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1 Introduction.

This paper is a preliminary version. Throughout this paper, we let N denote the set of
complete, locally homogeneous1 three-manifolds; for a given N ∈ N , we let M(N) denote
the set of complete, embedded, constant mean curvature surfaces in N , and let M denote
the union

⋃
N∈N M(N). We frequently restrict our attention to the subset N1 ⊂ N of

complete, locally homogeneous three-manifolds with absolute sectional curvature at most
1 and to the related set M1 =

⋃
N∈N1

M(N). We will study the geometry and topology
of surfaces M ∈ M. For some of our results we will restrict our attention to the case
where M has finite topology2. For the sake of simplicity, we will assume that both M and
N are connected and orientable. We will call M minimal if its mean curvature is zero and
will call M a CMC surface if its mean curvature is a positive constant.

The classical examples of complete, embedded, finite topology minimal surfaces are the
plane, the helicoid, and the catenoid, which were proven to be minimal by Meusnier [33]
in 1776. In 1841 Delaunay [4] gave analytic descriptions of singly-periodic surfaces M(t),
t ∈ (0, 1], of revolution in R3 with constant mean curvature one. The surface M(1) is
the cylinder of radius 1

2 around the x1-axis and as t → 0, the surfaces M(t) converge to
a periodic chain of unit radius spheres with centers on the x1-axis. By homothetically
scaling the surface M(t) by positive constants λ, one obtains surfaces λM(t) of constant
mean curvature 1

λ . As t → 0, there exist numbers λ(t) →∞ so that the surfaces λ(t)M(t)
converge smoothly on compact sets of R3 to the catenoid obtained by revolving the curve
c(t) = (t, cosh t, 0) around the x1-axis. We will call the images of the surfaces {λM(t) | t ∈

∗This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.

1A Riemannian manifold N is locally homogeneous if given any two points p, q ∈ N , there exists an
ε > 0 such that the balls BN (p, ε), BN (q, ε) are isometric.

2M has finite topology means that it is homeomorphic to a compact surface cM minus a finite number
of points.
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(0, 1], λ ∈ (0,∞)} under rigid motions of R3, Delaunay surfaces. We refer the interested
reader to the papers of Hoffman and Meeks [7], Kapouleas [10], Traizet [38, 39] and Weber
and Wolf [40] for important methods for constructing finite topology minimal examples in
M(R3) and to Kapouleas [9] for the main method for constructing finite topology CMC
examples in M(R3).

The first goal of this paper is to extend the present theory for properly embedded,
constant mean curvature surfaces in R3 to the more general complete embedded surfaces
in M(R3), which are not necessarily properly embedded; the second goal is to generalize
the classical theory for M(R3) to the spaces M(N), where N ∈ N . Given Perelman’s [35]
recent solution of Thurston’s Geometrization Conjecture and previous deep applications
of minimal surfaces by Gabai [5, 6], Meeks and Scott [27], Meeks and Yau [31, 32] and
Scott [37] to classifying certain compact, three-manifolds and to understanding their diffeo-
morphism groups, it is reasonable to expect that the results presented in this paper might
also prove useful in classifying compact three-manifolds and in solving related topological
problems.

Our first main theorem describes a fundamental curvature estimate for compact, em-
bedded CMC disks which lie in some N ∈ N1. This curvature estimate plays a central
role in our theory of CMC surfaces in locally homogeneous three-manifolds. A remarkable
property of this estimate is that it does not depend on an upper bound of the mean cur-
vature HD of the CMC disk D. We recall that the norm of the second fundamental form
of a surface M ⊂ N is |AM | =

√
λ2

1 + λ2
2, where λ1 and λ2 are the principal curvatures of

M .

Theorem 1.1 (Curvature estimate for CMC disks) There exists a constant3 K such
that if D is an embedded, compact CMC disk in N ∈ N1, then for all p ∈ D,

|AD|(p) ≤ K
min{1,HD)} ·min{1, d(p, ∂D)}

,

where d(p, ∂D) is the intrinsic distance from p to the boundary of D.

The following definitions are helpful in describing applications of Theorem 1.1.

Definition 1.2 A complete Riemannian surface M is ε-contractible if for some ε > 0,
every metric ball BM (p, ε) is contained in the interior of a simply connected domain in
M .

Definition 1.3 An immersed surface f(Σ) in a three-manifold X with related immersion
f : Σ → X is δ-embedded if for some δ > 0, f restricted to every metric ball BΣ(p, δ) is
injective.

3The universal constant K must be at least
√

2, as can be seen from consideration of intrinsic disks
D(r) of radius r < 1 on the unit two sphere S2 ⊂ R3. We conjecture that Theorem 1.1 holds with K =

√
2.
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The next corollary is an consequence of our curvature estimate for CMC disks.

Corollary 1.4 If M ∈M1 is a CMC surface which is ε-contractible for some ε ∈ (0, 1],
then:

|AM | ≤
K

ε ·min{1,HM}
.

Furthermore, for any complete, immersed CMC surface f(Σ) in a simply connected
N ∈ N , the following statements are equivalent:

1. f(Σ) has bounded second fundamental form.

2. For some δ > 0, f(Σ) is δ-embedded and Σ has positive injectivity radius.

3. For some δ > 0, Σ is δ-contractible and f(Σ) is δ-embedded.

We will prove that the lift of each M ∈ M of finite topology to the universal cover
of its ambient space is ε-contractible for some ε > 0 (see the proof of Theorem 1.5 in
section 5). Thus, Corollary 1.4 implies our first bounded curvature theorem.

Theorem 1.5 (Bounded curvature theorem for finite topology CMC surfaces)
Finite topology CMC surfaces in M have bounded second fundamental forms.

We remind the reader that the Gauss equation implies that a constant mean curvature
surface in a locally homogeneous three-manifold has bounded second fundamental form
(an extrinsic property) if and only if it has bounded Gaussian curvature (an intrinsic
property). Hence, the above theorem could be restated as: Finite topology CMC surfaces
in M have bounded Gaussian curvature.

A recent theorem of Meeks, Perez and Ros [20] states that the closure of a finite
topology minimal surface M ∈ M in its ambient space N has the structure of a minimal
lamination of N . This lamination closure property is equivalent to the property that
M has locally bounded second fundamental form AM , in the sense that for any ball
B ⊂ N , |AM∩B| is bounded. Theorem 1.5 generalizes this locally bounded curvature
property for finite topology minimal M ∈ M to a global curvature bound when the
surface is CMC. Since there exist noncompact, simply connected minimal surfaces in
M(H3) with unbounded second fundamental form, the CMC hypothesis in Theorem 1.5
and in Theorem 1.6 below is a necessary one for obtaining the global curvature bounds
described in these theorems; here H3 is hyperbolic three-space.

Recall that a surface in a three-manifold is incompressible if its inclusion map induces
an injective map from the fundamental group of the surface to the fundamental group of
the three-manifold. Since a lift of an incompressible surface in a three-manifold to the
universal cover of the three-manifold is a simply connected surface, Theorem 1.1 implies
our next bounded curvature theorem.
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Theorem 1.6 (Bounded curvature theorem for incompressible CMC surfaces)
Let M ∈M1 be a non-spherical, incompressible CMC surface and let S ∈M1 be a CMC
sphere. Then:

|AM | ≤
K

min{1,HM}
and |AS| ≤

max{K, K
rS
}

min{1,HS}
,

where rS is the radius4 of S and K is the universal constant given in Theorem 1.1.

An important consequence of the above theorem and the two inequalities K ≥
√

2
and

√
2HM ≤ |AM | is the following: Every non-spherical, incompressible CMC surface

M ∈M1 satisfies HM ≤ K√
2
. This inequality means that the constant mean curvatures of

all non-spherical incompressible surfaces in M1, have a universal upper bound. It turns
out that the same proof that leads to the above theorem also shows that if N ∈ N1 is simply
connected and M ∈M(N) has finite topology and one end, then outside of a compact
subset of M , |AM | ≤ K

min{1,HM} , and so, HM ≤ K√
2

in this case as well. Since the homothety

of any surface M ∈ M(R3) by a small λ > 0 produces a new surface λM ∈ M(R3) with
the same topology and with the larger mean curvature HλM = HM

λ , the next corollary
to Theorem 1.6 follows from these observations; this corollary generalizes the classical
theorem of Meeks [17] who proved it with the additional hypothesis of properness of the
surface.

Corollary 1.7 If M ∈M(R3) has finite topology and one end, then M is a minimal sur-
face. In particular, there do not exist complete, embedded, noncompact, simply connected
CMC surfaces in R3.

Meeks and Rosenberg [24] have shown that surfaces M ∈M(R3) of bounded Gaussian
curvature are proper5 and that properly embedded minimal surfaces of finite topology in
R3 have bounded curvature [26]. The main result of Colding and Minicozzi in [1] states
that finite topology minimal surfaces in M(R3) are proper. Thus, these results together
with Theorem 1.5 imply surfaces of finite topology in M(R3) have bounded curvature and
are proper [26]. This properness and bounded curvature result together with previous
theorems contained in papers by Collin [2], Korevaar, Kusner, Solomon [12], Lopez and
Ros [14], Meeks [16], Meeks, Perez and Rosenberg [23], Meeks and Rosenberg [26] and
Schoen [36] lead to the deep classical result described in the next theorem.

Theorem 1.8 Suppose M ∈M(R3) has finite topology. Then:

1. M has bounded Gaussian curvature and is properly embedded in R3.
4The radius rX of a compact metric space (X, d) is minp∈X maxX d(p, ·).
5In fact, they prove that a surface in M(R3) with bounded second fundamental form has uniformly

bounded area in ambient balls of radius 1.
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2. If HM = 0, then each annular end of M is asymptotic to the end of a plane, a
catenoid or a helicoid. Furthermore, if M has one end and is simply connected, then
it is a plane or helicoid and if M has two ends or genus zero, then it is a catenoid.

3. If HM > 0, then each annular end of M is asymptotic to the end of a Delaunay
surface. Furthermore, M has at least two ends and if it has exactly two ends, then
it is a Delaunay surface.

In [29], we generalize the properness results of Meeks and Rosenberg [24] for CMC
surfaces in M(R3) to CMC surfaces in other constant curvature three-manifolds. In
particular, we prove that surfaces in M(H3) with constant mean curvature H ≥ 1 are
proper if they have locally bounded second fundamental form. On the other hand, in
[29] we prove that for any H ∈ [0, 1) there exist nonproper, simply connected surfaces in
M(H3) of constant mean curvature H. These examples show that the properness result
described in item 1 of Theorem 1.9 below is sharp. The other statements in this theorem
are consequences of Theorem 1.5 and previous results contained in the papers of Collin,
Hauswirth and Rosenberg [3], Hsiang [8] and Korevaar, Kusner, Meeks and Solomon [11].

Theorem 1.9 Suppose M ∈M(H3) has finite topology. Then:

1. M has bounded Gaussian curvature and is properly embedded if HM ≥ 1.

2. If HM = 1, then each annular end of M is asymptotic to a horosphere. Furthermore,
if M has one end, then M is a horosphere and if M has two ends, then it is a catenoid
cousin6.

3. If HM > 1, then each annular end of M is asymptotic to the end of a Hsiang
surface7. Furthermore, M has at least two ends and if M has two ends, then it is
Hsiang surface.

Recently, Meeks, Perez and Ros [20] proved the following result in the minimal setting,
as well as some related results for CMC surfaces in M. Their theorem answered in the
negative the long standing question asking if there exist noncompact minimal M ∈M(S3)
with finite topology, where S3 is the unit three-sphere in R4. This question is partly
motivated by work of Lawson [13] who proved that for every nonnegative integer k, there
exists a compact, embedded minimal surface of genus k in S3.

6The catenoid cousins in H3 are surfaces of revolution which arise from the images of the universal
covers of catenoids in R via the Lawson correspondence.

7The Hsiang surfaces in H3 are CMC surfaces of revolution similar in nature to the Delaunay surfaces
in R3 and their definition appears in [8]. The catenoid cousins which are mentioned in the previous item
are limits of appropriate choices of Hsiang’s examples with mean curvatures converging to one.
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Theorem 1.10 Suppose that N ∈ N has scalar curvature SN and M ∈ M(N) satisfies
3H2

M ≥ −SN . If M is not totally geodesic with N flat, then the following hold:

1. If M has finite topology, then it is properly embedded in N . In particular, if N is
compact and M has finite topology, then M is compact.

2. If M is a CMC surface with finite topology, then it has uniformly bounded area in
balls of radius one in N .

3. If N is compact and M has finite genus with a countable number of ends, then M
must be compact. In particular, finite genus surfaces in M(S3) with a countable
number of ends are compact.

By the classification of homogeneous three-manifolds of nonnegative scalar curva-
ture [34], if N ∈ N has nonnegative scalar curvature and is not flat, then N is compact
or it is finitely covered by the product S2(SN )× R; here S2(t) denotes the sphere of con-
stant Gaussian curvature t. This classification result, Theorem 1.10 and results of Meeks
and Rosenberg in [25] imply that if N has nonnegative scalar curvature, is not flat and
M ∈M(N) has finite topology, then M has uniformly bounded area in balls of radius one
in N .

In section 6, we generalize many of the previously stated results to the larger set
of complete, embedded CMC surfaces in general Riemannian three-manifolds. We list
several of these results in the next theorem and refer the reader to the section 6 for other
related theorems.

Theorem 1.11 Let X be a Riemannian three-manifold. Then:

1. Suppose X is homogeneously regular and M is a complete, embedded CMC surface
in X. Then M has bounded second fundamental form if and only if M has positive
injectivity radius.

2. Let SX denote the infimum of the scalar curvature of X and let M be a complete
embedded CMC surface in X with finite topology. Then:

(a) M has locally bounded second fundamental form in X.

(b) If 3H2
M > −SX , then M is properly embedded in X. In particular, if 3H2

M >
−SX and X is compact, then M is compact.

(c) If X is the three-sphere equipped with a metric of nonnegative scalar curvature,
then any complete, embedded CMC surface in X of finite genus and a countable
number of ends is compact.
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Motivated by our properness results for CMC surfaces of finite topology in M(R3)
and the similar recent properness result in the minimal case by Colding and Minicozzi [1],
it is natural to ask whether every M ∈M(R3) is properly embedded. In the minimal case
this classical question is referred to as the Calabi-Yau problem for complete, embedded
minimal surfaces in R3. In regards to this question, we prove in [29] that there exist
disconnected, complete, embedded CMC surfaces in R3 which are proper in an open slab
but not proper in the entire space. The first author has conjectured that there exist
connected, non-proper minimal surfaces in M(R3) (see Conjecture 15.23 in [18]).

This paper is organized as follows. In section 2, we define the notion of a CMC
lamination. We prove here our curvature estimate for CMC Disks (Theorem 1.1) in the
special case that the related blow-up points in its proof produce limit surfaces which are
properly embedded, minimal planar domains in R3. In section 4, we resolve the other case
where the blow-up points produce limit surfaces which are strongly Alexandrov embed-
ded8, CMC planar domains in R3. The proof of this improved curvature estimate depends
on our Dynamics Theorem for CMC surfaces in R3, which is proved in section 3 and which
represents a fundamental new result in classical surface theory. In section 5, we prove that
the lifts of finite topology surfaces in M to the universal covers of their ambient manifolds
are ε-contractible, which implies Theorem 1.5. In section 6, we prove Theorem 1.11 and
the related theorem Theorem 1.10 and obtain some of our deep classification results as
applications of these theorems.

We refer the reader to the survey [15] by the first author for an in depth discussion
of recent theoretical advances and open problems in the theory of complete, embedded
CMC surfaces in locally homogenous three-manifolds. Also, the reader can find in [18]
a comprehensive survey of recent advances and open problems in the classical theory of
complete, embedded minimal surfaces in R3.
Acknowledgements: The authors would like to thank Uwe Abresch, Tobias Colding,
Bill Minicozzi and Joaquin Perez for their careful reading of a preliminary version of this
manuscript and for their numerous and detailed suggestions for improving it.

2 A curvature estimate for CMC disks.

In this section we prove a general result concerning the norm of the second fundamental
form of embedded CMC disks in a fixed N ∈ N . In order to help understand these results
we make the following definitions.

Definition 2.1 Let M be a complete, embedded surface in a three-manifold N . A point
p ∈ N is a limit point of M if there exist points {pn}n ⊂ M which diverge as n → ∞ to
infinity on M with respect to the intrinsic Riemannian topology on M but converge in N

8See Definition 3.1.
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to p as n → ∞. Let L(M) denote the set of all limit points of M in N . In particular,
L(M) is a closed subset of N and M −M ⊂ L(M), where M denotes the closure of M .

Definition 2.2 A CMC lamination L of a three-manifold N is a collection of immersed
surfaces {Lα}α∈I of constant positive mean curvature H called leaves of L satisfying the
following properties.

1. L =
⋃

α∈I{Lα} is a closed subset of N .

2. For each leaf Lα of L, considered to be the zero section Zα of its tangent bundle
TLα, there exists a one-sided neighborhood N(Zα) ⊂ TLα of Zα such that:

(a) the exponential map exp: N(Zα) → N is a submersion;

(b) with respect to the pull-back metric on N(Zα), Zα ⊂ ∂N(Zα) is mean convex;

(c) exp−1(L) ∩ Zα is a lamination of N(Zα).

The reader not familiar with the subject of minimal or CMC laminations should think
about a geodesic on a Riemannian surface. If the geodesic is complete and embedded (a
one-to-one immersion), then its closure is a geodesic lamination of the surface. When this
geodesic has no accumulation points, then it is proper. Otherwise, there pass complete
embedded geodesics through the accumulation points forming the leaves of the geodesic
lamination of the surface. The similar result is true for a complete, embedded CMC
surface of locally bounded second fundamental form (curvature is bounded in compact
extrinsic balls) in a Riemannian three-manifold, i.e. the closure of a complete embedded
CMC surface of locally bounded second fundamental form has the structure of a CMC
lamination. The proof of this elementary fact is straightforward, e.g. see [26] for the proof
in the minimal case.

The main goal of this section is to prove the following special case of Theorem 1.1.

Lemma 2.3 Let N ∈ N . There exists a constant K depending on N such that if D is an
embedded, compact CMC disk in N with HD = 1, then for all p ∈ D,

|AD|(p) ≤ K

min{1, d(p, ∂D)}
,

where d(p, ∂D) is the distance from p to the boundary of D.

Proof. Arguing by contradiction, suppose that Theorem 2.3 fails. In this case, there exists
an N ∈ N , a sequence of compact embedded CMC disks D(n) ⊂ N with mean curvature
1, and points qn ∈ D(n) such that the one has the following estimate:

|AD(n)|(qn)
min{1, d(qn, ∂D(n))}

≥ n.
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Since the disks D(n) are simply connected, we may lift these disks to the universal cover
Ñ of N , and work in Ñ instead of N . Hence, we will assume that N is simply connected.
Since N is now assumed to be simply connected and has sectional curvature bounded from
above, N has positive injectivity radius δ for some δ > 0.

By the local picture theorem on the scale of curvature (Theorem 7.1 and Remark
7.2 in [20]), after replacing by a subsequence, there exist positive numbers εn → 0 and
λn → ∞ such that the component Mn of M

⋂
BN (pn, εn) containing pn satisfies the

following properties:

1. After composing by fixed isometry in : N → N , pn = p for some p ∈ N .

2. Mn is compact with ∂Mn ⊂ ∂BN (p, εn).

3. limn→∞ λnεn = ∞.

4. The scaled surfaces M(n) = λnMn ⊂ λnBN (p, εn) have second fundamental forms
satisfying:

(a) |AM(n)| ≤ 1 + 1
n .

(b) |AM(n)|(p) = 1.

5. After picking an orthonormal basis {e1, e2, e3} of TpN , consider TpN = R3. Assume
that the restriction of the exponential map exp: TpN = R3 → N to the ball B(εn) ⊂
R3, which maps onto BN (p, εn), is a diffeomorphism. The surfaces M(n) in the
expanding balls λnB(p, εn), when considered to be balls of radius λnεn centered at
the origin in R3, converge smoothly with multiplicity one on compact subsets of R3

to a properly embedded minimal surface M∞ ⊂ R3 passing through the origin ~0 and
|AM∞ | ≤ 1 with |AM∞ |(~0) = 1.

Since the convergence of the M(n) ⊂ λnN to M∞ ⊂ R3 is of multiplicity one, M∞ is
properly embedded and the M(n) are planar domains, then a standard lifting argument
of curves on M∞ to curves on the approximating M(n), implies M∞ is a planar domain.
By Theorem 1 in [22], M∞ is a catenoid, M∞ is a properly embedded planar domain with
two limit ends or M∞ is a helicoid. The remainder of the proof will be a case by case
study which will show that each of these three possibilities cannot occur.

Assertion 2.4 M∞ is not a catenoid.

Proof. After an appropriate choice of an orthonormal basis {e1, e2, e3} of tangent vectors
to N at p, we obtain induced coordinates in R3 such that M∞ is a vertical catenoid with
waist circle α of radius 1√

2
contained in the (x1, x2)-plane P . Now consider P to be the

related plane in the tangent space Tp(λnN) and let Pn be the image of P ∩ λnB(4εn) in
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λnN . Note Pn ∩ M(n) ⊂ λnN contains a sequence of simple closed curves αn ⊂ M(n)
which converge smoothly to α in the related coordinates. Let Dn ⊂ λnD(n) ⊂ λnN denote
the compact disks with αn = ∂Dn. The curve α bounds a disk E ⊂ P and the curves αn

bound nearby disks En ⊂ Pn ⊂ λnN .
Let Sn be the 2-chain Dn∪En, where Dn is oriented by its mean curvature vector and

En is oriented so that ∂Sn = 0. In other words, En is oriented so that Sn is an integer
2-cycle. Since λnN is simply connected, Sn is the boundary of some integer 3-chain
Rn ⊂ λnN , which would be an oriented, connected, piecewise-smooth compact region in
λnN if Sn were an embedded sphere.

Let e3 ∈ R3 = Tp(λnN) be the unit tangent vector pointed along the positive x3-axis
in R3 and let Yn be a killing field in λnN with Yn(p) = e3; choose the Yn so that they
converge to the parallel vector field E3 on R3 as n →∞. From the first variation of area
of the flow of Yn applied to Sn, we have:

0 = δYn(|Sn|) =
∫

Sn

div(Y T
n ) +

∫
Sn

div(Y N
n ), (1)

where Y T
n , Y N

n are the tangential and normal projections of Yn, respectively.
Applying the divergence theorem to the region Rn, we obtain

0 = δYn(|Rn|) =
∫

Rn

DIV(Yn) =
∫

Sn

Yn · ν, (2)

where ν is the oriented unit normal to ∂Rn and · denotes the Riemannian inner product.
We now calculate that the second term of equation 1 is zero, using equation 2, the

fact that Yn is killing and the fact that the mean curvature HDn = 1
λn

; the function HEn

denotes the mean curvature function of the ”horizontal” disk En.∫
Sn

div(Y N
n ) = 2

(
1
λn

∫
Dn

Yn · ν +
∫

En

HEnYn · ν
)

= 2
(

1
λn

∫
Sn

Yn · ν +
∫

En

(HEn −
1
λn

)Yn · ν
)

= 2
∫

En

(HEn −
1
λn

)Yn · ν

Since the function (HEn − 1
λn

)Y · ν is converging to zero on En and λn → ∞ as n → ∞
and the area of En is uniformly bounded,

lim
n→∞

∫
Sn

div(Y N
n ) = 0. (3)

Applying the divergence theorem again, we calculate:∫
Sn

div(Y T
n ) =

∫
Dn

div(Y T
n ) +

∫
En

div(Y T
n ) =

∫
∂Dn

Y T
Dn
· η∂Dn +

∫
∂En

Y T
En
· η∂En .
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Since Yn is becoming orthogonal to En and of unit length as n →∞ then limn→∞
∫
∂En

Y T
En
·

η∂En = 0. Since portions of Dn near the boundary ∂Dn are converging C1 to half of the
catenoid M∞ with boundary α, Y T

Dn
restricted to ∂Dn is converging to the parallel vector

field E3 on ∂Dn. Hence,

lim
n→∞

∫
Sn

div(Y T
n ) = lim

n→∞

∫
∂Dn

Y T
Dn
· η∂Dn = ±length(α) = ±

√
2π. (4)

Taking the limit as n →∞ of the equation 1 and plugging in the values from equations 3
and 4, we obtain:

0 = lim
n→∞

δYn(|Sn|) = lim
n→∞

[∫
Sn

div(Y T
n ) +

∫
Sn

div(Y N
n )

]
= ±

√
2π + 0 = ±

√
2π, (5)

which produces a contradiction. This completes the proof of Assertion 2.4. 2

Assertion 2.5 M∞ does not have two limit ends.

Proof. All that was really used in the proof of Assertion 2.4 to obtain a contradiction was
the existence of a simple closed curve α ⊂ M∞ with nonzero vertical flux component and
such that α bounds a horizontal disk in R3. By Theorem**** in [21], after a rotation,
such a curve α always exists on a two limit end, genus zero, properly embedded minimal
surface M∞ ⊂ R3. Thus, the arguments used to prove Assertion 2.4 also prove that M∞
cannot have two limit ends. 2

To complete the proof of Lemma 2.3, it remains to prove that the possibility M∞ is
a helicoid also does not occur. The proof that this case does not happen is similar to
the proofs of the two previous assertions. However, to construct the desired simple closed
curves αn with nonzero flux, we will need to consider certain scales of viewing the disks
Dn near p defined in the proof of Assertion 2.4, which are larger that the scale of curvature
but still arbitrarily small. 2

Assertion 2.6 M∞ is not a helicoid

3 The Dynamics Theorem for CMC surfaces of bounded
curvature.

A consequence of the proof of Lemma 2.3 in the previous section is that if D is a compact
embedded CMC disk in an N ∈ N1, then:

|AD|(p) ≤ C · max{1,HD}
min{1,HD)} ·min{1, d(p, ∂D)}

,
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where HD is the mean curvature of D. The main goal of this section will be to remove the
dependence of this curvature estimate on max{1,HD}; see the statement of Theorem 1.1.

In order to prove this better estimate we will need an important dynamics type result
for the space T (M) of certain translational limits of a properly embedded, CMC surface
M ⊂ R3 of bounded curvature. All of these limit surfaces satisfy the almost-embedded
property of Σ described in the next definition.

Definition 3.1 Suppose W is a complete flat three-manifold with boundary ∂W = Σ
together with an isometric immersion f : W → R3 such that f restricted to the interior
of W is injective. We call the image surface f(Σ) a strongly Alexandrov embedded CMC
surface if f(Σ) is a CMC surface and W lies on the mean convex side of Σ.

We note that, by elementary separation properties, any properly embedded CMC
surface in R3 is always strongly Alexandrov embedded. Furthermore, by item 1 of The-
orem 3.3 below, any strongly Alexandrov embedded CMC surface in R3 with bounded
Gaussian curvature is properly immersed in R3.

Definition 3.2 Suppose M ⊂ R3 is a strongly Alexandrov embedded CMC surface with
bounded second fundamental form.

1. T (M) is the set of all connected, strongly Alexandrov embedded CMC surfaces
Σ ⊂ R3, which are limits of compact domains ∆n ⊂ (M−pn) with limn→∞ |pn| = ∞,
~0 ∈ Σ, and such that the convergence is of class C2 on compact subsets of R3.
Actually we consider the immersed surfaces in T (M) to be pointed in the sense that
if such a surface is not embedded at the origin, then we consider the surface to
represent two different surfaces in T (M) depending on a choice of one of the two
preimages of the origin.

2. ∆ ⊂ T (M) is called T -invariant, if Σ ∈ ∆ implies T (Σ) ⊂ ∆.

3. A nonempty subset ∆ ⊂ T (M) is called a minimal T -invariant set, if it is T -
invariant and contains no smaller T -invariant subsets; it turns out that a nonempty
T -invariant set ∆ ⊂ T (M) is a minimal T -invariant set if and only if whenever
Σ ∈ ∆, then T (Σ) = ∆.

4. If Σ ∈ T (M) and Σ lies in a minimal T -invariant subset of T (M), then Σ is called
a minimal element of T (M).

With these definitions in hand, we now state our Dynamics Theorem from [28]; in the
statement of this theorem, B(R) denotes the open ball of radius R centered at the origin
in R3.
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Theorem 3.3 (Dynamics Theorem for CMC surfaces in R3) Let M be a connected,
noncompact, strongly Alexandrov embedded CMC surface with bounded second fundamen-
tal form. Then:

1. M is properly immersed in R3. More generally, Area(M ∩ B(R)) ≤ cR3, for some
constant c > 0.

2. T (M) is nonempty.

3. T (M) has a natural metric dT (M) induced by the Hausdorff distance between compact
subsets of R3. With respect to dT (M), T (M) is a compact metric space.

4. Every nonempty T -invariant subset of T (M) contains minimal elements of T (M).
In particular, since T (M) is itself a nonempty T -invariant set, T (M) always con-
tains minimal elements.

5. A minimal T -invariant set in T (M) is a compact connected subspace of T (M).

6. If M has finite genus, then every minimal element of T (M) is a Delaunay surface
passing through the origin.

Proof. Corollary 5.2 in [29] implies that the surfaces Σ ∈ T (M) have uniform local area
estimates, which gives item 1. The next five items in the above theorem follow from
modifications in the proof of the more delicate Dynamics Theorem for properly embedded
minimal surfaces in R3 of Meeks, Perez and Ros [20]; we will now indicate briefly how
items 2 and 3 are proved.

The uniform local area and local curvature estimates for M together with standard
compactness arguments imply that for any divergent sequence of points {pn}n in M ,
a subsequence of the translated surfaces M − pn converges on compact subsets of R3

to a strongly Alexandrov embedded CMC surface M∞ in R3. The component M∞ of
M∞ passing through the origin is a surface in T (M), which proves item 2 (if M∞ is
not embedded at the origin, then one needs to make a choice of one of the two pointed
components).

Suppose that Σ ∈ T (M) is embedded at the origin. In this case there exists an ε > 0
depending on the bound of the second fundamental form of M , so that there exists a disk
DΣ ⊂ (Σ∩B(ε)) with ∂DΣ ⊂ ∂B(ε),~0 ∈ DΣ such that DΣ is a graph with gradient at most
1 over its projection to the tangent plane TDΣ

(~0) ⊂ R3. Given another such Σ′ ∈ T (M),
define

dT (M)(Σ,Σ′) = dH(DΣ, DΣ′),

where dH is the Hausdorff distance. If ~0 is not a point where Σ is embedded, then consider
Σ to represent two different pointed surfaces in T (M) and one chooses DΣ to be the disks
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in Σ ∩ B(ε) containing the chosen point. With this modification, the above metric is
well-defined.

Since the surfaces in T (M) have uniform local area and curvature estimates, standard
compactness arguments prove T (M) is sequentially compact, and so, T (M) is a compact
metric space with respect to the metric dT (M). This completes the proof of item 3.

Now we prove item 4 by an application of Zorn’s lemma. Suppose ∆ ⊂ T (M) is a
nonempty T -invariant set and Σ ∈ ∆. Using the definition of T -invariance, it is elementary
to prove that T (Σ) is a T -invariant set in ∆ which is a closed subset of T (M); essentially,
this is because the set of limit points of a set in a topological space forms a closed set.
Consider the set Λ of all nonempty T -invariant subsets of ∆ which are closed sets in
T , and as we just observed, this collection is nonempty. Observe that Λ has a partial
ordering induced by inclusion. We now check that any linearly ordered set in Λ has a
lower bound, and then apply Zorn’s Lemma to obtain a minimal element of Λ. To do
this suppose Λ′ ⊂ Λ is a nonempty linearly ordered subset and we will prove that the
intersection

⋂
∆′∈Λ′ ∆

′ is an element of Λ. In our case, this means that we only need to
prove that such an intersection is nonempty, because the intersection of closed (resp. T -
invariant) sets is closed (resp. T -invariant). This nonempty intersection property follows
since each element of Λ is a closed subset of the compact metric space T (M), and the
finite intersection property holds for the collection Λ. By Zorn’s lemma, ∆ contains a
smallest, nonempty, closed T -invariant subset Ω. If Ω′ is a nonempty T -invariant subset
of Ω, then there exists Σ′ ∈ Ω′. By our previous arguments, T (Σ′) ⊂ Ω′ ⊂ Ω is a nonempty
T -invariant set in ∆ which is a closed set in T (M). Hence, by the minimality property of
Ω in Λ, we have T (Σ′) = Ω′ = Ω. Thus, Ω is a nonempty, minimal T -invariant subset of
∆, which proves item 4.

Let ∆ ⊂ T (M) be a nonempty, minimal T -invariant set and let Σ ∈ ∆. Since ∆ is
minimal and T (Σ) is T -invariant, T (Σ) = ∆. Since T (Σ) is closed and T (M) is compact,
then ∆ is compact. Note that whenever W ∈ T (M), then the path connected set of
translates Trans(W ) = {W − q | q ∈ W} is a subset of T (Σ). Since ∆ is a minimal set,
Σ ∈ ∆ implies T (Σ) = ∆, which means Σ ∈ T (Σ). Hence, Trans(Σ) ⊂ T (Σ) is a path
connected subset of T (Σ). By definition of T (Σ) and the metric space structure on T (M),
the closure of Trans(Σ) in T (M) is precisely T (Σ). Since the closure of a path connected
set in a topological space is always connected, we conclude that ∆ = T (Σ) is a connected
subspace of T (M), which completes the proof of item 5.

Assume now that M has finite genus and we will prove that item 6 of the theorem
holds. Since M has finite genus, then the surfaces in T (M) all have genus zero.

Assertion 3.4 If Σ ∈ T (M), then T (Σ) contains an element Σ′ with two ends, i.e. an
annulus.

Proof. Since for any sufficiently small δ > 0, the δ-parallel surface to Σ on its mean convex
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side is properly embedded, we do not lose any generality in the subsequent arguments by
assuming Σ is actually properly embedded. Assume now that Σ is properly embedded.

For R > 0, let Σ(R) be the component of Σ ∩ B(R) with ~0 ∈ Σ(R). We can also
assume that ∂B(R) intersects Σ(R) transversely for the values of R we are considering.
Thus, Σ(R) is a smooth, compact subdomain of Σ. We will let Σ̂(R) be the union of Σ(R)
with the disk components of Σ−Σ(R). In other words, if a component γ ⊂ ∂Σ(R) bounds
a disk Dγ ⊂ Σ, then we glue this disk to Σ(R) in the making of Σ̂(R) (see figure 1).

By the definition of the surfaces Σ(R) and the fact that Σ is a planar domain, one
easily deduces that for R > R′ > 0, the number of components of Σ̂(R) − Σ̂(R′) is equal
to the number of boundary curves of Σ̂(R′). Furthermore, each of these components has
exactly one boundary component in ∂Σ̂(R′), at least one boundary curve in ∂Σ̂(R) and
is an annulus precisely when it has one boundary component in ∂Σ̂(R). Hence, if no
component of Σ̂(R) − Σ̂(R′) is an annulus, then the number of boundary components of
Σ̂(R) is at least twice the number of boundary components of Σ̂(R′).

Claim 3.5 For each n ∈ N, there exists k ∈ N such that Xk := Σ̂(kn+n)−Σ̂(kn) contains
a component An which is an annulus.

Proof. Arguing by contradiction, fix an n ∈ N such that for any k ∈ N, Xk does not
contain an annulus. Let ck be the number of components of Xk. By the discussion before
the claim, it follows that ck ≥ 2ck−1 and so ck ≥ 2k. Notice that there exists an ε > 0 such
that for any k, the area of each component of Xk in the ball of radius kn + n is bounded
below by ε. Therefore, the area of Xk ∩ B(kn + n) is greater than 2kε. This contradicts
the cubic area growth of Σ given in item 1 of the theorem, which proves the claim. 2

For each n ∈ N, let k ∈ N be the integer and An be the annulus given in the above claim.
Fix a point pn ∈ An ∩ ∂B(nk + 1

2n) and let En = An − pn. After choosing a subsequence,
there exist compact subsets of En which converge to a planar domain E∞ ∈ T (Σ). We
claim that E∞ is an annulus, which will complete the proof of Assertion 3.4. Arguing
by contraction, suppose that E∞ does not have two ends. By a theorem of Meeks [16],
E∞ is not simply connected9 and so, E∞ is a planar domain with at least three ends. In
particular, for some R large, ∂Ê∞(R) = {α1, α2, . . . , αm} where m ≥ 3.

We will use the following observation which follows from the Alexandrov reflection
principle and the height estimate10 for CMC graphs [16]: if D is an embedded compact
domain in R3 with constant mean curvature H and ∂D ⊂ ∂B(r), then D ⊂ B(r + 2

H ).
This observation implies that Ê∞(R) ⊂ E∞(R + 4

H ). Without loss of generality, we may

9Actually this theorem in [16] is proved for properly embedded CMC surfaces but his proof easily
generalizes to the case when the surfaces is properly immersed and strongly Alexandrov embedded.

10If u is a graph in R3 with zero boundary values over a domain in R2 which has nonzero constant mean
curvature H, then sup |u| ≤ 1

H
.
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assume that there exist components ∆n of En ∩ B(R + 4
H ) which converge smoothly to

E∞(R+ 4
H ) and a collection of curves Λn = {α1(n), α2(n), . . . , αm(n)} ⊂ ∆n∩∂B(R) such

that αi(n) converges to αi for i = 1, . . . ,m. Notice that for n large, the curves in Λn are the
boundary of the compact domain Ên(R) ⊂ En. Since En is an annulus and m ≥ 3, after
possibly reindexing, α1(n) bounds a disk on En, and this disk is contained in B(R + 3

H ).
However, each αi is part of the boundary of a connected domain Ti ⊂ E∞(R) such that
∂Ti − αi is nonempty and contained in ∂B(R + 4

H ). This contradicts the assumption that
∆n converges smoothly to E∞(R + 4

H ). This contradiction proves Assertion 2.5. 2

Suppose now that Σ is a minimal element of T (M) and Σ′ ∈ T (Σ) is the annulus
given in Assertion 3.4. To complete the proof of Theorem 3.3, we recall that Meeks [16]
proved that a properly embedded CMC annulus in R3 is contained in a fixed size regular
neighborhood of some line in R3; the same proof shows that the strongly Alexandrov
embedded surface Σ′ which is properly immersed in R3 must be cylindrically bounded as
well. Finally, the results of Korevaar, Kusner and Solomon [12] imply Σ′ is a surface of
revolution, which means Σ′ is a Delaunay surface. In particular, the minimal set T (Σ)
contains the Delaunay surface Σ′. Since T (Σ′) clearly consists only of certain translates
of Σ′, then the definition of minimality of T (Σ) implies that T (Σ′) = T (Σ) and so every
element of T (Σ) is a translate of the Delaunay surface Σ′. In particular, Σ is a Delaunay
surface, which completes the proof of Theorem 3.3. 2

Remark 3.6 The proof of the Dynamics Theorem for CMC surfaces easily generalizes
to show that if a CMC surface M ∈ M(R3) has bounded curvature and there exist
points pn ∈ M and numbers Rn > 0, such that Rn →∞ as n →∞ and the intrinsic balls
BM (pn, Rn) have uniformly bounded genus, then T (M) always contains a minimal element
which is a Delaunay surface. For example, if the genus of M ∩ B(R) grows sublinearly in
R, then T (M) always contains a Delaunay surface. In [30], we apply these observations to
prove that if M ∈M(R3) has bounded curvature and, with respect to some point p ∈ M ,
the genus of BM (p, R) grows sublinearly in terms of R, then every intrinsic isometry of M
extends to an isometry of R3. In particular, if M ∈ M(R3) has bounded curvature and
finite genus, then its isometry group is induced by ambient isometries.

The first author conjectures that the helicoid is the only surface inM(R3) which admits
more that one non-congruent, isometric, constant mean curvature immersion into R3 with
the same constant mean curvature. Since intrinsic isometries of the helicoid extend to
ambient isometrics, the second author also makes the following isometry conjecture.

Conjecture 3.7 (Isometry Conjecture) An intrinsic isometry of a surface in M(R3)
extends to an ambient isometry of R3.
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4 The proof of the improved curvature estimate for CMC

disks.

We now complete the proof of Theorem 1.1 which gives our mains curvature estimate for
an embedded, compact CMC disk D in a locally homogeneous three-manifold N ∈ N1.
Since D is simply connected, after lifting D to the universal cover of N , we may assume
that N is simply connected. Suppose now that the following curvature estimate fails to
hold for such disks in three-manifolds in N1.

|AD|(p) ≤ K
min{1,HD)} ·min{1, d(p, ∂D)}

,

where d(p, ∂D) is the intrinsic distance from p to the boundary of D and K is a universal
constant.

A similar blow-up argument as the one appearing in the proof of Lemma 2.3 produces a
limit surface M∞ ⊂ R3 from arising compact domains on certain embedded CMC disks Dn

in three-manifolds in Nn ∈ N . The surface M∞ is either a properly immersed embedded
minimal planar domain with bounded second fundamental form or a properly, strongly
Alexandrov embedded, CMC planar domain in R3 with bounded second fundamental
form. By our previous arguments in the proof of Lemma 2.3, we may assume that M∞
is a CMC surface. By Theorem 3.3, T (M∞) contains a Delaunay surface, which means
that by being more careful in choosing the original blow-up points, we may assume that
M∞ is itself a Delaunay surface. A minimizing geodesic circle α of a Delaunay surface
has nonzero CMC flux. This CMC flux arises from the difference of the flux of a parallel
unit length Killing field V (pointed along the axis direction of M∞) across α with 2HM∞

times the area of the planar disk Eα bounded by α. More precisely, if L(α) denotes the
length of α, then the CMC flux of M∞ is:

L(α)− 2HM∞ ·Area(Eα) 6= 0.

.
As in the previous case of Lemma 2.3 where M∞ was minimal (especially see Asser-

tion 2.4), the nonzero property of the flux of M∞ shows that the related approximating
curves αn ⊂ λnDn ⊂ λnNn bounding related disks Eαn ⊂ Nn have CMC flux bounded
away from zero for n sufficiently large for the related Killing fields Yn in λnNn. Since the
CMC flux of αn must be zero, Theorem 1.1 now follows.
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5 The proof of the bounded curvature theorem for finite
topology CMC surfaces.

In this section we will prove Theorem 1.5, which states that any CMC surface in M
with finite topology has bounded second fundamental form. It suffices to prove that if
M ∈M(N) has an annular end F , then the second fundamental form of F is bounded. If
the inclusion map i : F → N induces an isomorphism of the fundamental groups, then a
lift11 F̃ of F to the universal cover Ñ of N is simply connected and so, as a consequence of
our curvature estimate for CMC disks, F̃ , and hence F , has bounded second fundamental
form. Thus, we now assume that the induced map i∗ : π1(F ) = Z → π1(N) has a kernel.
By the loop theorem [31], it follows that {e} = i∗(π1(F )) ⊂ π1(N). Thus, if π : Ñ → N
is the universal cover of N , then the lifting lemma implies i : F → N can be factored as
i = π ◦ ĩ. Hence, to complete the proof of the Theorem 1.5, it suffices to prove the next
lemma.

Lemma 5.1 Let N ∈ N be simply connected and let F ⊂ N be a smooth, complete,
embedded CMC annulus with boundary a connected compact curve. Then the second
fundamental form of F is bounded.

Proof. As in the proof of Lemma 2.3, there exists a sequence of blow-up points pn ∈ F
that diverge in F as n →∞ and that produces a limit M∞ which is a properly embedded,
minimal planar domain in R3. As in the proof of Lemma 2.3 , M∞ is a vertical catenoid,
a properly embedded, genus-zero minimal surface with two limit ends or a helicoid.

Assertion 5.2 M∞ is not a vertical catenoid.

Proof. Assume that M∞ is a vertical catenoid and we will obtain a contradiction. We will
follow the proofs of Lemma 2.3 and Assertion 2.4 with some minor adaptations.

Our perspective on producing the limit catenoid M∞ is as follows. Let pn, εn, λn be
as in the proof of Lemma 2.3. Choose isometries in : N → N with in(pn) = p, where p
is a base point for N . Define Fn = in(F ) and let Mn ⊂ BN (p, εn) ∩ Fn be the compact
component with p ∈ Mn. As in the Lemma 2.3, after choosing an orthonormal basis for
TpN , we view Mn to lie in the ball B(εn) ⊂ R3 centered at the origin. Then, in this
setting the surfaces M(n) = λnMn ⊂ λnFn = F (n) ⊂ λnN converge in the R3 coordinates
to a vertical catenoid M∞ in R3. Note that we consider the surfaces F (n) to lie in the
homogeneous three-manifolds λnN . After choosing a subsequence, we may assume that
εn is decreasing in the index n and that λn ≥ nλn. Thus, for n large, the component
Σ(n) of Fn∩B(in(pn+1), εn+1) passing through the point in(pn+1) is closely approximated
by a catenoid of much smaller scale than the almost catenoid Mn ⊂ B(p, εn). By the

11A lift eF of F to the universal cover π : eN → N is a path component of π−1(F ) in eN .
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proof of Lemma 2.3, we may assume that the “waist” circles12 of these almost catenoids,
when considered to lie in λnN , do not bound disks in F (n); hence, these waist circles are
homotopically nontrivial on F (n) and bound as annulus A(n) ⊂ F (n). Let En and En+1

denote the corresponding “planar” disks in λnN bounding the “waist” circles of these
almost catenoids and orient them so that the two chain Sn = A(n)∪En∪En+1 is a 2-cycle
bounding an oriented 3-chain Rn in λnN .

By Lemma *** in [19], there exist killing fields Yn on λnN satisfying the following
properties.

1. limn→∞ Yn is a parallel killing field on R3, where we view limn→∞ λnN = R3 and p
as the origin in R3.

2. The norm of Yn on λnBN (p, 1) ∪ λnBN (pn+1, 1) is bounded by 10.

3. The inner product of Yn(p) with e3 ∈ Tp(λnN) is 1.

The calculations in the proof of Assertion 2.4 imply:

lim
n→∞

∫
Sn

div(Y T
n ) = − lim

n→∞

∫
Sn

div(Y N
n )) = 0.

On the other hand, using the fact that the lengths of the “waist” circles of the λnΣ(n)
converge to zero as n →∞, the calculations in the proof of Assertion 2.4 imply:

lim
n→∞

∣∣∣∣∫
Sn

div(Y T
n )

∣∣∣∣ = 2π,

which gives the desired contradiction. This completes the proof of the assertion. 2

So far we have shown that M∞ is not a catenoid. As in the proof of Assertion 2.4, as
modified above, the other possibilities where M∞ has genus zero and two limit ends or is
a helicoid, are also seen to be impossible. This completes the proof of Lemma 5.1. 2

Theorem 1.5 now follows from Lemma 5.1.
The arguments in the proof of Theorem 1.5 rather easily generalize to prove the fol-

lowing bounded curvature theorem; we leave the details of the proof to the reader.

Theorem 5.3 Suppose N ∈ N is simply connected and M ∈ M(N) is a CMC sur-
face. Suppose M has a finite number of ends and that for some ε > 0, every simple
closed geodesic on M with length less than ε separated M . Then M has bounded second
fundamental form.

12In order to be more explicit, one can define the ”waist” circle to be the nearby simple closed geodesics
on the well-formed catenoids.
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6 CMC surfaces in a Riemannian three-manifold.

Throughout this section, X will denote a Riemannian three-manifold and M(X) will
denote the set of complete, embedded, constant mean curvature surfaces in X. Our first
goal is to generalize part of the statement of Corollary 1.4 to this more general setting.

Theorem 6.1 Suppose X is a simply connected, homogeneously regular three-manifold.
For any complete, immersed CMC surface f(M) in X, the following statements are equiv-
alent:

1. f(M) has bounded second fundamental form.

2. For some δ > 0, f(M) is δ-embedded and has positive injectivity radius.

Proof. Since X is assumed to be homogeneously regular, then statement 1 implies state-
ment 2. Assume now that f(M) is δ-embedded and has positive injectivity radius but that
f(M) does not have bounded second fundamental form. The proof of Theorem 1.1 and
the positive injectivity radius hypothesis imply that, there exist blow-up points pn ∈ M ,
which in turn produce a limit surface which is a properly embedded, minimal planar do-
main M∞ in R3. From our analysis of the possibilities for Mn arising in this previous
proof, it follows that there exist simple closed geodesics γn on M near pn with lengths
converging to zero as n → ∞. Since we are assuming that the injectivity radius of M is
positive, we obtain our desired contradiction. 2
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