded disks with bounded L^{p} norm of the mean curvature, $p \geq 1$, and bounded L^{q} norm of the gradient of the mean curvature, $q>2$. For simplicity we are going to state the theorems when $p=\infty$ and assuming a bound on $[H]_{\alpha}$.

This is the definition of multi-valued graph:
Definition 4.14 (Multi-valued graph). Let D_{r} be the disk in the plane centered at the origin and of radius r and let \mathcal{P} be the universal cover of the punctured plane $\mathbb{C} \backslash 0$ with global coordinates (ρ, θ) so $\rho>0$ and $\theta \in \mathbb{R}$. An N-valued graph of a function u on the annulus $D_{s} \backslash D_{r}$ is a single valued graph over $\{(\rho, \theta)|r \leq \rho \leq s,|\theta| \leq N \pi\}$.

When dealing with multi-valued graphs, the surface to keep in mind is the helicoid, Fig. 1. A parametrization of the helicoid that illustrates the existence of such an N-valued graph is the following

$$
(s \sin t, s \cos t, t) \quad \text { where }(s, t) \in \mathbb{R}^{2}
$$

It is easy to see that it contains the N-valued graph ϕ defined by

$$
\phi(\rho, \theta)=\theta \quad \text { where }(\rho, \theta) \in \mathbb{R}^{+} \backslash 0 \times[-N \pi, N \pi] .
$$

This is what Colding and Minicozzi proved:
Theorem 4.15. [8, Theorem 0.4.] Given $N \in \mathbb{Z}_{+}, \omega>1$ and $\varepsilon>0$, there exist $C=C(N, \omega, \varepsilon)>0$ such that the following holds.

Let $0 \in \Sigma \subset B_{R} \subset \mathbb{R}^{3}$ be an embedded minimal disk such that $\partial \Sigma \subset \partial B_{R}$. If

$$
\sup _{\Sigma \cap B_{r_{0}}}|A|^{2} \leq 4 C^{2} r_{0}^{-2} \text { and }|A|^{2}(0)=C^{2} r_{0}^{-2}
$$

for some $0<r_{0}<R$, then there exists $\bar{R}<\frac{r_{0}}{\omega}$ and (after a rotation) an N-valued graph $\Sigma_{g} \subset \Sigma$ over $D_{\omega \bar{R}} \backslash D_{\bar{R}}$ with gradient $\leq \varepsilon$ and dist $\Sigma^{(}\left(0, \Sigma_{g}\right) \leq 4 \bar{R}$.

This is our main result:
Theorem 4.16. Given $N \in \mathbb{Z}_{+}, \omega>1, \varepsilon>0, p \geq 1$, and $T>0$ there exist $C_{1}=C_{1}(N, \omega, \varepsilon)>0, C_{2}=C_{2}(N, \omega, \varepsilon, T, p)>0$, and $l=l(N, \omega, \varepsilon, p)>1$ such that the following holds.

If $\Sigma \subset \mathbb{R}^{3}$ is an embedded disk with $0 \in \Sigma \subset B_{r_{0} l}(0), \partial \Sigma \subset \partial B_{r_{0} l}(0)$,

$$
\begin{gather*}
\sup _{\Sigma \cap B_{r_{0}}(0)}|A|^{2} \leq 4 C_{1}^{2} r_{0}^{-2} \text { and }|A|^{2}(0)=C_{1}^{2} r_{0}^{-2}, \\
\|H\|_{L^{p}} \leq r_{0}^{\frac{2-p}{p}} C_{2} \text { and } r_{0}^{1+\alpha}[H]_{\alpha} \leq T \tag{4.7}
\end{gather*}
$$

for some $r_{0}>0$, then there exists $\bar{R}<\frac{r_{0}}{\omega}$ and (after a rotation) an N-valued graph $\Sigma_{g} \subset \Sigma$ over $D_{\omega \bar{R}} \backslash D_{\bar{R}}$ with gradient $\leq \varepsilon$ and $\operatorname{dist}_{\Sigma}\left(0, \Sigma_{g}\right) \leq 4 \bar{R}$.

Proof. Theorem 4.16 will follow by rescaling after we prove it for $r_{0}=1$. Assuming $r_{0}=1$ the hypotheses become $0 \in \Sigma \subset B_{l}(0), \partial \Sigma \subset \partial B_{l}(0)$,

$$
\begin{gathered}
\sup _{\Sigma \cap B_{\bar{\imath}}(0)}|A|^{2} \leq 4 C_{1}^{2} \text { and }|A|^{2}(0)=C_{1}^{2} \\
|H| \leq C_{2} \text { and }[H]_{\alpha} \leq T
\end{gathered}
$$

We have to prove that fixed $T>0$ there exists C_{2} such that if the above is true, then Σ contains a multi-valued graph in the ball of radius 1 . The proof is by contradiction and uses a compactness argument.

Assuming that the theorem is false, let C_{1} be as big as given by Theorem 4.15, let l be as given by Theorem 2.11 and let Σ_{n} be a sequence of embedded disks satisfying the hypotheses of the statement that does not contain a multi-valued graph and with $|H|$ less than $\frac{1}{n}$. As n goes to infinity, Theorem 2.11 gives that, up to a subsequence, Σ_{n}^{1} (the connected component of $\Sigma_{n} \cap B_{1}(0)$ containing the origin) converges C^{2} with multiplicity one to a minimal disk Σ^{1}. The minimal disk containing the origin satisfies the hypotheses of Theorem 4.15 and therefore it contains a multi-valued graph. Since the limit contains a multi-valued graph, Σ_{n}^{1} must also contain a multi-valued graph for n large. This gives a contradiction and proves the theorem.

Notice that the C^{2} convergence guarantees that not only does Σ_{n} contain an N valued graph, but the properties of this graph, such as the upper bound on the gradient, are preserved.

When the mean curvature is bounded in L^{∞} we can prove the next two corollaries. This is due to the fact that in such a case we have a stronger weak convex hull property. For simplicity we will not state them in full generality as we did for Theorem 4.16. The general versions can be easily obtained using a rescaling argument.

In the next corollary we prove that if the second fundamental form of an embedded disk at a point is bigger than what it is necessary to prove existence of an N-valued graph and it is almost its maximum, and the disk satisfies (4.7) in Theorem 4.16 then the disk contains a multi-valued graph, possibly on a smaller scale.

Corollary 4.17. Given $N \in \mathbb{Z}_{+}, \omega>1, \varepsilon>0$, and $T>0$ there exist $C_{1}=$ $C_{1}(N, \omega, \varepsilon)>0, C_{2}=C_{2}(N, \omega, \varepsilon)>0$, and $l_{1}=l_{1}(N, \omega, \varepsilon)>1$ such that the following holds.

If $\Sigma \subset \mathbb{R}^{3}$ is an embedded disk with $0 \in \Sigma \subset B_{l}(0), \partial \Sigma \subset \partial B_{l}(0)$,

$$
\begin{aligned}
\sup _{\Sigma \cap B_{l}(0)}|A|^{2} & \leq 4(C+\beta)^{2} \text { and }|A|^{2}(0)=(C+\beta)^{2} \\
|H| & \leq \min \left(C_{2}, \frac{1}{2 l}\right) \text { and }[H]_{\alpha} \leq T
\end{aligned}
$$

for some $\alpha>0, l>l_{1}$ then there exists $\bar{R}<\frac{C}{\omega(C+\beta)}$ and (after a rotation) an N-valued graph $\Sigma_{g} \subset \Sigma$ over $D_{\omega \bar{R}} \backslash D_{\bar{R}}$ with gradient $\leq \varepsilon$.

Proof. Consider the rescaled surface $\Sigma^{\prime}=\frac{C+\beta}{C} \Sigma$ and let $\Sigma^{\prime \prime}$ be the connected component of $\Sigma^{\prime} \cap B_{l}(0)$ that contains the origin. Thanks to the weak convex hull property $\Sigma^{\prime \prime}$ is still a disk and since $\frac{C+\beta}{C}>1$ it satisfies the hypothesis of Theorem 4.16. It follows that there exists $\bar{R}<\frac{1}{\omega}$ and (after a rotation) an N-valued graph $\Sigma_{g} \subset \Sigma^{\prime \prime}$ over $D_{\omega \bar{R}} \backslash D_{\bar{R}}$ with gradient $\leq \varepsilon$. Thus, rescaling back proves the corollary.

In the next corollary we prove that if the second fundamental form of an embedded disk is big at a point but not necessarily almost its maximum, and the disk satisfies (4.7) in Theorem 4.16 then the disk contains a multi-valued graph, possibly around another point.

Corollary 4.18. Given $N \in \mathbb{Z}_{+}, \omega>1, \varepsilon>0$, and $T>0$ there exist $C_{1}=$ $C_{1}(N, \omega, \varepsilon)>0, C_{2}=C_{2}(N, \omega, \varepsilon)>0$, and $l_{1}=l_{1}(N, \omega, \varepsilon)>1$ such that the following holds.

If $\Sigma \subset \mathbb{R}^{3}$ is an embedded disk with $0 \in \Sigma \subset B_{l}(0), \partial \Sigma \subset \partial B_{l}(0),|A|(0)=C$,

$$
|H| \leq \min \left(C_{2}, \frac{1}{2 l}\right) \text { and }[H]_{\alpha} \leq T
$$

for some $l>l_{1}$ then there exist $p \in \Sigma, \bar{R}<\frac{1}{\omega}$, and $0<\delta<1$ such that, after a translation that takes p to the origin and possibly after a rotation, Σ contains an N-valued graph Σ_{g} over $D_{\delta \omega \bar{R}} \backslash D_{\delta \bar{R}}$ with gradient $\leq \varepsilon$.

Proof. If

$$
\sup _{\Sigma}|A|^{2} \leq 4 C^{2}
$$

then we are done, because of Theorem 4.16.
If instead $\sup _{\Sigma}|A|^{2}>4 C^{2}$ then consider the non negative function $F(x)=(l-$ $|x|)^{2}|A(x)|^{2}$. F is zero on the boundary of Σ therefore it obtains its maximum at a point in the interior. Let p be that point, i.e.

$$
F(p)=\max _{\Sigma} F(x)=(|p|-l)^{2}|A|^{2}(p) \geq F(0)>4 l^{2} C^{2}
$$

Let $2 \sigma<l-|p|$ such that

$$
4 \sigma^{2}|A|^{2}(p)=4 l^{2} C^{2}
$$

Since F achieves its maximum at p,

$$
\begin{align*}
\sup _{B_{\sigma}(p) \cap \Sigma} \sigma^{2}|A|^{2} \leq & \sup _{B_{\sigma}(p) \cap \Sigma} \sigma^{2} \frac{F(x)}{(|x|-l)^{2}} \leq \tag{4.8}\\
& \leq \frac{4 \sigma^{2}}{(|p|-l)^{2}} \sup _{B_{\sigma}(p) \cap \Sigma} F(x)=\frac{4 \sigma^{2}}{(|p|-l)^{2}} F(p)=4 \sigma^{2}|A|^{2}(p)
\end{align*}
$$

From the weak convex hull property we know that $B_{\sigma}(p) \cap \Sigma$ consists of a collection of disks. Rescale $B_{\sigma}(p) \cap \Sigma$ by a factor of $\frac{l}{\sigma} \geq 1$ and translate p to the origin. Let
$\Sigma^{\prime} \subset B_{l}(0)$ be the rescaled connected component that contains the origin. Σ^{\prime} is an embedded disk such that the following holds: $\Sigma^{\prime} \subset \mathcal{B}_{l}(0), \partial \Sigma^{\prime} \subset \partial \mathcal{B}_{l}(0)$,

$$
\left|H^{\prime}\right| \leq \frac{\sigma}{l} \min \left(C_{2}, \frac{1}{2 l}\right) \leq \min \left(C_{2}, \frac{1}{2 l}\right),\left[H^{\prime}\right]_{\alpha} \leq\left(\frac{\sigma}{l}\right)^{1+\alpha} T \leq T \text { and } \sup _{\Sigma^{\prime}} \leq 4 C^{2}=4|A|^{2}(0) .
$$

Theorem 4.16 gives that there exists $\bar{R}<\frac{1}{\omega}$ and (after a rotation) an N-valued graph $\Sigma_{g} \subset \Sigma^{\prime}$ over $D_{\omega \bar{R}} \backslash D_{\bar{R}}$ with gradient $\leq \varepsilon$. Thus, rescaling back proves the corollary.

5. Counterexamples

In this section we are going to show that in order to have a multi-valued graph form in a smooth surface, it is not enough to assume that the mean curvature is small relative to the second fundamental form, which is big. How small the mean curvature has to be must also depend on the Holder norm of the mean curvature.

Let us consider the graph of the function

$$
u(x, y)=x y \log \sqrt{x^{2}+y^{2}} .
$$

Let $r=\sqrt{x^{2}+y^{2}}$ then the following holds.
(1) $\nabla u=\left(y \log r+\frac{x^{2} y}{r^{2}}, x \log r+\frac{y^{2} x}{r^{2}}\right)$
(2) $\Delta u=4 \frac{x y}{r^{2}}$
(3) $u_{x y}=\log r+1-2 \frac{x^{2} y^{2}}{r^{4}}$

Let us take a sequence of mollification $u_{\sigma}(x, y)$ that approximates u. As σ goes to zero max $\operatorname{Hess}\left(u_{\sigma}\right)$ goes to infinity. For any $C>0$ consider the new sequence of graphs $\frac{C}{\max H e s s\left(u_{\sigma}\right)} u_{\sigma}$. This is a sequence of graphs whose mean curvature is going to zero and that is converging C^{1} to a plane, but whose maximum of the second fundamental form is C. Clearly though, a graph does not contain a multi-valued graph around any point.

References

[1] G. P. Bessa, L. P. Jorge, and G. Oliveira-Filho. Half-space thorems for minimal surfaces with bounded curvature. J. Differential Geom., 37:493-508, 2001.
[2] T. H. Colding and W. P. Minicozzi II. The Calabi-Yau conjectures for embedded surfaces. Preprint math. DG/0404197 (2004).
[3] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold V; Fixed genus. Preprint math.DG/0509647 (2005).
[4] T. H. Colding and W. P. Minicozzi II. Minimal surfaces, volume 4 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 1999. MR1683966,Zbl 0987.49025.
[5] T. H. Colding and W. P. Minicozzi II. Complete properly embedded minimal surfaces in \mathbb{R}^{3}. Duke Math. J., 107:421-426, 2001. MR1823052, Zbl 1010.49025.
[6] T. H. Colding and W. P. Minicozzi II. Embedded minimal disks: proper versus nonproper global versus local. Transactions of A.M.S., 356(1):283-289, 2003. MR2020033, Zbl 1046.53001.
[7] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold I; Estimates off the axis for disks. Annals of Math., 160:27-68, 2004. MR2119717, Zbl 1070.53031.
[8] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold II; Multi-valued graphs in disks. Annals of Math., 160:69-92, 2004. MR2119718, Zbl 1070.53032.
[9] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold III; Planar domains. Annals of Math., 160:523-572, 2004. MR2123932, Zbl 1076.53068.
[10] T. H. Colding and W. P. Minicozzi II. The space of embedded minimal surfaces of fixed genus in a 3-manifold IV; Locally simply-connected. Annals of Math., 160:573-615, 2004. MR2123933, Zbl 1076.53069.
[11] K. Ecker. A local monotonicity formula for mean curvature flow. Ann. of Math., 154(2):503-525, 2001.
[12] R. López. Area monotonicity for spacelike surfaces with constant mean curvature. J. Geom. Phys., 52(3):353-363, 2003.
[13] W. H. Meeks III, J. Pérez, and A. Ros. Minimal surfaces in \mathbb{R}^{3} of finite genus. Preprint.
[14] W. H. Meeks III and H. Rosenberg. The uniqueness of the helicoid. Annals of Math., 161:723754, 2005. MR2153399, Zbl pre02201328.
[15] W. H. Meeks III and H. Rosenberg. The minimal lamination closure theorem. Duke Math. Journal, 133(3):467-497, 2006.
[16] W. H. Meeks III and M. Weber. Bending the helicoid. Preprint, arXiv math.DG/0511387.
[17] R. Osserman. A Survey of Minimal Surfaces. Dover Publications, New York, 2nd edition, 1986. MR0852409, Zbl 0209.52901.
[18] J. Pérez and A. Ros. Properly embedded minimal surfaces with finite total curvature. In The Global Theory of Minimal Surfaces in Flat Spaces, pages 15-66. Lecture Notes in Math 1775, Springer-Verlag, 2002. G. P. Pirola, editor. MR1901613, Zbl 1028.53005.
[19] L. Simon. Lectures on geometric measure theory. In Proceedings of the Center for Mathematical Analysis, volume 3, Canberra, Australia, 1983. Australian National University. MR0756417, Zbl 546.49019.
[20] G. Tinaglia. Multi-valued graphs in embedded constant mean curvature disks. Trans. Amer. Math. Soc., 359:143-164, 2007.
[21] F. Xavier. Convex hulls of complete minimal surfaces. Math. Ann., 269:179-182, 1984. MR0759107, Zbl 0528.53009.

[^0]: Date: April 26, 2007.

