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Abstract

We study the spectrum of a parameter dependent Sturm-Liouville
problem by using the continued fractions, through which necessary and
sufficient conditions for eigenvalues are obtained. From these conditions
estimates for large eigenvalues depending on the parameter and an asymp-
totic result for the lowest eigenvalue will follow. Furthermore, the use of
the theory of orthogonal polynomials provides upper and lower bounds
for the eigenvalues given in terms of the zeros of particular sequences of
polynomials.
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1 Introduction

It is well known that the Riemann zeta function (which we will denote by ζ =
ζ(s)) is closely connected to the spectral zeta function of the harmonic oscillator

H = −∂
2
x

2
+
x2

2
.

In fact, if we denote by ζH = ζH(s) the spectral zeta function of H, i.e.

ζH(s) =
+∞∑
n=1

1
λsn
, λn eigenvalues of H, s ∈ C, <(s) > 1,

we have ζH(s) = (2s− 1)ζ(s). In this sense we can say that ζH is a deformation
of ζ.

From here the natural problem of studying another possible deformation of
ζ arises, that is to say the spectral ζ-function of the harmonic oscillator, defined
on the interval [−L,L] ⊂ R with zero Dirichlet conditions, when L → +∞.
The eigenvalue problem of the harmonic oscillator defined on an interval of the
real line and with Dirichlet conditions on the boundary has been studied by
several authors (see, e.g. [2], [12] and [13]), but it presents relevant difficulties
in computations.
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The aim of this paper is to study the spectrum of the following operator:

PL : D(PL) −→ L2(−πL, πL), PLf = −1
2
f ′′ + VLf,

with

VL(x) =
L2

2
sin2

( x

2L

)
, D(PL) = H1

0 (−πL, πL) ∩H2(−πL, πL).

In particular we will analyse the behaviour of the eigenvalues of PL when L→
+∞. The study of PL is related to the aforementioned problems, since VL tends
as L→ +∞ to the harmonic potential, in the sense of tempered distributions.

The spectral zeta is a “spectral observable” which is more regular than the
datum of the spectrum itself, for varying L, because it is defined by means of a
trace: ζPL

(s) = TrP−sL , for sufficiently large s. However, the aim of this work is
to study in the first place the eigenvalues, in order to control them in as much
explicit a fashion as possible. This analysis follows the ideas of [10] (see also
[11]).

Notice that the eigenvalue equation of PL

PLf = µf, 0 6= f ∈ D(PL), µ ∈ C,

is similar to the Mathieu equation (see, e.g. [9]) and therefore it presents similar
difficulties.

The paper is organized as follows.
In Section 2 we set the spectral problem for PL on the interval (−πL, πL).

Then we normalize the problem, by removing from (−πL, πL) the dependence
on the parameter L, so that we reduce ourselves to the study of the semiclassical
problem

P (h)f = µf, µ ∈ C,

with
P (h) : H1

0 (−π, π) ∩H2(−π, π) −→ L2(−π, π),

P (h)f(x) = −h
2
f ′′(x) +

1
2h

sin2
(x

2

)
f(x) = µf(x), h := 1/L2 → 0+.

Then we expand the eigenfunctions with respect to a carefully chosen or-
thonormal basis of L2(−π, π), getting a three-term recurrence relation for the
Fourier coefficients.

Section 3 provides formulas for these Fourier coefficients.
From here we obtain, in Section 4, an equation which involves a particular

continued fraction, derived in a natural way from the recurrence relation; this
condition characterizes the eigenvalues of P (h) (as zeros of the “determinant”
of an infinite size tridiagonal matrix).

In Section 5 we associate, to each given eigenvalue, two sequences converging,
one from above and the other from below, to the eigenvalue itself. We obtain
some of these results following the ideas used in [9] for studying the eigenvalues
of the Mathieu equation; we use in particular the theory of polynomials “with
interlaced zeros” (which are essentially orthogonal polynomials).

Moreover, in Section 6, we give estimates for large eigenvalues (large de-
pending on h−1), in other words we study the clustering of the spectrum for
high energies.
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In the last two sections we study the behaviour, as h → 0+, of the lowest
eigenvalue µ̃0(h) of the operator defined by P̃ := hP, as a function of h. In
Section 7 we show the uniform convergence of the eigenfunction (associated to
µ̃0(h)) coefficients, for h in a complex neighbourhood of a fixed h0.

These results are used, in Section 8, to prove the existence of the limit
lim
h→0+

µ̃0(h). This statement could be obtained as a consequence of a general

theorem by Helffer and Sjöstrand (see [1], p. 39 and 41), which gives also the
asymptotics for low-lying eigenvalues, but it is proved in this simpler setting by
following a different approach, using the continued fractions.

2 Necessary conditions for the eigenfunctions

Let L > 0 and let PL be the unbounded operator defined as follows:

PL : D(PL) −→ L2(−πL, πL), PLf = −1
2
f ′′ + VLf,

with

VL(x) =
L2

2
sin2

( x

2L

)
, D(PL) = H1

0 (−πL, πL) ∩H2(−πL, πL).

We will study the solutions of the eigenvalue problem related to PL:

PLf = µf, f ∈ D(PL), µ ∈ C. (1)

In particular we will analyse the eigenvalues’ behaviour in the limit L→ +∞.
By a change of variable we remove the parameter L from (−πL, πL), so that

we obtain from (1) a semiclassical problem.

Proposition 2.1. Let P (h) := P be the operator defined by

P : D(P ) −→ L2(I), Pψ = −h
2
ψ′′ +

1
h
V ψ,

with

V (t) =
1
2

sin2

(
t

2

)
, D(P ) = H1

0 (I) ∩H2(I), I := (−π, π).

The eigenvalue problem (1) is equivalent to the following one

Pψ = µψ, ψ ∈ D(P ), µ ∈ C, (2)

upon setting ψ(t) =
√
L f(Lt), h = 1/L2.

We summarize the properties of the spectrum of P in the following (well-
known)

Remark 2.2. The operator P, defined in Proposition 2.1, is selfadjoint and
it has a discrete spectrum. In particular the spectrum of P is an unbounded
sequence of real numbers 0 < µ0 < µ1 < . . . . The eigenvalues of P are all
simple.
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We analyse the structure of eigenfunctions of P by using the Fourier series
expansion. In particular we want to substitute the Fourier expansion of a generic
eigenfunction of P in the eigenvalue equation (2) and then differentiate term
by term, getting in this way conditions on the Fourier coefficients of eigenfunc-
tions (as distributions). Notice that, since we are studying a Sturm-Liouville
problem, the choice of the Fourier basis in using this procedure is fundamen-
tal. In fact, if we chose for instance the classic Fourier basis for L2(I), i.e.
{1, cos(nx), sin(nx);n ∈ N\{0}}, we would not be able to find all eigenvalues of
P (the trouble arises because the eigenfunctions vanish on the boundary of I
whereas the cos(nx) do not).

Since the eigenfunctions of the problem belong to D(P ), then a proper basis
to be used for their expansion is formed entirely by functions in D(P ). We will
use, to this purpose, the orthonormal basis

B =
{

1√
π

cos
(

2n+ 1
2

x

)
,

1√
π

sin((m+ 1)x); n,m ∈ N
}
.

Each element of this basis is either an odd or an even function.
Thus, since P is self-adjoint with real coefficients, and since it preserves the

parity of functions, we can treat separately the odd and the even eigenvalue
problems. More precisely we have the following

Remark 2.3. All eigenfunctions of P are real-valued. Moreover each eigen-
function of P is either an even or an odd fuction.

We expand the eigenfunctions of P with respect to B. By substituting this
expansion in the eigenvalue equation (2), we get a recurrence relation for the
Fourier coefficients of the eigenfunctions. In doing this we use the theorem of
differentiation term by term, assuming that all the equalities are intended in the
distribution sense. In the sequel we will analyse this recurrence relation using
the continued fraction theory. This study will provide necessary and sufficient
conditions for the eigenvalues of P and at the same time it will show that the
Fourier coefficients of the eigenfunctions converge to 0 faster than any negative
power of n. This will justify the use of the theorem of differentiation term by
term.

Now we state the recurrence relation for the Fourier coefficients of the even
eigenfunctions.

Proposition 2.4. Let v+ ∈ D(P ) be an even function with Fourier expansion
given by

v+(x) =
+∞∑
n=0

v+
n√
π

cos
(

2n+ 1
2

x

)
, v+

n =
∫ π

−π

v+(x)√
π

cos
(

2n+ 1
2

x

)
dx.

(3)
If v+ is an eigenfunction for P associated to µ, i.e. if

Pv+ = µv+, on [−π, π], v+(±π) = 0, (4)

then the Fourier coefficients v+
n fulfill the following conditions:

v+
1 =

(
h2 + 1− 8µh

)
v+
0 ; (5)

v+
n+1 =

(
(2n+ 1)2h2 + 2− 8µh

)
v+
n − v+

n−1, n ∈ N\{0}. (6)
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Proof. We substitute (3) in (4) and differentiate term by term.

The analogous conditions for the odd eigenfunctions are given by the follow-
ing

Proposition 2.5. Let v− ∈ D(P ) be an odd function with Fourier series ex-
pansion given by

v− =
+∞∑
n=0

v−n√
π

sin((n+ 1)x), v−n =
∫ π

−π

v−(x)√
π

sin((n+ 1)x)dx. (7)

If v− is an eigenfunction for P associated to µ, i.e. if

Pv− = µv−, on [−π, π], v−(±π) = 0,

then the Fourier coefficients v−n fulfill the following conditions:

v−1 =
(
4h2 + 2− 8µh

)
v−0 ; (8)

v−n+1 =
(
4(n+ 1)2h2 + 2− 8µh

)
v−n − v−n−1, n ∈ N\{0}. (9)

By the above propositions, the sequences of the Fourier coefficients of the
eigenfunctions, {v±n }n, fulfill recurrence relations of the form

gn+1 = ϑngn − gn−1, n ∈ N. (10)

Studying the properties of this type of relation will give information on {v±n }n,
and eventually on the eigenvalues of P. To fix notation we state the following

Remark 2.6. Using the notation of Proposition 2.4 and assuming the same
hypotheses let µ be an eigenvalue of P. We set by definition v+

−1 = 0 and δ+0 = δ+0 (µ) := h2 + 1− 8µh

δ+n = δ+n (µ) := (2n+ 1)2h2 + 2− 8µh, ∀ n ∈ N\{0}.
(11)

Then the sequence {v+
n }n≥−1 satisfies the following recurrence relation

v+
−1 = 0, v+

n+1 = δ+n v
+
n − v+

n−1, ∀ n ∈ N. (12)

Analogously, using the notation fixed in Proposition 2.5 and assuming the same
hypotheses, let µ be an eigenvalue of P.

We set by definition v−−1 = 0 and

δ−n = δ−n (µ) := 4(n+ 1)2h2 + 2− 8µh, ∀ n ∈ N. (13)

Then the sequence {v−n }n≥−1 satisfies the following recurrence relation

v−−1 = 0, v−n+1 = δ−n v
−
n − v−n−1, ∀ n ∈ N. (14)
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3 Formulas for Fourier coefficients

The aim of this section is to provide formulas for solutions of the equation (10),
when {ϑn}n := {δ±n }n, ± respectively.

In the first place we state some general remarks on equation (10), without
any conditions on the sequence {ϑn}n.

Lemma 3.1. Let {gn}n≥−1 be different from the 0-sequence, i.e. such that there
exists n0 ∈ N with gn0 6= 0. Assume that

gn+1 = ϑngn − gn−1, n ∈ N. (15)

Then the sequence {gn}n≥−1 is not definitely 0 (i.e. there is no n0 such that
gn = 0 for every n ≥ n0), in particular gn = 0 implies gn+1 6= 0 and gn−1 6= 0.

Proof. By contradiction, let m ∈ N be such that gm 6= 0 and such that gn = 0
for all n > m. From (15), upon setting n = m+ 1, we get

gm+2 = ϑm+1gm+1 − gm,

whence, since gm+2 = gm+1 = 0, we have gm = 0, but this is impossible.
In a similar way it can be proved that if gn = 0 then gn+1 6= 0. Indeed, were

it not so, we would have, from (15), that gn+2 = gn+3 = · · · = 0, but this is
impossible because we proved that {gn}n≥−1 is not definitely the 0-sequence.
Also gn−1 6= 0, indeed, were it not so, we would have, from (15), that gn+1 = 0,
which is impossible from what we have just proved.

Note that Lemma 3.1 can be applied to both recurrence relations (14) and
(12). In fact {v−n }n or {v+

n }n, being the sequence of Fourier coefficients of an
eigenfunction (recall (7), (3)), can never be the 0-sequence.

Hence Lemma 3.1 states that these sequences cannot have two successive
terms that are both 0. This implies, in particular, that the eigenfunctions of P
cannot be trigonometric polynomials.

Corollary 3.2. In the hypothesis of Lemma 3.1 if g−1 = 0 then g0 6= 0.

Proof. By contradiction, if g0 = 0 then from (15) we would have gn = 0 for all
n ∈ N, contradicting the hypothesis.

The following observations, that hold true for generic recurrence equations,
are particulary useful for studying the sequences {v±n }n. For this reason now we
fix the notation with the following

Definition 3.3. In the sequel the equation

gn+1 = ϑngn − gn−1, n ∈ N (16)

will denote either equation (14) or equation (12), where we will have

{(gn, ϑn)}n := {(v±n , δ±n )}n, ± respectively,

recalling formula (13) for δ−n and formula (11) for δ+n . We do not assume that
µ, appearing in (13) and (11), is an eigenvalue of P. With these assumptions
ϑn is always a function of the parameter µ.

6



It is worth recalling that when µ is an eigenvalue of P the sequence {gn}n
of Definition 3.3 coincides with the sequence of Fourier coefficients of the eigen-
function associated to µ (by Remark 2.6).

The following remarks define, through {gn}n, another sequence, {wn}n,
which fulfills a “normal form” of the recurrence relation. From this relation
we can find a formula to determine {wn}n, and consequently {gn}n.

Lemma 3.4. Let {ϑn}n≥0 be such that ϑn 6= 0 for all n ∈ N. Let {gn}n≥−1 be
such that g−1 = 0. Then {gn}n≥−1 is a solution of (16):

gn+1 = ϑngn − gn−1, n ∈ N

if and only if {wn}n≥−1 is a solution of

wn+1 = wn − αn−1wn−1, n ∈ N, (17)

with 
w−1 = 0
w0 = g0

wn =
gn

ϑ0 . . . ϑn−1
, n ∈ N\{0},

(18)

and  α−1 = 1

αn =
1

ϑnϑn+1
, n ∈ N. (19)

Proof. The assertion follows immediatly from (18) and (19), upon dividing (16)
by ϑ0 . . . ϑn.

In other words, Lemma 3.4 states that we can relate the solutions of equa-
tions (16) and (17) if the coefficients ϑn are all different from 0. In this hypotesis
we can obtain {gn}n from the values of {wn}n. We will see that this can be done
also if ϑn(µ) = 0 for some n ∈ N.

It is now convenient to assume that all sequences we will consider from now
on take values in Ĉ = C ∪ {∞}.

Definition 3.5. Given {αN}N∈N ⊆ Ĉ, we denote by {[α0, . . . , αj ]}j∈N the se-
quence defined by recurrence as{

[α0] = 1− α0

[α0, . . . , αn] = 1− αn
[α0, . . . , αn−1]

, ∀ n ∈ N\{0},

where we set, by convention, 1/0 = ∞ and 1/∞ = 0.

The following Proposition provides a formula that gives the wn depending
on the coefficients αn in (17) (for the detailed proof see [10], p. 570).

Proposition 3.6. Let {wn}n≥−1 and {αn}n≥−1 be two sequences such that
w−1 = 0 and α−1 = 1. We assume that {wn}n fulfills the recurrence equation

wn+1 = wn − αn−1wn−1, n ∈ N.
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Moreover, put zn = [α0, . . . , αn] for every n ∈ N and let {z∗n}n≥0 be defined by

z∗j =

 zj if zj 6= 0,∞
−αj+1 if zj = 0

1 if zj = ∞.
(20)

Then we have

w0 = w1, wN =
{
z∗0z

∗
1 . . . z

∗
N−2w0 if zN−2 6= 0,

0 if zN−2 = 0, N ≥ 2. (21)

Notice that zN−2 = 0 implies that wN = 0, so that, for notational simplicity,
we will write (21) as

w0 = w1, wN = z∗0z
∗
1 . . . z

∗
N−2w0, N ≥ 2, (22)

using (20) for the z∗j when 0 ≤ j < N − 2, and with the convention of setting,
in (20), z∗N−2 = 0 if zN−2 = 0, for the last index j = N − 2.

Proof (sketch). We consider the wn as determinants of proper tridiagonal matri-
ces (depending on coefficients αn). By triangularizing these matrices we obtain
essentially zn as diagonal elements.

From Proposition 3.6 we get a formula for coefficients gn. In particular we
have the following

Lemma 3.7. Following the notation fixed in Definition 3.3, Lemma 3.4 and
Proposition 3.6 assume that ϑn 6= 0, for all n ∈ N. Then the solution {gn}n≥−1

of equation (16):

g−1 = 0, gn+1 = ϑngn − gn−1, n ∈ N

satisfies {
g1 = ϑ0g0
gn = ϑ0 . . . ϑn−1z

∗
0 . . . z

∗
n−2 g0, ∀ n ≥ 2, (23)

with the convention, given in Proposition 3.6, that if zn−2 = 0 then gn = 0.

Proof. Equation (16) fulfills the hypothesis of Lemma 3.4 and therefore can be
related to equation (17) through the relations (18). From Proposition 3.6 we
prove the assertion just by substituting (18) in (22).

Using Lemma 3.7 we will be able to study the behaviour of the Fourier
coefficients, gn, of the eigenfunctions as n → +∞. Moreover we will obtain as
a consequence a necessary and sufficient condition for the eigenvalues. Before
doing this, we give results analogous to Lemma 3.7 also in the case there exists
n0 ∈ N such that ϑn0 = 0. Since ϑn actually depends linearly on µ we will have
ϑn0(µ) = 0 for particular values of µ. More precisely, by recalling Definition 3.3,
(11) and (13) we have the following

Remark 3.8. Let the sequence {ϑn}n = {ϑn(µ)}n be defined either by

ϑn := δ−n = 4(n+ 1)2h2 + 2− 8µh, ∀ n ∈ N,
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or by

ϑn := δ+n =

 h2 + 1− 8µh, if n = 0

(2n+ 1)2h2 + 2− 8µh, ∀ n ∈ N\{0}.

We have that ϑn depends linearly on µ and therefore, if there exists µ such that
ϑn0(µ) = 0 for some n0, then ϑn(µ) 6= 0 for all n 6= n0.

Assuming that there exists µ such that ϑn0(µ) = 0, for some n0, we will
obtain for gn a formula similar to (23). In particular, for the first n0 + 1 terms
of the sequence we get the following

Lemma 3.9. Let {gn}n≥−1 be a solution of (16) and suppose there exists n0 ∈ N
and µ ∈ R such that ϑn0(µ) = 0. Then, using the notation as in Lemma 3.4, we
have

w−1 = 0, wn+1 = wn − αn−1wn−1, n = 0, 1, . . . , n0. (24)

Proof. From Remark 3.8 if n ≤ n0 − 1 we have ϑn 6= 0. To prove (24) it suffices
to follow the procedure used in Lemma 3.4.

From the proof of Proposition 3.6 (see [10], p. 570) it follows that formula
(21) can be used as well for a finite number of terms of the sequence. From this
we will get at once a formula to compute gn, with n = 0, 1, . . . , n0. In particular
we get the following

Remark 3.10. In the hypothesis of Lemma 3.9, from Proposition 3.6 it follows
that

wN = z∗0 . . . z
∗
N−2w0, N = 0, 1, . . . , n0, (25)

with the convention that if zN−2 = 0 then wN = 0. From here, by (18), we get

gN = ϑ0 . . . ϑN−1z
∗
0 . . . z

∗
N−2 g0, N = 0, 1, . . . , n0, (26)

with the convention that if zN−2 = 0 then gN = 0.

Remark 3.10 gives a formula for the first n0 + 1 terms of {gn}n, in case
ϑn0 = 0.We will show that we can obtain an analogous formula for the remaining
terms of the sequence. This will be done by showing that {gn}n satisfies, from
a certain index onward, the hypothesis of Lemma 3.4 and by applying then
Lemma 3.7. We will treat separately the cases n0 = 0 and n0 ≥ 1.

Proposition 3.11. Let {gn}n≥−1 be a solution of (16):

g−1 = 0, gn+1 = ϑngn − gn−1, n ∈ N

and let µ ∈ R such that ϑ0 = ϑ0(µ) = 0. Then, upon setting d−1 = 0
d0 = −g0
dk = gk+2, ∀ k ∈ N\{0},

ηk = ϑn+2, ∀ n ∈ N, (27)

we get
dn+1 = ηndn − dn−1, n ∈ N. (28)

Proof. By substituting (27) in (16), and by recalling that ϑ0 = 0, we obtain
(28).
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When n0 6= 0 we have the following

Proposition 3.12. Let {gn}n≥−1 be a solution of (16):

g−1 = 0, gn+1 = ϑngn − gn−1, n ∈ N.

If µ ∈ R and n0 ∈ N\{0} are such that ϑn0 = ϑn0(µ) = 0, then

a) If gn0 6= 0 and gn0−1 6= 0 we have

fn+1 = γnfn − fn−1, n ∈ N, (29)

where
f−1 = 0
f0 = gn0

f1 = −gn0−1

fk = gn0+k, ∀ k ≥ 2,

{
γ0 = −gn0−1

gn0

γk = ϑn0+k, ∀ k ∈ N\{0}.

b) If gn0 6= 0 and gn0−1 = 0 we have

pn+1 = νnpn − pn−1, n ∈ N, (30)

where{
p−1 = 0
pk = gn0+2+k, ∀ k ∈ N, νk = ϑn0+2+k, ∀ k ∈ N.

c) If gn0 = 0 we have

qn+1 = ρnqn − qn−1, n ∈ N, (31)

where q−1 = 0
q0 = −gn0−1

qk = gn0+1+k, ∀ k ∈ N\{0},
ρk = ϑn0+1+k, ∀ k ∈ N.

Moreover we have  γk 6= 0
νk 6= 0
ρk 6= 0

, ∀ k ∈ N. (32)

Proof. Notice that if ϑn0 = 0 then, from Remark 3.8, ϑk 6= 0 for all k 6= n0,
whence (32) is proved, on recalling the definitions of {γn}n, {νn}n, {ρn}n.

a) By substituting {
fn = gn0+n,
γn = ϑn0+n,

∀ n ∈ N,

in (16) we easily obtain (29) for n ≥ 1. If n = 0, (29) becomes

f1 = γ0f0 − f−1. (33)

But since f−1 = 0, γ0 = − gn0−1

gn0
, f0 = gn0 and f1 = gn0+1, substituting these

values in (33) gives gn0+1 = −gn0−1. This last equation is satisfied by hypothesis,
by substituting ϑn0 = 0 in

gn0+1 = ϑn0gn0 − gn0−1.

We can obtain b) and c) in a similar way.
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To summarize, in case µ ∈ R is such that there exists n0 ∈ N with ϑn0(µ) = 0
we can use Remark 3.10 to compute the first n0 + 1 terms of the sequence
{gn}n. Moreover, from Propositions 3.11 and 3.12, we can get a formula for the
remaining terms of {gn}n. In fact we can apply Lemma 3.7 to relations (28),
(29), (30), (31) obtaining from (23) the desired formula.

4 Continued fractions and charachterization of
the eigenvalues

We will now use the theory of continued fractions in order to study the conver-
gence of the coefficients of the eigenfunctions of P. To this purpose we recall
several definitions and a classical result on 1-periodic continued fractions (see [7]
pp. 7, 8, 9, 59, 103, 150). We recall that the sequences used in these arguments
take value in Ĉ = C ∪ {∞}.

Definition 4.1. A continued fraction is an ordered pair

(({an}n, {bn}n), {fn}n),

where the sequences {an}n, {bn}n ⊆ C and {fn}n ⊆ Ĉ is given by

fn = b0 +
a1

b1 +
a2

. . . +
an
bn

.

We will call fn the n-th approximant of the continued fraction. Besides, we
say that two continued fractions are equivalent if they have the same sequence
of approximants.

Moreover, setting fn = An

Bn
, we call An and Bn the n-th canonical nu-

merator and denominator, respectively.
If

lim
n→+∞

fn = f ∈ Ĉ

we will write
f = b0 +K+∞

n=1 (an/bn) .

We state some properties on the sequences {An}n and {Bn}n which will be
useful in the sequel.

Remark 4.2. Let f = b0 +K+∞
n=1 (an/bn) be a continued fraction and let {An}n

and {Bn}n be the sequences of canonical numerators and denominators, respec-
tively. If we set A−1 = 1, A0 = b0, B−1 = 0, B0 = 1, then we have:{

An+1 = bn+1An + anAn−1,
Bn+1 = bn+1Bn + anBn−1,

n ∈ N, (34)

AnBn−1 −An−1Bn = (−1)n−1
n∏
k=1

ak, n > 1. (35)
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Notice that equations (34) provide a natural correspondence between a con-
tinued fraction and the recurrence relation satisfied by the sequence of its canon-
ical numerators and denominators.

Following this idea we will apply the following definitions to study the re-
currence relations of Fourier coefficients of eigenfunctions of P, found in the
previous section. In particular, as we will see in detail, by showing that {zn}n is
a tail sequence for the continued fraction K+∞

n=1 (−αn/− 1) , (recall the notation
fixed in Lemma 3.4 and in Proposition 3.6) we will obtain an equation, involving
this continued fraction, which is a necessary and sufficient condition for µ to be
an eigenvalue of P.

Definition 4.3. We say that a sequence {tn}n∈N ⊆ Ĉ is a tail sequence for
the continued fraction b0 +K+∞

n=1 (an/bn) if

tn−1 =
an

bn + tn
, n = 1, 2, 3, . . . .

We can associate to each term of a tail sequence a Möbius transformation,
in a natural way, so obtaining a sequence of Möbius transformations. Studying
the limit transformation of this sequence will give us particular properties of
the continued fraction. An important result is obtained if this limit Möbius
transformation is loxodromic.

Definition 4.4. Let

t : Ĉ −→ Ĉ, w 7−→ t(w) =
aw + b

cw + d
,

with ad−bc 6= 0, be a Möbius transformation. Let x and y be two fixed points for
t, that is lim

n→+∞
tn(x) = x and lim

n→+∞
tn(y) = y. Then t is said to be loxodromic

if x 6= y and {
|cx+ d| > |cy + d|, if c 6= 0,
|a| 6= |d|, if c = 0.

Definition 4.5. Let K+∞
n=1 (an/bn) be a limit 1-periodic continued fraction, i.e.

such that the following limits exist

lim
n→+∞

an = a∗, lim
n→+∞

bn = b∗,

with a∗, b∗ ∈ Ĉ. Then K+∞
n=1 (an/bn) is said to be of loxodromic type if a∗ ∈ C,

b∗ ∈ C and if the following implications hold:

a) if a∗ 6= 0 then T (w) := a∗

b∗+w is loxodromic as a Möbius transformation;

b) if a∗ = 0 then b∗ 6= 0. In this last case T is a singular transformation,
with T (w) = 0 for all w 6= b∗. We say that x = 0 is the attractive fixed
point of T and y = −b∗ is the repulsive fixed point of T.

We state a very important property of tail sequences of limit 1-periodic
continued fractions of loxodromic type (see [7], p. 151).

Theorem 4.6. Let K+∞
n=1 (an/bn) be a limit 1-periodic continued fraction of

loxodromic type, where T has attractive fixed point x and repulsive fixed point

12



y. Then K+∞
n=1 (an/bn) converges to a value f ∈ Ĉ. Moreover, for every tail

sequence {zn}n, we have

lim
n→+∞

zn =
{
x if z0 = f
y if z0 6= f.

(36)

These results will now be used to analyse the convergence of the coefficients of
eigenfunctions of P and, moreover, this will provide the necessary and sufficient
condition on eigenvalues of P.

Lemma 4.7. Using the notation of Proposition 3.6 the sequence {zn}n is a tail
sequence for the continued fraction K+∞

n=1 (−αn/− 1) .

Proof. By definition (see Definition 3.5) we have

zn = 1− αn
zn−1

, ∀ n ∈ N\{0},

which, recalling Definition 4.3, proves the claim.

Thus, since K+∞
n=1 (−αn/− 1) is limit 1-periodic of loxodromic type, we can

use Theorem 4.6 to have information on lim
n→+∞

zn.

Proposition 4.8. Using the notation fixed in Lemma 3.4, let zn = [α0, . . . , αn] ,
n ∈ N, (see Definition 3.5) then

lim
n→+∞

zn =
{

0 if z0 = f = K+∞
n=1 (−αn/− 1)

1 if z0 6= f.

Proof. By Definition 3.3 and recalling (19) we have that K+∞
n=1 (−αn/− 1) is

limit 1-periodic of loxodromic type. In fact, for every fixed µ we have

lim
n→+∞

αn = lim
n→+∞

1
δ−n δ

−
n+1

= lim
n→+∞

1
δ+n δ

+
n+1

= 0.

Besides, following the notation of Definition 4.4, we have, in this case b∗ = −1 6=
0. Moreover, by Lemma 4.7, zn is a tail sequence for K+∞

n=1 (−αn/− 1) . From
Theorem 4.6 we obtain the assertion.

Now we want to prove that all values of µ such that lim
n→+∞

zn = 0, and

only those values, are related, through the recurrence relations, to the Fourier
coefficients of the eigenfunctions associated to µ. In the first place we suppose
that ϑn = ϑn(µ) 6= 0 for every n ∈ N, analysing the case ϑm = 0 for some m
afterwards.

Theorem 4.9. Using the notation of Proposition 3.6 and of Lemma 3.4, assume
that ϑn = ϑn(µ) 6= 0 for all n ∈ N. Then

a) if µ is such that z0 = K+∞
n=1 (−αn/− 1) i.e.

1− 1
ϑ0ϑ1

= K+∞
n=1

(
− 1
ϑnϑn+1

−1

)
(37)

then µ is an eigenvalue of P and the gn in the recurrence relation (16)

g−1 = 0, gn+1 = ϑngn − gn−1, n ∈ N,

are the Fourier coefficients of an eigenfunction associated to µ; moreover
gn → 0, as n→ +∞, faster than any negative power of n;

13



b) if µ is such that z0 6= K+∞
n=1 (−αn/− 1) then the coefficients in (16) do not

converge and the function series associated to them does not represent an
eigenfunction of P ; moreover |gn| → +∞, as n → +∞, faster than any
power of n.

Proof. a) If µ is such that z0 = K+∞
n=1 (−αn/− 1) then from Proposition (4.8)

we have that lim
n→+∞

zn = 0. In these hypotheses we will prove that if {gn}n≥−1

is a solution of (16) then gn → 0, as n → +∞, faster than any negative power
of n. From this, recalling Definition 3.3, we obtain that the series given by

v+ :=
+∞∑
n=0

v+
n

1√
π

cos
(

2n+ 1
2

x

)
(38)

or by

v− :=
+∞∑
n=1

v−n
1√
π

sin ((n+ 1)x) , (39)

converges uniformly to the eigenfunction v+ or to the eigenfunction v−.We show
now the convergence of the coefficients. Recalling Lemma 3.7 and Proposition
3.6 we have:

gn = ϑ0 . . . ϑn−1z
∗
0 . . . z

∗
n−2 g0, n ≥ 2,

with

z∗j =

 zj if zj 6= 0,∞,
−αj+1 if zj = 0,

1 if zj = ∞,
if j 6= n− 2, (40)

and with

z∗n−2 =

 zn−2 if zn−2 6= 0, ∞,
0 if zn−2 = 0,
1 if zn−2 = ∞.

(41)

As already noticed lim
n→+∞

zn = 0. Thus, upon fixing 0 < ε < 1
2 ,

∃ n0 ∈ N such that |zn| ≤ ε, ∀ n ≥ n0. (42)

We have, for every n ≥ n0, |1− zn+1| ≥ 1− ε. Since {zn}n is a tail sequence for
K+∞
n=1 (−αn/− 1) (see Definition 4.3) we have

|zn| =

∣∣∣ 1
ϑn+1ϑn+2

∣∣∣
|1− zn+1|

≤

 1
ϑn+1ϑn+2


1− ε

. (43)

Moreover, for all n ≥ n0 we get zn 6= 0,∞. Indeed, were zn0 to vanish for some
n0 we would have zn0+1 = 1− αn0+1

zn0
= ∞, which is impossible because of (42).

Relation (42) implies also that zn 6= ∞ for every n ∈ N.
Hence, recalling (40) and (41), if n ≥ n0 we have zn = z∗n and therefore

|gN | = |g0|
∣∣ϑ0 . . . ϑn0+1z

∗
0 . . . z

∗
n0
ϑn0+2 . . . ϑN−1zn0+1 . . . zN−2

∣∣ , N ≥ 2. (44)

By (23) we have

|gn0+2| = |g0|
∣∣ϑ0 . . . ϑn0+1z

∗
0 . . . z

∗
n0

∣∣ . (45)
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From (43), (44) and (45) it follows, by simplifying the common terms, that

|gN | ≤ |gn0+2|
1

(1− ε)N−n0−2 |ϑn0+3 . . . ϑN |
. (46)

Recall that, by Definition 3.3, {ϑn}n denotes either {δ+n }n or {δ−n }n, defined
respectively by (11) or (13). Suppose, to fix ideas, that {ϑn}n := {δ+n }n (for
{δ−n }n the proof is similar.) We will show that the right-hand side of (46) tends
to zero as N → +∞. Notice that, by hypothesis, we have ϑn = δ+n = δ+n (µ) 6= 0
for all n ∈ N, so that (46) makes sense. We write δ+n in the form

δ+n = (2n+ 1)2h2

(
1− 8µh− 2

h2(2n+ 1)2

)
, n = n0 + 3, . . . , N. (47)

By substituting (47) in (46) we get, by noting that

(2n0 + 7)(2n0 + 9) . . . (2N + 1) < 2N−n0−2(n0 + 3)(n0 + 4) . . . N,

|gN | ≤
((n0 + 2)!)2 |gn0+2|

((1− ε)h24)N−n0−2 (N !)2
∏N
k=n0+3

1− 8µh−2
h2(2k+1)2

 . (48)

Consider the term
∏N
k=n0+3

1− 8µh−2
h2(2k+1)2

. By assuming that n0 is such that 8µh− 2
h2(2k + 1)2

 < 1, ∀ k ∈ N, k ≥ n0 + 3, (49)

we have

N∏
k=n0+3

1− 8µh− 2
h2(2k + 1)2

 ≥
N∏

k=n0+3

(
1−

8µh− 2


h2(2k + 1)2

)
:= DN . (50)

Whence, recalling (48), we get

|gN | ≤
((n0 + 2)!)2 |gn0+2|

((1− ε)h24)N−n0−2 (N !)2
∏N
k=n0+3

(
1− |8µh−2|

h2(2k+1)2

) . (51)

By (49) we have

0 < DN = exp

[
N∑

k=n0+3

log
(

1− |8µh− 2|
h2(2k + 1)2

)]
. (52)

Therefore taking the limit in (52) gives

lim
N→+∞

DN = exp

[
+∞∑

k=n0+3

log
(

1− |8µh− 2|
h2(2k + 1)2

)]
= a ∈ R+. (53)

In order to use Stirling’s formula (see e.g. [6], p.423), we multiply and divide
(51) by 2πN2N+1e−2N . Then, upon setting

CN =
2πN2N+1e−2N

(N !)2
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we have, from (51),

|gN | ≤
|gn0+2| ((n0 + 2)!)2 CN(

(1− ε)h24N2

e2

)N−n0−2
DN2πN

(
e2

N2

)n0+2

. (54)

By recalling (53), and since by Stirling’s formula Cn → 1, we have that the
right-hand side of (54), for ε fixed and for N → +∞, approaches to zero faster
than every negative power of N. As already remarked, an analogous result can
be proved also when {ϑn}n = {δ−n }n (see (13)). From this we get that the
series given either by (38) or by (39) converges uniformly on [−π, π] , with all
its derivatives and therefore it represents a function of the space D(P ) and an
eigenfunction associated with µ. Moreover, from what just stated, the eigen-
function obtained in this way is C∞ on the interval [−π, π] .

b) Conversely, let µ be such that z0 6= K+∞
n=1 (−αn/− 1) and let ϑn 6= 0 for

every n ∈ N. Then from Proposition 4.8 we have that lim
n→+∞

zn = 1. Let {gn}n
be a solution of (16). We will show that |gn| → +∞ as n→ +∞. This implies
that the series given by either the expansion (38) or the expansion (39) does
not converge to a function of D(P ). Since lim

n→+∞
zn = 1 we have that, for a fixed

ε > 0, exists n0 ∈ N such that for every n ≥ n0 we have |zn − 1| < ε. Let be
ε < 1

2 .
We have that 1− ε ≤ zn ≤ 1 + ε for every n ≥ n0 so that, in particular, we

have zn 6= 0, ∞. Whence for all n ≥ n0 holds the equality zn = z∗n (see (40)
and (41)). Thus, by reasoning as in the proof of a), we get

|gN | ≥ |gn0+2| |ϑn0+2 . . . ϑN−1| (1− ε)N−2−n0 . (55)

We show the divergence of gn only for {ϑn}n := {δ+n }n (the proof for {δ−n }n is
similar). We use here, as in a), formula (47).

By substituting (47) in (55), and by using

(2n0 + 5)(2n0 + 7) . . . (2N − 1) ≤ 2N−2−n0(n0 + 2)(n0 + 3) . . . (N − 1),

we have

|gN | ≥ |gn0+2|
[
(1− ε)4h2

]N−2−n0

[
(N − 1)!
(n0 + 1)!

]2 N−1∏
k=n0+2

1− 8µh− 2
h2(2k + 1)2

. (56)

Suppose that n0 is such that we have 8µh− 2
h2(2k + 1)2

 < 1, ∀ k ≥ n0 + 2.

Thus, from (56), as in the proof of a), we obtain

|gN | ≥ |gn0+2|
[
(1− ε)4h2

]N−2−n0

[
(N − 1)!
(n0 + 1)!

]2 N−1∏
k=n0+2

[
1− |8µh− 2|

h2(2k + 1)2

]
. (57)

We prove that the right-hand side of (57) goes to infinity as N → +∞. In a way
similar to that of case a) we obtain

lim
N→+∞

N−1∏
k=n0+2

(
1− |8µh− 2|

h2(2k + 1)2

)
= a ∈ R+.
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Now set

CN =
N−1∏

k=n0+2

(
1− |8µh− 2|

h2(2k + 1)2

)
, BN =

((N − 1)!)2

2π(N − 1)(N − 1)2(N−1) e−2(N−1)
.

Note that, by Stirling’s formula, limN→+∞BN = 1. Multiplying and dividing
by

2π(N − 1)(N − 1)2(N−1) e−2(N−1)

the right-hand side of (57) we have

|gN | ≥
|gn0+2|BN
[(n0 + 1)!]2

[
(1− ε)4h2

(
N − 1
e

)2
]N−2−n0

2π(N−1)
(
N − 1
e

)2n0+2

CN .

Taking the limit as N → +∞ gives limN→+∞ |gN | = +∞. Therefore the series
(38) and (39) in this case do not converge to functions of L2(I) and thus they
cannot represent any function in D(P ).

By recalling the remarks made at the end of the previous Section we can use
the same procedure of Theorem 4.9 to prove analogous characterization of the
eigenvalues of P, also in case µ is such that ϑn0(µ) = 0, for a certain n0 ∈ N.
In fact, from Propositions 3.11, 3.12 and Lemma 3.7 we obtain, from a certain
index onward, a formula similar to (44) for the gn and then we can conclude
the proof as in Theorem 4.9. Thus we state the following

Theorem 4.10. Let µ be such that ϑn0(µ) = 0 for a certain n0 ∈ N.

a) Using the notation of Proposition 3.11 if n0 = 0, necessary and sufficient
condition for µ to be an eigenvalue of P is that

1− 1
η0η1

= K+∞
n=1

(
− 1
ηnηn+1

−1

)
.

b) Using the notation of Proposition 3.12 if n0 6= 0, gn0 6= 0, gn0−1 6= 0,
necessary and sufficient condition for µ to be an eigenvalue of P is that

1− 1
γ0γ1

= K+∞
n=1

(
− 1
γnγn+1

−1

)
.

c) Using the notation of Proposition 3.12 if n0 6= 0, gn0 6= 0, gn0−1 = 0,
necessary and sufficient condition for µ to be an eigenvalue of P is that

1− 1
ν0ν1

= K+∞
n=1

(
− 1
νnνn+1

−1

)
.

d) Using the notation of Proposition 3.12 if n0 6= 0, gn0 = 0, necessary and
sufficient condition for µ to be an eigenvalue of P is that

1− 1
ρ0ρ1

= K+∞
n=1

(
− 1
ρnρn+1

−1

)
.
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We can state condition (37) of Theorem 4.9 in terms of an equivalent con-
tinued fraction (see Definition 4.1) in the following form:

f = ϑ0 −
1

ϑ1 −
1

ϑ2 −
. . .

= 0. (58)

From Theorems 4.9, 4.10 we get further information on the Fourier coefficients of
the eigenfunctions. For instance we can prove that for every N ∈ N there exists
n0 > N such that gn0 , gn0+1, gn0+2 6= 0, where gn represent, as usual, Fourier
coefficients of eigenfunctions. This will be proved for a general solution {gn}n
of the recurrence relation (16) of Definition 3.3, even if gn does not represent an
eigenfunction’s Fourier coefficient (i.e. if µ is not an eigenvalue of P ). Besides,
when µ is an eigenvalue of P, we will obtain in addition that there exist m ∈ N
such that the Fourier coefficients gn do not vanish for all n ≥ m.

Remark 4.11. Let µ ∈ R and let {gn}n≥−1 be the solution, different from the
0-sequence, of the recurrence relation

g−1 = 0, gn+1 = ϑn(µ)gn − gn−1, ∀ n ∈ N, (59)

where we use the notation fixed in Definition 3.3. Then, for every N ∈ N there
exists n0 > N such that gn0 , gn0+1, gn0+2 6= 0.

Proof. By Theorems 4.9, 4.10, we have either lim
n→+∞

|gn| = 0 or lim
n→+∞

|gn| =

+∞. In the second case, that is when µ is not an eigenvalue of P, the assertion
follows immediately.

Let µ be an eigenvalue of P and assume that gn = 0 for infinitely many
values of n (otherwise the assertion follows immediatly).

In the first place we prove that there exists n1 ∈ N such that for all n > n1

we have (gn, gn+2) 6= (0, 0). Set n1 ∈ N such that ϑn(µ) 6= 0 for all n > n1

(the existence of such an n1 follows from Remark 3.8). By contradiction let
gn = gn+2 = 0 for n > n1. Then, by (59), we have

0 = gn+2 = ϑn+1(µ)gn+1 − gn = ϑn+1(µ)gn+1.

As ϑn+1(µ) 6= 0 this implies that gn+1 = 0. Since gn = 0 this is a contradiction,
by Lemma 3.1.

Up to now we have shown that, for all n > n1, gn = 0 implies that both gn+1

and gn+2 are different from 0. We reason again by contradiction to conclude the
proof. Suppose there exists N ∈ N such that, for all n > N if gn, gn+1 6= 0 then
gn+2 = 0. Fix n0 > max{N,n1}, such that gn0 = 0 (recall that we are in the
hypothesis that gn = 0 for infinitely many values of n). Then gn0+1, gn0+2 6= 0.
Thus gn0+3 = 0 and this implies gn0+4, gn0+5 6= 0 and so on. Substituting these
values in (59) gives

gn0 = 0, gn0+1 = −gn0−1 6= 0, gn0+2 = −ϑn0+1gn0−1 6= 0,

gn0+3 = 0, gn0+4 = ϑn0+1gn0−1 6= 0, gn0+5 = ϑn0+4ϑn0+1gn0−1 6= 0, ... .

By induction, since |ϑn(µ)| → +∞, as n→ +∞, we see that

lim
j→+∞

|gn0+mj
| = +∞, when mj ∈ N, mj ≡ 1 mod 3,
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and |gn0+mk
| = 0 for all mk ∈ N such that mj ≡ 0 mod 3. Thus the sequence

{|gn|}n does not have a limit, but this is a condradiction because, as µ is an
eigenvalue of P, by Theorems 4.9, 4.10 the sequence {|gn|}n must converge to
0.

Looking at the proof of Theorem 4.9 (see (44), (45)) we recall that we have,
for a sufficiently large n0

gN = gn0+2ϑn0+2 . . . ϑN−1zn0+1 . . . zN−2, N > n0 + 2, (60)

where {zn}n is recursively defined by

z0 = 1− 1
ϑ0ϑ1

; zn = 1−

1
ϑnϑn+1

zn−1
, n > 0. (61)

Besides we have, if µ is an eigenvalue of P, that

z0 = 1− 1
ϑ0ϑ1

= K+∞
n=1

(
− 1
ϑnϑn+1

−1

)
. (62)

In other words z0 can be written as a continued fraction. From (61) and (62)
we find out that we can write all zn in (61) as continued fractions which are
the tails of the continued fraction in (62). To prove this we recall the following
statement about tail sequences (see [7], p. 60).

Remark 4.12. Let {tn}n, {t̃n}n be two tail sequences for b0 +K (an/bn) , with
tk = t̃k for one index k. Then tn = t̃n for all n ∈ N.

Proposition 4.13. Let µ be an eigenvalue of P. Using the notation of Theorem
4.9 we have that

zn = K+∞
j=n

(
− 1
ϑjϑj+1

−1

)
, n ∈ N. (63)

Proof. By Lemma 4.7 {zn}n is a tail sequence for K+∞
n=1

(
− 1

ϑnϑn+1
−1

)
. The right-

hand side of (63), for n = 1, 2, ..., is obviously a tail sequence for the same
continued fraction (see Definition 4.3). The assertion follows from Remark 4.12
and Theorem 4.9, as the two tail sequences have the first term in common.

Using this proposition will give estimates on coefficients zn, appearing in
(60). To this purpose we recall the following theorem about continued fractions
(for the proof see [7], p. 35).

Theorem 4.14 (Worpitzky). If {an}n ⊆ C is such that |an| ≤ 1/4, for all
n ∈ N\{0}, then K+∞

n=1 (an/1) converges. Moreover all approximants fn verify
|fn| < 1

2 and we have

|f | =
∣∣∣K+∞

n=1 (an/1)
∣∣∣ ≤ 1

2
.

Applying this theorem to (63) gives the following
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Corollary 4.15. Using the notation of Definition 3.3, let µ be a real number.
There exists n0 ∈ N such that∣∣∣∣ 1

ϑn(µ)ϑn+1(µ)

∣∣∣∣ < 1
4
, ∀ n > n0,

so that we have, for zn defined by (63), |zn| ≤ 1/2, for all n > n0.

We consider once again equation (60), shown in the proof of Theorem 4.9.
Notice that the recurrence relation (59) gives an unique expression for gn0+2

in both cases ϑn(µ) 6= 0 for all n and ϑn(µ) = 0 for some n. Moreover we can
compute also coefficients zn, appearing in (60), with a procedure independent to
whether or not ϑn(µ) vanishes. This will be done by computing zn0 , for n0 large
enough, independently to z0, z1,..., zn0−1. Following these ideas we shall find out
the following general form of the Fourier coefficients, gn, of the eigenfunctions of
P, which is fulfilled in both cases ϑn(µ) = 0 or ϑn(µ) 6= 0. Besides, this analysis
will provide a general necessary and sufficient condition for the eigenvalues of
P that unifies the notation of the two cases considered in Theorems 4.9, 4.10.

Proposition 4.16. Using the notation of Remark 4.11 let µ ∈ R. Let n0 be
such that |ϑn(µ)| > 2 for all n ≥ n0 and such that gn0 , gn0+1, gn0+2 6= 0. Then
µ is an eigenvalue of P if and only if

1− 1
gn0+1

gn0

ϑn0+1

=

1
ϑn0+1ϑn0+2

1−

1
ϑn0+2ϑn0+3

1−
. . .

. (64)

Furthermore, if µ is an eigenvalue of P, we have

gn0+1+m = ϑn0+1 . . . ϑn0+mzn0 . . . zn0+m−1gn0+1, ∀ m > 0, (65)

zn0+m = K+∞
j=m

(
− 1
ϑn0+j+1ϑn0+j+2

−1

)
, ∀ m ∈ N. (66)

Notice that zn0+m 6= 0 for all m ∈ N and thus gn0+1+m 6= 0 for all m > 0.

Proof. The existence of n0 such that |ϑn(µ)| > 2 for all n ≥ n0 and such that
gn0 , gn0+1, gn0+2 6= 0 is a consequence of Remark 4.11 and of Definition 3.3.
We write the recurrence relation as

gn0+1 =
(
gn0+1

gn0

)
gn0 , (67)

gn0+m+2 = ϑn0+m+1gn0+m+1 − gn0+m, m ∈ N. (68)

Thus we apply Lemma 3.4, Proposition 3.6 and Proposition 4.8 to this recur-
rence relation as in the proof of Theorem 4.9; notice that the analogous of the
sequence {zn}n in this case is

z̃0 = 1− 1
gn0+1

gn0

ϑn0+1

; z̃n = 1−

1
ϑnϑn+1

z̃n−1
, n > 0. (69)

20



So we have that (64) is a necessary and sufficient condition for µ to be an
eigenvalue of P and furthermore we have

gn0+1+m = ϑn0+1 . . . ϑn0+mz̃
∗
0 . . . z̃

∗
m−1gm0+1, (70)

where z̃∗j are defined in analogy with z∗j in (40). We reason as in the proof of
Proposition 4.13. From (64) and Remark 4.12, as {z̃n}n is a tail sequence for

K+∞
n=1

(
− 1

ϑn0+n+1ϑn0+n+2

−1

)
we get

z̃n =

1
ϑn0+n+1ϑn0+n+2

1−

1
ϑn0+n+2ϑn0+n+3

1−
. . .

, ∀ n ∈ N. (71)

Notice that from gn0+2 6= 0, by using (68), it follows

z̃0 = 1− 1
gn0+1

gn0

ϑn0+1

6= 0.

Moreover, as |ϑn(µ)| > 2 for every n ≥ n0, we have, from (71) and Corollary
4.15, |z̃n| ≤ 1

2 . From here and by (69) we have z̃n 6= 0,∞ for all n ∈ N. Thus
z̃∗n = z̃n for all n, so (70) and (71) imply (65) and (66).

5 Upper and lower bounds for eigenvalues

In this section we will provide for each eigenvalue two sequences; one converging
to the eigenvalue from above and the other converging to the eigenvalue from
below. The following results can be found in [9] and we just give the statements
in a form tailored to our particular situation.

We recall again the recurrence relations fulfilled by the coefficients of eigen-
functions {v±n }n. We have{

v+
n+1 = δ+n v

+
n − v+

n−1, ∀ n ∈ N
v−n+1 = δ−n v

−
n − v−n−1, ∀ n ∈ N, (72)

with {
δ+0 = h2 + 1− 8µh

δ+n = (2n+ 1)2h2 + 2− 8µh, ∀ n ∈ N\{0}
(73)

and
δ−n = 4(n+ 1)2h2 + 2− 8µh, ∀ n ∈ N. (74)

Following the notation fixed in Definition 3.3 we will consider {gn}n≥−1 =
{gn(µ)}n≥−1 as a particular sequence of polynomials in µ. We will see that the
eigenvalues of P are the limits of zeros of these polynomials.

To start this analysis it is useful to give the following definition.

Definition 5.1. Let {Πn}n be a sequence of polynomials in the variable µ, with
real coefficients. Denote by rn,1 ≤ rn,2 ≤ · · · ≤ rn,k the real zeros (in case they
exist) of Πn and put, by definition, rn,0 = −∞ and rn,k+1 = +∞. We shall say
that {Πn}n≥0 is a sequence of polynomials with interlaced zeros if
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(i) Π0 is not the zero polynomial, it has degree d ≥ 0 and all its zeros are real
with multeplicity 1.

(ii) Π1 has degree d + 1, all its zeros are real-valued with multeplicity 1 and
each zero of Π1 is located between two consecutive zeros of Π0, i.e.

r0,i−1 < r1,i < r0,i, i = 1, 2, . . . , d+ 1.

(iii) There exists a sequence {βn}n of polynomials (in µ) of degree 1 such that

Πn+1 = βnΠn + Πn−1, n = 1, 2, . . . . (75)

(iv) lim
n→+∞

Πn(µ) := Πn(+∞) and lim
n→+∞

Πn+2(µ) := Πn+2(+∞) have opposite

signs for all n ∈ N.

If Π0 has degree 0 we say that {Πn}n is a sequence of polynomials with
interlaced zeros if {Πn}n fulfills (i), (iii), (iv).

Now we change the sequences of coefficients of eigenfunctions {v±n }n, so that
they satisfy Definition 5.1.

Lemma 5.2. We put, by definition{
c−2n = (−1)nv−2n,
c−2n+1 = (−1)nv−2n+1,

n ∈ N,
{
c+2n = (−1)nv+

2n,
c+2n+1 = (−1)nv+

2n+1,
n ∈ N. (76)

Moreover let {χ−n }n, {χ+
n }n be such that

χ−n = (−1)nδ−n , n ∈ N; χ+
n = (−1)nδ+n , n ∈ N. (77)

Then {c−n }n, {c+n }n satisfy the following recurrence relations:

c−n+1 = χ−n c
−
n + c−n−1, n ∈ N; c+n+1 = χ+

n c
+
n + c+n−1, n ∈ N. (78)

In particular {c−n }n, {c+n }n are sequences of polynomials in µ with interlaced
zeros.

Proof. It follows immediatly from relations (76) and (77), recalling (72), (73)
and (74).

We next state an important property of sequences of polynomials with in-
terlaced zeros.

Theorem 5.3. If {Πn}n is a sequence of polynomials with interlaced zeros, then
Πn has all real and distinct zeros, for every n ∈ N. Moreover, for all n ≥ 1, each
zero of Πn−1 is located between two consecutive zeros of Πn; in other words

rn−1,i−1 < rn,i < rn−1,i, i = 1, 2, . . . , d+ n, ∀ n ≥ 1.

From here we obtain, in particular, that the sequences {rn,i}n, for fixed i, are
monotone decreasing.

The following result defines the polynomials Θn and Ψn and gives a property
for their zeros; we will see that particular sequences defined using these zeros
converge to eigenvalues of P.
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Theorem 5.4. Let {Πn}n be a sequence of polynomials with interlaced zeros
and define Θn = Πn−Πn−1 and Ψn = Πn+Πn−1. Then all the zeros of Θn, Ψn

are real and distinct. We denote by ρn,1 < ρn,2 < · · · < ρn,d+n, the zeros of Θn,
and we denote by ρ′n,1 < ρ′n,2 < · · · < ρ′n,d+n those of Ψn. We set, by definition
ρ−n,i = min{ρn,i, ρ′n,i}. Then, for every n ∈ N and for every i = 1, 2, . . . , d+ n,

we have ρ−n,i ∈ (rn−1,i−1, rn,i) .

We will use the following definition to prove the monotonicity of {ρ−n,i}, for
n ≥ n0, for some n0 ∈ N.

Definition 5.5. Using the notation of Definition 5.1 and writing βn as βn(µ) =
ξn(µ − Bn), for ξn ∈ R, we say that a sequence of polynomials with interlaced
zeros is admissible if there exist ξ > 0 and N0 ∈ N such that |ξn| ≥ ξ for all
n ∈ N and Bn+1 −Bn >

2
ξ for all n ≥ N0.

We show that the sequences {χ±n }n, defined in Lemma 5.2 satisfy Definition
5.5.

Lemma 5.6. The sequences {χ−n }n, {χ+
n }n, defined by (77) are admissible.

Proof. Upon recalling relations (77) and (73) we have

χ+
n (µ) = (−1)n+18h

(
− (2n+ 1)2h

8
− 1

4h︸ ︷︷ ︸
Bn

+µ

)
,

with n ∈ N\{0}. Using the notation fixed in Definition 5.5, we set ξ = 8h,
ξn = (−1)n+18h. In order to verify the definition it suffices to prove that there
exists N0 ∈ N such that

(2n+ 3)2h
8

− (2n+ 1)2h
8

≥ 1
4h

(79)

for all n ≥ N0. From (79) we get N0 ≥ 1
4h2 − 1. In a similar way, recalling (77)

and (74), we obtain that {χ−n }n fulfills the admissibility hypothesis, for ξ = 8h,
ξn = (−1)n+18h and N0 ≥ 1

4h2 − 3
2 .

The following theorem ensures the monotonicity of {ρ−n,i}, for sufficiently
large n, in the case the sequence of polynomials is admissible.

Theorem 5.7. Let {Πn}n be an admissible sequence of polynomials with inter-
laced zeros and let rn,i be the zeros of Πn (using the notation fixed in Definition
5.1). Fix i ∈ N. By Definition 5.5 there exists ni ∈ N such that |βn+1(µ)| > 2
for all µ < rn,i and for all n ≥ ni. Then, for n ≥ ni we have

rn+1,i ∈
[
ρ−n,i, rn,i

)
, ρ−n+1,i > ρ−n,i.

As a consequence for every i the sequence {rn,i}n converges (recall that {rn,i}n
is monotone, by Theorem 5.3) and ρ−n,i, with n ≥ ni, are lower bounds for
lim

n→+∞
rn,i.
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The following result shows that, for some values of the variable, the limit of
the absolute value of admissible sequences of polynomials with interlaced zeros
is 0. This will give us information about eigenvalues of P, since the sequence of
Fourier coefficients of eigenfunctions converges to zero (see Theorems 4.9, 4.10),
and by Lemma 5.2 the same sequence is an admissible sequence of polynomials,
with interlaced zeros.

Lemma 5.8. Using the notation of Theorem 5.4, let {Πn}n be an admissible
sequence of polynomials with interlaced zeros and let ri = lim

n→+∞
rn,i and li =

lim
n→+∞

ρ−n,i. Then, for every i ∈ N, we have

a ∈ [li, ri] ⇒ lim
n→+∞

|Πn(a)| = 0.

We now fix the notation we will use hereafter.

Definition 5.9. From now on we will denote with {Πn}n one of the two se-
quences {c−n }n, {c+n }n defined by (76). Furthermore we will use the notation
fixed in Definition 5.1 and in Theorem 5.4, recalling that either {Πn}n := {c−n }n
or {Πn}n := {c+n }n.

Lemma 5.8 implies, recalling Theorems 4.9 and 4.10 and their proofs, that
ri = li and that these values are exactly the eigenvalues of P. In particular we
have the following

Corollary 5.10. Using the notation of Definition 5.9 and of Lemma 5.8 we
have, by Lemma 5.6, that {Πn}n = {Πn(µ)}n is an admissible sequence of
polynomials in µ with interlaced zeros and

lim
n→+∞

rn,i = ri = li = lim
n→+∞

ρ−n,i ∀ i ∈ N.

Furthermore the set {ri, i ∈ N\{0}} coincides with the set of eigenvalues of P.

Proof. By Theorems 4.9 and 4.10 we have, by recalling (76), that |Πn(µ)| → 0 if
and only if µ is an eigenvalue of P. From Lemma 5.8 we have that |Πn(a)| → 0
for all a ∈ [li, ri] . By Remark 2.3 P has discrete spectrum, therefore li = ri and
ri is an eigenvalue of P.

We next show that Corollary 5.10 implies that all Fourier coefficients of the
eigenfunction associated with the lowest eigenvalue of P can not vanish.

Corollary 5.11. Let µ0 be the lowest eigenvalue of P. If

v+ =
+∞∑
n=0

v+
n

1√
π

cos
(

2n+ 1
2

x

)
(80)

is the eigenfunction associated with µ0 then we have v+
n 6= 0 for all n ∈ N.

Proof. Notice that v+ is an even eigenfunction which does not vanish in the
interior of I (see e.g. [3], Theorem 4.1 p. 337). This justify the expansion (80).
From Corollary 5.10 we have that µ0 is the limit of the sequence {rn,1}n , where
rn,1 denotes the lowest zero of v+

n = v+
n (µ), considered as a polynomial in µ.
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Notice that, by Lemma 5.2 and Theorem 5.3, the sequence {rn,1}n is monotone
decreasing. Therefore, since

µ0 = lim
n→+∞

rn,1

it follows immediatly that µ0 can not be a zero of any of the v+
n .

We now state an important result about the continued fraction

f = f(µ) = ϑ0(µ) +K+∞
n=1 (−1/ϑn(µ)) ,

where {ϑn}n represents, as established in Definition 3.3, one of the sequences
{δ+n }, {δ−n }. This function appears in the necessary and sufficient condition for
the eigenvalues of P (see (58)).

In particular this function is meromorphic in µ (for the proof see [9]).
Notice that the continued fraction K+∞

n=1 (−1/ϑn(µ)) is equivalent to (see
Definition 4.1) K+∞

n=1 (1/(−1)nϑn(µ)) . For this reason, recalling (77), we give
the following

Definition 5.12. Define the function

f = f(µ) = β0(µ) +K+∞
n=1 (1/βn(µ)) , (81)

with {βn}n := {χ±n }n, ± respectively (see (77)).

We write the approximants of f (see Definition 4.1) as fn = Pn

Qn
. Thus, from

Remark 4.2, upon setting P−1 = 1, P0 = β0, Q−1 = 0, Q0 = 1, we have

Pn+1 = βn+1Pn + Pn−1, n ∈ N, (82)

Qn+1 = βn+1Qn +Qn−1, n ∈ N. (83)

From (82) we have that, when {βn}n := {χ−n }n, the sequence {Pn}n coincides
with the sequence of coefficients of eigenfunctions {c−n }n (see (76) and (77)),
and we have {Pn}n = {c+n }n when {βn}n := {χ+

n }n (see (76) and (77)). Thus,
by Corollary 5.10 the eigenvalues of P are the limits of zeros of the canonical
numerators of f. Furthermore f is meromorphic and all its poles are limits of
the zeros of the canonical denominators Qn. (For the proof see [9].)

Proposition 5.13. The function f, defined by (81), is meromorphic on C, and
it has a pole in z if limn→+∞ |Qn(z)| = 0.

If we treat {Qn}n as a sequence of polynomials with interlaced zeros then,
from Theorem 5.4, we get two sequences converging, one from above, the other
from below, to the poles of f.

6 Estimates for large eigenvalues

In this section we will study the behaviour of the eigenvalues µ such that µ >
C = C(h), for fixed h. In particular we will provide upper and lower bounds
for these eigenvalues. To prove these results we will use Worpitzky’s theorem
(Theorem 4.14) applied to the continued fraction appearing in the necessary
and sufficient condition (37) for the eigenvalues. As usual we will analyse in
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the first place the eigenvalues associated to even eigenfunctions and afterwards
those associated to odd eigenfunctions.

In order to apply Worpitzky’s Theorem to K+∞
n=1

(
− 1

δ
+
n δ

+
n+1

−1

)
we will study

the values of
∣∣δ+n δ+n+1

∣∣ = ∣∣δ+n (µ)δ+n+1(µ)
∣∣ for varying µ. For this reason is useful

to recall the definition of δ+n :{
δ+0 = δ+0 (µ) = h2 + 1− 8µh
δ+n = δ+n (µ) = (2n+ 1)2h2 + 2− 8µh, ∀ n ∈ N\{0}. (84)

To have a better understanding of the problem, it helps using a geometric
approach. More precisely we can think of the functions δ+n (µ)δ+n+1(µ), for every
n, as parabolas in the variable µ. In this way we get a sequence of polynomi-
als of degree 2, {δ+n (µ)δ+n+1(µ)}n, with the property that the maximum zero of
δ+n (µ)δ+n+1(µ) is the minimum zero of δ+n+1(µ)δ+n+2(µ), for every n ∈ N. Further-
more the sequence of the vertices of the parabolas defined by these polynomials,
for n ≥ 1, is monotone decreasing. These properties are straightforward conse-
quences of (84). In the following results we get sufficient conditions for these
polynomials to have absolute value greater than or equal to 4. We will see that
if µ is such that this last condition is fulfilled then µ can not be an eigenvalue
of P.

Lemma 6.1. Fix n ∈ N and let µ be such that δ+n (µ) < 0 and δ+n+1(µ) > 0, i.e.
such that

(2n+ 1)2

8
h+

1
4h

< µ <
(2n+ 3)2

8
h+

1
4h
. (85)

Then we have ∣∣δ+n (µ)δ+n+1(µ)
∣∣ < ∣∣δ+n+1(µ)δ+n+2(µ)

∣∣ . (86)

Proof. We prove that |δ+n (µ)| <
∣∣δ+n+2(µ)

∣∣ , from which (86) follows immediatly.
By (84) and by (85) we have δ+n+2(µ) > δ+n+1(µ) > 0. Thus, to obtain (86),

it suffices to show that −δ+n+2(µ) < δ+n (µ) < δ+n+2(µ). It is straightforward
that δ+n (µ) < δ+n+2(µ), for δ+n+2(µ) > 0 and δ+n (µ) < 0. We now prove that
−δ+n+2(µ) < δ+n (µ). From (85) it follows that −8µh > −(2n+ 3)2h2− 2, so that
we have

δ+n (µ) = (2n+ 1)2h2 + 2− 8µh > (−8n− 8)h2. (87)

In addition, from (85) it also follows that

−δ+n+2(µ) = −(2n+ 5)2h2 − 2 + 8µh < (−8n− 16)h2. (88)

From (87) and (88), being (−8n−8)h2 > (−8n−16)h2, we get δ+n (µ) > −δ+n+2(µ)
and hence (86).

In the hypotheses of Lemma 6.1, we now study the values of the function
defined by

µ 7−→ Rn(µ) := min{
∣∣δ+n (µ)δ+n+1(µ)

∣∣ , ∣∣δ+n (µ)δ+n−1(µ)
∣∣}. (89)

Proposition 6.2. Fix n ∈ N. In the hypotheses of Lemma 6.1 we have that

1) if µ <
1
4h

+
[(2n+ 1)2 + 4]h

8
then

∣∣δ+n (µ)δ+n−1(µ)
∣∣ < ∣∣δ+n (µ)δ+n+1(µ)

∣∣ ;
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2) if µ >
1
4h

+
[(2n+ 1)2 + 4]h

8
then

∣∣δ+n (µ)δ+n−1(µ)
∣∣ > ∣∣δ+n (µ)δ+n+1(µ)

∣∣ ;
3) if µ =

1
4h

+
[(2n+ 1)2 + 4]h

8
then

∣∣δ+n (µ)δ+n−1(µ)
∣∣ =

∣∣δ+n (µ)δ+n+1(µ)
∣∣ =

16h4(2n+ 1).

Proof. Points 1) and 2) follow from (84) and (85) by analysing the inequal-
ity

∣∣δ+n−1(µ)
∣∣ < ∣∣δ+n+1(µ)

∣∣ . To obtain 3), we simply replace the value of µ in∣∣δ+n−1(µ)δ+n (µ)
∣∣ (see (84)).

We will show in the following Propositions that
∣∣δ+m(µ)δ+m+1(µ)

∣∣ > Rn(µ)
for every m ∈ N, with m 6= n − 1, n, and for µ fulfilling the hypothesis of
Proposition 6.2. In this way, by (89), conditions on values of

∣∣δ+n (µ)δ+n−1(µ)
∣∣ and∣∣δ+n (µ)δ+n+1(µ)

∣∣ give rise to conditions on all the other terms
∣∣δ+m(µ)δ+m+1(µ)

∣∣ .
Hereafter we occasionally denote δ+n (µ) for short simply by δ+n .

Using (84), with straightforward computations we can prove the following

Proposition 6.3. Fix n in N. Let µ be such that it verifies equation (85). Then
we have

∣∣δ+mδ+m+1

∣∣ > ∣∣δ+n δ+n+1

∣∣ , for all m > n. Furthermore

a) if µ <
1
4h

+
[(2n+ 1)2 + 4]h

8
we have∣∣δ+m(µ)δ+m+1(µ)

∣∣ > ∣∣δ+n (µ)δ+n−1(µ)
∣∣ for every m = 0, 1, . . . , n− 2;

b) if µ >
1
4h

+
[(2n+ 1)2 + 4]h

8
we have∣∣δ+m(µ)δ+m+1(µ)

∣∣ > ∣∣δ+n (µ)δ+n+1(µ)
∣∣ for every m = 0, 1, . . . , n− 2.

From Proposition 6.3, and by recalling (89), it follows the following

Corollary 6.4. Let n ∈ N. If µ satisfies equation (85) then∣∣δ+m(µ)δ+m+1(µ)
∣∣ > Rn(µ), ∀ m 6= n, n− 1.

By Theorem 4.9 we have that µ is an eigenvalue of P if and only if it fulfills

1− 1
δ+0 δ

+
1

= K+∞
n=1

− 1
δ+n δ

+
n+1

−1

 , (90)

in case δ+n 6= 0 for every n ∈ N. Notice that this last condition, δ+n (µ) 6= 0,
is immediatly fulfilled when µ satisfies the hypotheses of Corollary 6.4 (see
equations (85) and (84)).

Now we apply Worpitzky’s Theorem (Theorem 4.14) to the continued frac-
tion appearing in (90) to obtain estimates for the eigenvalues.

Theorem 6.5. Fix n in N. If µ is such that

(2n+ 1)2

8
h+

1
4h

< µ <
(2n+ 3)2

8
h+

1
4h

and, at the same time, Rn(µ) ≥ 4 (recall (89)) then µ is not an eigenvalue for
P.
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Proof. By Corollary 6.4 and since Rn(µ) ≥ 4 we have
∣∣δ+n δ+n+1

∣∣ ≥ 4 for every

n ∈ N. Then the continued fraction K+∞
n=1

(
− 1

δ
+
n δ

+
n+1

−1

)
verifies the hypothesis of

Worpitzky’s Theorem and thus∣∣∣∣∣∣K+∞
n=1

− 1
δ+n δ

+
n+1

−1

∣∣∣∣∣∣ ≤ 1
2
. (91)

Notice that δ+n 6= 0 for every n, because
∣∣δ+n δ+n+1

∣∣ > 4 for every n, hence the
hypothesis of Theorem 4.9 are verified. Therefore in case µ is an eigenvalue for
P, equation (90) is satisfied by µ and, recalling (91), we get

1
2
≥

∣∣∣∣∣∣K+∞
n=1

− 1
δ+n δ

+
n+1

−1

∣∣∣∣∣∣ =
∣∣∣∣1− 1

δ+0 δ
+
1

∣∣∣∣ ≥ ∣∣∣∣1− ∣∣∣∣ 1
δ+0 δ

+
1

∣∣∣∣∣∣∣∣ ≥ 3
4

which is a contradiction.

From Theorem 6.5 we obtain two different estimates for the eigenvalues, de-
pending on the value of Rn(µ) = min{|δ+n (µ)δ+n−1(µ)|, |δ+n (µ)δ+n+1(µ)|}. Propo-
sition 6.2 establishes that if

(2n+ 1)2

8
h+

1
4h

< µ <
[(2n+ 1)2 + 4]h

8
+

1
4h

(92)

then Rn(µ) = |δ+n (µ)δ+n−1(µ)|, and if

[(2n+ 1)2 + 4]h
8

+
1
4h

< µ <
(2n+ 3)2h

8
+

1
4h

then Rn(µ) = |δ+n (µ)δ+n+1(µ)|. In addition, by recalling 3) of Proposition 6.2,
we obtain from Theorem 6.5 two different situations according to whether 4 >
16h4(2n+ 1) or 4 < 16h4(2n+ 1). In particular we have the following

Theorem 6.6. Let n be a natural number such that n ≥ 1
2h2 −1. Then we have

the following.

1) If 4 ≥ 16h4(2n+ 1), let µ be such that
µ ≥ 4(n+ 1)2 + 1

8
h+

1
4h

−
√

4(n+ 1)2h4 − 1
4h

µ ≤ 4(n+ 1)2 + 1
8

h+
1
4h

+

√
4(n+ 1)2h4 − 1

4h
.

(93)

Then µ cannot be an eigenvalue for P, associated to an even eigenfunction.

2) If 4 < 16h4(2n+ 1), let µ be such that
µ ≥ (4n2 + 1)

8
h+

1
4h

+
√

4n2h4 + 1
4h

µ ≤ 4(n+ 1)2 + 1
8

h+
1
4h

+

√
4(n+ 1)2h4 − 1

4h
.

(94)

Then µ cannot be an eigenvalue for P, associated to an even eigenfunction.
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Proof. Note that the hypoteses of 1) and 2) imply that µ fulfills (92). Notice,
furthermore, that n ≥ 1

2h2 − 1 is a necessary condition for the estimates (93)
and (94) to make sense. In fact this condition assures that the radicand which
appears in these expressions is greater than or equal to 0.

1) If 4 ≥ 16h4(2n + 1) then the condition of Theorem 6.5, Rn(µ) ≥ 4,
is equivalent to |δ+n δ+n+1| > 4, by Proposition 6.2. This last relation can be
written as −δ+n δ+n+1 > 4, because δ+n < 0 and δ+n+1 > 0. Thus, by (84) we obtain

(8µh)2−8µh
[
(8(n+1)2+2)h2+4

]
+
[
4(n+1)2−1

]2
h4+

[
16(n+1)2+4

]
h2+8 < 0

and from here 1).
2) Similarly to 1) by Proposition 6.2 we have that if 4 < 16h4(2n+ 1) then

the condition of Theorem 6.5, Rn(µ) ≥ 4, is equivalent to

a ≤ µ ≤ b, (95)

where a is the maximal solution of the equation |δ+n δ+n−1| = 4 and b is the
maximal solution of the equation |δ+n δ+n+1| = 4. This follows immediatly from
Proposition 6.2 and from (84). We compute a and b. By (84) we have |δ+n δ+n−1| =
4 if

(8µh)2 − 8µh
[
(8n2 + 2)h2 + 4

]
+
(
4n2 − 1

)2
h4 +

(
16n2 + 4

)
h2 = 0,

thus

a =
(4n2 + 1)

8
h+

1
4h

+
√

4n2h4 + 1
4h

.

The computation of b has been already done in the proof of 1). Replacing the
values of a and b in (95) we get the assertion.

The approach of this section applies, in a similar way, to eigenvalues asso-
ciated to odd eigenfunctions. In this way we get estimates similar to those of
Theorem 6.6. We just state an analogous theorem, this time about odd eigen-
functions.

Theorem 6.7. Let n be a natural number such that n ≥ 1
2h2 − 1

2 .

1) If 4 ≥ 32nh4, let µ be such that it satisfies
µ ≥ n2 + (n+ 1)2

4
h+

1
4h

−
√

(2n+ 1)2h4 − 1
4h

µ ≤ n2 + (n+ 1)2

4
h+

1
4h

+

√
(2n+ 1)2h4 − 1

4h
.

(96)

Then µ cannot be an eigenvalue of P, associated to an odd eigenfunction.

2) If 4 < 32nh4, let µ be such that it satisfies
µ ≥ n2 + (n− 1)2

4
h+

1
4h

+

√
(2n− 1)2h4 + 1

4h

µ ≤ n2 + (n+ 1)2

4
h+

1
4h

+

√
(2n+ 1)2h4 − 1

4h
.

(97)

Then µ cannot be an eigenvalue of P, associated to an odd eigenfunction.
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From Theorems 6.6 and 6.7 it follows that the eigenvalues of P belong to
the union of an infinite number of intervals. In particular we have the following

Corollary 6.8. Let n0 ∈ N be such that n0 ≥ 1
2h2 −1, and let Spec+(P ) denote

the set of all eigenvalues of P associated with even eigenfunctions.
Then, upon setting

Cn =
4(n+ 1)2 + 1

8
h+

1
4h

−
√

4(n+ 1)2h4 − 1
4h

,

Dn =
4(n+ 1)2 + 1

8
h+

1
4h

+

√
4(n+ 1)2h4 − 1

4h
,

En =
(4n2 + 1)

8
h+

1
4h

+
√

4n2h4 + 1
4h

,

Fn =
4(n+ 1)2 + 1

8
h+

1
4h

+

√
4(n+ 1)2h4 − 1

4h
,

there exists n1 ∈ N, with n1 ≥ max
{
n0 + 1, 1

8h4 − 1
2

}
, such that

Spec+(P ) ∩ [Cn0 ,+∞) ⊂

(
n1−1⋃
n=n0

(Dn, Cn+1)

)
∪

(
+∞⋃
n=n1

(Fn, En+1)

)
. (98)

Furthermore, all the intervals appearing in (98) are pairwise disjoint and the
length (En+1 − Fn) → 0 as n → +∞. By writing (Fn, En+1) in terms of their
center, denoted by Tn, we get (Fn, En+1) = (Tn − Un, Tn + Un), with

Tn =
4(n+ 1)2 + 1

8
h+

1
4h

+

√
4(n+ 1)2h4 + 1 +

√
4(n+ 1)2h4 − 1

8h
,

Un =

√
4(n+ 1)2h4 + 1−

√
4(n+ 1)2h4 − 1

8h
, lim

n→+∞
Un = 0.

Proof. It follows immediatly from Theorem 6.6.

An analogous result holds for eigenvalues associated to odd eigenfunctions.

Corollary 6.9. Let n0 ∈ N be such that n0 ≥ 1
2h2 − 1

2 and let Spec−(P ) denote
the set of all the eigenvalues of P associated to odd eigenfunctions. Then, putting

Gn =
n2 + (n+ 1)2

4
h+

1
4h

−
√

(2n+ 1)2h4 − 1
4h

,

Hn =
n2 + (n+ 1)2

4
h+

1
4h

+

√
(2n+ 1)2h4 − 1

4h
,

Ln =
n2 + (n− 1)2

4
h+

1
4h

+

√
(2n− 1)2h4 + 1

4h
,

Mn =
n2 + (n+ 1)2

4
h+

1
4h

+

√
(2n+ 1)2h4 − 1

4h
,

there exists n1 ∈ N, with n1 ≥ max
{
n0 + 1, 1

8h4

}
, such that

Spec−(P ) ∩ [Gn0 ,+∞) ⊂

(
n1−1⋃
n=n0

(Hn, Gn+1)

)
∪

(
+∞⋃
n=n1

(Mn, Ln+1)

)
. (99)
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Furthermore, all the intervals appearing in (99) are pairwise disjoint and the
length (Ln+1 −Mn) → 0 as n→ +∞. By writing (Mn, Ln+1) in terms of their
center, denoted by Vn, we get (Mn, Ln+1) = (Vn −Wn, Vn +Wn), with

Vn =
n2 + (n+ 1)2

4
h+

1
4h

+

√
(2n+ 1)2h4 − 1 +

√
(2n+ 1)2h4 + 1

8h
,

Wn =

√
(2n+ 1)2h4 + 1−

√
(2n+ 1)2h4 − 1

8h
, lim

n→+∞
Wn = 0.

It is easy to see that there exists n2 ∈ N such that (Fn, En+1) , appearing
in (98), do not intersect (Mn, Ln+1) , appearing in (99), for all n ≥ n2.

It is worth to recall that there are classical asymptotic estimates of large
eigenvalues of general Sturm-Liouville problems, (see e.g. [4], pp. 270-273)
which can be applied to our case. Although our approach is not general, since it
is tied to a particular Sturm-Liouville problem, it makes an interesting use of the
continued fractions. Besides, the estimates proved using the continued fractions
approach give a more precise result than the classical asymptotics (notice that
asymptotics given in [4] depend on the eigenfunction, whereas the bounds Cn
to Fn, Gn to Mn are explicit).

7 Uniform convergence of the eigenfunction co-
efficients

It is known that some classes of parameter-dependent operators admit asymp-
totic expansions (in the same parameter) for their eigenvalues. We recall a
result about these expansions (see [1], pp. 39 and 41) which can be applied to
the operator P̃ , defined by P̃ = 2hP, D(P̃ ) = D(P ).

Recall the definition of P :

P (h) := P : D(P ) −→ L2(I), Pf = −h
2
f ′′ +

1
h
V f,

where

V (x) =
1
2

sin2
(x

2

)
, D(P ) = H1

0 (I) ∩H2(I) ⊂ L2(I), I = (−π, π).

Then if we multiply the eigenvalue equation for P by 2h, we get

P̃ f = −h2f ′′ + 2V f = 2µhf, f ∈ D(P ), µ ∈ C. (100)

Therefore, µ is an eigenvalue of P if and only if 2µh is an eigenvalue of P̃ .
To fix notation we give the following

Definition 7.1. We put P̃ = P̃ (h) = 2hP (h), D(P̃ ) = D(P ), and we set
Ṽ (x) = sin2

(
x
2

)
.

Now we recall the theorem, by Helffer and Sjöstrand, that gives the asymp-
totic expansion of eigenvalues of a general class of operators, which contains P̃
(we just state this result in our particular case, for the general case see [1], pp.
39 and 41).
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Theorem 7.2. Let P̃0 be the harmonic oscillator, in L2(R),

P̃0(h)f = −h2f ′′ +
1
4
x2f

and let
{En}n∈N :=

{
2n+ 1

2

}
n∈N

be the sequence of eigenvalues of P̃0(1). Fix 0 < C0 /∈ {E0, E1, . . .} and let
N0 ∈ N be such that EN0−1 < C0 < EN0 .

Then there exists h0 > 0 such that for 0 < h ≤ h0, P̃ has precisely N0

eigenvalues 0 < λ̃0(h) ≤ · · · ≤ λ̃N0−1(h) in [0, C0h] . Moreover, λ̃n has an
asymptotic expansion

λ̃n(h) ∼ h(En + a1h+ a2h
2 + . . . ), an ∈ R, h→ 0+. (101)

Notice that 1
4 x

2 represents the first non-zero term in the Taylor expansion
of Ṽ (x) at x = 0.

It is interesting to see if this general theorem can be proved in our particular,
one-dimensional case, using simpler techniques. In what follows we give a partial
answer to this question, by analysing the case of the lowest eigenvalue of P̃ ,
which we will denote by µ̃0. The main tool used to this aim is once again the
continued fractions theory. In particular we will prove the monotonicity of µ̃0(h)
with respect to h, from which it will follow the existence of lim

h→0+
µ̃0(h). We want

to notice here that the limit h→ 0 is not a perturbative limit for the problem,
so that we cannot use directly the classic results of Perturbation Theory.

For the sake of completeness we state the asymptotic expansion for µ̃0(h) as
follows from (101) of Theorem 7.2:

µ̃0(h) ∼ h

(
1
2

+ a1h+ a2h
2 + . . .

)
, an ∈ R.

Recalling Definition 7.1, as µ̃0(h) = 2µ0(h)h, where µ0 is the lowest eigenvalue
of P, we have

µ0(h) ∼
1
4

+
a1

2
h+

a2

2
h2 + . . . , an ∈ R.

Now we fix h0 ∈ R, with h0 > 0. We will show that d
dh µ̃0(h)|h=h0 is positive for

every h0 > 0, from this the monotonicity of µ̃0(h), with respect to h, will follow
(and from here the existence of lim

h→0+
µ̃0(h)). Since we will analyse d

dh µ̃0(h)|h=h0

we assume that |h − h0| is small, so that we can use the Perturbation Theory
(for a reference see [5]). Through this approach we will prove uniform estimates
on coefficients of the eigenfunction associated with µ̃0(h), for h in a complex
neighbourhood of h0. Then, using an integral equation which relates µ̃0(h) and
its associated eigenfunction, we will get information on µ̃0(h).

Now we recall two classical results of Perturbation Theory which will be used
for this aim (see [5], p. 377, 392).
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Theorem 7.3. Let T (0) be a closable operator from X to Y, with D(T (0)) = D.
Let T (n), n = 1, 2, . . . , be operators from X to Y with domains containing D,
and let there be constants a, b, c ≥ 0 such that∥∥∥T (n)u

∥∥∥ ≤ cn−1(a‖u‖+ b‖T (0)u‖), u ∈ D, n = 1, 2, . . . . (102)

Then the series

T (ξ)u = T (0)u+ ξT (1)u+ ξ2T (2)u+ . . . , u ∈ D

defines an operator T (ξ) with domain D for |ξ| < 1
c . If |ξ| < (b+ c)−1 then T (ξ)

is closable and the closures for such ξ form a holomorphic family of type (A).

Theorem 7.4. Let T (ξ) a selfadjoint holomorphic family of type (A), defined
in a neighborhood of an interval I0 of the real axis. Furthermore, let T (ξ) have
compact resolvent for every ξ. Then all eigenvalues of T (ξ) can be represented
by functions which are holomorphic on I0. More precisely, there is a sequence of
scalar-valued functions µn(ξ) and a sequence of vector-valued functions ϕn(ξ),
all holomorphic on I0, such that for every ξ ∈ I0, the µn(ξ) represent all the
repeated eigenvalues of T (ξ) and the ϕn(ξ) form a complete orthonormal family
of the associated eigenvectors of T (ξ).

Consider now − d2

dx2 in L2(I) with domain D(P ). We can write

P̃ = P̃ (h) = −h2 d
2

dx2
+ Ṽ = P̃ (h0) + (h2 − h2

0)
(
− d2

dx2

)
. (103)

From (103) we can use Theorem 7.3 to show that the h−dependent family of
operators P̃ = P̃ (h) forms an holomorphic family of type (A) in the parameter
(h2 − h2

0).

Proposition 7.5. The family of operators P̃ = P̃ (h) (see Definition 7.1) is a
selfadjoint holomorphic family of type (A) in the perturbative parameter (h2 −
h2

0).

Proof. By (103) it suffices to prove that there exist a, b ≥ 0 such that ‖−f ′′‖ ≤
a‖f‖+ b‖P̃ (h0)f‖. We have

‖ − f ′′‖ =
1
h2

0

‖ − h2
0f
′′ + Ṽ f − Ṽ f‖ ≤ 1

h2
0

(‖P (h0)f‖+ ‖f‖), (104)

where the last inequality follows from max|x|≤π Ṽ (x) = max|x|≤π
[
sin2

(
x
2

)]
= 1.

Thus, by the same theorem, P̃ = P̃ (h) forms an holomorphic family of type (A)
in (h2 − h2

0), for |h2 − h2
0| < h2

0. Moreover we have that P̃ (h) is selfadjoint (see
[5], p. 385).

By Proposition 7.5 and Theorem 7.4 we can expand all eigenfunctions and
eigenvalue of P̃ in power series of the perturbative parameter (h2 − h2

0). Notice
that these series are defined for complex values of the perturbative parameter,
thus we will consider, from now on, h as a complex parameter, varying in a
neighbourhood of the real parameter h0. From these expansions uniform esti-
mates on coefficients of the eigenfunction in the same complex neighbourhood
of h0 will follow.

We give the expansion for the lowest eigenvalue µ̃0 and its associated eigen-
function, ψ̃.
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Proposition 7.6. Let µ̃0 be the lowest eigenvalue of P̃ (see Definition 7.1).
Then, for every h ∈ C such that |h2−h2

0| < h2
0, µ̃0 = µ̃0(h) admits the following

power series expansion

µ̃0 =
+∞∑
n=0

(h2 − h2
0)
nµ̃0n. (105)

Let ψ̃ = ψ̃(h) be the eigenfunction associated with µ̃0. We have, for every h ∈ C
such that |h2 − h2

0| < h2
0, that ψ̃ admits the following expansion

ψ̃ =
+∞∑
n=0

(h2 − h2
0)
nψ̃n, ψ̃n ∈ L2(I).

We prove next some technical results which give estimates for coefficients of
the expansions of ψ̃ and µ̃0. Later on we will write µ̃0 in terms of its associated
eigenfunction ψ̃ and we will use these estimates to obtain information about the
monotonicity of µ̃0(h). Now we show the convergence to 0, as n→ +∞, of the
coefficients µ̃0n is uniform on the set

{
h ∈ C; |h2 − h2

0| ≤ α2
}
, for some α > 0.

For future reference we give the following

Definition 7.7. Let α > 0 such that α < h0. We denote by Sα(h0) the following
set

Sα(h0) =
{
h ∈ C; |h2 − h2

0| ≤ α2
}
.

Lemma 7.8. Fix h0 > 0. Let µ̃0(h) be the lowest eigenvalue of P̃ (h). Then
there exist C, α, α1 > 0, with 0 < α < α1 < h0, such that

|µ̃0(h)| ≤
Cα2

1

α2
1 − α2

, ∀ h ∈ Sα(h0).

Proof. By equation (105) of Proposition 7.6, if we fix α1 > 0 such that 0 <
α2

1 < h2
0 ≤ ρ2 there exists C > 0 such that

|µ̃0n| ≤ C

∣∣∣∣ 1
α2

1

∣∣∣∣n , ∀ n ∈ N

(see e. g. [6], p. 56). Therefore equation (105) gives

|µ̃0(h)| ≤
+∞∑
n=0

|h2 − h2
0|n C

∣∣∣∣ 1
α2

1

∣∣∣∣n . (106)

Now we fix α > 0 such that 0 < α < α1. Therefore, for all h such that |h2 −
h2

0| ≤ α2, the right-hand side of (106) can be dominated by a geometric series.
Computing the value of this series gives the assertion.

As already noticed the eigenfunction ψ̃, associated to the lowest eigenvalue
µ̃0, is even and does not vanish on the interior of I. Since ψ̃ is analytic in h2−h2

0,

(see Proposition 7.6), we can give the following expansion for ψ̃

ψ̃(h, x) =
+∞∑
m=0

(
+∞∑
n=0

(h2 − h2
0)
nψ̃mn

)
1√
π

cos
(

2m+ 1
2

x

)
. (107)
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Recalling the notation fixed in Section 2 (see equation (3)) we will write

+∞∑
n=0

(h2 − h2
0)
nψ̃mn = v+

m = v+
m(h). (108)

Furthermore, as ψ̃ is an eigenfunction of P̃ associated to µ̃0, then ψ̃ is an
eigenfunction also of P, associated to the eigenvalue µ̃0/2h, which is the lowest
eigenvalue of P. Thus, by Proposition 2.4 and Remark 2.6, using the notation
fixed by (108), we have that

v+
−1 := 0 v+

n+1 = δ+n v
+
n − v+

n−1, n ∈ N, (109)

where
δ+0 = δ+0

(
µ̃0

2h

)
= h2 + 1− 4µ̃0

δ+n = δ+n

(
µ̃0

2h

)
= (2n+ 1)2h2 + 2− 4µ̃0, ∀ n ∈ N\{0}.

(110)

From Lemma 7.8 follows an estimate on δ+n (µ̃0/2h) , which we will use, exploit-
ing relation (109), to estimate the Fourier coefficients v+

m(h) (see (108)).

Lemma 7.9. Fix h0 > 0. Let µ̃0 = µ̃0(h) be the lowest eigenvalue of P̃ (h).
Then there exist α, with 0 < α < h0 and n0 ∈ N such that (recall (110))∣∣∣∣δ+n ( µ̃0

2h

)∣∣∣∣ ≥ 2, ∀ n ≥ n0, ∀ h ∈ Sα(h0). (111)

Proof. If we prove (2n + 1)2|h|2 − |4µ̃0(h)− 2| ≥ 2, by (110), we obtain as
a consequence (111). From here, by the triangle inequality, if we prove that
(2n+1)2|h|2 ≥ 4+4|µ̃0(h)| we get (111). By Lemma 7.8 it suffices to show that

(2n+ 1)2|h|2 ≥ 4 +
4Cα2

1

α2
1 − α2

. (112)

Notice that
1
|h|2

≤ 1
h2

0 − α2
, ∀ h ∈ Sα(h0).

Therefore, since there exists n0 ∈ N such that

(2n+ 1)2 ≥ 1
(h2

0 − α2)

[
4 +

4Cα2
1

(α2
1 − α2)

]
, ∀ n ≥ n0, (113)

the assertion follows.

We will show the convergence to 0 of the coefficients v+
m =

∑+∞
n=0(h

2 −
h2

0)
nψ̃mn in (108), asm→ +∞, uniformly for |h2−h2

0| in the same neighborhood
of 0. To this purpose we will reason as in the proof of Proposition 4.16. Recall
that, as the eigenfunction associated to µ̃0 is even, we have {ϑn}n := {δ+n }n
(see Definition 3.3).

In the sequel we will consider the Fourier coefficients v+
m in (108) as complex

functions in the parameter (h2 − h2
0), h ∈ Sα(h0), for a fixed α > 0. To do this
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we just substitute a complex value of h in (110) and we compute the value for
v+
m using the recurrence relation (109). Then, again using (109), we will show,

as in the proof of Proposition 4.16, the following formula for v+
m :

v+
n0+1+m = δ+n0+1 . . . δ

+
n0+mzn0 . . . zn0+m−1v

+
n0+1, ∀ m > 0, (114)

and for all complex h such that |h2 − h2
0| ≤ α2, with

zn0+m =

1
δ+n0+m+1δ

+
n0+m+2

1−

1
δ+n0+m+2δ

+
n0+m+3

1−
. . .

, ∀ m ∈ N, ∀ h ∈ Sα(h0). (115)

We will prove in the first place that the functions δ+n0+m

( eµ0
2h

)
zn0+m−1

( eµ0
2h

)
are holomorphic in h2 − h2

0. Afterwards, from relation (114), we will obtain an
estimate on coefficients v+

m, uniform with respect to h2 − h2
0.

Now we prove that equations (114) and (115) hold.

Proposition 7.10. Let µ̃0 be the lowest eigenvalue of P̃ and let ψ̃ be the asso-
ciated eigenfunction given by (107):

ψ̃(h, x) =
+∞∑
m=0

v+
m(h)

1√
π

cos
(

2m+ 1
2

x

)
, v+

m(h) =
+∞∑
n=0

(h2 − h2
0)
nψ̃mn.

Then there exists β ∈ R, 0 < β < h0, and n0 ∈ N such that

v+
n0+1+m = δ+n0+1 . . . δ

+
n0+mzn0 . . . zn0+m−1v

+
n0+1, ∀ m > 0, (116)

with

zn0+m =

1
δ+n0+m+1δ

+
n0+m+2

1−

1
δ+n0+m+2δ

+
n0+m+3

1−
. . .

, ∀ m ∈ N, h ∈ Sβ(h0). (117)

Furthermore the functions δ+n0+m+1 (µ̃0/2h) zn0+m (µ̃0/2h) are holomorphic on
Sβ(h0), for all m ∈ N.

Proof. We follow the proof of Proposition 4.16. Notice that, by Lemma 7.9
there exist α, with 0 < α < h0, and n1 ∈ N such that∣∣∣∣δ+n ( µ̃0

h2

)∣∣∣∣ ≥ 2, ∀ n ≥ n1, ∀ h ∈ Sβ(h0). (118)

Recall that, by the recurrence relation (109), all v+
n are holomorphic in the

parameter h2 − h2
0. By Corollary 5.11, as µ̃0(h0) is the lowest eigenvalue of P̃ ,

we have that v+
m (h0) 6= 0 for all m ∈ N. As v+

m (h) are holomorphic in h2 − h2
0

then
lim

h2→h2
0

v+
m(h) = v+

m(h0) 6= 0, ∀ m ∈ N.
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Thus there exist n0 > n1 and 0 < β < α < h0 such that v+
n0

(h), v+
n0+1(h),

v+
n0+2(h) 6= 0, for all h ∈ Sβ(h0). Therefore, since we chose n0 > n1 (so that
δ+n0+1 6= 0), we have that the function appearing in Proposition 4.16, this time
considered as complex valued,

1− 1
v+
n0+1

v+
n0

δ+n0+1

, (119)

is holomorphic on Sβ(h0). We recall equality (64), which holds for real h :

1− 1
v+
n0+1

v+
n0

δ+n0+1

=

1
δ+n0+1δ

+
n0+2

1−

1
δ+n0+2δ

+
n0+3

1−
. . .

. (120)

From what we have just proved the left-hand side of (120) makes sense also for
complex value of h. The right-hand side of (120) makes sense too, in the same
neighborhood of 0 in which the function (119) is holomorphic, that is for all h
belonging to Sβ(h0). In fact, as n0 > n1 we have∣∣∣∣∣ 1

δ+n0+m+1δ
+
n0+m+2

∣∣∣∣∣ < 1
4
, ∀ m ∈ N, ∀ h ∈ Sβ(h0).

Thus, by Worpitzky’s theorem (Theorem 4.14), we have that the continued
fraction in the right-hand side of (120) converges for all h in Sβ(h0). Moreover
we will show that this function is analytic on Sβ(h0). Therefore, on recalling
that the left-hand side of (120) is analytic too, in the same neighbourhood of 0,
and as (120) holds for real h, equality (120) will follow for all h in Sβ(h0). We
put

zn = K+∞
i=n

− 1
δ+i+1δ

+
i+2

−1

 . (121)

By proving the analyticity of the functions zn we will obtain also (116) and
(117). In fact from Proposition 4.16 we know that (116) is true for real values
of h. Furthermore, as already noticed, v+

n0+1 is holomorphic on Sβ(h0) and
v+
n0+1+m is holomorphic in the same neighborhood, by the recurrence relation

(109). Thus we can obtain (116) for all complex h, in Sβ(h0), if we show that
all zn(h) are holomorphic in the same set, for n ≥ n0. We prove this by showing
that δ+n+1zn are holomorphic for all n ≥ n0.

By (121) we have, writing an equivalent continued fraction (see Defintion
4.1)

δ+m+1zm =
1

δ+m+2 −
1

δ+m+3 −
. . .

. (122)

Let fn = Ãn/B̃n be the n-th approximant of the continued fraction in (122).
As Ãn, B̃n represent the n-th numerator and denominator for this continued
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fraction, from Remark 4.2, upon setting Ã−1 = 1, Ã0 = 0, B̃−1 = 0, B̃0 = 1,
we have {

Ãn = δ+m+1+nÃn−1 − Ãn−2, n ≥ 1,
B̃n = δ+m+1+nB̃n−1 − B̃n−2, n ≥ 1.

(123)

Through these relations, on recalling (110) and (105), we obtain that Ãn, B̃n
are holomorphic functions of h2−h2

0. We prove that B̃n is never 0 on Sβ(h0) and

that
{ eAneBn

}
n

converges to δ+m+1zm, for all m ≥ n0, uniformly on every compact

subset of Sβ(h0). From here, it will follow that δ+m+1zm are holomorphic on
Sβ(h0), for all m ∈ N (see e.g. [6], p. 156).

We recall that, as n0 > n1, for all m ≥ n0 and for all h in Sβ(h0), we have∣∣∣δ+m ( eµ0
2h

)∣∣∣ > 2 (see equation (118)).

Notice that |B̃1| = |δ+m+2B̃0| = |δ+m+2| > 2 > 1 = |B̃0|. As |B̃1| > |B̃0|
and as |δ+m| > 2, for all m ≥ n0, from the recurrence relation (123) we get
|B̃2| ≥ 2|B̃1| − |B̃0| ≥ |B̃1|. We can use the same procedure inductively, as
|δ+m| > 2 for all m ≥ n0; so we find that |B̃n+1| > |B̃n| for all n. Again from the
recurrence relation we get

|B̃n| ≥ |δ+m+1+n||B̃n−1| − |B̃n−2| ≥ 2|B̃n−1| − |B̃n−2|.

This implies that |B̃n| − |B̃n−1| ≥ 1 for all n and thus |B̃n| ≥ n. We prove the
uniform convergence of fn = fn(h2 − h2

0) (i.e. as functions of h2 − h2
0). If n > j

we have

|fn − fj | =

∣∣∣∣∣
n∑
k=1

(fk − fk−1)−
j∑

k=1

(fk − fk−1)

∣∣∣∣∣ ≤
n∑

k=j+1

|fk − fk−1|. (124)

Notice that by relation (35) we have

fk − fk−1 =
Ak
Bk

− Ak−1

Bk−1
=

(−1)k−1

BkBk−1

k∏
j=1

aj .

From here and from (124) it follows

|fn(h2 − h2
0)− fj(h2 − h2

0)| ≤
n∑

k=j+1

1
|Bk||Bk−1|

≤
n∑

k=j+1

1
k(k − 1)

,

for all n > j and for every h in Sβ(h0).
Therefore we have the uniform convergence on all compact set of Sβ(h0).

From here the assertion follows.

Now, by using (116) and (117), we obtain uniform estimates for v+
n .

Proposition 7.11. Let µ̃0 be the lowest eigenvalue of P̃ and let ψ̃ be the associ-
ated eigenfunction. Using the notation of Proposition 7.10, there exists α ∈ R,
0 < α < h0, such that the coefficients v+

m(h) tend to zero, as m → +∞, faster
than any negative power of m and uniformly in h ∈ Sα(h0).
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Proof. On recalling Proposition 7.10 and its proof we have that there exists
β ∈ R, 0 < β < h0, and n0 ∈ N such that (116) and (117) hold true for all h in
Sβ(h0). Furthermore, for the same values of h, we have that |δ+n0+m| > 2 for all
m ∈ N.

Thus {zm}m fulfills the hypothesis of Worpitzky’s theorem (Theorem 4.14)
and therefore we get |zm| ≤ 1/2, for every m ≥ n0 and for every h in Sβ(h0).
Then, from |1− zm+1| ≥ 1/2, by recalling (116) and (117), we get

|v+
n0+1+m| ≤ |v+

n0+1|
2m∣∣δ+n0+2 . . . δ

+
n0+m+1

∣∣ . (125)

As in the proof of Theorem 4.9, we write δ+m as

δ+m = (2m+ 1)2h2

(
1− 4µ̃0 − 2

h2(2m+ 1)2

)
. (126)

Plugging (126) into (125) gives

|v+
n0+1+m| ≤

((n0 + 2)!)2 |v+
n0+1|

|2h2|m ((n0 +m+ 2)!)2
∏n0+m+1
k=n0+2

∣∣∣1− 4eµ0−2
h2(2k+1)2

∣∣∣ (127)

We have (upon possibly increasing n0)

n0+m+1∏
k=n0+2

∣∣∣∣1− 4µ̃0 − 2
h2(2k + 1)2

∣∣∣∣ ≥ n0+m+1∏
k=n0+2

(
1− |4µ̃0 − 2|

|h2|(2k + 1)2

)
. (128)

From Lemma 7.8, by assuming, without loss of generality, that α < α1 < β, we
have

1
|h2|

|4µ̃0 − 2| ≤ 1
|h2|

(|4µ̃0|+ 2) ≤ 1
h2

0 − α2

(
4Cα2

1

α2
1 − α2

+ 2
)

(129)

From (128) and (129), upon possibly enlarge n0, we get

n0+m+1∏
k=n0+2

∣∣∣∣1− 4µ̃0 − 2
h2(2k + 1)2

∣∣∣∣ ≥ n0+m+1∏
k=n0+2

1−
4Cα2

1
α2

1−α2 + 2

(h2
0 − α2)(2k + 1)2

 > 0. (130)

Thus, upon setting

D̃m :=
n0+m+1∏
k=n0+2

1−
4Cα2

1
α2

1−α2 + 2

(h2
0 − α2)(2k + 1)2

 , C̃m :=
2π(m+ 1)2(m+1)+1e−2(m+1)

((m+ 1)!)2

we use the same procedure of the proof of Theorem 4.9. In this way, by (130)
and (127), we get

|v+
n0+1+m| ≤

|v+
n0+1| ((n0 + 2)!)2 C̃me2(

2
∣∣∣∣h (m+ 1)

e

∣∣∣∣2
)m

D̃m 2π (m+ 1)3
. (131)
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As we assumed that |h2 − h2
0| ≤ α2, from (131) it follows that

|v+
n0+1+m| ≤

|v+
n0+1| ((n0 + 2)!)2 C̃me2(

2(h2
0 − α2)

(
m+ 1
e

)2
)m

D̃m 2π (m+ 1)3
. (132)

Notice that, since v+
m verifies the recurrence relation

v+
m+1 = δ+mv

+
m − v+

m−1, ∀ m ∈ N,

we have that v+
n0+1 = v+

n0+1(h) represents an analytic function in (h2−h2
0). Thus,

upon possibly shrinking α, the value of |v+
n0+1| is bounded for all h in Sα(h0).

Thus, by (132), if we notice that α and h0 are fixed the assertion follows.

We re-write inequality (132) in a simpler form.

Corollary 7.12. In the hypotheses of Proposition 7.11 there exist D, α > 0
such that

|v+
m| = |v+

m(h)| =

∣∣∣∣∣
+∞∑
n=0

(h2 − h2
0)
nψ̃mn

∣∣∣∣∣ ≤ D

mm
, ∀ h ∈ Sα(h0), ∀ m ∈ N. (133)

Notice that the constant D is independent of m.

8 Monotonicity of µ̃0(h)

Using (133) we will prove some other needed estimates on coefficients of the
eigenfunction ψ̃ and its derivative with respect to h. These estimates, together
with the Picone identity (see e.g. [4], p.226), which links µ̃0(h) and its associated
eigenfunction, will be used later on to show the monotonicity of µ̃0(h), with
respect to h. To this purpose we recall a result on analytic functions (see [8], p.
6).

Proposition 8.1. Let f be an holomorphic function in U and let |f(z)| ≤ M
for every z ∈ U. Then for any compact set K ⊂ U and any α we have

|Dαf(z)| ≤Mα!δ−|α| ∀ z ∈ K,

where δ is the distance of K from the boundary of U.

Now we set ζ = h2 − h2
0 and consequently write v+

m = v+
m(ζ).

Using Corollary 7.12 and Proposition 8.1 we can immediatly prove an esti-
mate on d

dζ v
+
m(ζ).

Proposition 8.2. Using the notation of Corollary 7.12 let γ be such that 0 <
γ < α. Then we have∣∣∣∣ ddζ v+

m(ζ)
∣∣∣∣ =

∣∣∣∣∣ ddζ
+∞∑
n=0

ζnψ̃mn

∣∣∣∣∣ ≤ D

(α2 − γ2)mm
, ∀ ζ ∈ C, |ζ| ≤ γ2.
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From here, by the mean value theorem, it follows an estimate for |v+
m(ζ) −

v+
m(0)|.

From now on we will consider again the parameter h (and thus ζ) as a real
number.

Lemma 8.3. Using the notation of Corollary 7.12 let 0 < γ < α. We have,
when ζ is real,

|v+
m(ζ)− v+

m(0)| ≤ |ζ| D
(α2 − γ2)mm

=
D |h2 − h2

0|
(α2 − γ2)mm

Now we use the Picone identity (see e.g. [4], p.226), to get an expression of
µ̃0(h) which we will use in computing d

dh µ̃0(h)|h=h0 .

Remark 8.4. Let µ̃0(h) and µ̃0(h0) represent the lowest eigenvalue of the oper-
ators P̃ (h) and P̃ (h0), respectively, and let ψ̃(h), ψ̃(h0) be the associated eigen-
functions. Assume also that these eigenfunctions are normalized, so that

‖ψ̃(h)‖2 = ‖ψ̃(h0)‖2 = 1. (134)

Then we have (with ψ̃′ = d eψ
dx )

µ̃0(h)− µ̃0(h0) = (h2 − h2
0)
∫ π

−π
(ψ̃′(h))2dx+

+h2
0

∫ π

−π
(ψ̃′(h)− ψ̃′(h0))2dx+ h2

0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx+

+2h2
0

∫ π

−π
(ψ̃′(h)− ψ̃′(h0))ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)
dx. (135)

Proof. By hypothesis we have that ψ̃(h0) is a solution of the problem{
P̃ (h)y = −h2y′′ + V (x)y = µ̃0(h)y
y(±π) = 0

(136)

and ψ̃(h0) is a solution of the problem{
P̃ (h0)z = −h2

0z
′′ + V (x)z = µ̃0(h0)z

z(±π) = 0.
(137)

Then, by Picone’s identity

0 =
∫ π

−π
(µ̃0(h0)− µ̃0(h))ψ̃(h)2dx+

∫ π

−π
(h2 − h2

0)(ψ̃
′(h))2dx+

+
∫ π

−π
h2

0

[
ψ̃′(h)− ψ̃(h)ψ̃′(h0)

ψ̃(h0)

]2

dx.

Thus, recalling (134)

µ̃0(h)− µ̃0(h0) =
∫ π

−π
(h2 − h2

0)(ψ̃
′(h))2dx+

∫ π

−π
h2

0

[
ψ̃′(h)− ψ̃(h)ψ̃′(h0)

ψ̃(h0)

]2

dx.

Adding and subtracting ψ̃′(h0) in the second intergral gives the assertion.
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We will analyse

d

dh
µ̃0(h)

∣∣∣
h=h0

= lim
h→h0

µ̃0(h)− µ̃0(h0)
h− h0

, h0 > 0.

By (135) we have

lim
h→h0

µ̃0(h)− µ̃0(h0)
h− h0

= lim
h→h0

(h+ h0)
∫ π

−π
(ψ̃′(h))2dx+

+ lim
h→h0

h2
0

h− h0

∫ π

−π
(ψ̃′(h)− ψ̃′(h0))2dx+

+ lim
h→h0

h2
0

h− h0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx+

+ lim
h→h0

2h2
0

h− h0

∫ π

−π
(ψ̃′(h)− ψ̃′(h0))ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)
dx. (138)

We will prove that the left-hand side of (138) is greater than 0, which will show
the monotonicity of µ̃0(h).

Recalling the notation used up to now, by (107) and (108) we have

ψ̃(h, x) =
+∞∑
m=0

v+
m√
π

cos
(

2m+ 1
2

x

)
, v+

m = v+
m(h) =

+∞∑
n=0

(h2 − h2
0)
nψ̃mn; (139)

and we have

ψ̃(h0, x) =
+∞∑
m=0

ψ̃m0
1√
π

cos
(

2m+ 1
2

x

)
. (140)

In order to compute the derivatives of ψ̃, appearing in (138), notice at first that
from Proposition 7.11 and Corollary 7.12 we have v+

m → 0, as m→ +∞, faster
than any negative power of m and uniformly with respect to h. Thus we can
differentiate term by term the series for ψ̃ in (139). Moreover, by Theorem 4.9,
we can differentiate term by term equation (140), since ψ̃m0 → 0, as m→ +∞,
faster than any negative power of m. In particular we have the following

Remark 8.5. Let µ̃0(h) and µ̃0(h0) represent the lowest eigenvalue of P̃ (h)
and P̃ (h0) respectively. Let ψ̃(h), ψ̃(h0) be the associated eigenfunctions given
by (139) and (140). We have

ψ̃′(h) =
+∞∑
m=0

v+
m

(
−2m+ 1

2
√
π

)
sin
(

2m+ 1
2

x

)
, (141)

ψ̃′(h0) =
+∞∑
m=0

ψ̃m0

(
−2m+ 1

2
√
π

)
sin
(

2m+ 1
2

x

)
. (142)

Using the estimates proved up to now we show that µ̃0(h) is monotone
increasing with respect to h.
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Theorem 8.6. The eigenvalue µ̃0 = µ̃0(h) is monotone increasing as a function
of h (for h > 0); as a consequence there exists lim

h→0+
µ̃0(h).

Proof. We have to show that

d

dh
µ̃0(h)

∣∣∣
h=h0

= lim
h→h0

µ̃0(h)− µ̃0(h0)
h− h0

> 0, ∀ h0 > 0.

To do this we compute each term in equation (138). Consider the first term in
the right-hand side of (138). From (141) of Remark 8.5 we get

lim
h→h0

(h+ h0)
∫ π

−π
(ψ̃′(h))2dx = 2h0 lim

h→h0

∫ π

−π
(ψ̃′(h))2dx =

= 2h0 lim
h→h0

∫ π

−π

[
+∞∑
m=0

−2m+ 1
2
√
π

sin
(

2m+ 1
2

x

)
v+
m(h)

]2

dx. (143)

By Corollary 7.12 and since the v+
m(h) are analytic in h we can exchange in

(143) the limit with the integral and then with the sum, thus obtaining

lim
h→h0

(h+ h0)
∫ π

−π
(ψ̃′(h))2dx =

= 2h0

∫ π

−π

[
+∞∑
m=0

−2m+ 1
2
√
π

sin
(

2m+ 1
2

x

)
ψ̃m0

]2

dx = 2h0

∫ π

−π

[
ψ̃′(h0)

]2
dx > 0,

where the last equality follows from (142).
We will next see that all the other terms in the right-hand side of (138)

vanish, thus concluding the proof.
We consider the second term in (138). By (141) and (142) we have

lim
h→h0

h2
0

h− h0

∫ π

−π

(
ψ̃′(h)− ψ̃′(h0)

)2

dx =

= lim
h→h0

h2
0

h− h0

∫ π

−π

[
+∞∑
m=0

(
−2m+ 1

2
√
π

)
sin
(

2m+ 1
2

x

)(
v+
m(h)− ψ̃m0

)]2

dx.

As ψ̃m0 = v+
m(h0), by Lemma 8.3 there exist D, α, γ > 0 such that

lim
h→h0

∣∣∣∣ h2
0

h− h0

∫ π

−π

(
ψ̃′(h)− ψ̃′(h0)

)2

dx

∣∣∣∣ ≤
≤ lim
h→h0

h2
0

|h− h0|

∫ π

−π

[
+∞∑
m=0

∣∣∣∣−2m+ 1
2
√
π

sin
(

2m+ 1
2

x

)∣∣∣∣ |h2 − h2
0| D

(α2 − γ2) mm

]2

dx =

= lim
h→h0

h2
0|h− h0||h+ h0|2D2

(α2 − γ2)2

∫ π

−π

[
+∞∑
m=0

2m+ 1
2
√
π

∣∣∣∣sin(2m+ 1
2

x

)∣∣∣∣ 1
mm

]2

dx,

and this is 0.
Now we compute the third term in the right-hand side of (138).
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As already noticed the eigenfunctions ψ̃(h) and ψ̃(h0) are even functions,
without any zeros on (−π, π). So we have

lim
h→h0

h2
0

h− h0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx =

= 2 lim
h→h0

h2
0

h− h0

∫ π

0

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx. (144)

Multiplying and dividing the right-hand side of (144) by (x− π) gives

lim
h→h0

h2
0

h− h0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx =

= 2 lim
h→h0

h2
0

h− h0

∫ π

0

ψ̃′(h0)


ψ̃(h0)− ψ̃(h)

x− π

ψ̃(h0)
x− π




2

dx. (145)

The function
eψ(h0,x)
x−π does not vanish on the interval [0, π). Moreover, by De

L’Hospital’s theorem, we have

lim
x→π−

ψ̃(h0, x)
x− π

= lim
x→π−

ψ̃′(h0, x) = ψ̃′(h0, π).

The right-hand side of this equation is obviously different from zero, because it
cannot be ψ̃′(h0, π) = ψ̃(h0, π) = 0, as ψ̃ is a non-trivial solution of a second
order Sturm-Liouville problem. Thus we have proved that there exists R > 0
such that ∣∣∣∣∣ ψ̃(h0, x)

x− π

∣∣∣∣∣ > R, ∀ x ∈ [0, π]. (146)

From (146) and (145) it follows∣∣∣∣∣∣ lim
h→h0

h2
0

h− h0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx

∣∣∣∣∣∣ ≤
≤ 2 lim

h→h0

h2
0

|h− h0|

∫ π

0

[
ψ̃′(h0)
R

(
ψ̃(h0)− ψ̃(h)

x− π

)]2

dx. (147)

We set

Sm(x) =
(−1)m+1 sin

(
2m+1

2 (x− π)
)

x− π
.

Thus, by (147), (139) and (140) and recalling Lemma 8.3 we have∣∣∣∣∣∣ lim
h→h0

h2
0

h− h0

∫ π

−π

[
ψ̃′(h0)

(
ψ̃(h0)− ψ̃(h)

ψ̃(h0)

)]2

dx

∣∣∣∣∣∣ ≤
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≤ 2 lim
h→h0

h2
0

|h− h0|

∫ π

0

[
ψ̃′(h0)
R

(
+∞∑
m=0

(v+
m(h)− v+

m(h0))
cos
(

2m+1
2 x

)
x− π

)]2

dx ≤

≤ 2 lim
h→h0

h2
0

|h− h0|

∫ π

0

[
ψ̃′(h0)
R

(
+∞∑
m=0

|h2 − h2
0| D Sm(x)

(α2 − γ2)mm

)]2

dx =

= lim
h→h0

2h2
0|h− h0||h+ h0|2D2

(α2 − γ2)2

∫ π

0

[
ψ̃′(h0)
R

+∞∑
m=0

Sm(x)
mm

]2

dx = 0.

With analogous procedures one can prove that also the limit of the last term in
the right-hand side of (138) is 0, concluding the proof.
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[1] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit.
London Math. Society Lecture Notes 268, Cambridge University Press
(1999).

[2] V. Franceschini, S. Graffi, S. Levoni, On the eigenvalues of the bounded
harmonic oscillator. Lincei. Rend. Sc. Fis. Mat. e Nat. vol. LVIII (1975),
205–214.

[3] P. Hartman, Ordinary differential equations. Birkhauser, Boston (1982).

[4] E. L. Ince, Ordinary differential equations. Dover (1926).

[5] T. Kato, Perturbation Theory for Linear Operators Second Edition.
Springer-Verlag Berlin, Heidelberg, New York (1976).

[6] S. Lang, Complex analisys Fourth edition. Springer-Verlag, New York
(1999).

[7] L. Lorentzen, H. Waadeland,Continued fractions with applications. North-
Holland, Amsterdam, London, New York, Tokyo (1992).

[8] R. Narasimhan, Analysis on Real and Complex Manifolds. North-Holland,
Amsterdam, New York, Oxford (1991).

[9] A. G. M. Neves, Upper and lower bounds on Mathieu characteristic numbers
of integer orders. Commun. Pure Appl. Anal. 3, no. 3, (2004), 447–464.

[10] A. Parmeggiani, M. Wakayama, Non-commutative harmonic oscillators-I.
Forum Mathematicum 14 (2002), 539–604.

[11] A. Parmeggiani, M. Wakayama, Oscillator Representations and systems
of ordinary differential equations. Proc. Nat. Acad. Sci. U.S.A. 98 (2001),
26–30.

[12] M. Reed, B. Simon, Methods of modern mathematical physics. vol.II
Fourier analysis, self-adjointness. Academic Press, New York, London
(1975).

[13] R. Vawter, Effects of finite boundaries on a one-dimensional harmonic os-
cillator. Phys. Rev. 174 no 3 (1968), 749–757.

45


