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Introduction

Over the last few years the project of developing the methods of Geometric Measure

Theory in very general metric spaces has been carried out along the lines originally

suggested in Federer’s book [33]. In many respects, deep contributions to this

task have been inspired and carried out by the works of Ambrosio & Kirchheim

[3, 4], Cheeger [18], David & Semmes [25], De Giorgi [27, 28, 29, 30], Gromov

[49, 50], Montgomery [77], Pansu [81, 82], Preiss & Tisěr [84], just to mention

some examples.

Many of advances are somehow connected with a contemporary development

of a foundational theory of Sobolev spaces in abstract metric settings, culminated

in the paper [52].

Geometries associated with a family of vector fields and Carnot-Carathéodory

spaces are, of course, the main models of this research. On this subject, there

is a wide literature and we shall refer the reader to [9], [14], [23], [36], [37], [38],

[39, 40], [45], [57], [69], [73], [77], [80], [82], [90], [93], [94]. Clearly, this list is far

from being complete, but illustrates fairly well some of the directions followed by

the contemporary research.

The closeness of Analysis and Geometry is here particularly stressed by the

fact that, initially, these questions had arisen in the field of hypoelliptic differential

equations. In this respect, we mention the important paper by Rothschild and

Stein, [85]. We have also to emphasize the special importance of the related

studies on nilpotent Lie groups; as references we would cite the papers of Folland

and Stein [34], [35], [89] and Goodman [47] as regards the analytical aspects,

and, for instance, those of Pansu [81, 82] and Korányi & Reimann [61] to better

appreciate the geometrical features involved in this kind of problems. See also [53],

[77] and [78] for useful comments and more detailed references.

Finally, we would stress that the mathematical interest for these largely non-

euclidean geometries, at least from É. Cartan’s work (see, for example, [15]), seems

motivated by the fact that they constitute a model for the so-called non-holonomic

physical systems, i.e. non-integrable in the sense of Frobenious theorem. See, for
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instance, the very interesting survey by Vershik & Gershkovich in [95], but also [9]

and [49].

The geometric setting of this PhD thesis is that of Carnot groups, also known

in the current literature as non-Abelian vector spaces or subriemannian groups [9],

[49], [73], [77].

They constitute an important class of examples of subriemannian geometries,

and they have become the subject of many papers of geometric analysis. See, for

instance, [14], [45], [41, 42, 43], [49], [66, 67], [73], [79], [82], [94]).

Roughly speaking, Carnot groups are nilpotent stratified Lie groups endowed

with a one-parameter family of dilations adapted to the Lie algebra stratification.

They are naturally equipped with an m1-planes distribution, constructed by left

translation of the firstm1-dimensional step H of the Lie algebra stratification. This

m1-planes distribution, still denoted by H , is a subbundle of the tangent bundle of

the group whose elements are called horizontal vectors. A subriemannian structure

on them is defined whenever the fibres of this bundle are endowed with an inner

product.

The crucial role played by Carnot groups in the theory of Carnot-Carathéodory

geometries, comes from a deep theorem of Mitchell which states that the tangent

cone -in the sense of Gromov-Hausdorff - of any Carnot-Carathéodory space is a

suitable Carnot group, [73]. See also [77] for many clarifying discussions about

this point.

Since Carnot groups are homogenous groups, according to a definition given by

Stein, [89], harmonic analysis and P.D.E.’s on them have been an extensive subject

of research. Furthermore, many classical tools of Calculus of Variations have been

generalized to this context and, in particular, the theory of bounded H -variation

functions and that of H-Caccioppoli sets, [39, 41, 42], [45], [67], [79]. Notice that,

in both these notions, H means horizontal, i.e. they are notions related only to

the horizontal subbundle of the Carnot group. For a specific survey of these results

and for more detailed bibliographic references, we shall refer the reader to [5], [14],

[24], [40, 41, 42, 43], [44], [45], [65], [66, 67], [79], [83].
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In the present PhD thesis we shall try to give some contributions to the study

of both integral and differential-geometric properties of submanifolds of Carnot

groups.

The thesis is subdivided into 7 sections, the first of which is foundational and

introduces many of the notions useful for the sequel.

Section 2, 3 and 4 are devoted to illustrate some new results about the Integral

Geometry of Carnot groups.

All the results given in this part of the thesis are contained in the paper Some

relations among volume, intrinsic perimeter and one-dimensional restrictions of

BV functions in Carnot groups, [75].

Section 5, 6 and 7 are mainly concerned with a differential-geometric study of

“suitably regular” hypersurfaces, particularly in the case of 2-step Carnot groups.

This part contains the results of an unpublished preprint Some remarks about the

geometry of non-characteristic hypersurfaces in Carnot groups, [76].

More precisely, in Section 2, our starting point will be a Fubini type theorem

for codimension one H-regular submanifolds (see Definition 1.38). It can be stated

as follows:

Theorem 0.1. Let G be a k-step n-dimensional Carnot group and let S ⊂ G

be a H -regular hypersurface. By the Implicit Function Theorem 1.39 (see [42]),

without loss of generality, we may assume that S = ∂E globally, where E ⊂ G is

an open H -Caccioppoli set with locally C1
H boundary. Let X ∈ H , |X|H = 1, be

a unit horizontal left invariant vector field which is transverse to S. Let γy be the

horizontal X-line starting from y ∈ S and let us suppose that γy(R) ∩ S = {y}

for every y ∈ S. Finally, let D ⊆ RX
S be a Lebesgue measurable subset of G that is

reachable from S. Then we have

(i) Dy := γy(R) ∩ D is H1
c -measurable for |∂E|H -a.e. y ∈ S;

(ii) the mapping S ∋ y 7−→ H1
c(Dy) is |∂E|H -measurable on S and

Ln(D) =

∫

prX
S

(D)
H1

c(Dy) |
〈
X, νE

〉
Hy

| d |∂E|(y) =

∫

prX
S

(D)
H1

c(Dy) d |∂XE|(y),

3



where |∂XE| denotes the partial X-perimeter of E (see Section 1.4).

The proof of the theorem follows by an approximation argument for H -regular

hypersurfaces, after using Proposition 2.3 which proves the result for C1-smooth

hypersurfaces. We would emphasize the fact that the main problem to obtain

these formulae is that of a good choice of projection maps. Here we use, for a

great number of integral formulae, the projections along the integral curves of

horizontal vectors of Lie algebra g, that we shall call horizontal projections.

In Section 3.1, we use this kind of results to work with one-dimensional slices

of functions. We then apply this procedure to state a characterization of the space

HBV (see Theorem 3.7). A similar characterization was proved in [96] for Sobolev

spaces in Carnot groups.

More precisely, this will be done by linking, through a horizontal slicing, the

total H -variation of a function with that of its one-dimensional restrictions. We

refer the reader to Section 3.1 for related definitions and precise statement of the

results.

In Section 3.2, we prove some integral-geometric formulae and one in particular,

which characterizes the intrinsic perimeter measure. We can write the result as

follows (see Proposition 3.14):

Proposition 0.2. [Integral geometric H -perimeter] Let U ⊆ G be open and fix

z ∈ G. If D ⊂ G is a H -Caccioppoli set, we have then

|∂D |H (U) =
1

2κm1−1

∫

Sm1−1
d σm1−1(X)

∫

prX
Iz(X)

(D∩U)
var1

X [1DX
y

](UX
y ) dHn−1(y),

where κm1−1 is the m1 − 1-dimensional Lebesgue measure of the unit ball in Rm1−1.

Here, Iz(X) denotes the generic “vertical hyperplane” through z ∈ G and var1
X [·](·)

the one-dimensional variation (see Section 3.2).

Afterwards, in Section 3.2, we introduce a notion of horizontal convexity, called

H-convexity, explaining some of its main features.

This notion turns out to be analogous to that recently given in [24] and in

[65]. We then prove that H -convex sets verify an integral Cauchy type formula for
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the H -perimeter (see Theorem 3.21), and then a related inequality, showing, in a

sense, this kind of convex sets to minimize the intrinsic H -perimeter.

Section 4 is devoted to state and prove a horizontal Santaló type formula and

some of its possible applications (see Theorem 4.5). We stress that our result

generalizes to arbitrary Carnot groups a result already proved in Pansu’s thesis,

[81]. This formula is strictly connected with the introduction of a measure on

the so-called unit horizontal bundle of G and with its invariance under a suitable

restriction of the Riemannian geodesic flow. We refer to Section 4 for a detailed

introduction.

We then apply Theorem 4.5 to show a geometric inequality among volume,

H -perimeter and diameter of smooth bounded domains.

As an application to Analysis in Carnot groups, we perform some explicit

computations to find two lower bounds for the first eigenvalue of the Dirichlet

problem for the Carnot sub-Laplacian on smooth domains. This will be done by

adapting some methods of Riemannian geometry inspired by the Crooke’s article,

[21]; see also [17] and [26] for a classical setting.

From now on, we shall illustrate the results of the second part of the thesis,

from Sections 5 until Section 7.

Here, the main task we try to carry out, is that of a better understanding of

how the study of hypersurfaces in Carnot groups may be approached. We shall

tract, with more emphasis, the case of 2-step Carnot groups, since in this case

a Rectifiability Theory, has been developed, due to Franchi, Serapioni and Serra

Cassano [41, 42, 43]; see also [1], [7], [66, 67].

The point of view developed in this thesis seems to be slightly different from

that of the current literature. Indeed, all the geometric structures that we consider

are supposed to be smooth, as is usually assumed in Riemannian geometry. In fact,

since Carnot groups can be regarded as Riemannian manifolds, we shall make use

of some basic tools of differential geometry such as connections, differential forms

and moving frames which allow us to describe the local geometric properties of a

suitable regular hypersurface. For an introduction to these methods and for the

definitions used, we refer the reader to Section 1.1 and 1.2, while a detailed study
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of these topics will begin from Section 5.

In this way, we are able to define some local geometric invariants associated

with the H -perimeter measure as, for instance, a suitable notion of horizontal

mean curvature of a hypersurface. We stress that this notion gives the same scalar

invariant used in some recent papers, as that of N.Garofalo and S.Pauls, [44].

Since we will restrict ourselves to consider the case of regular, non-characteristic

hypersurfaces (see Section 5), we shall define a smooth differential form σ
H

on such

hypersurfaces, that is the horizontal perimeter form, that will play the role of the

H -perimeter measure. More precisely, we give the following:

Definition 0.3. [H -perimeter form σ
H
] Let S ⊂ G be a smooth, non-characteristic

hypersurface with unit horizontal normal ν
H
. Then the H -perimeter form σ

H
on

S is the differential n − 1-form on S given by contraction with ν
H

of the volume

form Ωn, i.e.

σ
H
|S := (ν

H
⌋Ωn)|S . (1)

For the case of 2-step Carnot groups, in Section 6.1, we shall develop a basic

differential-geometric formalism using suitable moving frames that turns out to be

adapted to the horizontal tangent space HTS of a non-characteristic hypersurface.

This will be done because we try to study the H -perimeter form σ
H

instead of the

Riemannian area form. We refer the reader to Section 6 for precise statements,

and, in particular, to Definition 6.1, for the notion of H-adapted moving frame.

We stress that our choice to define a such H -adapted frame is motivated by the

fact that we cannot use the usual Riemannian approach (see [63], [16], [87], [88]) in

proving variational formulas concerning the H -perimeter form σ
H

as, for instance,

divergence-type theorems on hypersurfaces or the 1st and the 2nd variation of σ
H
.

In the same perspective, we introduce some affine connections, that turn out to

be naturally associated with a suitable decomposition of the tangent space. One

of them is the so-called horizontal connection as defined in [60] (see Section 1.2, for

these definitions). For this restricted H -connection we show a generalized version

of the classical Gauss formulae (see Proposition 6.17).

Then, the formalism of differential forms on Lie groups and the methods that
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we have previously developed, allow us to deduce basic results such as integration

by parts on regular hypersurfaces. This is the subject of Section 6.2 where we

shall prove Gauss-Green type formulas on regular hypersurfaces and consequently,

Green’s type identities; see Section 6.2.

One of the main consequences of our approach is indeed the following:

Theorem 0.4. [Divergence type theorems on regular hypersurfaces] Let G be a

2-step Carnot group with Lie algebra g = H ⊕Z . Let S ⊂ G be a smooth immersed

non-characteristic hypersurface with unit normal vector along S denoted by N . Let

U ⊂ S be compact and suppose that the boundary ∂U is a smooth n−2-dimensional

Riemannian submanifold with outward pointing unit normal η. Then

(i) For every smooth vector field X ∈ C∞(G,VS) we have

∫

U
div

VS
X σ

H
+

∫

U

{〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H

+ Hsc
H
〈PZ (N ),PZ (X)〉

}
σn−1

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2;

(ii) For every smooth vector field X ∈ C∞(S,HTS) we have

∫

U
div

HTS
X σ

H
+

∫

U

〈∑

β∈I2

nβ C
βν

H
, X
〉
H
σn−1 =

∫

∂U
〈X, η〉 |PH (N )|H σn−2;

(iii) For every smooth vector field X ∈ X(S) we have

∫

U

{
div

VS
X −Hsc

H
〈X, ν

H
〉
}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H
σn−1

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2.
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Here, VS denotes the vertical bundle over S, HTS the horizontal tangent bundle

over S, {Cβ}β∈I2 denotes a family of linear operators depending on the structural

constants of the Lie algebra. Moreover div
VS

and div
HTS

denote, respectively, the

divergence operators on the vector bundles VS and HTS. Finally, Hsc
H

is the

scalar mean horizontal curvature along U ; see Section 5 and Section 6.1.

In Section 7, we shall compute, by using the method of H -adapted moving

frames, the 1st and the 2nd variation of the H -perimeter form σ
H

in 2-step Carnot

groups. The theorem about the 1st variation is the following (see Section 7.2):

Theorem 0.5. Let G be a 2-step Carnot group and let ı : U −→ G be the inclusion

into G of a smooth non-characteristic hypersurface U with boundary ∂U . Moreover,

let ϑ : (−ǫ, ǫ)×U −→ G be be a smooth variation of ı, with variation vector field W,

and assume that U t = ϑt(U) is non-characteristic for t ∈ (−ǫ, ǫ). Let Γ(t) = ϑ∗tσH ,t

be a C∞ 1-parameter family of n−1-forms on U . If IU (σ
H
) := d

dt

∫
U Γ(t)

∣∣
t=0

, then

IU (σ
H
) = −

∫

U
Hsc

H
〈PH (W ), ν

H
〉H σ

H
−

∫

U
Hsc

H
〈PZ (W ),PZ (N )〉σn−1

+

∫

∂U
〈W, η〉 |PH (N )|H σn−2.

For 2-step Carnot groups we then prove a formula for the 2nd variation of

σ
H
, without boundary terms, since in this case we will make use of compactly

supported vector fields. The calculation itself is quite difficult and also the result

has a quite complicated expression, at least in the general case of normal variations

(see Theorem 7.8 ).

The other interesting theorem of Section 7.3 gives the 2nd horizontal normal

variation of σ
H
. Also this formula is stated without boundary terms. The result

reads as follows:

Theorem 0.6. Let G be a 2-step Carnot group and ı : U −→ G be the inclusion

into G of a smooth non-characteristic hypersurface U with boundary ∂U . Moreover,

let ϑ : (−ǫ, ǫ) × U −→ G be a smooth normal H -variation of ı, with variation

8



vector field W = w ν
H

∈ C∞
0 (G,H ) such that spt(W ) ∩ U ⋐ U . Assume that

U t = ϑt(U) is non-characteristic for t ∈ (−ǫ, ǫ) and let Γ(t) = ϑ∗tσH ,t
be a C∞

1-parameter family of n− 1-forms on U . If IIint
U (σ

H
) := d2

dt2

∫
U Γ(t)

∣∣
t=0

, then

IIint
U (σ

H
) =

∫

U

{
−W (w)Hsc

H
+ w2

(
(Hsc

H
)2 − ‖bH ‖2

Gram

)
− w∆

HTS
w

−w2
∑

α∈I2

〈∇τS
α
ν
H
, Cαν

H
〉 +

w2

2

∑

α∈I2

‖Cαν
H
‖2

Gram − w div
HTS

(w Cν
H
)

}
σ
H
;

see Section 7.1. Here τS
α = Xα − 〈Xα,N 〉N (α ∈ I2 = {m1 + 1, ..., n}).

The Addendum of Section 7 is then devoted to prove, by using a different

method, integration by parts theorems on regular non-characteristic hypersurfaces

and the 1st variation formula for σ
H

in the general case of k-step Carnot groups.
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1 Preliminaries

1.1 The geometry of Carnot groups

In this section we recall the main notions about Carnot groups, introducing also

the main geometric structures as connections and differential forms that we will

use throughout this thesis. As a basic references for the topics developed in this

section we cite [9], [20], [53], [54], [59], [49], [64], [71], [77], [92], [95].

Let G be a n-dimensional, connected and simply connected Lie group over

R with group law denoted by •. Let X(G) be the set of all smooth sections

of TG, i.e. X(G) := C∞(G,TG). As usual, any x ∈ G defines smooth maps

Lx, Rx : G −→ G, called left translation and right translation, respectively, by

Lx(y) := x • y, Rx(y) := y • x, y ∈ G. Let g denote the Lie algebra of G, i.e. the

linear subspace of X(G) of all left invariant vector fields of G, endowed with the

bracket operation [·, ·] : g × g −→ g. This algebra is canonically isomorphic to

TeG, i.e. the tangent space at the identity e of G, via the identification of any

left invariant vector field X of G with its value Xe at e. Here the isomorphism is

explicitly given by Lx∗ : TeG −→ TxG, i.e. the differential of the left translation

by x at e, so that hereafter we will think of g either as the vector space TeG with

the rule composition [·, ·], as well as the Lie algebra of vector fields of G.

Remark 1.1. Since the tangent space at any point x ∈ G is completely determined

by the structure of the tangent space at the identity e ∈ G, we shall use the following

notation: if K is a vector subspace of g = TeG we denote by Kx its corresponding

image through Lx∗ in TxG and by W the smooth subbundle of TG whose fibre at

the point x ∈ G is Kx.

For any X ∈ g we shall denote by γ
X

: R −→ G the one-parameter subgroup of

G generated by X, or equivalently, the integral curve of X starting at the identity

e of G.

Now let exp : g −→ G denote the Lie group exponential map defined by

exp (X) := γ
X

(1), for X ∈ g. It is well known that, in general, exp is a diffeomor-

phism of an open neighborhood O0 of 0 in g onto an open neighborhood Oe of e

10



in G, but since G is connected and simply connected, we have that exp is a global

diffeomorphism of g onto G. Therefore we denote by log : G −→ g its inverse. If

X is a left invariant vector field of G and x ∈ G, then γ
Xx

denotes the integral

curve of X starting from x. We remark that γ
Xx

is given by right translation of x

by exp (tX), t ∈ R. Now if {e1, ..., en} is a linear basis of g = TeG, then the corre-

sponding coordinates in G, given by the inverse log of the exponential map, will

be called a system of exponential coordinates in G or also, canonical coordinates of

the first kind. The differential of the exponential map can be described, in general,

as follows [54]:

d exp X = d
(
Lexp X

)
e
◦

1 − e−adX

adX
(X ∈ g). (2)

Here 1−e−A/A stands for
∑∞

h=0(−A)h/(h+1)!. Moreover adX denotes the linear

transformation of g given by adX(Y ) = [X,Y ].

Henceforth we assume that G be endowed with a left invariant Riemannian

metric. We stress that, fixing some basis {e1, ..., en} of the vector space g, there

is only one left invariant Riemannian metric on G such that the corresponding

left invariant vector fields (X1, ..., Xn), (where (Xj)x = (Lx)∗ej , j = 1, ..., n) are

everywhere orthonormal; see [71]. More precisely, we will fix on G the left invariant

Riemannian metric obtained by left translation of the Euclidean metric 〈·, ·〉 on g

that makes e1, ..., en an orthonormal basis, i.e.

〈X,Y 〉 := 〈Xe, Ye〉, ∀ X, Y ∈ X(G). (3)

For each positive integer i, we set gi := [g, gi−1], where g1 := g. We say that

g is nilpotent if gi = {0} for some positive integer i; in this case the center of g

contains gi−1. The Lie algebra g is k-step if gk+1 = {0} and gk 6= {0}; in this case

we say that the Lie group G is k-step.

For a k-step nilpotent Lie group G the group law • is completely determined,

by the Campbell-Hausdorff formula, from the structure of g, [20, 92]. Indeed we

have that

exp (X) • exp (Y ) = exp (P̃(X,Y )) ∀ X, Y ∈ g,
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where P̃ : g × g −→ g is defined by the following identity

P̃(X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] −

1

12
[Y, [X,Y ]] + R(X,Y ).

Here above R(X,Y ) denotes a formal series of brackets of length at least 3 and at

most k − 1.

Remark 1.2. In exponential coordinates, the group law • of G turns out to be a

polynomial function. Indeed, let x, y ∈ G and X =
∑n

i=1 xi ei, Y =
∑n

i=1 yi ei ∈ g

be such that x = exp (X) and y = exp (Y ). Then z = x • y if, and only if,

there exists Z =
∑n

i=1 zi ei ∈ g such that z = exp (Z) and Z = P̃(X,Y ). Now,

setting P(·, ·) := exp (P̃(log (·), log (·))), we get P(x, y) = x • y. Note also that,

in exponential coordinates, the identity e of G is given by e = (0, ..., 0) and if

x = (x1, ..., xn) ∈ G, then x−1 = (−x1, ...,−xn). Hereafter, we shall set

P(x, y) := x+ y + Q(x, y),

where P = (P1, . . . ,Pn) and Q = (Q1, . . . ,Qn) are G-valued polynomial functions

on G, written in exponential coordinates, [20], [78].

A k-step nilpotent Lie group G is stratified if its Lie algebra g admits a k-step

stratification, i.e. there exist linear subspaces V1, ..., Vk of g such that

g = V1 ⊕ ...⊕ Vk, [V1, Vi−1] = Vi for i = 2, ..., k and Vk+1 = {0}. (4)

In this case we set H := V1 to denote the horizontal layer of the stratification of

g. Note that, by iterated brackets, H generates the whole Lie algebra g.

Definition 1.3. [Carnot groups] We say that a finite-dimensional, connected,

simply connected nilpotent Lie group is a Carnot group if its Lie algebra is stratified.

Warning. Throughout the thesis, unless otherwise mentioned, G will denote a n-

dimensional Carnot group with Lie algebra g, and the number k its step.

Any Carnot group can be naturally endowed with a family of Carnot dilations

{δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)}t>0. To construct these dilations we first

12



consider the family of linear operators δ̃t : g −→ g, t ∈ R+, which act by scalar

multiplication by ti on Vi for i = 1, ..., k; then we extend these operators to group

automorphisms by setting

δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn) := exp ◦ δ̃t ◦ log : G −→ G.

Hereafter, we identify g = TeG with Rn and we choose as a basis, the standard

one of Rn, denoted by {e1, . . . , en}. This basis can be adapted to the stratification

of g as follows. First, we set mi := dimVi and hi := m1 + · · ·+mi, for i = 1, . . . , k,

where h0 := 0 and hk := n; then we assume that ehj−1+1, . . . , ehj
is a basis of Vj

for each j = 1, . . . , k.

Remark 1.4. If x = exp (X) (X =
∑n

i=1 xi ei), we get

δtx = δt(x1, ..., xn) = (tα1x1, ..., t
αnxn) ∀x ∈ G, t > 0, (5)

where αi ∈ N is called the homogeneity of the variable xi, and we have that

αj := i whenever hi−1 + 1 ≤ j ≤ hi. Hence

1 = α1 = ... = αm1 < αm1+1 = 2 ≤ ... ≤ αn = k.

Following [89], we note that G is a homogeneous group with respect to Carnot

dilations. Thus, Q :=
∑k

i=1 idim (V i) denotes its homogeneous dimension.

We have that Pi and Qi are homogeneous polynomials of degree αi with respect to

{δt}t>0, i.e. Pi(δtx, δty) = tαiPi(x, y), Qi(δtx, δty) = tαiQi(x, y) for any x, y ∈ G.

Moreover the following items hold, [42, 43], [79]:

(i) Q1(x, y) = ... = Qm1(x, y) = 0;

(ii) Qj(x, 0) = Qj(0, y) = 0 and Qj(x, x) = Qj(x,−x) = 0 for m1 < j ≤

n;

(iii) Qj(x, y) = Qj(x1, . . . , xhi−1
, y1, . . . , yhi−1

) if 1 < i ≤ k and j ≤ hi;

(iv) Qj(x, y) is a sum of terms each of which contains a factor (xiyl − xlyi) for

some 1 ≤ i, l < j, whenever j > m1.
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Starting from the basis {e1, ..., en} of g, a smooth global frame (X1, ..., Xn) for

G, is defined by

(Xj)x := Lx∗ej , ∀ x ∈ G, j = 1, ..., n. (6)

Note that, putting A(x) := [Aij(x)]{i,j=1,...,n} (x ∈ G), where

Aij(x) :=
∂Pi(x, 0)

∂yj
,

we get that A(x) is the n× n-matrix representing, in exponential coordinates, the

pushforward associated with Lx.

Remark 1.5. Each left invariant section of the frame (X1, ..., Xn) have polynomial

coefficients and it can be written as follows, [43], [79]:

Xj(x) = ej +

n∑

i>hl

Aij(x) ei ∀ j ≤ hl, (j = 1, . . . , n). (7)

If j ≤ hl, we get that

Aij(x) = Aij(x1, ..., xhl−1
), Aij(e) = 0, Aij(δt(x)) = tαi−αjAij(x).

Moreover, Xj turns out to be homogeneous of degree αj with respect to Carnot

dilations, i.e.

Xj(ψ ◦ δt)(x) = tαjXj(ψ)(δtx) ∀ ψ ∈ C∞(G), ∀ x ∈ G, t > 0.

According to Remark 1.1 we shall denote by H the horizontal bundle for G,

that is, the smooth subbundle of the tangent bundle TG given by H :=
∐

x∈G
Hx,

where Hx denotes the horizontal space at the point x ∈ G, i.e. Hx = Lx∗H . Here

the bundle projection map π
H

: H −→ G is just the restriction to H of the natural

projection map π of TG. A subriemannian structure on G is given by endowing

each fibre of H with an inner product 〈·, ·〉H : H ×H −→ R. In this thesis we shall

assume that 〈·, ·〉H := 〈·, ·〉|H and we denote by | · |
H

its associated norm.

A curve γ ⊂ G is horizontal if its tangent vector γ̇ is everywhere tangent to H .

14



Definition 1.6. [9] The Carnot-Carathéodory distance of any two points

x, y ∈ G is given by

dc(x, y) := inf

∫ 1

0
|γ̇(t)|

H
dt,

where the infimum is taken over all horizontal curves γ : [0, 1] −→ G, joining x to

y, i.e. γ(0) = x, γ(1) = y.

Since the rank of the Lie algebra of vector fields generated by (X1, . . . , Xm1)

is n, Chow’s Theorem, [9, 49], implies that the set of all horizontal curves joining

two different points is not empty and hence dc is a metric on G. Moreover, dc

induces on G the same topology as the Riemannian one and is well behaved with

respect to left translations and group dilations, i.e. dc(z • x, z • y) = dc(x, y) and

dc(δt(x), δt(y)) = tdc(x, y) for all x, y, z ∈ G, t > 0.

Remark 1.7. Because the special importance of the first layer of the Lie algebra

H (= V1
∼= Rm1), in the light of what we have said here above, we say that any

fixed orthonormal frame (X1, ..., Xm1) for H , is a generating family of G

The following Remark 1.8 says that the metric space (G, dc) can be suitably

approximated by means of a family of Riemannian metrics on G preserving H , as

proved by Pansu, [81].

Remark 1.8. If t ∈ R+, let us set

gt :=
1

t
δλ(x1, . . . , xn) = (λα1x1, . . . , λ

αnxn)∗〈·, ·〉
1
2 ,

where δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)∗〈·, ·〉

1
2 denotes the pull-back by Carnot

dilations of the metric 〈·, ·〉
1
2 on G. Note that {gt}t>0 defines a family of left-

invariant Riemannian metrics on G. We may think of {(G, gt)}t>0 as a family

of metric spaces. This family {(G, gt)}t>0 converges, in the sense of Gromov-

Hausdorff convergence (see [6], [49], [73], [77], [81]), as t −→ +∞, to the metric

space (G, dc).

Theorem 1.9. Let ζ : [0, T ] −→ G be an horizontal curve with tangent vector

at each point given, in canonical coordinates, by a = (a1, ..., am1 , 0..., 0). Then
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there exists the metric derivative of ζ for L1 a.e. t ∈ [0, T ] and it is equal to

|a| =
√
a2

1 + ...+ a2
m1

, i.e.

|ζ̇|(t) := lim
ǫ→0

dc(ζ(t+ ǫ), ζ(t))

|ǫ|
= |a(t)| for L1 − a.e. t ∈ [0, T ].

Moreover, if Var(ζ) denotes the total variation of ζ with respect to the cc-distance

dc, then

Var(ζ) =

∫ T

0
|a(t)| dt ≥ H1

c(ζ([0, T ]))

and the equality holds if and only if ζ is injective.

Proof. The theorem follows by Theorem 4.4.1 of [6] and Theorem 1.3.5 of [78].

Now let γ be an integral curve of a fixed horizontal left invariant vector X ∈ H

and let a = (a1, ..., am1) ∈ Rm1(∼= V1 = H ) denote the vector of coordinates of X,

i.e.

Xx =

m1∑

i=1

Lx ∗aiei;

since |a| is constant, for all K ⊂ γ compact we have

H1
c(K) =

∫

γ−1(K)
|a(t)| dt = |a| · L1(γ−1(K)), (8)

where H1
c denotes the 1-dimensional Hausdorff measure with respect to the cc-

distance dc.

1.2 Connections and Curvatures on Carnot groups

Here below we introduce the notion of connection and that of covariant derivative.

As a general reference for connections we refer the reader to [16], [54], [59], [88].

Definition 1.10. [54] An affine connection on a C∞ manifold M is a rule ∇

which assigns to each X ∈ X(M) an R-linear map ∇X : X(M) −→ X(M) called

covariant differentiation with respect to X, such that for all X, Y, Z ∈ X(M) and

all f, g ∈ C∞(M) we have:
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(1) ∇fX+gY Z = f∇XZ + g∇Y Z;

(2) ∇XfY = f∇XY + (Xf)Y.

If M is a Riemannian manifold with metric denoted by 〈·, ·
〉
, then ∇ is called the

Levi-Civita connection on M if for every X, Y, Z ∈ X(M), satisfies the following

further conditions 1

(3) X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉;

(4) ∇XY −∇YX = [X,Y ].

Whenever we shall work with a Carnot group G endowed with the metric 〈·, ·
〉

defined before, we shall denote by ∇ its left invariant Levi-Civita connection. We

explicitly mention that (see, for instance, [54]), if Xe, Ye ∈ g(= TeG), we have

(∇XxY )x = Lx∗(∇XeY )e.

The next proposition describes the Levi-Civita connection for general nilpotent

Lie groups equipped with a left invariant Riemannian metric, so that it applies as

well to the case of Carnot groups; see, for instance, [71] and [31].

Proposition 1.11. Let G denote any nilpotent Lie group endowed with a left

invariant Riemannian metric denoted by 〈·, ·〉. Then the Levi-Civita connection ∇

of G satisfies the following formula

〈∇XY, Z〉 =
1

2

(
〈[X,Y ], Z〉 − 〈[Y, Z], X〉 + 〈[Z,X], Y 〉

)
(9)

for all left invariant vector fields X, Y, Z ∈ X(G). Moreover, let {e1, ..., en} be an

orthonormal basis of g (= TeG), let (X1, ..., Xn) be the associated frame on G, and

let ckij := 〈[ei, ej ], ek〉 denote the structural constants of g. See also Section 1.3,

equations (15) and (16). Then

〈∇Xi
Xj , Xk〉 =

1

2

(
ckij − cijk + cjki

)
∀ i, j, k = 1, ..., n. (10)

1We stress that, on any Riemannian manifold, there exists one and only one affine

connection ∇ satisfying (1), (2), (3) and (4) (see [54, 59, 88]).
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Notice that the above equation (10) can be rewritten as follows

∇Xi
Xj =

1

2

(
ckij − cijk + cjki

)
Xk ∀ i, j = 1, ..., n. (11)

If G denote a nilpotent Lie group with Levi-Civita connection ∇, we remind that,

in general, the torsion T and the curvature R of ∇ are defined as follows:

for x ∈ G, let

T : TxG × TxG −→ TxG, R : TxG × TxG × TxG −→ TxG,

denote the multilinear maps defined by

T(ξ, η) := ∇ηX −∇ξY − [Y,X]|x, (12)

R(ξ, η)ζ := ∇η∇XZ −∇ξ∇Y Z −∇[Y,X]|xZ, (13)

where ξ, η, ζ ∈ TxG and X, Y, Z are extensions of ξ, η, ζ, respectively, to vector

fields on a neighborhood of x. Obviously, since ∇ is the Levi-Civita connection of

G, by item (4) of Definition 1.10 it follows that T is identically 0. Moreover the

curvature tensor R can be explicitly computed in terms of structural constants of

g. This can be done using (11) and the definition of R, as in [71]. This method

allows us to compute also the sectional curvature K(ξ, η) of two orthonormal vectors

ξ, η ∈ TxG. For instance, for a nilpotent Lie group G, according to [71], by using

the previous notation of Proposition 1.11, for every i, j = 1, ..., n, the sectionals

curvatures are given by

K((Xi)x, (Xj)x) := 〈R((Xi)x, (Xj)x)(Xi)x, (Xj)x

〉

=

n∑

k=1

[
−

1

2
ckij

(
− ckij + cijk + cjki

)
+

1

4

(
ckij − cijk + cjki

)(
ckij + cijk − cjki

)
+ cikic

j
kj

]
.

We now introduce a general definition of restricted connection, as suggested in

[60]. We only mention that such connection was originally defined and used by É.

Cartan in his works on non-holonomic geometries; see [15].
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Definition 1.12. Let M be a Riemannian manifold and let (E, π
E
,M), (F, π

F
,M)

be smooth subbundles of TM . An E-connection ∇(E,F ) on F is a rule which

assigns to each vector field X ∈ C∞(M,E) an R-linear transformation

∇
(E,F )
X : C∞(M,F ) −→ C∞(M,F )

such that for all X, Y ∈ C∞(M,E), for all Z ∈ C∞(M,F ) and all f, g ∈ C∞(M)

we have

(1) ∇
(E,F )
fX+gY Z = f∇

(E,F )
X Z + g∇

(E,F )
Y Z;

(2) ∇
(E,F )
X fY = f∇

(E,F )
X Y + (Xf)Y.

If E = F we shall set ∇E := ∇(E,E), while if E = TM we set DF := ∇(TM,F )

and we call DF a full connection on F .

Remark 1.13. The above definition enables us to work with many connections.

We emphasize that, if E = TM , then the definition of full connection DF on F

recaptures the usual notion of connection on a vector bundle (see [72]), with the

further hypothesis that this vector bundle is a vector subbundle of TM . In facts,

the difference between these definitions is that in the latter we may covariantly

differentiate along every curve of M , while in the first one, we may consider only

curves that are tangent to the subbundle E.

Remark 1.14. Note that if (F, π
F
,M) is a subbundle of TM , then from any

(full) connection ∇ on TM we may get a full connection DF on F as follows:

denoting by PF the projection operator on F , we set

DF
XY := PF (∇XPF (Y )) ∀ X,Y ∈ X(M).

Clearly, if we have a decomposition of the tangent space given by TM = E⊕F ,

the previous construction holds as well for both the layers E and F ; see [49], [60].

In the sequel we will use some of these notions to get computations in the setting

of Carnot groups. Now we may give the following:
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Definition 1.15. Let G denote a Carnot group and let H its horizontal subbundle.

Then, using the notation of Definition 1.12, we will denote by ∇H the H -connection

on H and by DH the full connection on H . Moreover if ψ ∈ C∞(G), using the

subriemannian metric on H , 〈·, ·〉H , we define the horizontal gradient of ψ,

also denoted by the symbol ∇Hψ, as the (unique) left invariant horizontal vector

field such that 〈∇Hψ,X〉H = dψ(X) = Xψ (∀X ∈ H ). Finally, we define the

horizontal divergence of X ∈ H , denoted by div
H
X, to be the function given

at each point x ∈ G by div
H
X := Trace

(
Y −→ ∇H

YX
)

(Y ∈ Hx).

Note that, with respect to any orthonormal frame (Y1, ..., Ym1) for H , we have

div
H
X =

m1∑

i=1

〈∇H

Yi
X,Yi〉H .

In particular, with respect to the frame (X1, ..., Xm1), by using equation (10) and

the stratification hypothesis on g (see also Remark 1.22 below), we get that

div
H
X =

m1∑

i=1

Xi(xi),
(
X =

m1∑

i=1

xiXi

)
.

Finally, we remind some elementary definitions and results about calculus in

Carnot groups.

We say that a map T : G −→ R is H -linear if is a group homomorphism of

(G, •) onto (R,+) and if it is positively homogeneous of degree 1 with respect to

the positive dilations of G, i.e. T (δλx) = λT (x) for every λ > 0 and x ∈ G. The

R-linear set of H-linear real valued functionals is denoted by LH ; it is endowed

with the norm ‖T‖LH
:= sup{|T (x)| : dc(x, 0) ≤ 1}. For a fixed left invariant

frame (X1, . . . , Xn) of G, every H -linear map can be represented as follows, [43].

Proposition 1.16. A function T : G −→ R turns out to be H -linear if, and only

if, there exists a = (a1, . . . , am1) ∈ Rm1 such that, whenever y = (y1, . . . , yn) ∈ G,

one has T (y) =
∑m1

j=1 ajyj.

Definition 1.17. Let U ⊆ G be open and x0 ∈ U . We say that f : U −→ R is

Pansu-differentiable at x0 if there exists an H -linear map T such that

lim
λ→0+

f(Lx0(δλy)) − f(x0)

λ
= T (y)
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uniformly with respect to y belonging to a compact set in G. In particular, T is

unique and we shall write, in the sequel, dH f(x0)(y) := T (y).

Remark 1.18. This definition depends only on G and not on the particular choice

of the canonical generating vector fields. If U ⊆ G is open we denote by C1
H (U)

the set of all continuous real functions in U such that the map dH f : U −→ LH is

continuous in U and by C1
H (U,H ) the set of all sections ψ of H whose canonical

coordinates ψj belongs to C1
H (U) (j = 1, . . . ,m1). We remark that

C1(U) $ C1
H (U).

In general, the inclusion is strict. We say that f is differentiable along Xj

(j = 1, . . . ,m1) at x0 if the map λ 7→ f(Lx0(δλej)) is differentiable at λ = 0 where

ej is the j-th vector of the standard basis of g (= TeG ∼= Rn).

Notation 1.19. For a fixed x0 ∈ G we set

Πx0
(y) :=

m1∑

j=1

yj Xj(x0)

for y = (y1, . . . , yn) ∈ G. The map y −→ Πx0
(y) is a smooth section of H .

Proposition 1.20. [79] If f is Pansu-differentiable at x0 , then f is differentiable

along Xj at x0 (j = 1, . . . ,m1) and

dH f(x0)(y) = 〈∇H f,Πx0
(y)〉Hx0

∀ y ∈ G. (14)

1.3 Differential forms and Structure equations

We now introduce the main features of differential forms on Lie groups which can

be found, for instance, in Helgason’s book, [54]; see also [16, 33, 59, 64]. All that

we will state in the sequel for general or nilpotent Lie groups applies as well to the

case of Carnot groups. From now on let Λk(G) denote the bundle of alternating

covariant k-tensors on G, i.e.

Λk(G) =
∐

x∈G

Λk(TxG).
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The sections of Λk(G) are called differential k-forms. We say that a differential

form ω on G is left invariant if L∗
xω = ω for all x ∈ G. Here the map

L∗
x : T ∗

y G 7−→ T ∗
Lx(y)G, (y ∈ G)

denotes the pullback associated with the left translation Lx. The right invariant

differential forms are defined analogously. Moreover, a differential form is called

bi-invariant if it is both left and right invariant.

A smooth global coframe (ω1, ..., ωn) for G is determined by the condition

ωi(Xj) = δj
i for i, j = 1, ..., n, where (X1, ..., Xn) is the smooth global frame for G

defined before, and δj
i denotes the Kronecker delta. By the previous definitions, it

follows that this coframe (ω1, ..., ωn) for G, automatically, turns out to be adapted

to the stratification of g. Now let g∗ denote the dual space of the Lie algebra g and

let {e∗1, ..., e
∗
n} denote its basis. Obviously, g∗ = T ∗

e G = span{e∗1, ..., e
∗
n} and using

Cartesian coordinates (x1, ..., xn) of g with respect to the basis e1, ..., en, we may

notice that e∗i = dxi (i = 1, ..., n). Moreover, let ckij (i, j, k = 1, ..., n) denote the

structural constants of the Lie algebra g, defined by

[ei, ej ] :=
n∑

k=1

ckijek. (15)

Notice that the structural constants ckij satisfy the relations:

(i) ckij + ckji = 0; (ii)
n∑

j=1

cijlc
j
km + cijmc

j
lk + cijkc

j
ml = 0. (16)

The following proposition introduces the so-called Maurer-Cartan equations (see

[59, 54]).

Proposition 1.21. Let ω1, ..., ωn be the global coframe for a Lie group G uniquely

determined by requiring that ωi(Xj) = δj
i (i, j = 1, ..., n), where X1, ..., Xn is the

global frame for G. Then

dωk = −
1

2

n∑

i,j=1

ckij ωi ∧ ωj . (17)
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Remark 1.22. [The case of Carnot groups] In the case of Carnot groups, the

stratification hypothesis on the Lie algebra g implies that, if ei ∈ Vr and ej ∈ Vs,

then

[ei, ej ] ∈ Vr+s.

Therefore

c k
ij 6= 0 =⇒ hr+s−1 < k < hr+s+1 ∀ i, j, k = 1, ..., n.

In particular, ciij = c j
ij = 0 ∀ i, j = 1, ..., n. Moreover let k be such that

hl−1 < k < hl+1.

Then ckij 6= 0 only if, for any i, j such that hr−1 < i < hr+1 and hs−1 < j < hs+1,

we have that l = r+s. This means that, in the above formula (17), we may rewrite

the summation as

dωk = −
1

2

∑

1≤i,j≤hl−1

ckij ωi ∧ ωj whenever hl−1 < k < hl+1. (18)

Remark 1.23. The 1-forms ωi can explicitly be determined in terms of structural

constants on any Lie group, [54]. More precisely, let (x1, ..., xn) be the Cartesian

coordinates of g with respect to the basis {e1, ..., en} and let X =
∑n

i=1 xiei (note

that (x1, ..., xn) is the n-tuple of the exponential coordinates of x = exp (X) ∈ G).

Then, there exist functions

Bih(x) = Bih(x1, ..., xn) ∈ C∞(Rn) (i, h = 1, ..., n)

such that (ωi)x =
∑n

h=1Bih(x)dxh and

Bih(x) = (ωi)x(d exp X(eh)) = (ωi)e

(1 − e−adX

adX
(eh)

)

= dxi

(1 − e−ad X

adX
(eh)

)
.

For nilpotent Lie groups, and thus for Carnot groups, the formal series of linear

operators 1− e−adX/adX have only a finite number of non 0 terms, so that it can

be explicitly computed. This will be done for the case of 2-step Carnot groups in

Section 1.3.
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Notation 1.24. Throughout the thesis, if h ≥ 0, then Hh will denote the h-

dimensional Hausdorff measure associated with the Riemannian metric of G, while

Hh
c and Sh

c will denote, respectively, theh-dimensional Hausdorff measure and the

h-dimensional spherical Hausdorff measure, obtained from the cc-distance dc using

Carathédory’s construction, [33]. We also denote by Lp (p ∈ N) the standard

p-dimensional Lebesgue measure on Rp.

The following remark explain what is the canonical volume measure on Carnot

groups. This construction holds as well for nilpotent Lie groups.

Remark 1.25. [Volume measure on groups] Since G is a k-step nilpotent Lie group

equipped with exponential coordinates, it follows that, if x ∈ G, left translations Lx

and right translations Rx are maps whose jacobian determinants are identically

equal to 1. Moreover, the exponential map exp : g −→ G takes Lebesgue measure

on g to a left invariant (Haar) measure dV n on G. This measure turns out to

be also right invariant (see [20, 64]). Therefore, Carnot groups equipped with the

measure dV n are unimodular. Since G is naturally identified with Rn, throughout

the thesis we shall use indifferently the symbol dV n or that Ln to denote the volume

measure on G.

We may restated the previous remark in terms of left invariant differential

forms. Indeed, the left invariant volume element of G is just the differential n-

form defined by

Ωn := ω1 ∧ ... ∧ ωn ∈ Λn(G), (19)

so that Ωn turns out to be a bi-invariant n-form, usually called the Haar volume

form on G. We explicitly remark that Ωn is the Riemannian volume element with

respect to the chosen Riemannian metric 〈·, ·〉 on G. From now on we shall either

use the notation dV n or Ωn to denote the volume form of G. Note also that a deep

theorem of Mitchell [73] states that the Hausdorff dimension of a Carnot group

with respect to the cc-distance dc equals its homogeneous dimension Q.

Remark 1.26. We stress that since SQ
c - i.e. the Q-dimensional spherical Haus-

dorff measure of G- is a Haar measure of G and since, up to scale, there is only
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one Haar measure on locally compact Lie groups, we must have

dV n B = k
Q
· SQ

c B ∀ B ∈ B(G), (20)

where k
Q

is an absolute constant. Hereafter B(G) will denote the family of Borel

subsets of G.

We finally introduce a specific notation for the class of hyperplanes which

are, in a sense, orthogonal to the horizontal distribution, the so-called vertical

hyperpanes. These hyperplanes will be very useful in some mean integral formulae

stated in the sequel.

Notation 1.27. If z ∈ G and X ∈ H , we set

Iz(X) := Lz(exp (X⊥
e )) = Lz{y ∈ G : 〈Πe(y), Xe〉He = 0}, (21)

where X⊥
e is the orthogonal complement of Xe in g. Explicitly, if Xe =

∑m1
j=1 ajej ,

Iz(X) =
{
y ∈ G :

m1∑

j=1

[yj − xj ] aj = 0
}
.

We call Iz(X) vertical hyperplane through x and orthogonal to X and we

denote by Vz the family of all vertical hyperplanes through x, i.e.

Vz :=
{
Iz(X) : X ∈ H

}
.

1.4 HBV and H -Caccioppoli sets

For the classical theory of BV functions and Caccioppoli sets we shall refer the

reader to [2], [32] and [97], while many generalizations to metric spaces as Carnot-

Carathéodory ones or Carnot groups we may cite [1], [3], [4], [14], [39, 41, 42, 43],

[45], [73], [78], [79]. We shall make now a quick overview of main definitions and

properties that will be used later on.

Definition 1.28. Let U ⊆ G be open and f ∈ L1(U). Then, f has bounded

H -variation in U if

|∇H f |(U) := sup

{∫

U

f div
H

(ψ) dLn : ψ ∈ C1
0(U,H ), |ψ| ≤ 1

}
<∞, (22)
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where |∇H f |(U) is called H -variation of f in U . We denote by HBV (U) the

vector space of functions of bounded H -variation in U and by HBV loc(U) the set

of functions belonging to HBV (U) for each open set U ⋐ U.

Theorem 1.29. [Structure of HBV functions] If f ∈ HBV (U) then |∇H f | is

a Radon measure in U and there exists a |∇H f |-measurable horizontal section

σf : U → H such that |σf | = 1 for |∇H f |-a.e. x ∈ U and
∫

U

f div
H

(ψ) dLn =

∫

U

〈ψ, σf

〉
H
d |∇H f | ∀ ψ ∈ C1

0(U,H ). (23)

Moreover ∇H can be extended as a vector valued measure to functions in HBV

setting

∇H f := −σf |∇H f | =
(
− (σf )1 |∇H f |, . . . ,−(σf )m1 |∇H f |

)
, (24)

where (σf )j (j = 1, . . . ,m1) is j-th component of the vector valued measure σf ,

with respect to the horizontal frame.

The next results hold for general Carnot-Carathéodory geometries associated

with vector fields as proved in [39], [45].

Theorem 1.30. [Lower semicontinuity] Let f, fk ∈ L1(U), k ∈ N, be such that

fk → f in L1(U); then

|∇H f |(U) ≤ lim inf
k→∞

|∇H fk|(U). (25)

Theorem 1.31. [Compactness] HBV loc(G) is compactly embedded in Lp
loc(G) for

1 ≤ p < Q
Q−1 , where Q denotes the homogeneous dimension of G.

Definition 1.32. Let U be an open subset of G; then a measurable set E ⊂ G

has finite H -perimeter in U , or is a H -Caccioppoli set in U , if its characteristic

function 1E belongs to HBV loc(U). In this case we call H -perimeter of E in U

the (Radon) measure given by

|∂E|H := |∇H 1E | (26)

and we call generalized inward G-normal along ∂E in U the vector valued measure

νE := −σ1E
. (27)
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Remark 1.33. The H -perimeter measure is invariant under group translations,

i.e.

|∂E|H (B) = |∂(LxE)|H (LxB) ∀ x ∈ G ∀ B ∈ B(G); (28)

indeed div
H

is invariant under group translations and the Jacobian determinant

of Lx is 1. Moreover the H -perimeter is (Q− 1)-homogeneous with respect to the

intrinsic dilations, i.e.

|∂(δtE)|H (δtB) = tQ−1|∂E|H (B) ∀ B ∈ B(G). (29)

This fact can be easily proved by a change of variables in formula (22).

Proposition 1.34 ([14]). Let E be a H -Caccioppoli set in U having C1-smooth

boundary. Then

|∂E|H (U) =

∫

∂E∩U

√
〈X1,N 〉2 + ...+ 〈Xm1 ,N 〉2 dHn−1, (30)

where N is the unit outward normal along ∂E. In this case we have

(νE)x =
(〈X1x,Nx〉, ..., 〈Xm1x,Nx〉)√
〈X1x,Nx〉2 + ...+ 〈Xm1x,Nx〉2

∀ x ∈ ∂E ∩ U.

The regularization technique of convolution with mollifiers enables us to obtain

approximation results for both Sobolev and HBV functions in Carnot groups as

well as in more general contexts; see [39], [45]. To this end we introduce a family

of spherically symmetric mollifiers Jǫ (ǫ > 0) by Jǫ(x) := ǫ−nJ(ǫ−1x), where

J ∈ C∞
0 (Rn),J ≥ 0, spt (J) ⊆ {x ∈ Rn : |x| ≤ 1} and

∫
G
J dLn = 1.

Lemma 1.35. Let U ⊆ G be open and f ∈ HBV (U). If Ũ ⋐ U is open and

|∇H f |(∂Ũ) = 0, then

lim
ǫ→0

|∇H (Jǫ ∗ f)|(Ũ) = |∇H f |(Ũ). (31)

Theorem 1.36. [Density for HBV functions] Let f ∈ HBV (U); then there exists

a sequence {fj}j∈N ⊂ C∞(U) ∩ HBV (U) such that

lim
j→∞

‖fj − f‖L1(U) = 0 and lim
j→∞

|∇H fj |(U) = |∇H f |(U). (32)

27



The following coarea formula for HBV functions is a key tool to understand

the interplay between HBV functions and H -Caccioppoli sets. For a proof see [45],

[39, 41], [67], [79].

Theorem 1.37. Let f ∈ HBV (U) and set Et := {x ∈ U : f(x) > t} for t ∈ R.

Then

(i) Et has finite H -perimeter in U for L1-a.e. t ∈ R;

(ii) |∇H f |(U) =
∫ +∞
−∞ |∂Et|(U) dt.

(iii) Conversely, if f ∈ L1(U) and
∫ +∞
−∞ |∂Et|(U) dt <∞, then f ∈ HBV (U) and

(ii) holds.

As in Rn a C1-smooth hypersurface can be regarded as the zero set of a function

f : Rn −→ R with non-vanishing gradient, in Carnot groups we must follow the

same approach in defining the so-called H-regular hypersurfaces; see [41, 42, 43].

This choice is motivated by the fact that it is not possible to follows Federer’s

approach to rectifiability (see [4], [41, 42, 43], [67]).

Definition 1.38. [42] S ⊂ G is a H -regular hypersurface if for every x ∈ S

there exist a neighborhood U of x and a function f ∈ C1
H (U) such that

(i) S ∩ U = {y ∈ U : f(y) = 0};

(ii) ∇H f(y) 6= 0 ∀ y ∈ U.

The following important Implicit Function Theorem was proved in [42].

Theorem 1.39. [Implicit Function Theorem] Let Ω ⊆ G be open such that 0 ∈ Ω;

let f ∈ C1
H (Ω) be such that f(0) = 0 and X1f(0) > 0. Put

E := {x ∈ U : f(x) < 0}, S := {x ∈ Ω : f(x) = 0}

and for h, δ > 0 set Jh := [−h, h] and

Iδ := {ξ = (ξ2, . . . , ξn) ∈ Rn−1 : |ξj | ≤ δ, j = 2, . . . , n}.
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If ξ ∈ Rn−1 and t ∈ Jh we denote by γ1
(0,ξ)

(t) the integral curve of the horizontal

left invariant vector field X1 ∈ H at the time t issued from

(0, ξ) ∈ {(0, η) ∈ G : η ∈ Rn−1},

i.e. γ1
(0,ξ)

(t) = exp [tX1](0, ξ). Then there exist δ, h > 0 such that

R × Rn−1 ∋ (t, ξ) 7−→ γ1
(0,ξ)

(t)

is a diffeomorphism of a neighborhood of Jh × Iδ onto an open subset of Rn and

denoting by U ⋐ Ω the image of Int{Jh × Iδ} under this mapping the following

statements hold:

(i) E has finite H -perimeter in U ;

(ii) ∂E ∩ Ω = S ∩ U ;

(iii) if νE is the generalized inner unit normal of E then

νE(x) = −
∇H f(x)

|∇H f(x)|H
∀ x ∈ S∩Ω, |νE |Hx = 1 for |∂E|H−a.e.x ∈ U.

Moreover there exists a unique continuous function φ = φ(ξ) : Iδ −→ Jh such that,

setting Φ(ξ) = γ1
(0,ξ)

(φ(ξ)) for ξ ∈ Iδ, we have

(iv) S ∩ U = {x ∈ U : x = Φ(ξ), ξ ∈ Iδ};

(v) the H -perimeter has the following integral representation:

|∂E|H (U) =

∫

Iδ

√∑m
j=1 |Xjf(Φ(ξ))|2

X1f(Φ(ξ))
dξ.

We end this subsection with the definition of partial perimeter along an hori-

zontal direction, while in the next Lemma 1.41 we explicitly characterize it.

Definition 1.40. Let Ω be open and let X ∈ H . Let E be a Lebesgue measurable

subset of G such that Ln(E ∩Ω) <∞. Then we say that E has finite X-perimeter

in Ω if

|∂XE|(Ω) := sup

{∫

Ω
1E XϕdL

n : ϕ ∈ C1
0(Ω), |ϕ| ≤ 1

}
<∞ (33)

and we call this quantity the X-perimeter of E in Ω ; see also [39], [74].
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We will see in Section 3.1 that this notion agrees with that more general of

X-variation of a L1 function; see, for instance, Definition 3.1 and Remark 3.2

below.

Lemma 1.41. Let Ω be open and let X ∈ H . If E is a H -Caccioppoli set in Ω,

then

|∂XE|(Ω) =

∫

Ω
|〈X, νE〉H | d |∂E|H .

Proof. Firstly, putting Φ := ϕX ∈ H , where ϕ ∈ C1
0(Ω), |ϕ| ≤ 1, we get

∫

Ω
1EX ϕdLn =

∫

Ω
1E 〈∇Hϕ,X〉H dLn =

∫

Ω
1E div

H
Φ dLn

= −

∫

Ω

〈
Φ, νE〉H d |∂E|H = −

∫

Ω
ϕ 〈X, νE〉H d |∂E|H .

Since for every x ∈ Ω we have ϕ 〈X, νE〉H ≤ |〈X, νE〉H |, from Definition 1.40 it

follows that

|∂XE|(Ω) ≤

∫

Ω
|〈X, νE〉H | d |∂E|H .

Now we shall prove the reverse inequality. Let ǫ > 0 and set

Ωǫ :=
{
x ∈ Ω : |x| <

1

ǫ
, dist(x, ∂Ω) > ǫ

}
, ζǫ :=

Jǫ ∗
(
1Ωǫsign〈X, νE〉H

)

√
ǫ2 +

(
Jǫ ∗ 1Ωǫsign〈X, νE〉H

)2
,

where, as above, Jǫ is a Friedrichs’ mollifier. Using standard properties of mollifiers

we get that ζǫ ∈ C∞
0 (Ω), |ζǫ| < 1, and ζǫ −→ 1Ω sign〈X, νE〉H for Ln-a.e. x ∈ G,

as ǫ → 0. Finally, from Definition 1.40 together with the previous computations

and Fatou’s Lemma we get

|∂XE|(Ω) ≥ lim inf
ǫ→0

∫

Ω
ζǫ 〈X, νE〉H d |∂E|H

≥

∫

Ω
lim inf

ǫ→0
ζǫ 〈X, νE〉H d |∂E|H =

∫

Ω
|〈X, νE〉H | d |∂E|H .

Remark 1.42. From Lemma 1.41 and the regularity of the measures |∂E|H and

|∂XE|H one gets equality of measures, i.e.

|∂XE| B = |〈X, νE〉H | · |∂E|H B ∀ B ∈ B(G).
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2 Integral geometry in Carnot groups

2.1 A Fubini type Theorem in Carnot groups

Let S ⊂ G be a fixed C1-smooth hypersurface. By the classical Implicit Function

Theorem we may assume that S = ∂E where E ⊂ G is an open H -Caccioppoli

set. Moreover let us choose a horizontal left invariant direction X ∈ H which is

globally transverse to S, i.e.

〈Xy,Ny〉 6= 0 ∀ y ∈ S, (34)

where N is the euclidean unit inward normal along S. We explicitly notice that

if X ∈ H is a horizontal left invariant vector field and S ⊂ G is a C1-smooth

hypersurface we have that

〈X, νE〉Hy 6= 0 ⇐⇒ 〈Xy,Ny〉 6= 0 ∀ y ∈ S.

Indeed by Proposition 1.34 the inward unit H -normal along S = ∂E is given by

(νE)y =

∑m1
j=1〈(Xj)y,Ny〉(Xj)y√∑m1

j=1〈(Xj)y,Ny〉2
∀ y ∈ S

and if X =
∑m1

i=1 aiXi we get

〈X, νE〉H =

∑m1
j=1〈Xj ,N 〉 aj√∑m1

j=1〈Xj ,N 〉2
=

〈
X,N 〉√∑m1

j=1〈Xj ,N 〉2
.

Condition (34) is therefore equivalent to require that Xy ∈ H Gy \ TyS for y ∈ S.

Consider now the following Cauchy problem
{

γ̇(t) = X(γ(t)),

γ(0) = y ∈ S.

There exists a unique smooth solution of this problem which is defined on all of

R and, throughout this section, we shall write γ
Xy

(t) = exp [tX](y) for t ∈ R and

y ∈ S. If X ∈ H is fixed, we shall remove the apex just writing γy. Notice that

γ
Xy

(t) = y • exp (tX) = P(y, exp (tX)). Following [69], we call such a trajectory

a horizontal X-line, or simply horizontal line. Now let us consider the family of

horizontal X-lines starting from S.
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Notation 2.1. We shall denote by RX
S the subset of G reachable from S by

means of horizontal X-lines, i.e.

RX
S :=

{
x ∈ G : ∃ y ∈ S, ∃ t ∈ R s.t. x = exp [tX](y)

}
.

From now on we assume that S enjoys the following further property:

γy(R) ∩ S = y ∀ {y} ∈ S. (35)

Since X is transverse to S, from the uniqueness of the solutions of the Cauchy

problem and the hypothesis (35) it follows that any subset D of RX
S has a natural

projection on S along the horizontal direction X. More precisely we may define

a mapping prX

S : D ⊆ RX
S 7−→ S as follows; for x ∈ D and y ∈ S we set

y = prX

S (x) if, and only if, there exists t ∈ R such that x = exp [tX](y). Using this

projection every subset D of RX
S can be foliated with one-dimensional leaves that

are horizontal X-lines. In fact, setting Dy := γy(R) ∩ D , one has:

D =
∐

y ∈ prX
S

(D)

Dy and y1 6= y2 =⇒ Dy1 ∩ Dy2 = ∅ ∀ y1, y2 ∈ prX

S (D).

Remark 2.2. We remark that if S is a C1-smooth closed hypersurface without

boundary and globally transverse to X ∈ H one can prove, by applying the Tubular

Neighborhood Theorem (see [56]), that any integral curve of X cut S in at most

one point and hence (35) is automatically verified.

In many subsequent integration formulae we shall adopt the so-called vertical

hyperplanes (see Notation 1.27). We emphasize that every subset of G is reachable

from any vertical hyperplane. We would also stress that, although this projection

turns out to be useful in many integral formulas, it is not Lipschitz with respect

to the Carnot-Carathéodory distance dc and so one cannot to assimilate it to an

euclidean orthogonal projection. For more details, see [61].

We may state our first result of this section:
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Proposition 2.3. Let S ⊂ G be a C1 smooth hypersurface and X ∈ H , |X|H = 1,

be a unit horizontal left invariant vector field which is transverse to S, i.e.

〈X, νE〉Hy 6= 0 ∀ y ∈ S.

Let γy be the horizontal X-line starting from y ∈ S, i.e.

γy : R 7−→ G, γy(t) = exp [tX](y) for y ∈ S.

Moreover we assume that

γy(R) ∩ S = {y} ∀ y ∈ S.

Let D ⊆ RX
S be a Lebesgue measurable subset of G that is reachable from S by

means of horizontal X-lines. Since locally S = ∂E, for a suitable open set E ⊂ G,

without loss of generality we may assume that S = ∂E globally, where E has locally

finite H -perimeter. Then we have

(i) Dy := γy(R) ∩ D is H1
c-measurable for |∂E|H -a.e. y ∈ S;

(ii) the mapping S ∋ y 7−→ H1
c(Dy) is |∂E|H -measurable on S and

Ln(D) =

∫

prX
S

(D)
H1

c(Dy) |〈X, νE〉Hy | d |∂E|H (y)

=

∫

prX
S

(D)
H1

c(Dy) d |∂XE|,

where prX

S (D) ⊆ S is the horizontal X-projection of D on S.

This proposition may be generalized to H -regular hypersurfaces and, more

precisely, we can state our main theorem as follows:

Theorem 2.4. Let S ⊂ G be a H -regular hypersurface. By Theorem 1.39, without

loss of generality, we may assume that S = ∂E globally, where E ⊂ G is an

open H -Caccioppoli set with locally C1
H boundary. Let X ∈ H , |X|H = 1, be a

unit horizontal left invariant vector field which is transverse to S. Let γy be the

horizontal X-line starting from y ∈ S and let us suppose that γy(R)∩S = {y} for

every y ∈ S. Let D ⊆ RX
S be a Lebesgue measurable subset of G that is reachable

from S. Then we have:
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(i) Dy := γy(R) ∩ D is H1
c-measurable for |∂E|H -a.e. y ∈ S.

(ii) the mapping S ∋ y 7−→ H1
c(Dy) is |∂E|H -measurable on S and

Ln(D) =

∫

prX
S

(D)
H1

c(Dy) |〈X, νE〉Hy | d |∂E|H (y)

=

∫

prX
S

(D)
H1

c(Dy) d |∂XE|(y).

The proof of this results will be given in the next subsection. Nevertheless we

can state a first useful consequence.

Corollary 2.5. Let S ⊂ G be a H -regular hypersurface and assume that S = ∂E

globally, where E ⊂ G is a suitable open H -Caccioppoli set. Let X ∈ H , |X|H = 1,

be a unit horizontal left invariant vector field which is transverse to S and denote

by γy the horizontal X-line starting from y ∈ S. We assume that γy(R)∩S = {y}

for every y ∈ S. Finally let D ⊆ RX
S be a Lebesgue measurable subset of G that is

reachable from S by means of X-lines. Then, for every function ψ ∈ L1(D) the

following statements hold:

(i) Let ψ|Dy
denote the restriction of ψ to Dy := γy(R)∩D and let us define the

mapping

ψy : γ−1
y (Dy) ⊆ R 7−→ R, ψy(t) = (ψ ◦ γy)(t).

Then ψy is L1-measurable for |∂E|H -a.e. y ∈ S. Equivalently, we have that

the restriction ψ|Dy
is H1

c -measurable for |∂E|H -a.e. y ∈ S.

(ii) The mapping defined by

S ∋ y 7−→

∫

Dy

ψ dH1
c =

∫

γ−1
y (Dy)

ψy(t) dt

is |∂E|H -measurable on S and the following formula holds:
∫

D

ψ dLn =

∫

prX
S

(D)

∫

Dy

ψ dH1
c d |∂XE|(y)

=

∫

prX
S

(D)

∫

γ−1
y (Dy)

ψy(t) dt |〈X, νE〉Hy | d |∂E|H (y).
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Proof. Having at our disposal Theorem 2.4, is enough to use a standard argument

of measure theory to approximate the function ψ with a finite linear combination

of characteristic functions, as for instance in Theorem 3.2.5 of [33].

Till now we have used the intrinsic H -perimeter as a measure for hypersurfaces

in G but also different measures can be considered. In fact, the comparison of

different surface measures is a one of the main problems of the Geometric Measure

Theory in Carnot groups and in general Carnot-Carathéodory spaces. In particular

an interesting problem for Carnot groups is that to compare the H -perimeter

with the the (Q − 1)-dimensional Hausdorff measure associated with either the

cc-distance dc or with some suitable homogeneous distance on G, in the case of

euclidean smooth hypersurfaces (see [7], [42, 43], [67]).

The following result for general Carnot groups is proved in [67].

Remark 2.6. Let S be a C1-smooth hypersurface and let assume that S is locally

the boundary of an open set E. Then

|∂E|H B = k
Q−1(νE)HQ−1

c

(
S ∩B

)
∀ B ∈ B(G) (36)

where the measure HQ−1
c is the spherical 2 (Q−1)-dimensional Hausdorff measure

associated with the cc-distance dc and k
Q−1 is a function depending on νE, called

metric factor (see Definition 2.17 of [67]).

By means of this result, we may reformulate Proposition 2.3 using Hausdorff

measures with respect to the cc-distance. We have, more precisely, the following:

Corollary 2.7. Let S ⊂ G be a C1-smooth hypersurface and let X ∈ H , |X|H = 1,

be a unit horizontal left invariant vector field which is transverse to S. Let γy be the

horizontal X-line starting from y ∈ S and assume that γy(R) ∩ S = {y} for every

2Notice that HQ−1

c (S) = limδ→0+ HQ−1

c,δ (S) where, up to a constant multiple,

HQ−1

c,δ (S) = inf
{∑

i

(
diamc(Bi)

)Q−1

: S ⊂
⋃

i

Bi; diamc(Bi) < δ
}

and the infimum is taken with respect to closed dc-balls Bi.
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y ∈ S. Finally, let D ⊆ RX
S be a HQ

c - measurable subset of G that is reachable

from S by means of horizontal X-lines. Then

(i) Dy := γy(R) ∩ D is H1
c-measurable for HQ−1

c -a.e. y ∈ S.

(ii) The mapping S ∋ y 7−→ H1
c(Dy) is HQ−1

c -measurable on S and

HQ
c (D) =

∫

prX
S

(D)
H1

c(Dy) |
〈
X, νE〉Hy |

k
Q−1(νE)

k
Q

dHQ−1
c (y)

where k
Q

is the constant defined in Remark 1.26. Moreover

∫

D

ψ dHQ
c =

∫

prX
S

(D)

∫

Dy

ψ dH1
c |
〈
X, νE〉Hy |

k
Q−1(νE)

k
Q

dHQ−1
c (y).

Proof. We have already observed in Remark 1.26 that Lebesgue measure Ln and

Q-dimensional spherical Hausdorff measure HQ
c coincide up to the constant k

Q
.

Thus, using Proposition 2.3, Corollary 2.5 and the identity of measures stated in

(36) the thesis follows.

2.2 Proofs of Proposition 2.3 and Theorem 2.4

This subsection is entirely devoted to prove Proposition 2.3 and Theorem 2.4.

The proof of Proposition 2.3 relies mainly on the next Lemma 2.9 and on the

classical change of variables formula with some non trivial computations. The proof

of Theorem 2.4 follows from Proposition 2.3 using an approximation argument

inspired by a recent work of Franchi, Serapioni and Serra Cassano about an implicit

function theorem in Carnot groups (see Theorem 1.39 or [42]).

We begin by stating two technical lemmas. For the notation used in the sequel

we refer the reader to Section 1.1. We just recall here that the group law • on G

is also denoted by P(x, y) = x+ y+Q(x, y) for x, y ∈ G, where Pj(x, y) = xj + yj

for 1 ≤ j ≤ m1(= dimV1) and Pj(x, y) = xj + yj + Qj(x, y) for j > m1.

Lemma 2.8. If X ∈ V1 and j > m1, then

Qj(y, exp ((t1 + t2)X)) = Qj(y, exp (t1X)) +Qj(P(y, exp (t1X)), exp (t2X)) (37)

whenever y ∈ G and t1, t2 ∈ R.
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Proof. First, by Remark 1.5 we get that if X ∈ V1

P(exp (t1X), exp (t2X)) = exp (t1X) + exp (t2X) ∀ t1, t2 ∈ R. (38)

Now, starting from the associativity property of the group law and using (38), it

follows that

P(P(y, exp (t1X)), exp (t2X)) = P(y,P(exp (t1X), exp (t2X)))

and so

Pj(P(y, exp (t1X)), exp (t2X)) = Pj(y,P(exp (t1X), exp (t2X))). (39)

Moreover the following identities hold

Pj(P(y, exp (t1X)), exp (t2X)) = Pj(y, exp (t1X))+Qj(P(y, exp (t1X)), exp (t2X))

= yj + Qj(y, exp (t1X)) + Qj(P(y, exp (t1X)), exp (t2X)); (40)

Pj(y,P(exp (t1X), exp (t2X))) = yj + Qj(y,P(exp (t1X), exp (t2X)))

= yj + Qj(y, exp ((t1 + t2)X)). (41)

Thus the claim easily follows by substituting (40) and (41) in (39).

Lemma 2.9. If X ∈ V1 we have that

∂

∂ t
P(y, exp (tX)) =

[
∂

∂ y
P(y, exp (tX))

]
X(y) ∀ t ∈ R ∀ y ∈ G. (42)

Notation 2.10. In some of the following formulae we shall write

JyP(y, z) :=
∂

∂ y
P(y, z) (for y, z ∈ G).

Proof. We prove this lemma by components. First, we assume thatX =
∑m1

j=1 ajej

so that

exp (tX) = (ta1, ..., tam1 , 0, ..., 0).
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If 1 ≤ j ≤ m1 we have that Pj(y, exp (tX)) = yj + taj and since we may easily

prove that

〈
[
JyP(y, exp (tX))

]
X(y), ej〉 = aj ,

in this case the thesis follows. Now if j > m1, we have to show that

∂

∂ t
Pj(y, exp (tX)) = 〈∇yPj(y, exp (tX)), X(y)〉.

Since (exp (tX))j = 0, we have that Pj(y, exp (tX)) = yj + Qj(y, exp (tX)). Now,

note that the following identities hold

∂

∂ t
Pj(y, exp (tX)) =

∂

∂ t
Qj(y, exp (tX)); (43)

〈∇yPj(y, exp (tX)), X(y)〉 = (X(y))j + 〈∇yQj(y, exp (tX)), X(y)〉. (44)

Therefore, by (43) and (44) we have to prove that

∂

∂ t
Qj(y, exp (tX)) = (X(y))j + 〈∇yQj(y, exp (tX)), X(y)〉 ∀ t ∈ R ∀ y ∈ G.

(45)

Now, by differentiating both sides of (37) of the previous Lemma 2.8 with respect

to t1 at the time t1 = 0 and putting t2 = t, we get that

∂

∂ t1

∣∣∣
t1=0

Qj(y, exp ((t1 + t)X))

=
∂

∂ t1

∣∣∣
t1=0

Qj(y, exp (t1X)) +
∂

∂ t1

∣∣∣
t1=0

Qj(P(y, exp (t1X)), exp (tX))

=
∂

∂ t1

∣∣∣
t1=0

Pj(y, exp (t1X))+
〈
∇yQj(P(y, 0), exp (tX)),

[ ∂

∂ t1

∣∣∣
t1=0

P(y, exp (t1X))
]
〉

= (X(y))j + 〈∇yQj(y, exp (tX)), X(y)〉

that is nothing but (45).

Proof of Proposition 2.3. Let Sα be an open neighborhood of prX

S (D) on S. Of

course, with no loss of generality, we may think Sα to be globally parameterized

through a smooth map Φα, where Φα : Uα ⊆ Rn−1 7−→ Sα and Φα ∈ C1(Uα,G). In
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the general case we shall use a partition of unity related to an atlas {(Sα,Ψα)}α∈A

of S, where Ψα := Φ−1
α for α ∈ A and (Sα,Ψα) is a coordinate chart on S.

However, for sake of simplicity, we omit the index α from Uα, Φα and Sα just

writing U, Φ and S. Let us consider the map S×R ∋ (y, t) 7−→ γy(t) ∈ G given by

γy(t) = exp [tX](y). The last one enables us to carry out the parametrization of D

we were looking for. Indeed, more precisely, starting from the parametrization of

S, we may put

γ
Φ(ξ)

(t) = exp [tX](Φ(ξ))

whenever ξ ∈ U and t ∈ R. For simplicity, we shall drop the dependence on the

variables and we denote this mapping just by γΦ . This one enjoys an important

property that we summarize in the next lemma.

Lemma 2.11. The Jacobian matrix of the mapping γΦ with respect to (ξ, t) ∈ U×R

satisfies the following identity

∣∣∣ det
[
J

(ξ,t)
γΦ

]∣∣∣ =
∣∣∣
〈
X, νE

〉
HΦ

∣∣∣
(

m1∑

j=1

〈Xj(Φ),N (Φ)〉2

) 1
2

|Φξ1
∧ . . . ∧ Φξ

n−1
|, (46)

where we have set

Φξ
h

:=
∂ Φ

∂ ξ
h

for h ∈ {1, ..., n− 1}.

Proof of Lemma 2.11. We have to compute the expression of the Jacobian matrix

of γΦ , i.e.

J
(ξ,t)

γΦ =

[
∂ γΦ

∂ ξ
,
∂ γΦ

∂ t

]
=

[
∂ γΦ

∂ ξ1
, ...,

∂ γΦ

∂ ξn−1

,
∂ γΦ

∂ t

]
.

By definition we have that γ
Φ(ξ)

(t) = P(Φ(ξ), exp (tX)) and so we get

∂ γΦ

∂ ξ
=

[
∂

∂ y

∣∣∣
y=Φ(ξ)

P(y, exp (tX))

]
∂ Φ

∂ ξ
.

We have then

J
(ξ,t)

γΦ =

[[
∂

∂ y

∣∣∣
y=Φ(ξ)

P(y, exp (tX))

]
∂ Φ

∂ ξ
,
∂

∂ t
P(Φ(ξ), exp (tX))

]
(47)
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and, for sake of simplicity, we will set

A :=

[
∂

∂ y

∣∣∣
y=Φ(ξ)

P(y, exp (tX))

]
,

b :=
∂

∂ t
P(Φ(ξ), exp (tX))

So we get
∣∣∣ det

[
J

(ξ,t)
γΦ

]∣∣∣ =
∣∣∣ det

[
A
∂ Φ

∂ ξ
, b
]∣∣∣

=
∣∣∣ det

[
A
∂ Φ

∂ ξ
, AA−1 b

]∣∣∣.

Now we may notice that |detA | = 1. Indeed, in general, one has

∂

∂ y
P(y, z) = In +

∂

∂ y
Q(y, z)

whenever y, z ∈ G, where In is the n×n identity matrix and ∂
∂ y

Q is a n×n nilpotent

matrix, because it is lower triangular with the entries in the main diagonal all equal

to 1. Furthermore, by Lemma 2.9 we infer that

X(y) =

[
∂

∂ y
P(y, exp (tX))

]−1
∂

∂ t
P(y, exp (tX))

whenever y ∈ G and t ∈ R and so, in particular, we get that A−1 b = X(Φ(ξ)).

Therefore
∣∣∣ det

[
J

(ξ,t)
γΦ

]∣∣∣ = |detA | ·
∣∣∣ det

[∂ Φ

∂ ξ
, A−1 b

]∣∣∣

=
∣∣∣ det

[∂ Φ

∂ ξ
, X(Φ(ξ))

]∣∣∣

=
∣∣∣ det

[ ∂ Φ

∂ ξ1
, ...,

∂ Φ

∂ ξn−1

, X(Φ(ξ))
]∣∣∣

=
∣∣∣〈 ∂ Φ

∂ ξ1
∧ ... ∧

∂ Φ

∂ ξn−1

, X(Φ(ξ))〉
∣∣∣

=
∣∣∣〈N (Φ(ξ)), X(Φ(ξ))〉

∣∣∣ · |Φξ1 ∧ . . . ∧ Φξn−1 |.

Here above we have used two standard properties of Linear Algebra and, more

precisely, the following identity

det
[
a1,a2, ...,an−1,b

]
= 〈a1 ∧ a2 ∧ ... ∧ an−1,b〉 ∀ a1,a2, ...,an−1,b ∈ Rn,
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and the fact that

det
[
Ab1,Ab2, ...,Abn

]
= detA · det

[
b1,b2, ...,bn

]

for any invertible n × n matrix A. Notice also that in the last line, we have used

the explicit expression of the euclidean unit inward normal along a parametric

hypersurface.

Now, keeping in mind that, whenever S = ∂E is smooth, we have

νE(y) =

(
〈X1y,Ny〉, . . . , 〈Xm1y,Ny〉

)

(∑m1
j=1〈Xjy,Ny〉2

) 1
2

for every y ∈ S, we get the thesis observing that

∣∣∣
〈
Ny, Xy

〉∣∣∣ =
∣∣∣〈νEy, Xy〉Hy

∣∣∣ ·
( m1∑

j=1

〈Xjy,Ny〉
2
) 1

2
.

Starting from this lemma we carry out the proof of Proposition 2.3 by means of a

partition of unity {(Wα, σα)}α∈A related to the atlas {(Sα,Ψα)}α∈A for S, where

Wα = spt{σα} ⋐ Sα. Indeed, by the classical change of variables formula

Ln(D)

=
∑

α∈A

∫

Ψα(prX
S

(D)∩Sα)
(σα ◦ Φα)(ξ)

[ ∫

γ−1
Φα(ξ)

(DΦα(ξ))

∣∣∣ det
[
J

(ξ,t)
γ

Φα(ξ)
(t)
]∣∣∣ dt

]
dξ,

(48)

where

DΦα(ξ) := γ
Φα(ξ)

(R) ∩ D

and

γ−1
Φα(ξ)

(DΦα(ξ)) =
{
t ∈ R : γ

Φα(ξ)
(t) ∩ D 6= ∅

}
.

Then, by (46) the right-hand side of (48) is equal to

∑

α∈A

∫

Ψα(prX
S

(D)∩Sα)
(σα ◦ Φα)(ξ)×
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×

∫

γ−1
Φα(ξ)

(DΦα(ξ))
|〈X, νE〉HΦα(ξ)

|
[ m∑

j=1

〈Xj(Φα(ξ)),N (Φα(ξ))〉2
] 1

2
|(Φα)ξ1

∧. . .∧(Φα)ξ
n−1

| dt dξ

=

∫

prX
S

(D)

[ ∫

R

1Dy(t) dt
]∣∣∣〈X, νE〉Hy

∣∣∣
[ m∑

j=1

〈Xj(y),N (y)〉2
] 1

2
dHn−1(y)

=

∫

prX
S

(D)
H1

c(Dy) |〈X, νE〉Hy | d |∂E|H (y)

=

∫

prX
S

(D)
H1

c(Dy) d |∂XE|(y),

where we have used Theorem 1.9, Proposition 1.34 and Remark 1.42.

Before the beginning of the proof of Theorem 2.4 we recall the basic statements

of Implicit Function Theorem 1.39. We assume, by hypothesis, that S is a H -

regular hypersurface and so for every x̃ ∈ S there exist an open neighborhood U

of x̃ and a real valued function f ∈ C1
H (U) such that S ∩ U = {x ∈ U : f(x) = 0}

and ∇H f(x) 6= 0 for all x ∈ U . Thus S is locally the boundary of E = {x ∈ U :

f(x) < 0} and without loss of generality we assume that X1f(x) > 0 for x ∈ U .

Let now h, δ > 0 and set

Jh := [−h, h], Iδ := {ξ = (ξ2, . . . , ξn) ∈ Rn−1 : |ξj | ≤ δ, j = 2, . . . , n}.

If ξ ∈ Rn−1 and t ∈ Jh we denote by γ1
(0,ξ)

(t) the integral curve of the left invariant

horizontal vector field X1 ∈ H at the time t issued from (0, ξ) ∈ {(0, η) ∈ G : η ∈

Rn−1}. Then Theorem 1.39 states that there exist δ, h > 0 such that the mapping

R × Rn−1 ∋ (t, ξ) 7−→ γ1
(0,ξ)

(t)

is a diffeomorphism of a neighborhood of Jh×Iδ onto an open subset of G. In what

follows we denote by U the image of Int{Jh × Iδ} through this mapping. The set

E has finite H -perimeter in U and if νE is the generalized inward unit normal of

E we have

νE(x) = −
∇H f(x)

|∇H f(x)|H
∀x ∈ S ∩ U.
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Furthermore there exists a unique continuous function φ = φ(ξ) : Iδ −→ Jh such

that, setting Φ(ξ) = γ1
(0,ξ)

(φ(ξ)) for ξ ∈ Iδ, we have

S ∩ U = {x ∈ U : x = Φ(ξ), ξ ∈ Iδ}

and the H -perimeter has the following integral representation

|∂E|H (U) =

∫

Iδ

√∑m
j=1 |Xjf(Φ(ξ))|2

X1f(Φ(ξ))
dξ. (49)

Let now Jǫ be a Friedrichs’ mollifier; putting fǫ = f ∗ Jǫ by the continuity of f we

have that fǫ −→ f as ǫ → 0 uniformly in U and analogously (Xjf) ∗ Jǫ −→ Xjf

as ǫ→ 0 uniformly in U (for j = 1, . . . ,m). Arguing as in [40], p. 90, we obtain

Xjfǫ = (Xjf) ∗ Jǫ − ((Xjf) ∗ Jǫ −Xjfǫ) for j ∈ {1, . . . ,m}

and also

(Xjf) ∗ Jǫ −Xjfǫ −→ 0

uniformly in U as ǫ → 0. We note that starting from the regularization of f by

the classical Implicit Function Theorem we get the existence of a smooth function

φǫ : Iδ −→ Jh such that φǫ −→ φ as ǫ→ 0 uniformly in Iδ. Thus we may construct

a family {Sǫ}ǫ>0 of smooth hypersurfaces which uniformly converges in U to S∩U

as ǫ → 0. Moreover every hypersurface Sǫ is the boundary of a smooth open set

Eǫ which also converges in U to E ∩U as ǫ→ 0. Here an explicit parametrization

of Sǫ is given by the mapping Φǫ : Iδ −→ G, Φǫ(ξ) := γ1
(0,ξ)

(φǫ) for ξ ∈ Iδ. Finally,

we have that Φǫ −→ Φ uniformly for ξ ∈ Iδ as ǫ→ 0. To see this, notice that

|Φǫ(ξ) − Φ(ξ)| = |γ1
(0,ξ)

(φǫ(ξ)) − γ1
(0,ξ)

(φ(ξ))|

≤
∣∣∣
∫ φ(ξ)

φǫ(ξ)
|X1(exp [tX1](0, ξ))| dt

∣∣∣

and that dc(exp [tX1](0, ξ), (0, ξ)) ≤ |t| ≤ h. So if K is a compact subset of Iδ

exp [tX1]((0, ξ)) ∈ Kh := {z ∈ G : dc(z, {0 ×K}) ≤ h},
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and, keeping in mind that φǫ −→ φ as ǫ → 0 uniformly in Iδ, we get the claim

observing that

|Φǫ(ξ) − Φ(ξ)| ≤ |φǫ(ξ) − φ(ξ)| · max
z∈Kh

|X1(z)|.

Proof of Theorem 2.4. The proof will be divided in some claims and we shall use

notation and statements of Theorem 1.39. From now on we assume that the

hypersurface S is globally parameterized by a unique map Φ as above and, more

precisely, we may suppose that there exists δ > 0 such that S is the image of

Φ : Int{Iδ} 7−→ G, where Φ(ξ) = γ1
(0,ξ)

(φ(ξ)) and Iδ = {ξ ∈ Rn−1 : |ξ|∞ ≤ δ}. So

we have

S = {y ∈ G : y = Φ(ξ), ξ ∈ Iδ} = {y ∈ G : f(y) = 0}

where f ∈ C1
H (G) is an implicit function which defines S such thatX1f > 0 near S.

Claim 1 . Let α ∈ L∞(G) ∩ C∞(G) be such that α ≥ 0. Then we have
∫

G

αdLn =

∫

S

[ ∫

R

(α ◦ γy)(t) dt
]
d |∂XE|(y).

Proof. More explicitly, we note that the right-hand side is equal to
∫

S

∫

R

(α ◦ γy)(t) |〈X, νE〉Hy | dt d |∂E|H (y).

To prove this claim, we first set

I :=

∫

S

[ ∫

R

(α ◦ γy)(t) dt
]
d |∂XE|(y).

By (iii) and (v) of Theorem 1.39 we get

I =

∫

Iδ

∫

R

|〈X(Φ(ξ)),∇H f(Φ(ξ))〉HΦ(ξ)
| (α ◦ γ

Φ(ξ)
)(t)

X1f(Φ(ξ))
dt dξ.

Now we shall prove that

I = lim
ǫ→0

∫

Iδ

∫

R

|〈X(Φǫ(ξ)),∇H fǫ(Φǫ(ξ))〉HΦǫ(ξ)
| (α ◦ γ

Φǫ(ξ)
)(t)

X1f(Φǫ(ξ))
dt dξ. (50)
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Indeed, if (50) holds we get the claim observing that

I = lim
ǫ→0

∫

Sǫ

∫

R

(α ◦ γy)(t) |〈X, νEǫ〉Hy | dt d |∂Eǫ|H (y)

and that from Corollary 2.5 we have
∫

G

αdLn =

∫

Sǫ

∫

R

(α ◦ γy)(t) |〈X, νEǫ〉Hy | dt d |∂Eǫ|H (y).

To prove (50) notice that, as we have seen above, Φ(ξ) −→ Φǫ(ξ) uniformly in Iδ

as ǫ→ 0 and so, keeping in mind that ∇H fǫ −→ ∇H f uniformly on compact sets,

we get

∇H fǫ(Φǫ(ξ)) −→ ∇H f(Φ(ξ)) (51)

as ǫ → 0 for ξ ∈ Iδ. Thus, by (51) and by the continuous dependence of the

Cauchy problem on the initial data, the integrand in (50) tends to the integrand

of I. On the other hand Φǫ(ξ) lies in a fixed compact neighborhood of Φ(Iδ) so

that, by Weierstrass Theorem and our assumptions on α, the integrand in (50) is

bounded by a constant for (ξ, t) ∈ Iδ×R and (50) follows by Dominate Convergence

Theorem.

Claim 2 . Let Q ⊂ RX
S be a compact, rectangular n-box. Then
∫

S

H1
c(γy(R) ∩Q) d |∂XE| ≤ Ln(Q).

Proof. To prove this we may consider a sequence of functions {αh}h∈N such that

lim
h→∞

αh(x) = 1Q(x) ∀ x ∈ G.

For y ∈ S we set γ−1
y (Q) :=

{
t ∈ R : γy(t) ∈ Q

}
. So αh(γy(t)) −→ 1γ−1

y (Q)(t) for

all (y, t) ∈ S × R as h→ ∞. Therefore we get the claim observing that
∫

S

H1
c(γy(R) ∩Q) d |∂XE|(y) =

∫

S

∫

R

1γ−1
y (Q)(t) d t d |∂XE|(y)

=

∫

S

∫

R

lim
h→∞

αh(γy(t)) d t d |∂XE|(y) ≤ lim inf
h→∞

∫

S

∫

R

αh(γy(t)) d t d |∂XE|(y)

= lim
h→∞

∫

G

αh(x) dLn(x) = Ln(Q).
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Claim 3 . Let F ⊂ RX
S be a measurable subset of G such that Ln(F ) = 0. Setting

S0 :=
{
y ∈ S : H1

c(γ
1
y(R) ∩ F ) > 0

}
,

we have that |∂E|H (S0) = 0.

Proof. Indeed let ǫ > 0 and {Qj}j∈N be a countable family of compact, rectangular,

n-box such that

F ⊆
∞⋃

j=1

Qj ,
∞∑

j=1

Ln(Qj) < ǫ.

We have then
∫

S

H1
c(γy(R) ∩ F ) d |∂XE|(y) ≤

∫

S

∞∑

j=1

H1
c(γy(R) ∩Qj) d |∂XE|(y)

=

∫

S

lim
k→∞

k∑

j=1

H1
c(γy(R) ∩Qj) d |∂XE|(y)

≤ lim
k→∞

k∑

j=1

∫

S

H1
c(γy(R) ∩Qj) d |∂XE|(y)

≤
∞∑

j=1

∫

S

H1
c(γy(R) ∩Qj) d |∂XE|(y)

≤
∞∑

j=1

Ln(Qj) < ǫ.

Therefore ∫

S

H1
c(γy(R) ∩ F ) · |〈X, νE〉Hy | d |∂E|H (y) = 0

and since 〈X, νE〉Hy 6= 0 for any y ∈ S, we get the claim observing that

H1
c(γy(R) ∩ F ) = 0 for |∂E|H − a. e. y ∈ S.

At this point we can achieve the proof of the theorem in the following way. Let

Jǫ be a Friedrichs’ mollifier and put αǫ := 1D ∗ Jǫ. Since αǫ ∈ L∞(G) ∩ C∞(G)

and αǫ −→ 1D in L1
loc, up to a subsequence, we may assume that

lim
ǫ→0

αǫ = 1D for Ln − a.e. x ∈ G.
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Now setting

F := D \
{
x ∈ D : lim

ǫ→0
αh(x) = 1D(x)

}

and

S0 :=
{
y ∈ S : H1

c(γy(R) ∩ F ) > 0
}

by Claim 3 we get |∂E|H (S0) = 0. Moreover by Claim 1 we obtain

∫

G

αǫ dL
n =

∫

S

∫

R

(αǫ ◦ γy)(t) dt d |∂XE|(y)

=

∫

S\S0

∫

R

(αǫ ◦ γy)(t) dt d |∂XE|(y).

Therefore αǫ(γy(t)) −→ 1γ−1
y (Q)(t) for L1 − a.e. t ∈ R and |∂E| − a.e. y ∈ S as

ǫ→ 0. Thus we get the thesis by letting ǫ→ 0 in (52).
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3 Slicing of HBV functions and H -perimeter

3.1 One-dimensional restrictions of HBV functions

We introduce the concept of variation along a horizontal direction of a locally

summable function in a Carnot group G and we summarize its main properties.

Afterwards, we define the notion of X-variation along a horizontal line and we

consider the space of functions of bounded variation along a fixed horizontal line.

Then, in Theorem 3.7, we establish a link between the notion of variation of a

function along a horizontal direction and that of variation of the restrictions of

such a function to a family of horizontal lines. Finally, we generalize to Carnot

groups a well-known characterization of the usual space BV by means of one-

dimensional restrictions of its elements. These topics in the classical setting can

be found in [2] or in [32], while, for many other results about function of bounded

variation in Carnot-Carathéodory spaces, one can see [1], [5], [14], [39, 40], [45],

[79] [78], [96].

Definition 3.1. Let U ⊆ G be open and let X ∈ H be a horizontal left invariant

vector field. We say that f ∈ L1(U) has bounded X-variation in U if

|Xf |(U) = sup
{∫

U

fXϕdLn : ϕ ∈ C1
0(U), |ϕ| ≤ 1

}
<∞;

we refer to the quantity |Xf |(U) as the X-variation of f in U and we denote by

BV X(U) the vector space of bounded X-variation functions in U .

In the next remark we summarize some well-known properties of the variation:

Remark 3.2. Let U ⊆ G be open and let X ∈ H . Then the following items hold:

(i) let f, fk ∈ L1(U) for k ∈ N be such that fk −→ f in L1(U) as k → ∞. Then

|Xf |(U) ≤ lim inf
k−→∞

|Xfk|(U);

(ii) if f ∈ BV X(U) then |Xf | is a Radon measure in U and
∫

U

f XϕdLn = −

∫

U

ϕd |Xf | ∀ ϕ ∈ C∞
0 (U);
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(iii)

|Xf |(U) =

∫

U

|Xf | dLn ∀ f ∈ C1(U);

(iv) if f ∈ BV X(U) then there exists a sequence {fj}j∈N ⊂ C∞(U) ∩ BV X(U)

such that

lim
j→∞

‖fj − f‖L1(U) = 0 and lim
j→∞

|Xfj |(U) = |Xf |(U).

From now on, let U denote an open subset of G and let f : U −→ R. Moreover

let us fix a horizontal direction X ∈ H and let us denote by γ : R −→ U the

corresponding horizontal X-line. Theorem 1.9 implies that, if a = (a1, ..., am1) is

the vector of the canonical coordinates of γ, then for all compact set K ⊂ γ one

has

H1
c(K) =

∫

γ−1(K)
|a| dt,

where |a| is constant (|a| = |X|H ). Therefore, if f ◦ γ ∈ L1(γ−1(K)), putting

|X|H = 1, we get that the integral of f along the horizontal X-line γ is
∫

K

f dH1
c =

∫

γ−1(K)
(f ◦ γ)(t) dt (52)

for every compact K ⊂ γ. In the sequel, if U ⊂ γ is an open subset of γ, we shall

denote by L1(U, dH1
c γ) the space of all H1

c -summable functions defined on U .

Proposition 3.3. Let X ∈ H , |X|H = 1, and let γ be a horizontal X-line starting

from x ∈ G, i.e. γ(t) = exp [tX](x) for t ∈ R. If U is an open subset of γ and

f ∈ L1(U, dH1
c γ) the following two statement are equivalent:

(i) f ◦ γ ∈ BV (γ−1(U));

(ii)

|D(f ◦ γ)|(γ−1(U)) = sup

{ ∫

γ

f dψ, ψ ∈ C1
0(U), |ψ| ≤ 1

}
<∞.

Moreover, setting

var1
X [f ](U) := sup

{∫

U

f XϕdH1
c : ϕ ∈ C1

0(B), |ϕ| ≤ 1, B ⊂ G open s.t. γ∩B = U

}
,

we get that var1
X [f ](U) = |D(f ◦ γ)|(γ−1(U)).
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Remark 3.4. Here above we have used the usual definition (see [2], [32]) of total

variation for real functions of one variable. We remind that, whenever

h : I ⊂ R −→ R, h ∈ L1(I),

the total variation |Dh|(I) of h in I is given by

|Dh|(I) := sup
{∫

I

h
dφ

dt
dt : φ ∈ C1

0(I), |φ| ≤ 1|
}
.

Also, BV (I) denotes the space of functions belonging to L1(I) and of finite total

variation in I.

Proof of Proposition 3.3. Since
∫

γ

f dψ =

∫

R

(f ◦ γ)
d

dt
(ψ ◦ γ) dt

it follows that (i) is equivalent to (ii) because if ψ ∈ C1
0(U), |ψ| ≤ 1, we may put

φ = (φ ◦ γ−1) ◦ γ = ψ ◦ γ,

where φ ∈ C1
0(R), spt(φ) ⊂ γ−1(U), |φ| ≤ 1. To prove the last statement we notice

that, for any ψ ∈ C1
0(U), |ψ| ≤ 1, we may find ϕ ∈ C1

0(R
n) such that ψ = ϕ|γ ,

spt(ϕ) ∩ γ = spt(ψ) and |ϕ| ≤ 1. Thus the following chain of equalities holds:

sup

{ ∫

γ

f dψ : ψ ∈ C1
0(U), |ψ| ≤ 1

}

= sup

{ ∫

γ

f dϕ : ϕ ∈ C1
0(R

n), spt(ϕ) ∩ γ ⊂ U, |ϕ| ≤ 1

}

= sup

{∫

R

(f ◦ γ)
d

dt
(ϕ ◦ γ) dt : ϕ ∈ C1

0(R
n), spt(ϕ) ∩ γ ⊂ U, |ϕ| ≤ 1

}

= sup

{∫

R

(f ◦ γ)〈γ̇(t),∇ϕ(γ(t))〉 dt : ϕ ∈ C1
0(R

n), spt(ϕ) ∩ γ ⊂ U, |ϕ| ≤ 1

}

= sup

{∫

U

f XϕdH1
c : ϕ ∈ C1

0(U), |ϕ| ≤ 1

}
, (53)

where (53) follows by tacking an open set B ⊂ G such that γ ∩B = U .
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Definition 3.5. Let X ∈ H , |X|H = 1, and let γ be a horizontal X-line. If U is

an open subset of γ and f ∈ L1(U, dH1
c γ) we call var1

X [f ](U) the X-variation

of f along γ and we define BV 1
X(U) as the space of functions of finite X-variation

in U ⊂ γ.

Proposition 3.6. Let X ∈ H , |X|H = 1; let γ be a horizontal X-line. Then for

every H1
c -measurable set E ⊂ γ one has

var1
X [1E ](γ) = |D1γ−1(E)|(R) (54)

= var1
X [1LyE ](Lyγ) ∀ y ∈ G

where γ−1(E) =
{
t ∈ R : γ(t) ∈ E

}
; moreover

var1
X [1E ](γ) ≥ 2 (55)

and equality holds if and only if γ−1(E) is a bounded interval of R.

Proof. Equalities (54) follow from Definition 3.5. Moreover, using the first identity

of (54) we get that var1
X [1E ](γ) is equal to the euclidean one-dimensional perimeter

of γ−1(E) in R. Thus, using the one-dimensional isoperimetric inequality of [91],

page 103, section 3.6, we get (55).

It seems interesting to find some results that reduce the study of HBV functions

to that one of their one-dimensional restrictions, being this one a very useful

approach of Calculus of Variations (see [2], [46]). Here below we state a theorem

modeled on an analogous euclidean result (see [2], [32]). A similar theorem has

been proved in [96] for Sobolev functions in Carnot groups and in [19] in the case

of vertical planes in “rototranslation groups”.

Theorem 3.7. Let S ⊂ G be a H -regular hypersurface and assume that S = ∂E

globally, where E ⊂ G is a suitable open H -Caccioppoli set. Let X ∈ H , |X|H = 1,

be a unit horizontal left invariant vector field which is transverse to S and denote

by γy the horizontal X-line starting from y ∈ S. We assume that γy(R)∩S = {y}
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for every y ∈ S. Finally let U ⊂ RX
S be a Lebesgue measurable subset of G that is

reachable from S by means of X-lines. Then

|Xf |(U) =

∫

prX
S

(U)
var1

X [fγy ](Uy) d |∂XE|(y) (56)

where fγy := f ◦ γy and Uy := γy ∩ U.

Proof. Using (ii) of Corollary 2.5 we get
∫

U

fXϕdLn =

∫

prX
S

(U)

∫

γ−1
y (Uy)

(f ◦ γy)
d

d t
(ϕ ◦ γy) dt d |∂XE|(y)

≤

∫

prX
S

(U)
var1

X [fγy ](Uy) d |∂XE|(y),

whenever ϕ ∈ C1
0(Ω). In a similar way we obtain the equality if f ∈ C1(U). Now

let us set

Uh :=
{
x ∈ U : |x| <

1

h
, dist(x, ∂U) > h

}

and choose h > 0 such that |Xf |(∂Uh) = 0. Notice that this can be done for

L1-a.e. h > 0, as for instance in [2], Example 1.63. Therefore, using Lemma 1.35,

we get that

lim
ǫ→0

∫

Uh

|(f ∗ Jǫ) − f | dLn

= lim
ǫ→0

∫

prX
S

(Uh)
‖(f ∗ Jǫ)y − fy‖L1(γy

−1((Uh)y)) d |∂XE|(y) = 0,

and so we may choose a sequence {ǫj}j∈N such that

lim
j→∞

∫

γy
−1((Uh)y)

|(f ∗ Jǫj
)y − fy| dt = 0 for |∂XE| − a.e. y ∈ prX

S (Uh).

By the lower semicontinuity of the X-variation (see (i) of Remark 3.2) we get∫

prX
S

(Uh)
var1

X [fγy ]((U
h)y) d |∂XE|(y)

≤

∫

prX
S

(Uh)
lim inf
j→∞

var1
X [(f ∗ Jǫj

)γy ]((Uh)y) d |∂XE|(y)

≤ lim inf
j→∞

∫

prX
S

(Uh)
var1

X [(f ∗ Jǫj
)y]((U

h)y) d |∂XE|(y)

= lim
j→∞

|X(f ∗ Jǫj
)|(Uh)

= |Xf |(Uh) ≤ |Xf |(U)
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and the claim follows letting h→ 0.

We would stress that for any j = 1, ...,m1, the following inequalities hold

|Xjf |(U) ≤ |∇H f |(U) ≤
m1∑

j=1

|Xjf |(U)

for f ∈ HBV (U), where {X1, ..., Xm1} is the fixed generating family vector fields of

the group, i.e. a fixed orthonormal frame for H . This easily follows from Definition

1.28 and Definition 3.1 and, using Theorem 3.7, it allows to state the following.

Corollary 3.8. [HBV functions and 1-dimensional slicing] Let {X1, . . . , Xm1} be

any generating family of vector fields for G. Let Sj ⊂ G (j = 1, ...,m1) be a

H -regular hypersurface such that Sj = ∂Ej globally, where Ej ⊂ G is a suitable

open H -Caccioppoli set, and suppose that Xj ⋔ Sj (i.e. Xj is transverse to Sj).

Denoting by γj
y the horizontal Xj-line starting from y ∈ Sj , we assume that

γj
y(R) ∩ Sj = {y}

for every y ∈ Sj . Finally let U ⊂ Rj
Sj

be a Lebesgue measurable subset of G that

is reachable from each Sj by means of Xj-lines. Then, f ∈ HBV (U) if, and only

if, f
γ

j
y
∈ BV 1

Xj
(U j

y ) for |∂EXj
|-a.e. y ∈ pr j

Sj
(U) and

∫

pr
j
Sj

(U)
var1

Xj
[f

γ
j
y
](U j

y ) d |∂Xj
E|(y) <∞ ∀ j = 1, ...,m1.

[Here: pr j
Sj

(U) := pr
Xj

Sj
(U), U j

y := U
Xj
y ]

Remark 3.9. Let Ie(Xj) the vertical hyperplane through the identity e ∈ G and

orthogonal to Xj (see Notation 1.27), we may assume that Sj = Ie(Xj) for j =

1, ...,m1. For such hypersurfaces the hypotheses of Corollary 3.8 are automatically

verified, since each subset of G is reachable from any vertical hyperplane.

Thus, every U ⊂ G can be U foliated by a family of horizontal Xj-lines (j =

1, ...,m1) starting from Ie(Xj), and hence the previous characterization of

HBV (U) can be reformulated by means of vertical hyperplanes.
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3.2 Integral geometric measures, H -normal sets and

H -convexity

In this subsection we give some applications of the previous results. To this end,

we introduce a measure on UH , i.e. unit horizontal bundle on G (see also Sections

4 for further results), that we need to state some integral geometric formulae for

volume and H -perimeter. Afterwards, we give a definition of H-normality with

respect to a vertical hyperplane that generalizes the euclidean one ([27], [91]).

Then we formulate an intrinsic definition of convexity, named H -convexity (see

Definition 3.16), that seems to be natural from a geometric point of view. Indeed,

by this definition, we state a Cauchy-type formula and a related inequality which

says that, in some sense, among all sets containing a fixed H -convex set, this

one minimizes the H -perimeter. See Theorem 3.21 and Corollary 3.22 below and

also [17] and [86] for the classical results. We would emphasize that equivalent

definitions of convexity in Carnot groups has been introduced recently in [24] and

in [65]; see also [8] and [51] for some further developments.

Definition 3.10. [Unit horizontal bundle] Let us set
◦
H := H \ {0H }, where 0H is

the zero section of H . Denoting by UH the quotient of
◦
H by the positive dilations

we obtain a bundle structure on G, called unit horizontal bundle on G, whose

projection map on the base space G, π
UH

: UH −→ G, is given by π
UH

(z;Z) = z

for (z;Z) ∈ H . Notice that each fiber UH z of π
UH

can be identified with the unit

sphere Sm1−1 of Rm1 . Roughly speaking, UH z is the subset of Hz of all unit vectors

with respect to the norm | · |H on the fiber.

We define the volume form on UH to be the differential n+m1 − 1-form

Ωn ∧ σm1−1 ∈ Λ∗(UH ),

where Ωn = ω1∧ ...∧ωn is the bi-invariant volume form on G defined in Section 1.3

and σm1−1 is the canonical volume form on the unit sphere Sm1−1 of Rm1 identified

with the generic fiber of UH . We denote by µ0 the measure on UH obtained by

integration of Ωn ∧ σm1−1 and if x ∈ G we denote by dµ0x the measure on UH x
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obtained by integration of σm1−1. Explicitly, for f ∈ L1(UH ), one has
∫

UH

f(x;X) dµ0(x;X) :=

∫

G

dLn(x)

∫

UHx

f(x;X) dµ0x(X).

Notation 3.11. If D is a subset of G, then UHD will denote the restriction to D

of the bundle structure UH i.e.

UHD :=
{
X ∈ UH : π

UH
(X) ∈ D

}
.

We also remind that, if z ∈ G and X ∈ UH , then Iz(X) denotes the vertical

hyperplane through z and orthogonal to X while Vz the family of all vertical

hyperplanes through z. Finally, γ
Xy

denotes the horizontal X-line starting from

y ∈ Iz(X) (i.e. γ
Xy

(t) = exp [tX](y), t ∈ R) and if D ⊂ G we set

DX

y := γ
Xy

(R) ∩ D .

Notice that, if Xe =
∑m1

j=1 ajej , then Iz(X) can be regarded as the boundary of

the half-space

I−
z (X) :=

{
y ∈ G :

m1∑

j=1

[yj − zj ] aj ≤ 0
}

and so

νI−
z (X)(y) = (a1, ..., am1) ∈ Rm1 ∼= H ∀ y ∈ Iz(X).

So we get that the H -perimeter of I−
z (X) is just the n− 1-dimensional Hausdorff

measure Hn−1 on the vertical hyperplane Iz(X) and from Proposition 2.3 we

deduce the following:

Corollary 3.12. Let D be a Lebesgue measurable subset of G and fix z ∈ G. Then

µ0(UHD) =

∫

UH z

dµ0z(X)

∫

prX
Iz(X)

(D)
H1

c(D
X

y ) dHn−1(y)

or, equivalently,

Ln(D) =
1

Om1−1

∫

UH z

dµ0z(X)

∫

prX
Iz(X)

(D)
H1

c(D
X

y ) dHn−1(y),

where Om1−1 denotes the (m1−1)-dimensional surface measure of the sphere Sm1−1

of Rm1 .
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Proof. From Proposition 2.3 we have that

Ln(D) =

∫

prX
Iz(X)

(D)
H1

c(D
X

y ) dHn−1(y) ∀ X ∈ UH . (57)

Then we get the claim by integrating both sides of (57) over X ∈ UH z.

Corollary 3.13. Let U ⊆ G be open and X ∈ UH . Assume that D ⊂ G is a

H -Caccioppoli set, then

|∂XD |(U) =

∫

prX
Iz(X)

(D∩U)
var1

X [1DX
y

](UX
y ) dHn−1(y). (58)

Proof. This follows using Lemma 1.41 and Theorem 3.7 and observing that, for

the half-space I−
z (X), we have

|∂X I−
z (X)|(B) = Hn−1(B ∩ Iz(X)) ∀ B ∈ B(G).

As application of the last corollary we may establish the following:

Proposition 3.14. [Integral geometric H -perimeter] Let U ⊆ G be open and fix

z ∈ G. If D ⊂ G is a H -Caccioppoli set, we have then

|∂D |H (U) =
1

2κm1−1

∫

UH z

dµ0z(X)

∫

prX
Iz(X)

(D∩U)
var1

X [1DX
y

](UX
y ) dHn−1(y),

(59)

where κm1−1 is the m1 − 1-dimensional Lebesgue measure of the unit ball in Rm1−1.

Proof. Starting from Corollary 3.13, we integrate both sides of (58) overX ∈ UH z.

Thus
∫

UH z

dµ0z(X)

∫

prX
Iz(X)

(D∩U)
var1

X [1DX
y

](UX
y ) dHn−1(y)

=

∫

UH z

|∂D |H (U) dµ0x0
(X)

=

∫

UH z

dµ0z(X)

∫

D∩U

|〈X, νD〉H | d |∂D |H

=

∫

D∩U

d |∂D |H

∫

UH z

|〈X, νD〉H | d σm1−1(X) = 2κm1−1|∂D |H (U),
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where we have used Fubini’s Theorem and spherical coordinates to compute the

integrating of the last line.

We now give the notion of H -normality with respect to any vertical hyperplane.

Definition 3.15. [ H -normality in Carnot groups] If z ∈ G and X ∈ H , let Iz(X)

denote the vertical hyperplane through z and orthogonal to X. We say that D ⊆ G

is pointwise X-normal with respect to Iz(X) if for every y ∈ Iz(X) we have

that γ−1
Xy

{γ
Xy

(R)∩D} is the empty set or a connected subset of R or, equivalently,

if γ
Xy

(R) ∩ D is either empty or a connected subset of γ
Xy

(R). Moreover, we say

that D is X-normal with respect to Iz(X) if D is L1-equivalent to a subset of

G that is pointwise X-normal with respect to Iz(X).

Usually, we term this property pointwise H -normality (resp. H-normality) with

respect to a vertical hyperplane. As already observed, for any point x ∈ G and

for any horizontal direction X ∈ H there exists a unique horizontal X-line passing

from x. This implies that H-normality is invariant under group translations, as

left translations send a vertical hyperplane orthogonal to X ∈ H into a vertical

hyperplane which is still orthogonal to X. Let now z ∈ G and consider the family

Vz of vertical hyperplanes through z. The invariance under group translations

of the notion of H -normality allows to see that the following two conditions are

equivalent:

(i) D ⊆ G is pointwise H -normal with respect to any vertical hyperplane Iz(X)

of Vz;

(ii) D ⊆ G is pointwise H -normal with respect to any vertical hyperplane Iz(Z)

where z ∈ G and Z ∈ H .

We emphasize that the notions introduced above generalize that corresponding

euclidean because, if (G, •) = (Rn,+) they coincide, as it can be easily proved.

Moreover the analogy with the euclidean case suggests the following.
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Definition 3.16. [ H -convexity] We say that D ⊆ G is H -convex if, for every

x ∈ G and every X ∈ H , we have that γ−1
Xx

{γ
Xx

(R) ∩ D} is the empty set or a

connected subset of R or, equivalently, if γ
Xx

(R)∩D is either empty or a connected

subset of γ
Xx

(R).

Also in this case, if the Carnot group reduces to (Rn,+), these definitions

coincide. Moreover, H-convexity turns out to be invariant under group translations

and it is stable under intersection, i.e. if D1, D2 ⊆ G are H -convex sets, then also

D1 ∩ D2 is a H -convex set.

We refer the reader to [24] and [65] for some different, but in fact equivalent,

definitions of convexity in Carnot groups. See also [8] for a detailed discussion on

this topic.

Remark 3.17. Notice that, H -convexity turns out to be equivalent to condition

(ii), i.e.

(∗) D is H -convex if, and only if, D is pointwise H -normal with respect to every

vertical hyperplane.

Clearly, if D is just H -normal with respect all of vertical hyperplanes of G, then it

is L1-equivalent to a H -convex set.

To better explain the meaning of H -convexity we make use of the horizontal

fibers, thought as family of moving m1-planes on G. More precisely, if z ∈ G, we

identify the horizontal fiber Hz at z with the left translated by z of the m1-plane

exp (He) ⊂ G, i.e.

Hz
∼= Lz{exp (He)} (z ∈ G),

and so Hz is viewed as the horizontal m1-plane through z of all horizontal lines

starting from z.

Proposition 3.18. If D ⊆ G, we have that D is H -convex if, and only if,

log (L−z{Hz ∩ D}) is starshaped in He with respect to the identity 0 ∈ g for all

z ∈ D . In particular, if for every z ∈ D we have that log (L−z{Hz ∩ D}) is a
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euclidean convex in He, then D is H -convex. Finally, if z ∈ exp (Vk), where Vk is

the center of the Lie algebra g, then any horizontal plane Hz through z is an affine3

m1-dimensional affine plane in G ∼=exp Rn, and we get that, if D is H -convex,

then Hz ∩ D is starshaped in Hz with respect to z for every z ∈ exp (Vk).

Proof. Obvious from the previous definitions.

Remark 3.19. [ H -convexity in 2-step Carnot groups] If G is a 2-step Carnot

group, then its horizontal lines are also euclidean lines. This is a straightforward

consequence of the group law that is completely determined by Campbell-Hausdorff

formula, as we have seen in Section 1.1. Thus, from the definition of H -convexity,

it follows that euclidean convex subsets of G are H -convex sets. In general, the

converse it is not true, as proved in the next example.

Example 3.20. [ A H -convex set in H1 that is not euclidean convex] Let

us consider the Heisenberg group, here defined as follows: H1 = (R3 ∼= C × R, ∗),

where (z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2ℑ(zz̄′)). Then, the truncated cone of width

α > 0, given by

Cα =
{

(z, t) ∈ C × R : |z| ≤ α |t|, |z| ≤ 1, α |t| ≤ 1
}

is an H1-convex set for any α ≥ 2 but it is not convex. This easily follows observing

that the maximal slope of the horizontal lines having initial data in the cylinder

{(z, t) ∈ H1 : |z| ≤ 1} is 2 so that any such a line intercepts Cα in a segment line.

This definition of H -convexity can be used to generalize the Cauchy’s formula

for the area of euclidean convex sets. For the statement of this classical theorem

see [13], [17], [86].

Theorem 3.21. [Cauchy type formula] Let D be a H -convex subset of G and

z ∈ G. Then

|∂D |H (G) =
1

κm1−1

∫

UH z

Hn−1
(
prX

Iz(X)
(D)

)
dµ0z(X) (60)

3Since G is identified with Rn via exponential coordinates, it makes sense the notion

of affine p-plane (p = 1, ..., n).

59



where κm1−1 is the m1 − 1-dimensional Lebesgue measure of the unit ball in Rm1−1.

Proof. Using Proposition 3.6 and Proposition 3.14 we get the thesis observing that,

since D is H -convex, then var1
X [1DX

y
](γ

Xy
) = 2 for Hn−1-a.e. y ∈ prX

Iz(X)
(D) for

any X ∈ UH z.

The above theorem, analogously to the euclidean case, allows to see that, in one

sense, H -convex sets minimize the H -perimeter; indeed, as immediate consequence,

we have the following.

Corollary 3.22. If D ⊂ G is a H -convex set, then for any open set U containing

D we have

|∂D |H (G) ≤ |∂U |H (G).

Proof. Fixing z ∈ G, the claim follows by the previous Theorem 3.21 observing

that, for every X ∈ H , one has prX
Iz(X)

(D) ⊆ prX
Iz(X)

(U).
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4 A Santaló type formula and related topics

Throughout this section will be discussing some result about the integration on

UH , i.e. the unit horizontal bundle of a k-step Carnot group. The results here

exposed rely on the definition of a canonical measure dµ0 on the unit horizontal

bundle UH . We stress that this measure is just that defined in Section 3.2. We

shall then prove its invariance under the action of the horizontal flow, i.e. the

flow generated by restriction to H of the Riemannian geodesic flow. The measure

dµ0 generalize to Carnot groups the classical notion of Kinematic density; see, for

instance, [10] and [16]. More precisely, an integral formula is given in Theorem

4.5, which generalizes the well-known Santaló formula [86]. We emphasize that, in

the case of the Heisenberg group H1, a Santaló-type formula was proved by Pansu,

[81]. We then give some applications of Theorem 4.5. In particular, in Proposition

4.10 and Theorem 4.11, we find two lower bounds for the first eigenvalue of the

Dirichlet problem for the Carnot sub-Laplacian ∆H on smooth domains.

In the tangent bundle TG we use coordinates given by

(x;X) = ((x1, ..., xn); (a1, ..., an)),

where (x1, ..., xn) are the exponential coordinates of x ∈ G and (a1, ..., an) are the

coordinates of X in the Lie algebra g (= TeG), i.e. Xe =
∑n

i=1 aiei. We remind

that g is endowed with an inner product denoted by 〈·, ·〉 that is just that usual

in Rn. This uniquely determines the left invariant Riemannian metric on G, also

denoted by 〈·, ·〉, that is defined by setting

〈X,Y 〉 := 〈Xe, Ye〉 ∀ X,Y ∈ TG.

The energy function of X ∈ X(G) associated with 〈·, ·〉 is given by

E(X) :=
1

2
〈X,X〉 =

1

2

n∑

i=1

a2
i .

Moreover we denote by α the canonical 1-form on the cotangent bundle T ∗G, which

is given, in this notation, by α :=
∑n

i=1 aiωi. Following Besse, [10], we call geodesic
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vector field on TG the solution of the equation

T ⌋ dα = −dE. (61)

We remind that, if X ∈ TG, then X ⌋ : Λk(G) → Λk−1(G) denotes the interior

product with X, i.e. the linear map defined by ([54], [64]):

X ⌋ψ(Y1, ..., Yk−1) := ψ(X,Y1, ..., Yk−1).

The geodesic flow is then the flow generated by T and we may explicitly com-

pute it. We have

T =
n∑

i=1

aiXi −
1

2

n∑

l,i,j,k=1

ai al c
i
jk

(
δlj

∂

∂ak
− δlk

∂

∂aj

)
.

To prove this is enough to use the definitions of α, E and T and the above equation

(61). The result then follows by applying Proposition 1.21. Now we shall prove

that the restriction of the canonical 1-form α to the unit horizontal bundle is

invariant under the geodesic flow, i.e. the Lie derivative by T of α is equal to 0.

Indeed, using Cartan’s identity (see [64]) we get

LT α = T ⌋ dα+ d T ⌋ α = −dE + 2

n∑

i=1

ai dai = dE.

Now, since we consider unit horizontal vectors, the thesis follows observing that

ai = 0 for any i = m1 + 1, ..., n, and that
∑m1

i=1 a
2
i = 1. Therefore, denoting by

α0 := α|UH the restriction of α to the unit horizontal bundle UH , we then get that

α0 is invariant under the restriction of T to the horizontal bundle. From now on

we denote this vector by T0, i.e. T0 = T|H , and we call horizontal flow the flow on

H generated by T0.

We want to show that there is a canonical measure on the unit horizontal

bundle UH which turns out to be invariant under the horizontal flow. To this end

we make use of the volume form on UH given by Ωn∧σm1−1, where Ωn = ω1∧...∧ωn

is the bi-invariant volume form on G and σm1−1 is the volume form on the unit

sphere Sm1−1 (→֒ Rm1) identified with the generic fiber of UH (see Section 3.2).
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We stress that if (x;X) ∈ UH (Xe = (a1, ..., am1 , 0, ..., 0)), then

σm1−1(X) = X ⌋ da1 ∧ ... ∧ dam1

=

m1−1∑

i=1

(−1)i+1ai da1 ∧ ... ∧ d̂ai ∧ ... ∧ dam1

and also that

(Ωn ∧ σm1−1)(x;X)(X1, ..., Xn;Y1, ..., Ym1)

= Ωn(x)(X1, ..., Xn) · σm1−1(X)(Y1, ..., Ym1)

for all X1, ..., Xn ∈ TxG and all Y1, ..., Ym1 ∈ UH x.

Definition 4.1. We denote by µ0 the measure on UH obtained by integration of

Ωn∧σm1−1 and by dµ0x the measure on the fiber at x, UH x, obtained by integration

of σm1−1. Thus, for every function f ∈ L1(UH ) we may write
∫

UH

f(x;X) dµ0(x;X) =

∫

G

dLn(x)

∫

UHx

f(x;X) dµ0x(X). (62)

From now on, we set

Ω1 := ω1 ∧ ... ∧ ωm1 , Ω2 := ωm1+1 ∧ ... ∧ ωm2 , Ωk := ωmk−1+1 ∧ ... ∧ ωmk

so that Ωn = Ω1 ∧ ...∧Ωk. Moreover, ∗ : ΛkT ∗G → Λn−kT ∗G denotes the Hodge

star operator; we explicitly note that ∗Ω1 = Ω2 ∧ ... ∧ Ωk.

The next theorem asserts a Liouville type property of the measure µ0.

Theorem 4.2. The measure dµ0 on UH turns out to be invariant with respect to

the horizontal flow on H associated with T0 and we have that

Ωn ∧ σm1 = ±
1

(m1 − 1)!
α0 ∧ (dα0)

m1−1 ∧ ∗Ω1.

The proof relies on the following lemmas.

Lemma 4.3. With the previous notation we have

α0 ∧ (dα0)
m1−1

= (m1 − 1)! (−1)
(m1−1)(m1−2)

2 Ω1 ∧ σm1−1

= (m1 − 1)!

m1∑

i=1

(−1)
(m1−1)(m1−2)

2 (−1)i ai ω1 ∧ ... ∧ ωm1 ∧ da1 ∧ ... ∧ d̂ai ∧ ... ∧ dam1 .
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Proof. One can prove this lemma by induction on m1(= dimH ), just by using the

definitions, the expression of α0 =
∑m1

i=1 aiωi and that of dα0 =
∑m1

i=1 dai ∧ωi.

Lemma 4.4. If X ∈ C∞(G,H ), then

Ω1 ∧ i(X)(d ∗ Ω1) = 0.

Proof. We have that

d (∗Ω1) = d (Ω2 ∧ ... ∧ Ωk)

=

n∑

i=m1+1

(−1)i+1ωm1+1 ∧ ... ∧ ωi−1 ∧ dωi ∧ ωi+1 ∧ ... ∧ ωn

= −
1

2

k∑

l=1

n∑

i=m1+1

∑

1≤j, h≤hl−1

(−1)i+1cijh ωm1+1 ∧ ... ∧ (ωj ∧ ωh)︸ ︷︷ ︸
i−thplace

∧... ∧ ωn.

This formula, which is an easy consequence of Proposition 1.21 and Remark 1.22,

enable us to say that d (∗Ω1) is a linear combination of (n−m1 + 1)-forms of the

type

(ωj ∧ ωh) ∧ ωm1+1 ∧ ... ∧ ωi−1 ∧ ω̂i ∧ ωi+1 ∧ ... ∧ ωn

for i = m1, ..., n, j h = 1, ..., n, and i 6= j, h. Thus, by a direct computation it

follows that Ω1 ∧ i(X)(d ∗ Ω1) is a linear combination of n-forms, each of which

have the following expression

ω1 ∧ ... ∧ ωs−1 ∧ (ωs)
2 ∧ ωs+1 ∧ ... ∧ ωn (s = 1, ..., n)

and the claim follows since these terms are equal to 0.

Proof of Theorem 4.2. We have to show that the Lie derivative along T0 of Ωn ∧

σm1−1 is 0. From Lemma 4.3 it follows that

Ωn ∧ σm1−1 = (−1)
(m1−1)(m1−2)

2
1

(m1 − 1)!
α0 ∧ (dα0)

m1−1 ∧ (∗Ω1).

Thus we need to compute the Lie derivative along T0 of α0∧(dα0)
m1−1∧(∗Ω1) and

using Cartan’s identity and the invariance of α0 under the horizontal flow induced
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by T0 we get

LT

(
α0 ∧ (dα0)

m1−1 ∧ (∗Ω1)
)

= LT

(
α0 ∧ (dα0)

m1−1
)
∧ (∗Ω1) +

(
α0 ∧ (dα0)

m1−1
)
∧ LT (∗Ω1)

=
(
α0 ∧ (dα0)

m1−1
)
∧
(
T ⌋ (d ∗ Ω1) + d (T ⌋ ∗ Ω1)

)

=
(
α0 ∧ (dα0)

m1−1
)
∧
(
T ⌋ (d ∗ Ω1)

)

and the thesis follows from Lemmas 4.3 and 4.4.

Let D ⊂ G be a smooth, relatively compact domain (open and connected) and let

us consider

UHD =
{
X ∈ UH : π

UH
(X) ∈ D

}
,

that is the restriction to D of the structure of unit horizontal bundle. If (x;X) ∈

UHD we set

ℓx(X) := sup
{
s ∈ R+ : γ

X
(t) ∈ D , ∀ t ∈ (0, s)

}
,

where γ
X

is the (unique) horizontal line satisfying γ
X

(0) = π
UH

(X), γ̇
X

(0) = X.

Notice that

ℓx(X) = H1
c

(
γ

X

(
]0, ℓx(X)[

))
.

By the boundedness of D we have ℓx(X) < ∞, everywhere in D . Moreover

γ
X

(ℓx(X)) is the first point of the horizontal line γ
X

starting from x = π
UH

(X) to

hit the boundary of D .

Let now νD be the unit inward G-normal to ∂D and let us set

UH +∂D :=
{
X ∈ UHD : π

UH
(X) ∈ ∂D , 〈X, νD〉Hx > 0

}
. (63)

This is the set of inward pointing unit horizontal vectors along the boundary ∂D

and, identifying the generic fiber with Sm1−1, we may think it as the hemisphere

determined by νD which will be denoted by Um1−1. We also provide UH +∂D with

the following measure

d σ(x;X) := dµ0x(X) d |∂D |H (x) ∀ (x;X) ∈ UH +∂D .
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Clearly dµ0x will be concentrated on the hemisphere Um1−1 ∼= UH +∂Dx.

Below we shall denote by C (∂D) the so-called characteristic set of ∂D (see for

instance [7], [42], [43], [45], [67]), i.e.

C (∂D) :=
{
x ∈ ∂D : 〈N (x), X(x)〉 = 0 ∀ X ∈ Hx

}
.

Moreover we shall set

D∗ =
{
x ∈ D : ∃X ∈ Hx : γ

X
(ℓx(X)) ∈ C (∂D)

}
.

Along the lines of [16], [81] and [86] we may prove now the following:

Theorem 4.5. Let D be a smooth relatively compact domain. For all f ∈ L1(UHD),

we have
∫

UHD

f(y;Y ) dµ0(y;Y )

=

∫

UH+∂D

∫ ℓx(X)

0
f(γ

X
(t);X) 〈X, νD〉Hx dt d σ(x;X)

=

∫

∂D

∫

UH+∂Dx

∫ ℓx(X)

0
f(γ

X
(t);X) 〈X, νD〉Hx dt d µ0x(X) d |∂D |H (x).

Proof. First we consider the following map

R+ × UH +∂D ∋ (t, (x;X)) 7−→ (γ
X

(t);X) ∈ UH ,

that is nothing but the restriction to UH +∂D of the horizontal flow. Denoting by

Φt(X) this flow, we shall see how Φt(X) acts on the measure dµ0. To this end

we have to compute the pull back by Φt(X) of the volume form of UH . Observing

that (Φt(X))∗σm1−1 = σm1−1 we get

(
Φt(X)

)∗
(Ωn ∧ σm1−1) =

(
(γ

X
(t))∗Ωn

)
∧ σm1−1(X).

Notice that we have already performed this computation in the proof of Lemma

2.11 by means of a local parametrization and so we have just to reformulate it.

We have

(γ
X

(t))∗Ωn = (X ⌋Ωn)x ∧ dt,
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and explicitly this means that

(γ
X

(t))∗dLn = 〈X, νD〉Hx d t d |∂D |H (x)

for t > 0 and x ∈ π|UH

(
UH +∂D

)
.

Therefore

(Φt(X))∗dµ0 = 〈X, νD〉Hx d t d |∂D |H (x) dµ0x(X). (64)

Since D is a relatively compact domain, we can univocally associate to any

(y;Y ) ∈ UH (D \ D∗)

the time t = ℓy(−Y ) < ∞ and the point (x;X) = (γ−Y
(ℓy(−Y ));−Y ), so that

x is the first point on the boundary of D reachable from y along the (unique)

horizontal Y -line passing through y; furthermore t < ℓx(X). Thus we have that

the map Φt(X) which takes (t, (x;X)) onto (y;Y ) is a diffeomorphism of the open

set
{
(t, (x;X)) : 0 < t < ℓx(X)

}
of R+ × UH +∂D onto UH (D \ D∗).

Finally, if µ0(UH (D∗)) = 0 then the thesis will hold multiplying both sides of

(64) by f and then integrating. But we can get the last claim from the classical

Area formula [33], by applying again the same computations of Lemma 2.11.

Remark 4.6. If D is H -convex then D∗ = ∅ and the map Φt(X) defined in the

above proof is a diffeomorphism onto UHD.

From the last theorem we easily deduce an integral geometric formula that allows

to compute the volume of a smooth relatively compact domain in a Carnot group.

Remark 4.7.

Ln(D) =
1

Om1−1

∫

∂D

∫

UH+∂Dx

ℓx(X) 〈X, νD〉Hxdµ0x(X) d |∂D |H (x), (65)

where Om1−1 denotes the (m1 − 1)-dimensional surface measure of the sphere

Sm1−1.

We shall give now a first application of this theorem. To this end we need some

preliminaries.
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Let (x; X̃) ∈ UH be fixed and denotes by UH +
x the hemisphere determined by X̃,

i.e.

UH +
x :=

{
X ∈ UH x : 〈X̃,X〉Hx > 0

}
.

Lemma 4.8. ∫

UH+
Gx

〈X, X̃〉Hx dµ0x(X) =
Om1−2

m1 − 1
. (66)

Proof. It is enough to observe that this integral is the measure of the projection of

the (m1 − 1)-dimensional hemisphere Um1−1 ∼= UH +
x onto a diametral plane and

so we may perform the computation using spherical coordinates.

As above, let D be a smooth, relatively compact, open subset of G and denotes

by diamH(D) its horizontal diameter, that is the quantity defined as

diamH(D) := sup
(y;Y )∈UH+∂D

ℓy(Y ).

Denoting by diamc(D) the diameter of D with respect to the Carnot-Carathéodory

distance dc, we have obviously

diamH(D) ≤ diamc(D).

Corollary 4.9. Let D ⊂ G be a smooth and relatively compact domain. Then we

have

Ln(D)

|∂D |H (G)
≤

Om1−2

Om1−1 · (m1 − 1)
· diamc(D),

where, in general, Ok denotes the k-dimensional surface measure of the unit sphere

Sk of Rk+1.

Proof. From Remark 4.7 we get

Ln(D) ≤
diamH(D)

Om1−1

∫

UH+∂D

〈X, νD〉Hxd σ(X)

≤
diamc(D)

Om1−1

∫

∂D

d |∂D |H (x)

∫

UH+
Gx

〈X, νD〉Hxdµ0x(X)

and, using the foregoing lemma, we get the claim.
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We would now to show some applications of Theorem 4.5 to the Analysis in

Carnot groups. For what follows, we refer the reader to [11], [23], [93], [94]. Here,

more precisely, we give two explicit lower bounds for the first eigenvalue of the

Dirichlet problem for the Carnot sub-Laplacian. To this end, we use Theorem 4.5

by also adapting some classical arguments of Riemannian geometry, for which we

refer the reader to [16], [21], [22], [26].

We stress that in these inequalities, as well as in Corollary 4.9, we do not

characterize the equality cases and, in general, they are non-sharp.

We recall that, with our notation , the Carnot sub-Laplacian of G is defined

by

∆H :=

m1∑

j=1

X2
j , ∆Hψ(x) =

m1∑

j=1

d 2

dt2

∣∣∣∣∣
t=0

ψ(x • exp (tXj)) ∀ ψ ∈ C∞(G).

Let us consider the Dirichlet eigenvalue problem for ∆H on a smooth bounded

domain D , i.e. we find all real numbers t for which there exist non trivial solutions

φ ∈W 1,2
G

(D) -the horizontal Sobolev space- of the problem

∆Hφ+ λφ = 0 (x ∈ D) (67)

satisfying the boundary condition φ|∂D = 0. One can prove that the eigenvalues λ

of this problem are strictly positive real numbers and that all the eigenfunctions φ

can be choose to be real-valued. Moreover, eigenfunctions corresponding to distinct

eigenvalues turn out to be orthogonal in L2(D), with respect to the usual inner

product on L2(D). The main result that we use in what follows is the variational

characterization of the first eigenvalue of (67) that we denote by λ1(D), i.e.

λ1(D) = inf
ϕ∈C∞

0 (D)

∫
D
|∇Hϕ|2

H
dLn

∫
D
|ϕ|2 dLn

. (68)

Notice that to prove (68) one uses the following Green’s identity
∫

D

{ϕ∆Hψ + 〈∇Hϕ,∇Hψ〉H } dLn = 0

whenever ϕ, ψ : D −→ R are smooth and with at least one of them compactly

supported in D .
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Proposition 4.10. Let D ⊂ G be a smooth, relatively compact domain and let

λ1(D) be the first eigenvalue of (67). Then we have

λ1(D) ≥
π2 ·m1

diamH(D)2
≥

π2 ·m1

diamc(D)2
.

Proof. We have just to prove the first inequality since the second one is trivial. To

this end we notice that for any ϕ ∈ C∞
0 (D) we have

|∇Hϕ|2
Hx

=
m1

Om1−1

∫

UHx

(Xϕ)2dµ0x(X).

Moreover the fixed-endpoint version of the 1-dimensional Wirtinger’s inequality

says that

∫ l

0
ḣ(t)2dt ≥

π2

l2

∫ l

0
h(t)2dt ∀h ∈ C1([0, l]), h(0) = h(l) = 0.

Therefore, using this remarks and Theorem 4.5 we get

∫

D

|∇Hϕ|2
Hx
dLn(x)

=
m1

Om1−1

∫

UHD

(Xϕ)2dµ0(x;X)

=
m1

Om1−1

∫

UH+∂D

∫ ℓx̃(X)

0

( d
dt
ϕ(γ

X
(t))
)2

〈X, νD〉Hx̃
dt d σ(x̃;X)

≥
m1

Om1−1

∫

UH+∂D

π2

ℓ2
x̃
(X)

∫ ℓx̃(X)

0
|ϕ(γ

X
(t))|2 〈X, νD〉Hx̃

dt d σ(x̃;X)

≥
π2 ·m1

Om1−1 · diam2
H(D)

∫

UH+∂D

∫ ℓx̃(X)

0
|ϕ(γ

X
(t))|2 〈X, νD〉Hx̃

dt d σ(x̃;X)

=
π2 ·m1

Om1−1 · diam2
H(D)

∫

UHD

|ϕ(x)|2dµ0(x;X)

=
π2 ·m1

diamH(D)2

∫

D

|ϕ(x)|2 dLn(x).

Now we state another similar result along the line of [22]; see also [16] and [26].
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Theorem 4.11. Let D ⊂ G and λ1(D) be defined as above. Then we have

λ1(D) ≥
m1 · π

2

Om1−1
· inf

x∈D

∫

UHx

1

ℓ2x(X)
dµ0x(X).

Proof. Analogously to the previous proof we have

∫

D

|∇Hϕ|2
Hx
dLn(x)

= ≥
m1

Om1−1

∫

UH+∂D

π2

ℓ2
x̃
(X)

∫ ℓx̃(X)

0

(
ϕ(γ

X
(t))
)2

〈X, νD〉Hx̃
dt d σ(x̃;X)

=
m1 · π

2

Om1−1

∫

UH+∂D

∫ ℓx̃(X)

0

ϕ2(γ
X

(t))

ℓ2
x̃
(X)

〈X, νD〉Hx̃
dt d σ(x̃;X)

=
m1 · π

2

Om1−1

∫

UHD

ϕ2(x)

ℓ2x(X)
dµ(x;X)

=
m1 · π

2

Om1−1

∫

D

ϕ2(x)

∫

UHx

1

ℓ2x(X)
dµ0x(X) dLn(x)

≥
m1 · π

2

Om1−1
× inf

x∈D

∫

UHx

1

ℓ2x(X)
dµ0x(X) ×

∫

D

|ϕ(x)|2 dLn(x)

and the claim follows.
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5 Some remarks about the geometry of

hypersurfaces in Carnot groups

5.1 The H -perimeter form σ
H

on non-characteristic

hypersurfaces

Let G be a k-step Carnot group. Below we shall adopt the notation of Section 1.

We shall also use the following standard operations on differentials forms:

(a) if X ∈ X(G), then X ⌋ : Λk(G) −→ Λk−1(G) denotes the contraction with

X (or interior multiplication with X) of a k-form ω ∈ Λk(G), defined as

(X ⌋ω)(Y1, ..., Yk−1) := ω(X,Y1, ..., Yk−1)

for every Y1, ..., Yk−1 ∈ X(G);

(b) if X ∈ X(G) and ω ∈ Λk(G) then LXω denotes the Lie derivative of ω with

respect to X and by Cartan’s identity we have

LXω = d(X ⌋ω) +X ⌋ dω;

(c) ∗ : Λk(G) −→ Λn−k(G) denotes the Hodge star operator (see [54], pp 142-

143, or [64]).

Now we introduce the canonical Riemannian volume form on hypersurfaces,

[64]. To this end, let S ⊂ G be a smooth immersed hypersurface –without

boundary– and let N denote a smooth unit normal vector along S. In the se-

quel we shall denote by NS the (Riemannian) normal bundle over S. With respect

to the orientation of S determined by N , the induced Riemannian volume form of

S is canonically defined by

σn−1 := (N ⌋Ωn)|S , (69)
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and we will often denote it by the symbol dAn−1. We remind that the n − 1-

dimensional Hausdorff measure Hn−1 associated with the Riemannian metric 〈·, ·〉

on G and the volume form dAn−1 agree on smooth hypersurfaces; for a proof, see

[33], or Theorem IV.1.8 of [17].

If X ∈ X(G), then (X ⌋ dV n)|S = 〈X,N 〉 dAn−1|S and since the Riemannian

divergence operator div : X(G) −→ C∞(G) satisfies d(X ⌋ dV n) = divX dV n,

by Stoke’s Theorem we get the usual Riemannian divergence theorem for smooth

domains contained in G having S as a boundary. If we assume S with boundary,

an analogous construction enables us to define the n− 2-dimensional Riemannian

volume measure on ∂S. Therefore, if η ∈ TS is the outward-pointing unit normal

vector along ∂S, we shall set

σn−2 := (η ⌋σn−1)|∂S . (70)

Later on we shall introduce both the H -perimeter measure and a differential

n−1-form σ
H
, henceforth called H-perimeter form, that will be used as the “regular

counterpart” of the H -perimeter measure. We remark right now that these notions

coincide on “regular” hypersurfaces.

Let us consider the projection map onto the horizontal space

PH : TG −→ H ,

that is, the homomorphism given by PH (X) :=
∑m1

i=1〈X,Xi〉Xi with respect to

the coordinates of the frame (X1, ..., Xn) . Hereafter, unless otherwise mentioned,

we assume that S ⊂ G is a smooth immersed hypersurface with a smooth

unit normal vector N . We also assume that S is transversal to the

horizontal distribution H . In this case we say that S is non-characteristic and

we set S ⋔ H . On the contrary, if S have characteristic points, we shall denote by

C (S) the characteristic set of S, defined by

C (S) :=
{
x ∈ S : dimHx = dim(Hx ∩ TxS)

}
.

The transversality condition can be formulated by means of the projection map

PH of the unit normal N . Indeed, we easily get that

S ⋔ H ⇐⇒ PH (N ) 6= 0 ⇐⇒ ∃X ∈ H : 〈Xx,Nx〉 6= 0 ∀x ∈ S.
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Because our assumption that S is a smooth non-characteristic hypersurface, we

may normalize the horizontal projection of the unit normal N and so we obtain a

smooth unit section of H , called horizontal unit normal along S. More precisely,

we set

ν
H

:=
PH (N )

|PH (N )|H
. (71)

We stress that we may equip S with the smooth bundle structure, denoted by HS,

which is induced by H . We will refer to HS as the horizontal bundle over S, and

it is just defined by

HS :=
{
X ∈ H : π

H
(X) ∈ S

}
. (72)

Note that ν
H

is a smooth unit section of HS. Together with HS, we may define

the vertical bundle over S, denoted by VS, as follows. For x ∈ S we define Vx as

the n−1-dimensional vector subspace of TxG such that TxG = Vx ⊕ span{(ν
H
)x},

i.e. Vx := (ν
H
)⊥x , and so we may canonically construct VS as the smooth vector

bundle over the base space S given by

VS :=
∐

x∈S

Vx. (73)

The bundle projection maps of HS and VS will be denoted, respectively, by π
HS

and π
VS

. Finally, we shall define two bundle structures over S which are proper

subbundles of HS. They are, respectively, the horizontal tangent bundle HTS and

the horizontal normal bundle ν
H
S and they are associated with the decomposition

of the horizontal space at x ∈ S given by

HxS = span{(ν
H
)x} ⊕ {(ν

H
)⊥x ∩ Hx} ∀ x ∈ S.

We set HTxS := (ν
H
)⊥x ∩ Hx (x ∈ S). Note that HTxS = PH (Vx) ∀x ∈ S. Thus

we define

HTS :=
∐

x∈S

HTxS, ν
H
S :=

∐

x∈S

(ν
H
)x. (74)
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Remark 5.1. For x ∈ S, let X ∈ X(G) be such that Xx ∈ TxS ∩ Hx. We have

〈Xx,Nx〉 = 0. Moreover we get that (PVi
(X))x = 0 for any i = 2, ..., k, where

PVi
: TG −→ Vi denotes the projection map onto Vi that is the natural subbundle

of TG associated with the i-th layer Vi of the stratification of g. But this implies

that Xx = (PH (X))x and so

〈Xx,Nx〉 = 〈Xx, (PH (N ))x〉 = 〈Xx, (νH )x〉H = 0.

Furthermore, it follows that HTxS = TxS ∩ Hx.

The definition below allows us to regard the horizontal perimeter measure on

non-characteristic hypersurfaces as a smooth (non-degenerate) differential n − 1-

form.

Definition 5.2. [H -perimeter form σ
H
] Let S ⊂ G be a smooth, non-characteristic

hypersurface with unit horizontal normal ν
H
. Then the H -perimeter form σ

H
on

S is the differential n − 1-form on S given by contraction with ν
H

of the volume

form Ωn, i.e.

σ
H
|S := (ν

H
⌋Ωn)|S . (75)

Remark 5.3. By the previous Definition 5.2 we get

σ
H
|S =

m1∑

i=1

(ν
H
)i (Xi ⌋Ωn)|S

=

m1∑

i=1

(ν
H
)i ∗ ωi

∣∣∣
S

=

m1∑

i=1

(−1)m1+1(ν
H
)i ω1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn

∣∣∣
S
,

where (ν
H
)i := 〈ν

H
, Xi〉H (i = 1, ...,m1). Note also that

σ
H
|S = |PH (N )|H · σn−1|S .
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We also remind that if U is an open subset of G and E is a set of finite

H -perimeter in U with C1-smooth boundary, then

|∂E|H (U) =

∫

∂E∩U

|PH (N )|H dAn−1, (76)

where N denotes the outward-pointing unit normal vector along ∂E. Moreover we

have ν
E

= ν
H
; see Proposition 1.34.

We state in the next Remark 5.4 some results about the representation of

the H -perimeter measure and about characteristic points on regular submanifolds

which can be found in [67, 68]; see also [41, 42, 43] and [45].

Remark 5.4. Let U be an open subset of a k-step Carnot group and let Σ ⊂ U

be a C1 submanifold of codimension h. Then, the intrinsec Q − h-dimensional

Hausdorff measure HQ−h
c of the characteristic set of Σ is 0, i.e.

HQ−h
c (C (Σ)) = 0.

If Σ is a C1-smooth hypersurface, then the Hausdorff dimension of Σ with respect

to the cc-distance dc is Q− 1, i.e.

dimHc(Σ) = Q− 1;

see [7], [41, 42, 43], [49], [67, 68], [81]. Furthermore, [67], if G is 2-step and

Σ ⊂ G is a C1,1-smooth hypersurface, then

dimHc(C (S )) ≤ Q − 2 .

Now let us suppose that h = 1, i.e. Σ ⊂ U is a C1 submanifold of codimension 1.

Then we have

|PH (N )|H · σn−1 Σ = k
Q−1 S

Q−1
c Σ,

where k
Q−1 denotes the so-called metric factor of dc (see Definition 2.17 of [67])

that is a function depending on both the structure of the Lie algebra g and on
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the direction of the unit H -normal ν
H

along Σ 4. In some particular cases, the

metric factor k
Q−1 reduces to an explicitly computable constant, as in the case of

the Heisenberg groups Hk (k ≥ 1). Moreover, let E ⊂ G be such that ∂E is a C1

hypersurface with outward-pointing unit normal vector denoted by N . Then

|∂E|H = k
Q−1 S

Q−1
c ∂E = |PH (N )|H · σn−1 ∂E.

Finally, if E is a C1 closed subset of a k-step Carnot group G, the following version

of the Divergence Theorem holds true:

∫

E

div
H
ψ dV n = −

∫

∂E

〈ψ, ν
E
〉H |PH (N )|H dAn−1

= −

∫

∂E

〈ψ, ν
E
〉H k

Q−1 S
Q−1
c ∀ψ ∈ C1

0(G,H ).

5.2 Geometry of 2-step Carnot groups

In this section we are mainly concerned with the study of 2-step Carnot groups.

There are many reasons for this and one, for instance, is that many proofs can

be given in a simpler way, by means of more explicit computations. Moreover,

an important reason for the study of geometric properties of hypersurfaces in

2-step Carnot groups is that a remarkable rectifiability theory for sets of finite

H -perimeter holds in this setting; see [42, 43]. Here below we shall simplify some

of our previous notation.

Let G denote a 2-step Carnot group of dimension n and let g be its Lie algebra.

In this case the stratification of g has only two layers: the first one, denoted by H ,

is the horizontal space of g, while the second one is the center of g, denoted by Z .

We have g := H ⊕ Z and we put m := dimH , so that n−m = dimZ . According

4Let Bc(e, 1) denote the open dc-ball centered at the identity of G and of radius equal

to 1 and let Ie(νE ) denote the maximal proper subgroup of G that is orthogonal to ν
E
.

Then the metric factor k
Q−1

of dc is given by

k
Q−1

:=
1

κQ−1

Hn−1(Ie(νE ) ∩Bc(e, 1)),

where κh denotes the h-dimensional Lebesgue measure of the Euclidean unit ball in Rh.

77



to Remark 1.1 we denote by Zx (x ∈ G) the image in TxG of Z through (Lx)∗.

We shall denote by Z the smooth subbundle of TG defined by Z :=
∐

x∈G
Zx and

by π
Z

its bundle projection map.

Notation 5.5. From now on we shall adopt the following convention on the range

of indices in the case of 2-step Carnot groups:

1 ≤ I, J,H, ... ≤ n = dim g; 1 ≤ i, j, h, ... ≤ m = dimH ; m+1 ≤ α, β, γ, ... ≤ n.

Moreover we shall set I1 := {1, ...,m} and I2 := {m+ 1, ..., n}.

In the case of 2-step nilpotent Lie groups, one has many simplifications with

respect to the general case. For example, the Campbell-Hausdorff formula takes

the form

exp (X) • exp (Y ) = exp
(
X + Y +

1

2
[X,Y ]

)
∀X,Y ∈ g,

and, for instance, one has d exp X(Y ) = d
(
Lexp X

)e

(
Y + 1

2 [Y,X]) for all X,Y ∈ g.

We now introduce a family of skew-symmetric linear transformations of H

which “capture” all the geometry of 2-step nilpotent Lie groups equipped with

a left invariant Riemannian metric; see [58], [31]. We emphasize that the metric

adopted in the sequel is that already defined by formula (3) of Section 1.1. So let

Z ∈ Z and define j(Z) : H −→ H by

j(Z)(X) := (adX)∗Z ∀ X ∈ H ,

where (adX)∗ is the adjoint linear transformation of adX. Equivalently we have

〈j(Z)X,Y 〉 = 〈[X,Y ], Z〉 = −
∑

α∈I2

zα〈C
αX,Y 〉, ∀X,Y ∈ H , ∀Z =

∑

α∈I2

zαXα ∈ Z .

By means of these maps, we shall explicitly write the Levi-Civita connection ∇

for G and we will specify both the expression of the Riemannian curvature tensor

of G and the values of its sectional curvatures. We have (see [31] pp. 620):




∇XY = 1
2 [X,Y ] ∀ X, Y ∈ H ;

∇XZ = ∇ZX = −1
2j(Z)X ∀ X ∈ H , Z ∈ Z ;

∇ZZ̃ = 0 ∀ Z, Z̃ ∈ Z .

(77)
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a) R(X,Y )X̃ = 1
2j([X,Y ])X̃ − 1

4j([Y, X̃])X + 1
4j([X, X̃])Y ∀ X, Y, X̃ ∈ H ;

a′) R(X,Y )X = 3
4j([X,Y ])X ∀ X, Y ∈ H ;

b) R(X,Z)Y = −1
4 [X, j(Z)Y ] ∀ X, Y ∈ H

∀ Z ∈ Z ;

b′) R(X,Y )Z = −1
4 [X, j(Z)Y ] + 1

4 [Y, j(Z)X] ∀ X, Y ∈ H

∀ Z ∈ Z ;

c) R(X,Z)Z̃ = −1
4{j(Z) ◦ j(Z̃)X} ∀ X ∈ H

∀ Z, Z̃;

c′) R(Z, Z̃)X = −1
4{j(Z̃) ◦ j(Z)X} + −1

4{j(Z) ◦ j(Z̃)X} ∀ X ∈ H

∀ Z, Z̃;

d) R(Z1, Z2)Z3 = 0 ∀ Z1, Z2, Z3 ∈ Z .

(78)

From (ii) we obtain a complete description of the curvature tensor but we may

also compute the Ricci tensor of G, defined, for X,Y ∈ g, by

Ric(X,Y ) := Trace(Z −→ R(Z,X)Y ) Z ∈ g.

From (ii) we get the expression of the sectional curvature of two orthonormal

vectors X, Y ∈ g, i.e. K(X,Y ) = 〈R(X,Y )Y,X〉:





K(X,Y ) = −3
4 |[X,Y ]|2 (X, Y ∈ H );

K(X,Z) = −1
4 |j(Z)X|2 (X ∈ H , Y ∈ Z );

K(Z, Z̃) = 0 (Z, Z̃ ∈ Z ).

(79)

In the 2-step case we may easily compute the 1-forms of the coframe (ω1, ..., ωn)

for G. According to Remark 1.22, if x = exp (X) (X =
∑n

K=1 xK eK) we get

(ωI)x =

n∑

H=1

BIH(x)dxH
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where

BIH(x) = dxI

(1 − e−adX

adX
(eH)

)
= dxI

(
eH +

1

2
[eH , X]

)

= δH
I +

1

2

n∑

K=1

cIHKxK since cIHK = 〈[eH , eK ], eI〉.

Remark 5.6. Putting B(x) := [BIH(x)]{I,H=1,...,n} (x ∈ G) by an easy calculation

one gets B(x) = A(−x) where A(x) is the matrix representing the pushforward

associated with Lx; see Section 1.1. To see this, let x = exp (X) and y = exp (Y ),

where X =
∑n

H=1 xH eH , Y =
∑n

H=1 yH eH ; then

AIH(−x) =
∂PI(−x, 0)

∂yH

=
∂

∂yH

(
− xI + yI −

1

2

n∑

R,S=1

cIRSxR yS

)∣∣∣
y=e

= δH
I −

1

2

n∑

R,S=1

cIRS δ
H
S xR = δH

I −
1

2

n∑

R=1

cIRH xR

= BIH(x),

where the last equality follows from (i) of (16) of Section 1.1.

By the stratification hypothesis on the Lie algebra (see Remark 1.22) we obtain

also that Bij = δj
i for any i, j ∈ I1 and that Bαβ = δβ

α for any α, β ∈ I2. More

generally, note that

cIHK 6= 0 =⇒ H, K ∈ I1, I ∈ I2.

We now remind that the connections 1-forms {ωij}i, j=1,...,n (see [16], [59], [88]) of

the coframe (ω1, ..., ωn) for G are defined by

ωij(X) := 〈∇XXi, Xj〉 ∀ X ∈ X(G).

They are n2 skew-symmetric 1-forms, i.e. ωij = −ωj i (i, j = 1, ..., n), satisfying

the equations

dωj =
n∑

k=1

ωk ∧ ωkj (j = 1, ..., n).
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See also Proposition 1.21 of Section 1.1 for a more explicit result. By using this

definition and either the expression of ∇ for 2-step Carnot groups (see item (i)), or

both Proposition 1.11 and the system of equations (11) of Section 1.1, we obtain

the system {ωJK}J, K=1,...,n of connection 1-forms for the coframe (ω1, ..., ωn) of

G. More precisely, since by definition we have

ωJK(X) := 〈∇XXJ , XK〉 ∀ X ∈ X(G) (J,K = 1, ..., n), (80)

we get by an easy computation the following result:





ωjk(Xi) = 0 ∀ i, j, k ∈ I1;

ωjk(Xα) = −1
2 c

α
jk ∀ j, k ∈ I1 ∀α ∈ I2;

ωjα(Xi) = 1
2 c

α
ij ∀ i, j ∈ I1 ∀α ∈ I2;

ωjα(Xβ) = 0 ∀ j ∈ I1 ∀α, β ∈ I2;

ωαβ(XI) = 0 ∀ α, β ∈ I2 ∀ I ∈ I1 ∪ I2.

(81)

We end this section by computing the covariant derivative of two smooth left

invariant sections of TG with respect to the coordinates of the frame (X1, ..., Xn),

i.e. if X =
∑

I xIXI and Y =
∑

J yJXJ , we shall compute ∇XY with respect to

the vector basis X1, . . . , Xn. We have

∇XY =
∑

I

xI∇XI
(yJXJ)

=
∑

I, J

{
xI (XIyJ)XJ + xI yJ∇XI

XJ

}

=
∑

J

(XyJ)XJ +
∑

I, J, K

xI yJ ωJK(XI)XK

=
∑

J

(XyJ)XJ +
∑

I, j, k

xI yj ωjk(XI)Xk +
∑

I, j, α

xI yj ωjα(XI)Xα +
∑

I, α, k

xI yα ωαk(XI)Xk.
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Here above, the first summation is nothing but the image of X under the Jacobian

matrix of Y with respect to the basis (X1, . . . , Xn), i.e.

JYX =
∑

J

(XyJ)XJ =
∑

j, β

(
(Xyj)Xj + (Xyβ)Xβ

)
.

Now by (81) and the fact that the connection 1-forms are skew-symmetric, we get

∇XY = JYX +
∑

β, j, k

xβ yj ωjk(Xβ)Xk +
∑

i, j, α

xi yj ωjα(Xi)Xα +
∑

i, α, k

xi yα ωαk(Xi)Xk

= JYX −
1

2

∑

β, j, k

cβjkxβ yj Xk +
1

2

∑

i, j, α

cαijxi yjXα −
1

2

∑

i, α, k

cαikxi yαXk

= JYX +
1

2

∑

j, k, α

cαjk

{
xj yk Xα −

(
xα yj + xj yα

)
Xk

}
. (82)

Definition 5.7. We set

C
α := [cαik]{i, k∈I1} ∈ Mm,m(R), Ck := [cαik]{i∈I1, α∈I2} ∈ Mm,n−m(R).

Moreover we define another family of matrices Ck ∈ Mn,n(R) (k ∈ I1) by

C
k :=




0m,m Ck

CT
k 0n−m,n−m


 ,

where CT
k denotes the matrix adjoint of Ck. We shall also denote by Cα : H −→ H

and, respectively, by Ck : g −→ g, the linear operators associated with Cα and Ck.

Warning. Sometimes in some of the following computations we will use, with a

slight abuse of notation, the symbol 〈·, ·〉H to denote the inner product in Rm ∼= H .

Note that Cα, α ∈ I2, are skew-symmetric linear operators while Ck, k ∈ I1,

turn out to be symmetric and such that Im(Ck) ⊆ Ker(PH ) (k ∈ I1). We may

state the following:

Lemma 5.8. Let (G, 〈·, ·〉) be a 2-step Carnot group endowed with the Levi-Civita

connection ∇. Let X, Y ∈ X(G) be two left invariant vector fields. Then

∇XY = JYX −
1

2

{∑

k∈I1

〈CkX,Y 〉Xk +
∑

α∈I2

〈(Cα ◦ PH )(X),PH (Y )〉H Xα

}
. (83)
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Proof. The equation (82) shows that, using the coordinates of the frame (X1, ..., Xn),

we have

∇XY = JYX −
1

2

∑

k∈I1

〈Ck(xm+1, ..., xn)T , (y1, ..., ym)T 〉Xk

−
1

2

∑

k∈I1

〈Ck(ym+1, ..., yn)T , (x1, ..., xm)T 〉Xk

+
1

2

∑

α∈I2

〈Cα(x1, ..., xm)T , (y1, ..., ym)T 〉H Xα,

so the thesis follows from Definition 5.7.
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6 Regular non-characteristic hypersurfaces

in 2-step Carnot groups

6.1 H -adapted moving frames and structure equations

In this section we shall introduce a moving frame in G adapted to a regular non-

characteristic hypersurface S ⊂ G; see Definition 6.1 below. This frame will enable

us to get explicit computations about the local geometry of S and will be mainly

used to understand the meaning of some variational formulas that we will prove

in the sequel. Here we just remark that the choice of this frame is motivated by

the fact that we cannot use the usual Riemannian approach (see [63], [16], [87],

[88]) in stating variational formulas concerning the H -perimeter form σ
H

as, for

instance, divergence type theorems on hypersurfaces and the first and the 2nd

variation of σ
H
. Indeed, it should be noted that the tangent space to a smooth

hypersurface does not play the same role as in the Riemannian setting, so that we

shall replace it by the vertical bundle VS over S defined in Section 1.2. Al least

for 2-step Carnot groups this seems perhaps motivated by the Blow-up method.

Indeed let x ∈ ∂∗E, where ∂∗E denotes the Reduced Boundary of a (locally) finite

H -perimeter set E. Then it can be proved that the (local) tangent structure at

x ∈ ∂∗E is the vertical hyperplane orthogonal to ν
E
(x) which turns out to be a

maximal (proper) subgroup of G; see [42, 43], [67, 68].

Let G be a 2-step Carnot group and S ⊂ G be a smooth immersed non-

characteristic hypersurface. Since the following discussion is local we may assume

also that S is imbedded. Let VS, HS, HTS and ν
H
S denote the vector bundles

on the base space S, defined in Section 1.2. Moreover we shall denote by ZS the

smooth vector bundle over the base space S whose fibre at any x ∈ S is given

by ZxS = (Lx)∗Z . We have already seen that TxG = span{(ν
H
)x} ⊕ Vx and by

Remark 5.1, for any x ∈ S, we get that HxS = span{(ν
H
)x} ⊕ HTxS. Note also

that VxS = HTxS ⊕ ZxS. We may start by giving the following:

Definition 6.1. Let G be a 2-step Carnot group and S ⊂ G be a smooth immersed
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non-characteristic hypersurface. Fix an open set U ⊂ G such that U ∩ S 6= ∅. A

H -adapted moving frame for S on U is a smooth orthonormal frame (τ1, ..., τn)

for U such that:

(i) (τ1)x := (ν
H
)x and HxTS = span{(τ2)x, ..., (τm)x} for x ∈ U = U ∩ S;

(ii) τα := Xα (α ∈ I2 = {m+ 1, ..., n}).

Note that

HxS = span{(τ1)x, ..., (τm)x} = span{(X1)x, ..., (Xm)x} ∀ x ∈ U ∩ S,

and that ZxS = span{(τm+1)x, ..., (τn)x} = span{(Xm+1)x, ..., (Xn)x} for every

x ∈ U ∩ S. Thus, τ1, ..., τm are smooth left invariant horizontal sections that turn

out to be homogeneous of degree 1 with respect to Carnot dilations

{δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)}t>0,

while, clearly, τm+1, ..., τn are homogeneous of degree 2. The H-adapted dual

coframe (φ1, ..., φn) for S in U is then (uniquely) determined by requiring that

φI(τJ) = δJ
I (I, J = 1, ..., n).

By construction, the 1-forms φ1, ..., φm, which are dual of the horizontal sections

τ1, ..., τm of HS, are homogeneous of degree 1 with respect to Carnot dilations, i.e.

δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)∗φi = t φi (i ∈ I1),

while the 1-forms φm+1, ..., φn which are dual of the sections τm+1, ..., τn of ZS are

homogeneous of degree 2, i.e.

δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)∗φα = t2φα (α ∈ I2).

Remark 6.2. Since locally the Riemannian volume n-form Ωn can be written in

terms of the wedge product of the 1-forms φ1, ..., φn, i.e.

Ωn = φ1 ∧ ... ∧ φn,
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by setting U := U ∩ S, from Definition 5.2 we get

σ
H

U := (ν
H
⌋Ωn)|U

= (τ1 ⌋φ1 ∧ ... ∧ φn)|U

= (φ2 ∧ ... ∧ φn)|U .

The following lemma will be useful in many computations of the next sections.

Lemma 6.3. [Vanishing Lemma] Assume that S ⊂ G is a smooth non-characteristic

hypersurface. Then, for any i ∈ I1 \ {1} = {2, ...,m} we have

(τi ⌋Ωn)|S = 0.

Proof. Obvious, since

(τi ⌋Ωn)|S = (τi ⌋ dV
n)|S = 〈τi,N 〉 dAn−1|S

and 〈τi,N 〉 = 0.

From now on, we shall denote by φIJ (I, J = 1, ..., n) the connection 1-forms

of the H -adapted coframe (φ1, ..., φn), which are defined by

φIJ(X) := 〈∇XτI , τJ〉 ∀ X ∈ X(G),

where ∇ denotes the Levi-Civita connection of G. {φIJ}{I, J=1,...n} is a family of

n2 skew-symmetric 1-forms. Furthermore we denote by ΦJK (J, K = 1, ..., n) the

curvature 2-forms of (φ1, ..., φn) (see [16], [59], [88]) defined by

ΦJK(X,Y ) := φK(R(X,Y ) τJ) = 〈R(X,Y ) τJ , τK〉

for allX, Y ∈ X(G) (J, K = 1, ...n). Now we may write the (Riemannian) structure

equations of the H -adapted coframe (φ1, ..., φn):

dφJ =
n∑

K=1

φK ∧ φKJ (J = 1, ..., n) (1st structure equation); (84)

dφJK =

n∑

L=1

φJL ∧ φLK − ΦJK (J, K = 1, ..., n) (2nd structure equation).(85)
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The H -adapted frame (τ1, ..., τn) to S is a smooth frame for G which is defined

locally in a suitable open neighborhood of S and in the sequel we shall make use of

it instead of the frame (X1, ..., Xn), and consequently we shall replace the coframe

(ω1, ..., ωn) with that H -adapted (φ1, ..., φn). Our point of view will be that of

interpreting the results of the next sections in terms of that geometric invariants

encapsulated by the H -adapted frame to S.

Below, we shall compute in detail the expression of the connection 1-forms

φIJ (I, J = 1, ..., n) of the coframe (φ1, ..., φn) by means of Lemma 5.8. To this

aim, let x ∈ U := U ∩ S, and consider the orthogonal n × n-matrix O(x) ∈ O(n)

given by

O(x) =

[
OH (x) 0m,n−m

0n−m,m In−m,n−m

]
,

where x ∈ U and OH (x) ∈ O(m) is the orthogonal m×m-matrix given by

OH (x) :=
[
〈τi, Xj〉

]
{i,j=1,...,m}

.

We set oIJ(x) := 〈(τI)x, (XJ)x〉 (I, J = 1, ..., n) and denote by oL(x) the L-th

column of O(x) representing, in the coordinates of the frame (X1, ..., Xn), the L-

th vector τL of the H -adapted frame (τ1, ..., τn). Now if O(x) : TxG −→ TxG

denotes the linear operator associated with O(x) and OH (x) : Hx −→ Hx denotes

the operator associated with OH (x), by making use of Definition 6.1 we get that

O(x)(XI)x = (τI)x (I = 1, ..., n).

Using Lemma 5.8 and the very definition of φIJ , get us

φIJ(τL) = 〈∇τL
τI , τJ〉

= 〈[JoI
]x oL, oJ〉 −

1

2

{∑

k∈I1

〈CkoL, oI〉 oJk −
∑

α∈I2

〈
C

α(o1L, ..., omL)T , (o1I , ..., omI)
T
〉

H
oJα

}
,

and by this formula we deduce the following:

Lemma 6.4. If x ∈ U , we have

(i) φij(τk) = 〈[Joi
]x ok, oj〉 (i, j, k ∈ I1);
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(ii) φij(τβ) = 〈 ∂ oi

∂xβ
, oj〉 −

1
2

∑
k∈I1

〈Ckoβ, oi〉 ojk (i, j ∈ I1, β ∈ I2);

(iii) φiβ(τj) = −1
2 〈C

β(o1j , ..., omj)
T , (o1i, ..., omi)

T 〉H (i, j ∈ I1, β ∈ I2);

(iv) φiα(τβ) = 0 (i ∈ I1, α, β ∈ I2);

(v) φαβ(τL) = 0 (α, β ∈ I2, L ∈ I1 ∪ I2).

Proof. We have just to use the above formula and the fact that the derivative

along Xα (α ∈ I2) is nothing but the partial derivative ∂
∂xα

; see Remark 1.5 in

Section 1.1.

Remark 6.5. Let S ⊂ G be a smooth non-characteristic hypersurface and let us

consider the tangent space TS of S. Suppose that (t1..., tn−1) is an orthonormal

frame for S. Since S is non-characteristic, Frobenius’ Theorem (see [64], [88])

implies that the Lie bracket of any two tangent vectors is still a tangent vector, i.e.

if x ∈ S and if X, Y ∈ TxS, then there exist α1, ..., αn−1 such that

[X,Y ]x =

n−1∑

i=1

αi · (ti)x.

Remark 6.6. Let x ∈ U = U ∩ S and consider the tangent space of S at x, TxS.

Moreover let N denote the Riemannian unit normal vector along S. Note that,

with respect to the H -adapted frame (τ1, ..., τn) for U , we have that

N = |PH (N )|H τ1 +
∑

α∈I2

nα τα = n1 τ1 +
∑

α∈I2

nα τα.

By using the coordinates associated with a H -adapted frame, a vector basis for TxS

can be written by noting that:

(i) (τ2)x, ..., (τm)x are m−1 tangent vectors to S at x; they form an orthonormal

basis for the horizontal tangent space HTxS to S (see Section 1.2);

(ii)
(
τα − nα

n1
τ1

)
x

(α ∈ I2) are n−m linearly independent tangent vectors to S

at x; they are orthogonal with each other vector (τj)x, for every j ∈ I1 \{1}.

By normalizing the family of vectors introduced at item (ii), we would get a full

basis for TS.
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In the sequel we shall make use of the following notation:

τS
α := τα −

nα

n1
τ1 α ∈ I2.

Remark 6.7. We remind the definition of the horizontal tangential operators

δHi ψ := Xiψ − 〈∇Hψ, ν
H
〉H ν

H i ∀ ψ ∈ C∞(U) (i ∈ I1),

introduced by N. Garofalo and S. Pauls in [44]. We stress that, with our notation,

one gets

δHψ := ∇Hψ − 〈∇Hψ, ν
H
〉H ν

H
= ∇Hψ − 〈∇Hψ, τ1〉H τ1

=

m∑

i=2

τi(ψ) τi ∀ ψ ∈ C∞(U).

Remark 6.8. There is no affine connection on the vertical bundle VS over S

because, obviously, VS it is not a subbundle of TS; see Definition 1.12 of

Section 1.2. Later on we shall define an HTS-restricted connection over HTS for

S, in the sense of Definition 1.12 of Section 1.1; see Definition 6.12.

However, we may give the following notion that will be useful in the sequel.

Definition 6.9. From now on, we shall denote by DVS the rule which assigns to

each vector field X ∈ X(G) the operator DVS

X : X(G) −→ C∞(G,VS) defined by

DVS

X Y = PVS(∇XY )

= ∇XY − 〈∇XY, νH 〉 νH X, Y ∈ X(G). (86)

Remark 6.10. We may explicitly write the rule DVS by means of the frame

(τ2, ..., τn) for VS. More precisely, for every X ∈ X(G) we have

DVS

X τJ =

n∑

H=2

φJH(X) τH ∈ VS ∀ J = 2, ..., n. (87)

Definition 6.11. If ψ ∈ C∞(G) we denote by DVSψ, the unique vector field of

C∞(G,VS) such that 〈DVSψ,X〉 = dψ(X) = Xψ (∀X ∈ VS), and we call DVSψ

the VS-gradient of ψ. Also, we define the VS-divergence of X ∈ VS, denoted

by div
VS
X, to be the function given at each point x ∈ S by

div
VS
X := Trace

(
Y −→ DVS

Y X
)

(Y ∈ VxS).
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By definition, since (τ2, ..., τn) is an orthonormal frame for VS, we get

div
VS
X =

n∑

J=2

〈DVS
τJ
X, τJ〉 ∀ X ∈ C∞(G,VS). (88)

Furthermore, for every X ∈ C∞(G,VS) and every φ, ψ ∈ C∞(G) we get that

DVS (φψ) = φDVSψ + ψDVSφ (89)

div
VS

(ψX) = 〈DVSψ,X〉 + ψ div
VS
X = Xψ + ψ div

VS
X. (90)

The above discussion shows, in a sense, a formal analogy with the classical

Gauss Formulas; see [16], [59], [88]. Nevertheless, by making use of the horizontal

connection, this analogy becomes more evident. Indeed, first note that HTS ⊂ TS

is a smooth subbundle of the tangent bundle of S, whose fiber at x ∈ S is, by

definition, an m − 1-dimensional vector subspace of Hx. We shall now define an

HTS-connection over S, which is naturally associated with the decomposition of

the horizontal space at x ∈ S given by

Hx = HTxS ⊕ span{(ν
H
)x}. (91)

Definition 6.12. Let ∇ denotes the Levi-Civita connection over TS induced by

〈·, ·〉, that is, by definition, ∇ := (∇)TS. Then, we denote by ∇HTS the HTS-

restricted connection over HTS, in the sense of Definition 1.12, i.e.

∇HTS := ∇
(HTS,HTS)

.

Definition 6.13. We define the HTS-gradient of ψ ∈ C∞(S), denoted by the

symbol ∇HTSψ, to be the (unique) horizontal tangent vector field such that

〈∇HTSψ,X〉H = dψ(X) = Xψ (∀ X ∈ HTS).

Moreover, the HTS-divergence of X ∈ HTS, denoted by div
HTS

X, is the function

given at each point x ∈ S by

div
HTS

X := Trace
(
Y −→ ∇HTS

Y X
)

(Y ∈ HTxS).

Finally, we denote by ∆
HTS

the HTS-laplacian that is defined by

∆
HTS

ψ := div
HTS

(∇HTSψ) ∀ ψ ∈ C∞(S). (92)
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From Definition 6.11, using also (87) and (88), we easily get that

div
VS
X = div

HTS
(PHTS(X)) + div

Z
(PZ (X)) ∀ X ∈ C∞(G,VS). (93)

Remark 6.14. Using (91), if X, Y ∈ C∞(S,HTS), we may decompose ∇H

XY as

follows:

(∇H

Xx
Y )x = (PHTS(∇H

XY ))x + (Pν
H

S(∇H

XY ))x (x ∈ S).

It is easily verified that

∇HTS

X = PHTS(∇H

XY ). (94)

Note also that

∇H

Xτi =
∑

j∈I1

φij(X) τj = φi1(X) τ1 +

m∑

j=2

φij(X) τj

= 〈∇H

Xτi, τ1〉H τ1 + ∇HTS

X τi ∀ X ∈ C∞(S,HTS), i ∈ I1 \ {1}.

We therefore get that the horizontal connection ∇H satisfies a generalized

version of the classical Gauss Formulas. Before the statement of this result, we

give the following:

Definition 6.15. We define the horizontal second fundamental form of S

to be the map bH : HTS × HTS −→ ν
H
S given by

bH (X,Y ) := 〈∇H

XY, νH 〉H ν
H

∀ X, Y ∈ HTS.

The trace of bH , denoted by H, is called the horizontal mean curvature of S.

Finally, the quantity Hsc
H

:= 〈H, ν
H
〉H will be called the scalar horizontal mean

curvature of S.

Remark 6.16. Clearly, we have that H ∈ ν
H
S and that

H :=

m∑

j=2

〈∇H

τj
τj , τ1〉H τ1 = −

m∑

j=2

〈∇H

τj
τ1, τj〉H τ1 = −

m∑

j=2

φ1j(τj) τ1.

By arguing as in the Riemannian case, we may prove that bH (X,Y ) is a C∞(S)-

bilinear form in X and Y and that bH (X,Y ) only depends on Xx and Yx; indeed
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to see this, we can proceed as in the proof of Proposition 3.2 of [59], Vol.II. More

importantly, in general, bH is not symmetric. The reason is the following.

Symmetry of bH is easily seen to be equivalent to the following condition:

X,Y ∈ HTS =⇒ PH [X,Y ] ∈ HTS.

But this condition fails to be true, in general. For instance, this condition turns

out to be trivially true, in the case of the Heisenberg group H1, being HTS a

1-dimensional subbundle of TS, for any given non-characteristic surface S ⊂ H1.

But, for example, the condition fails to hold, in general, for the case of Hn (n > 1),

as it can be easily proved by using a dimensional argument.

Proposition 6.17. [HTS-restricted Gauss Formulas] For each x ∈ S we have

∇H

Xx
Y = ∇HTS

Xx
Y + bH (Xx, Yx)

where Xx ∈ HTxS and Y is any horizontal vector field which is tangent along S.

Proof. Obvious by the previous discussion.

We may give the following:

Definition 6.18. We define the torsion THTS of the partial HTS-connection

∇HTS , by

T
HTS(X,Y ) := ∇HTS

X Y −∇HTS

Y X − PH [X,Y ] (X,Y ∈ HTS).

From this definition, it follows that for every X, Y ∈ HTS one has

T
HTS(X,Y ) = bH (Y,X) − bH (X,Y ) = 〈PH [Y,X], ν

H
〉H νH . (95)

Note also that the mapping HS ∋ X 7−→ ∇H
XνH is, in fact, the sub-Riemannian

analogous of the usual Weingarten map. In the case of hypersurfaces, using the

compatibility of ∇H with the metric 〈·, ·〉H , we get that (∇H

XνH )p ∈ HpS. Indeed,

by differentiating the identity |ν
H
|2H = 1, we obtain

X〈ν
H
, ν

H
〉H = 2〈∇H

XνH , νH 〉H = 0.
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6.2 Gauss-Green type formulae on hypersurfaces

Below, we shall prove first a generalized version of the Riemannian divergence

theorem on regular non-characteristic hypersurfaces and then some related Green’s

identities. The main proofs will be given in the next section.

Here we will just make a short comment. We remind that if (M, 〈·, ·〉) is a

Riemannian manifold and σ denotes the Riemannian volume form on M , then the

divergence of a C1 vector fieldX onM satisfies the following well-known identities:

LX σ = Divσ(X)σ = d (X ⌋σ) = divX σ,

where DivσX denote the divergence of X with respect to σ (see [16], [88]). These

relations allow to prove easily, via Stoke’s Theorem, the Riemannian divergence

theorem. Here, following the same approach, we state a generalized version of this

theorem in the case of regular non-characteristic hypersurfaces in 2-step Carnot

groups, endowed with the H -perimeter form σ
H
. However, we cannot expect such

an extension of it to be trivial, as further terms will appear in it, due to the

non-Abelian structure of the Lie algebra.

Let G be a 2-step Carnot group and let S ⊂ G be a smooth immersed non-

characteristic hypersurface with unit normal vector along S denoted by N . Let

U ⊂ S be compact and let us suppose that the boundary ∂U of U is a smooth

(immersed) n − 2-dimensional Riemannian submanifold with outward pointing

unit normal η. Let ∇ denote the Levi-Civita connection induced by 〈·, ·〉 on U

(i.e. ∇ := (∇)TU ). Finally, we denote by ∇ψ the gradient of ψ ∈ C∞(U) and by

divTU the Riemannian divergence on U . A first easy remark is contained in the

following:

Proposition 6.19. Let U be as above and let X ∈ X(U) be a tangent vector field

on U . Then the following holds

∫

U

{
divTU X + 〈X,∇log(|PH (N )|H )〉

}
σ
H

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2. (96)

Proof. The proof it is a straightforward application of the Riemannian divergence
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theorem. Indeed, by definition of σ
H

and a simple calculation, we have

d(X ⌋σ
H
) = d(|PH (N )|H X ⌋σn−1) = divTU (|PH (N )|H X)σn−1

= {divTU X + 〈X,∇log(|PH (N )|H )〉}σ
H

and the thesis now follows by Stoke’s Theorem.

The definition of the H -perimeter form σ
H

modify the role of the usual tangent

space and we shall replace it, in our analysis, by using both the vertical bundle

VS and the horizontal tangent bundle HTS. The starting point of our work will

be that of stating the analogous version of the Riemannian divergence theorem for

regular hypersurfaces endowed with the H -perimeter form σ
H
. Our first result in

this direction is the following:

Lemma 6.20. [Main Lemma] For every X ∈ C∞(G,VS), (X =
∑n

J=2 xJ τJ), we

have

d(X ⌋σ
H
)|S

=

{
n∑

J=2

τJ(xJ)+

m∑

j=2

∑

α∈I2

[
xj

[ m∑

h=2

φjh(τh)+〈Cα(τ1), τj〉H
nβ

n1

]
−φ1j(τj)

nα xα

n1

]}
(σ

H
)|S .

where n1 = 〈N , τ1〉 = |PH (N )|H and nγ = 〈N , τγ〉 (γ ∈ I2).

The proof will be given in Section 2.3. However, we may state the main

consequences of Lemma 6.20. To this end, we make use of the VS-divergence

operator div
VS

, introduced in Definition 6.11. Now, let us state the following

elementary fact:

Lemma 6.21. For every X ∈ C∞(G,VS), X =
∑n

I=2 xI τI , we have

div
VS
X =

n∑

I=2

τI(xI) +

m∑

h, j=2

xh φhj(τj).

Proof. By definition of div
VS

we have
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div
VS
X =

n∑

J=2

〈DVS
τJ
X, τJ〉 =

n∑

I, J=2

〈DVS
τJ

(xI τI), τJ〉

=
n∑

I, J=2

{
τJ(xI)δ

I
J + xI 〈DVS

τJ
τI , τJ〉

}

=
n∑

I=2

τI(xI) +
n∑

I, J=2

xI φIJ(τJ)

=
n∑

I=2

τI(xI) +
m∑

h, j=2

xh φhj(τj) (by (iv) of Lemma 6.4). (97)

By this lemma we obtain a more concise formulation of Lemma 6.20:

d (X ⌋σ
H
)|S =

{
div

VS
X+

∑

β∈I2

〈Cβτ1,PH (X)〉H
nβ

n1
+Hsc

H
〈PZ (N ),PZ (X)〉

1

n1

}
σ
H
|S ,

for every X ∈ C∞(G,VS), or equivalently

d (X ⌋σ
H
)|S = div

VS
X σ

H
|S +

{〈∑

β∈I2

nβ C
βτ1,PH (X)

〉
H

+ Hsc
H

〈PZ (N ),PZ (X)〉

}
σn−1|S .

From equation (98) we then get the next two corollaries.

Corollary 6.22. For every X ∈ C∞(S,HTS), we have

d (X ⌋σ
H
)|S = div

HTS
X σ

H
|S +

〈∑

β∈I2

nβ C
βτ1, X

〉
H
σn−1|S .

Proof. It is enough to use equation (98) together with the natural definition of

HTS-divergence related to Definition 6.12 (see also Remark 6.13) and observing

that xI = 〈X, τI〉 6= 0 if, and only if, I ∈ I1 \ {1}.

Corollary 6.23. For every X ∈ X(S)(= C∞(S,TS)), we have

d (X ⌋σ
H
)|S =

{
div

VS
X − x1H

sc
H

}
σ
H
|S +

〈∑

β∈I2

nβ C
βτ1,PH (X)

〉
H
σn−1|S .
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Proof. Also in this case we use equation (98). Since, for X ∈ TS (X =
∑

I xI τI),

we have 〈X,N 〉 = 0, we obtain

〈X,N 〉 = x1 |PH (N )|H +
∑

α∈I2

xα nα = x1 n1 +
∑

α∈I2

xα nα = 0.

Theorem 6.24. [Divergence type theorems on regular hypersurfaces] Let G be

a 2-step Carnot group and let S ⊂ G be a smooth immersed non-characteristic

hypersurface with unit normal vector along S denoted by N . Let U ⊂ S be compact

and suppose that the boundary ∂U is a smooth n − 2-dimensional Riemannian

submanifold with outward pointing unit normal η. Then the following hold:

(i) For every smooth vector field X ∈ C∞(G,VS) we have

∫

U
div

VS
X σ

H
+

∫

U

{〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H

+ Hsc
H

〈PZ (N ),PZ (X)〉
}
σn−1

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2;

(ii) For every smooth vector field X ∈ C∞(S,HTS) we have

∫

U
div

HTS
X σ

H
+

∫

U

〈∑

β∈I2

nβ C
βν

H
, X
〉
H
σn−1 =

∫

∂U
〈X, η〉 |PH (N )|H σn−2;

(iii) For every smooth vector field X ∈ X(S) we have

∫

U

{
div

VS
X − Hsc

H
〈X, ν

H
〉
}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H
σn−1

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2. (98)
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Proof. This follows from Stokes’ Theorem, and the fact (easily verified) that

(X ⌋σ
H
)|∂U = |PH (N )|H 〈X, η〉|∂U ,

by using, respectively, Lemma 6.20, Corollary 6.22 and Corollary 6.23.

Corollary 6.25. With the same hypothesis of Theorem 6.24 the following hold:

(i) For every smooth vector field X ∈ C∞
0 (G,VS|U ) such that spt(X) ∩ S ⋐ U

we have

∫

U
div

VS
X σ

H
= −

∫

U

{〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H

+ Hsc
H

〈PZ (N ),PZ (X)〉
}
σn−1.

(ii) For every smooth vector field X ∈ C∞
0 (U ,HTS|U ) we have

∫

U
div

HTS
X σ

H
+

∫

U

〈∑

β∈I2

nβ C
βν

H
, X
〉
H
σn−1 = 0.

(iii) For every smooth vector field X ∈ C∞
0 (U ,TS|U ) we have

∫

U

{
div

VS
X − Hsc

H
〈X, ν

H
〉
}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H
σn−1 = 0.

Proof. It is obvious by Theorem 6.24.

Now let ψ ∈ C∞(G). By Definition 6.11 we may consider the VS-gradient of

ψ, i.e. the (unique) vector field DVSψ of C∞(G,VS) such that

〈DVSψ,X〉 = dψ(X) = Xψ ∀ X ∈ VS.

Clearly, we may compute also the VS-divergence of DVSψ.
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Definition 6.26. We define the VS-laplacian of ψ ∈ C∞(G) to be the function

given by ∆
VS
ψ := div

VS
(DVSψ).

From (93) we get that

∆
VS
ψ = ∆

HTS
(ψ|S) +

∑

α∈I2

τ (2)
α (ψ) ∀ ψ ∈ C∞(G).

From equations (89) and (90) we get, by means of an easy computation, that the

VS-laplacian satisfies the following properties:

div
VS

(φ∇HTSψ) = φ∆
VS

(ψ) + 〈∇HTSφ,∇HTSψ〉H , (99)

∆
VS

(φψ) = φ∆
VS

(ψ) + ψ∆
VS

(φ) + 2 〈DVSφ,DVSψ〉 (100)

for all φ, ψ ∈ C∞(G). Analogous relations are satisfied if we consider the HTS-

laplacian on S; see Definition 6.13. More precisely, we have:

div
HTS

(φ∇HTSψ) = φ∆
HTS

(ψ) + 〈∇HTSφ,∇HTSψ〉, (101)

∆
HTS

(φψ) = φ∆
HTS

(ψ) + ψ∆
HTS

(φ) + 2 〈∇HTSφ,∇HTSψ〉 (102)

for all φ, ψ ∈ C∞(S). These formulae allows us to state the announced Green’s

type identities for regular non-characteristic hypersurfaces.

Theorem 6.27. [Green’s type formulae:I] Let G be a 2-step Carnot group and

let S ⊂ G be a smooth immersed non-characteristic hypersurface with unit normal

vector along S denoted by N . Let U ⊂ S be compact and suppose that the boundary

∂U is a smooth n− 2-dimensional Riemannian submanifold with outward pointing

unit normal η. Then the following hold:

(i) Let φ1, φ2 ∈ C∞(G) and let us suppose that, for at least one i ∈ {1, 2}, we

have

spt(φi) ∩ S ⋐ U .

98



Then we have

∫

U

{
φ1 ∆

VS
φ2 + 〈DVSφ1,DVSφ2〉

}
σ
H

+

∫

U
φ1

{〈∑

β∈I2

nβ C
βν

H
,PH (DVSφ2)

〉
H

+Hsc
H

〈PZ (N ),PZ (DVSφ2)〉
}
σn−1 = 0.

(ii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have

∫

U

{
φ1 ∆

HTS
φ2 + 〈∇HTSφ1,∇HTSφ2〉H

}
σ
H

+

∫

U
φ1

〈∑

β∈I2

nβ C
βν

H
,∇HTSφ2

〉
H
σn−1 = 0.

(iii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have
∫

U

{
φ1 ∆

VS
φ2 + 〈DVSφ1,DVSφ2〉 − φ1 〈DVSφ2, νH 〉H

sc
H

}
σ
H

+

∫

U
φ1

〈∑

β∈I2

nβ C
βν

H
,PH (DVSφ2)

〉
H
σn−1 = 0.

Proof. It follows from Corollary 6.25 and from the identities (99) and (101).

Theorem 6.28. [Green’s type formulae:II] Under the hypotheses of Theorem 6.27

the following hold:

(i) Let φ1, φ2 ∈ C∞(G) and let us suppose that, for at least one i ∈ {1, 2}, we

have spt(φi) ∩ S ⋐ U . Then we have

∫

U

{
φ1 ∆

VS
φ2 + 〈DVSφ1,DVSφ2〉

}
σ
H

+

∫

U
φ1

{〈∑

β∈I2

nβ C
βν

H
,PH (DVSφ2)

〉
H

+ Hsc
H

〈PZ (N ),PZ (DVSφ2)〉
}
σn−1

=

∫

∂U
φ1 〈DVSφ2, η〉 |PH (N )|H σn−2.

99



(ii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have

∫

U

{
φ1 ∆

HTS
φ2+〈∇HTSφ1,∇HTSφ2〉H

}
σ
H
+

∫

U
φ1

〈∑

β∈I2

nβ C
βν

H
,∇HTSφ2

〉
H
σn−1

=

∫

∂U
φ1 〈∇HTSφ2, η〉 |PH (N )|H σn−2.

(iii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have

∫

U

{
φ1 ∆

VS
φ2 + 〈DVSφ1,DVSφ2〉 − φ1 〈DVSφ2, νH 〉H

sc
H

}
σ
H

+

∫

U
φ1

〈∑

β∈I2

nβ C
βν

H
,PH (DVSφ2)

〉
H
σn−1 =

∫

∂U
φ1 〈DVSφ2, η〉 |PH (N )|H σn−2.

Proof. It follows from Theorem 6.24 and identities (99) and (101).

Theorem 6.29. [Green’s type formulae: III ] With the hypothesis of Theorem

6.27 the following hold:

(i) Let φ1, φ2 ∈ C∞(G) and let us suppose that, for at least one i ∈ {1, 2}, we

have

spt(φi) ∩ S ⋐ U .

Then we have

∫

U

{
φ1 ∆

VS
φ2−φ2 ∆

VS
φ1

}
σ
H
+

∫

U

{〈∑

β∈I2

nβ C
βν

H
,PH (φ1DVSφ2−φ2DVSφ1)

〉
H

+
〈
PZ (N ),PZ (φ1 DVSφ2 − φ2 DVSφ1)

〉
Hsc

H

}
σn−1 = 0.
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(ii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have

∫

U

{
φ1 ∆

HTS
φ2 − φ2 ∆

HTS
φ1

}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,
[
φ1 ∇HTSφ2 − φ2 ∇HTSφ1

]〉
H
σn−1 = 0.

(iii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have

∫

U

{[
φ1 ∆

VS
φ2 − φ2 ∆

VS
φ1

]
−
〈[
φ1 DVSφ2 − φ2 DVSφ1

]
, ν

H

〉
〈H, ν

H
〉H
}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,PH (φ1 DVSφ2 − φ2 DVSφ1)

〉
H
σn−1 = 0.

Proof. It follows immediately from Theorem 6.27.

Theorem 6.30. [Green’s type formulae: IV ] With the hypothesis of Theorem 6.27

the following hold:

(i) Let φ1, φ2 ∈ C∞(G) and let us suppose that, for at least one i ∈ {1, 2}, we

have

spt(φi) ∩ S ⋐ U .

Then we have

∫

U

{
φ1 ∆

VS
φ2−φ2 ∆

VS
φ1

}
σ
H
+

∫

U

{〈∑

β∈I2

nβ C
βν

H
,PH (φ1DVSφ2−φ2DVSφ1)

〉
H

+
〈
PZ (N ),PZ (φ1 DVSφ2 − φ2 DVSφ1)

〉
〈 H, ν

H
〉H
}
σn−1

=

∫

∂U

〈[
φ1 DVSφ2 − φ2 DVSφ1

]
, η
〉
|PH (N )|H σn−2.
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(ii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have
∫

U

{
φ1 ∆

HTS
φ2−φ2 ∆

HTS
φ1

}
σ
H
+

∫

U

〈∑

β∈I2

nβ C
βν

H
,
[
φ1 ∇HTSφ2−φ2 ∇HTSφ1

]〉
H
σn−1

=

∫

∂U

〈[
φ1 ∇HTSφ2 − φ2 ∇HTSφ1

]
, η
〉
|PH (N )|H σn−2.

(iii) Let φ1, φ2 ∈ C∞(S), with at least one of them compactly supported on U .

Then we have
∫

U

{[
φ1 ∆

VS
φ2 − φ2 ∆

VS
φ1

]
−
〈[
φ1 DVSφ2 − φ2 DVSφ1

]
, ν

H

〉
〈H, ν

H
〉H
}
σ
H

+

∫

U

〈∑

β∈I2

nβ C
βν

H
,PH (φ1 DVSφ2 − φ2 DVSφ1)

〉
H
σn−1

=

∫

∂U

〈[
φ1 DVSφ2 − φ2 DVSφ1

]
, η〉 |PH (N )|H σn−2.

Proof. It follows immediately from Theorem 6.28.

Example 6.31. [Application: The Heisenberg group H1.] Let U ⊂ S be a compact

subset of a non-characteristic surface S ⊂ H1. Suppose that the boundary ∂U (6= ∅)

is smooth and denote by ı the inclusion map of ∂U . Then for every smooth vector

field X ∈ X(H1) we get
∫

U

[
τ2(x2) + τ3(x3)

]
σ
H

+

∫

U

[
x2 − x3φ12(τ2)

]
φ1 ∧ φ2 =

∫

∂U
ı∗(x2φ3 − x3φ3),

where we have used the H -adapted coframe (φ1, φ2, φ3), i.e. the dual coframe of

the H -adapted frame (τ1, τ1, τ1) (τ1 := ν
H
, τ2 = ν⊥H

H
, τ3 = X3; dφ3 = φ1 ∧ φ2).

By the above formula we also get
∫

U

[
τ3(x3) − x1φ12(τ2)

]
σ
H

= −

∫

∂U
ı∗(x3φ2)

and this can be written more explicitly as follows

∫

U

[
τ3(x3) + 〈H, X〉

]
σ
H

= −

∫

∂U
ı∗(x3φ2).
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6.3 Proof of Lemma 6.20

Proof. For X ∈ VS, we compute the exterior derivative of the contraction by X

of σ
H
, i.e.

d (X ⌋σ
H
)|S = d (X ⌋φ2 ∧ . . . ∧ φn)|S .

So if X =
∑n

J=2 xJτJ , then

d (X ⌋σ
H
)|S =

n∑

J=2

d (xJ τJ ⌋φ2 ∧ . . . φn)|S =
n∑

J=2

d (xJτJ ⌋σ
H
)|S

=

n∑

J=2

τJ(xJ)σ
H
|S +

n∑

J=2

xJ d (τJ ⌋σ
H
)|S

=
n∑

J=2

τJ(xJ)σ
H
|S +

∑

j∈I1\{1}

xj d (τj ⌋σH
)|S +

∑

α∈I2

xα d (τα ⌋σ
H
)|S

. (103)

Thus the proof follows by computing the exterior derivative of the form (τI ⌋σH
)|S ,

i.e.

d (τI ⌋σH
)|S = (−1)Id (φ2 ∧ . . . ∧ φ̂I ∧ . . . ∧ φn)|S (I = 2, . . . , n).

Step 1. Computation of

d (τI ⌋σH
)|S = (−1)id (φ2 ∧ . . . ∧ φ̂i ∧ . . . ∧ φn)|S

= (−1)id
(
φ2 ∧ . . . ∧ φ̂i ∧ . . . ∧ φm

∧

α∈I2

φα

)∣∣∣
S

i = 2, . . . ,m.

Proof of Step 1. With no loss of generality we may suppose i = 2. We have

A : = d (φ3 ∧ . . . ∧ . . . ∧ φn)

=
n∑

J=3

(−1)J+1φ3 ∧ . . . ∧ dφJ ∧ . . . φn
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=
n∑

J=3

(−1)J+1φ3 ∧ . . .
∧( n∑

J=1

φI ∧ φIJ

)∧
. . . φn

= −
n∑

J=3

(−1)J+1
( 2∑

I=1

φIJ ∧ φI

)∧
φ̂2 ∧ . . . ∧ φ̂J ∧ . . . ∧ . . . φn

= −
n∑

J=3

(−1)J+1(φ1J ∧ φ1) ∧ φ̂2 ∧ φ3 ∧ . . . ∧ φ̂J ∧ . . . ∧ . . . φn

−
n∑

J=3

(−1)J+1(φ2J ∧ φ2) ∧ φ̂2 ∧ φ3 ∧ . . . ∧ φ̂J ∧ . . . ∧ . . . φn. (104)

Here above we have used the 1st structure equation (84) of the H -adapted coframe

(φ1, . . . , φn) for S. Now we note that

φ1J =

n∑

K=1

φ1J(τK)φK and φ2J =

n∑

K=1

φ2J(τK)φK .

We have so

(A1)J : = (φ1J ∧ φ1) ∧ φ̂2 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn

= (φ1J(τ2)φ2 + φ1J(τJ)φJ) ∧ φ1 ∧ φ̂2 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn

= −φ1J(τ2)φ1 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn + (−1)Jφ1J(τJ)φ1 ∧ φ̂2 ∧ . . . ∧ φn.

(105)

Now if J ∈ I1 \{1} Lemma 6.3 says that (φ1∧ . . .∧ φ̂J ∧ . . .∧φn)|S = 0. Moreover,

by Lemma 6.4 of Section 2.1, if J ∈ I2, the second expression in the above formula

(105) is 0, while the first one is different from 0 only if J ∈ I2. Analogously, we

have that

(A2)J : = (φ2J ∧ φ2) ∧ φ̂2 . . . ∧ φ̂J ∧ . . . ∧ φn

= (φ2J (τ1)φ1 + φ2J (τJ)φJ) ∧ φ2 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn

= φ2J (τ1)φ1 ∧ . . . ∧ φ̂J ∧ . . . φn + (−1)Jφ2J(τJ)φ2 ∧ . . . ∧ φn.(106)

Using again Lemma 6.3 and Lemma 6.4 of Section 2 we get that the first term of

(106) is different from 0 only if J ∈ I2 while the second one is different from 0

only if J ∈ I1 and so that cases are mutually exclusive. Now, using (104) and the
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expressions of (A1)J and (A2)J , we may finish the computations of Step 1. More

precisely, we have

A|S = −
n∑

J=3

(−1)J+1
(
(I1)J + (I2)J

)∣∣∣
S

= −
n∑

J=3

(−1)J+1
{
− φ1J(τ2)φ1 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn

+ φ2J(τ1)φ1 ∧ . . . ∧ φ̂J ∧ . . . ∧ φn + (−1)Jφ2J(τJ)φ2 ∧ . . . ∧ φn

}∣∣∣
S

=
n∑

J=3

φ2J(τJ)(φ2 ∧ . . . φn)|S

+
∑

β∈I2

(−1)β+1(φ1β(τ2) − φ2β(τ1))(φ1 ∧ . . . ∧ . . . φ̂β ∧ . . . ∧ φn)|S

=
n∑

J=3

φ2J(τJ) (σ
H
)|S +

∑

β∈I2

(φ1β(τ2) − φ2β(τ1)) (τβ ⌋ Ωn)|S

=

{
m∑

j=2

φ2j(τj) +
∑

β∈I2

(φ1β(τ2) − φ2β(τ1))
nβ

n1

}
σ
H
|S ,

where we remind that nβ = 〈N , τβ〉 (β ∈ I2) and that n1 = 〈N , τ1〉 = |PH (N )|H .

Notice that from item (iii) of 6.4 and Definition 5.7 we obtain

φ1β(τ2) = −
1

2
〈Cβ(τ2), τ1〉H , φ2β(τ1) = −

1

2
〈Cβτ1, τ2〉H .

Since Cβ (β ∈ I2) is a skew-symmetric linear operator5 we get

φ1β(τ2) − φ2β(τ1) = 〈Cβτ1, τ2〉H .

Therefore

A|S =

{
m∑

j=2

φ2j(τj) +
∑

β∈I2

〈Cβτ1, τ2〉H
nβ

n1

}
(σ

H
)|S ,

and, in the general case, if i ∈ I1\{1}, we finally get

d(τi ⌋σH
)|S =

{
m∑

j=2

φij(τj) +
∑

β∈I2

〈Cβτ1, τi〉H
nβ

n1

}
σ
H
|S . (107)

5Notice that, with respect to the coordinates of the H -adapted frame (τ1, ..., τn), the

linear operator Cβ corresponds to the matrix OT CβO.
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Step 2. Computations of

d(τα ⌋σ
H
)|S = (−1)α d(φ2 ∧ . . . ∧ φ̂α ∧ . . . ∧ φn)|S α = m+ 1, . . . , n. (108)

Proof of Step 2.

B : = d(φ2 ∧ . . . ∧ φ̂α ∧ . . . ∧ φn)

=

m∑

j=2

(−1)jφ2 ∧ . . . ∧ dφj ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

±
∑

γ 6=α, γ∈I2

φ2 ∧ . . . ∧ φ̂α ∧ . . . ∧ dφγ ∧ φn. (109)

We remark now that the second addend (109) of B1(j) must be 0. Indeed, by the

first structure equation of the coframe (φ1, . . . , φn), we get

dφγ =
∑

K

φK ∧ φKγ 6= 0 ⇐⇒ K ∈ I1.

But (109) implies that K = 1. Moreover we have

φ1 ∧ φ1γ = φ1

∧(∑

R

φ1γ(τR)φR

)
, (110)

and if we substitute (110) in (109) the claim follows by item (iii) of 6.4, since R

must be equal to α ∈ I2. Therefore

B|S =
m∑

j=2

(−1)j

{
φ2 ∧ . . . ∧

(∑

k∈I1

φk ∧ φkj

)
∧ . . . ∧ φ̂α ∧ . . . ∧ φn

}∣∣∣∣∣
S

= −
m∑

j=2

(−1)j

{(∑

k∈I1

φkj ∧ φk

)
∧ φ2 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

}∣∣∣∣∣
S

.

From the first structure equation we get that

B1(j) = φ1j ∧ φ1 ∧ φ2 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

=
(∑

R

φ1j(τR)φR

)
∧ φ1 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

= φ1j(τj)φj ∧ φ1 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

+φ1j(τα)φα ∧ φ1 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn. (111)
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By applying Lemma 6.3 we get that the second addend (111) of B1(j) is 0, if it is

restricted to S. Furthermore

B2(j) = φαj ∧ φα ∧ φ2 ∧ . . . φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

=
(∑

R

φαj(τR)φR

)
∧ φα ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn

= φαj(τ1)φ1 ∧ φα ∧ φ2 ∧ . . . ∧ φ̂j ∧ . . . ∧ φ̂α ∧ . . . ∧ φn (112)

+φαj(τj)φj ∧ φα ∧ φ2 ∧ . . . ∧ φ̂j ∧ . . . ∧ . . . ∧ φ̂α ∧ . . . ∧ φn.

By applying again Lemma 6.3, we get that the first addend (112) of B2(j) is 0

when restricted to S. Thus we get

B|S = d(φ2 ∧ . . . ∧ φ̂α ∧ . . . ∧ φn)|S

= −
m∑

j=2

(−1)j
{

(−1)j−1φ1j(τj)φ1 ∧ . . . ∧ φ̂α ∧ . . . ∧ φn + (−1)j+α−1φαj(τj)φ2 ∧ . . . ∧ φn

}∣∣∣
S

= (−1)α−1
m∑

j=2

φ1j(τj)(τα ⌋Ωn)|S + (−1)α
m∑

j=2

φαj(τj)(σH
)|S

= (−1)α−1
m∑

j=2

{
φ1j(τj)

nα

n1
− φαj(τj)

}
(σ

H
)|S

= (−1)α−1

{
−

[
m∑

j=2

φαj(τj)

]
+

[
m∑

j=2

φ1j(τj)

]
nα

n1

}
(σ

H
)|S .

By the characterization of the connection 1-forms φαj given in Lemma 6.4 we get

φαj(τj) = 〈Cατj , τj〉 = 0

by the skew-symmetry of Cα, so that

d(φ2 ∧ . . . ∧ φ̂α ∧ . . . ∧ φn)|S = (−1)α−1

[
m∑

j=2

φ1j(τj)

]
(τα ⌋Ωn)|S

= (−1)α−1

[
m∑

j=2

φ1j(τj)

]
nα (σn−1)|S = (−1)α−1

[
m∑

j=2

φ1j(τj)

]
nα

n1
(σ

H
)|S
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and finally

d(τα ⌋σ
H
)|S = −

{ m∑

j=2

φ1j(τj)
} nα

n1
(σ

H
)|S .

At this point we may achieve the proof, by substituting into (103) the results of

the computations of Step 1 and Step 2. More precisely, we have

d(X ⌋σ
H
)|S

=

n∑

J=2

τJ(xJ) (σ
H
)|S +

m∑

j=2

xj d(τj ⌋σH
)|S +

∑

α∈I2

xα d (τα ⌋σ
H
)|S

=

{
n∑

J=2

τJ(xJ)+

m∑

j=2

[
xj

[ m∑

h=2

φjh(τh)+
∑

β∈I2

nβ

n1
〈Cβτ1, τj〉H

]
−φ1j(τj)

∑

α∈I2

xα
nα

n1

]}
(σ

H
)|S

that is equivalent to the thesis.
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7 1st and 2nd variation of σ
H

in 2-step

Carnot groups

7.1 Preliminaries

Before the statement of our results we would like to make a short comment, sug-

gested by a paper of Hermann, [55].

Let M be a smooth manifold and let χ : N −→M define N as a submanifold of

M . Assume that N is an oriented manifold with oriented boundary ∂N . Suppose

that ω is a p-form on N and denote by χt a family of of 1-parameter smooth

deformations of N fixing the boundary of N and which is just the identity for

t = 0. Then a very general variational problem is that to compute the 1st and the

2nd variation of the functional L(χt) =
∫
N
χ∗

tω, i.e.

d

dt

∫

N

χ∗
tω,

d2

dt2

∫

N

χ∗
tω.

Assuming that t −→ χt is the integral curve of a fixed vector field X ∈ X(M), we

can prove, by using Cartan’s formula and Stokes’ Theorem, that:

d

dt

∫

N

χ∗
t (ω) =

∫

N

χ∗
t (X ⌋ dω) +

∫

∂N

χ∗
t (X ⌋ω).

From this we obtain that χ is an extremal of L(χt) =
∫
N
χ∗

tω if

χ∗(X ⌋ dω) = 0 ∀ X ∈ X(M).

Moreover we obtain the condition that X must be transversal to the boundary, i.e.

χ∗(X ⌋ω)|∂N = 0.

Now the 2nd variation turns out to be given by

d2

dt2

∫

N

χ∗
tω =

∫

N

χ∗
t (X ⌋ d (X ⌋ω)) +

∫

∂N

χ∗
t (X ⌋ d(X ⌋ω)).

This kind of analysis goes back to Cartan, and applies as well to the case of

the H -perimeter form σ
H

in general k-step Carnot groups, but, of course, it can be

used in studying more general variational problems in the subriemannian setting.
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Below we shall introduce basic tools and definitions that nedeed to compute the

1st and the 2nd variation of the H -perimeter form σ
H

on regular non-characteristic

hypersurfaces of 2-step Carnot groups. We stress that we are dealing with 2-

step Carnot groups, because in this case, we have previously developed the useful

method of H -adapted moving frames. Actually, we will see in section 7.4, how

stating some of these results for the case of k-step groups without using such H -

adapted moving frames. For many calculations and well-known results needed in

this section we will follow, in many respects, the classical Spivak’s book, [88].

We now begin by quoting the following standard fact:

Proposition 7.1. [Leibnitz’ rule] Let N be a compact oriented n-dimensional

C∞-smooth manifold with or without boundary, and R ∋ t 7−→ ω(t) ∈ Λn(N) a

C∞ 1-parameter family of n-forms on N . Then

d

dt

∣∣∣
t=t0

∫

N

ω(t) =

∫

N

ω̇(t).

Proof. See [88], Proposition 10, Chapter 9, vol. IV.

This elementary proposition can directly be applied to the case of a regular

hypersurface immersed in a k-step Carnot group.

Throughout this section let G denote a 2-step n-dimensional Carnot group and

S be a smooth immersed non-characteristic hypersurface with unit normal vector

along S denoted by N . Moreover, let U ⊂ S be compact and suppose that the

boundary ∂U is a smooth n−2-dimensional Riemannian submanifold with outward

pointing unit normal η.

Definition 7.2 (Smooth variation). Let ı : U −→ G denote the inclusion of U

into G, and let ϑ : (−ǫ, ǫ) × U −→ G be a C∞ map. We say that ϑ is a smooth

variation of ı if the following hold:

(i) Each ϑt := ϑ(t, ·) : U −→ G is an immersion;

(ii) ϑ0 = ı;

(iii) ϑt|∂U = ı|∂U for each t ∈ (−ǫ, ǫ).
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We remark that the pull-back metric ϑ∗t 〈·, ·〉 on U determines a volume element

on U which can be regarded as an n−1-form on U , denoted by σn−1
t . The classical

approach (see, for instance, [16], [63], [88]) to the calculation of either the first or

the 2nd variation of the Riemannian volume form, is that to applying the above

Lemma 7.2 to compute

d

dt

∣∣∣
t=0

∫

M

σn−1
t ,

d2

dt2

∣∣∣
t=0

∫

M

σn−1
t .

In the sequel, if t ∈ (−ǫ, ǫ), we denote by Nt the unit normal vector along

U t := ϑt(U). Notice that, if {t1, ..., tn−1} is any orthonormal frame for U , then

Nt =
ϑtn∗t1 ∧ ... ∧ ϑtn∗tn−1

|ϑtn∗t1 ∧ ... ∧ ϑtn∗tn−1|
.

Remark 7.3. Let G, S, U and ϑ be as above. If U and ǫ are small enough, then

U t = ϑt(U) turn out to be non-characteristic for every t ∈ (−ǫ, ǫ). Obviously,

this is just a local property and this fact can easily be proved by a contradiction

argument.

From now on we choose U and ǫ so that any U t is non-characteristic. Therefore,

according to Definition 5.2, we may define the H -perimeter form σ
H ,t

on U t as

(σ
H ,t

)|U t = (ν
H ,t

⌋Ωn)|U t ∈ Λn−1(U t), t ∈ (−ǫ, ǫ),

where we have set

ν
H ,t

:=
PH (Nt)

|PH (Nt)|H
. (113)

Clearly, the family of n− 1-forms

Γ(t) := ϑ∗tσH ,t
∈ Λn−1(U), t ∈ (−ǫ, ǫ), (114)

is a C∞ 1-parameter family of n− 1-forms on U satisfying Proposition 7.2. Thus,

if we want to determine the 1st variation of σ
H

on U given by

IU (σ
H
) :=

d

dt

∣∣∣
t=0

∫

U
Γ(t), (115)

it suffices to determine Γ̇(0). From now on, let ∂
∂t

denote the canonical vector

field along the 1st factor in (−ǫ, ǫ)×U and denote by W its variation vector field,

defined as W := ϑ∗
∂
∂t

∣∣
t=0

.
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7.2 1st variation of σ
H

in 2-step Carnot groups

The main result that we shall prove in this section is the computation of Γ̇(t)|t=0.

The result turns out to be a generalized version of the corresponding Riemannian

one, but we cannot expect such an extension of it to be too trivial, because the

different features between the Riemannian volume form on hypersurfaces and the

H -perimeter form. We refer the reader to Section 6.1 for definitions and notation

which will be used in sequel.

Our main result of this section reads as follows:

Theorem 7.4. Let G be a 2-step Carnot group and let ı : U −→ G denote the

inclusion into G of a smooth non-characteristic hypersurface U , with boundary ∂U .

Moreover, let ϑ : (−ǫ, ǫ)×U −→ G be a smooth variation of ı, with variation vector

field W, and assume that U t = ϑt(U) is non-characteristic for every t ∈ (−ǫ, ǫ).

Finally, let Γ(t) = ϑ∗tσH ,t
denote the C∞ 1-parameter family of n− 1-forms on U

defined by (114). Then the following hold:

(i)

Γ̇(0) =
{

− Hsc
H

〈PH (W ), ν
H
〉σ

H
−Hsc

H
〈PZ (W ),PZ (N )〉σn−1

+ d (|PH (N )|H (W ⌋σn−1))
}∣∣∣

U
. (116)

(ii)

IU (σ
H
) = −

∫

U
Hsc

H
〈PH (W ), ν

H
〉H σ

H
−

∫

U
Hsc

H
〈PZ (W ),PZ (N )〉σn−1

+

∫

∂U
〈W, η〉 |PH (N )|H σn−2. (117)

Proof. Let U be an open set containing Im(ϑ) . We now fix an H-adapted moving

frame (ζ1, ..., ζn) for S on U (see Definition 6.1) such that:

(i) ζ1(ϑ(t, x)) := ν
H ,t

(x) (see (113) of Section 7.1);

(ii) Hϑ(t,x)TU t = span{ζ2(ϑ(t, x)), ..., ζm(ϑ(t, x))} ∀ x ∈ U ;
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(iii) ζα := Xα ∀ α ∈ I2 = {m+ 1, ..., n}.

Condition (ii) above means that {ζ2, ..., ζm} is a family of linearly independent

horizontal vector fields which span HTU t, i.e. the horizontal tangent bundle of

U t. Furthermore, we shall denote by (ϕ1, ..., ϕn) the corresponding dual coframe

(i.e. ϕI(ζJ) = δJ
I , I, J = 1, ..., n). Clearly, by construction, this frame and its

associated coframe, satisfy all the properties discussed in Section 6.1. We stress

that, at t = 0, the orthonormal moving frame now defined, is an H -adapted moving

frame along U (so that ζI = τI and ϕI = φI for every I = 1, ..., n). Note that

(iv) σ
H ,t

|U t = (ζ1 ⌋ϕ1 ∧ ... ∧ ϕn)|U t = (ϕ2 ∧ ... ∧ ϕn)|U t ;

(v) Γ(t) = ϑ∗t (ϕ2 ∧ ... ∧ ϕn).

The variation vector field W on U is the restriction of the vector field W̃ = ∂ϑ
∂t

,

which can be extended on some open set U ⊂ G containing Im(ϑ). Clearly the

integral curve of W̃ that starts at a point x ∈ U is just t 7−→ ϑt(x).

Step 1. We claim that

Γ̇(0) = ı∗(L
W̃

(σ
H ,t

)) = ı∗(L
W̃

(ϕ2 ∧ ... ∧ ϕn)).

Proof of Step 1. The proof of this fact is standard and it can be found in [88].

Denoting by γ
W̃x

(t) the integral curve of W̃ starting at x ∈ U , if x ∈ U and

Y ∈ TxU , we get

γ
W̃x

(t)
∗
(ı∗Y ) = ϑt∗Y.

So let Y1, ..., Yn−1 be tangent vectors along U . Then

Γ̇(0)(Y1, ..., Yn−1) = lim
s→0

1

s
{Γ(s)(Y1, ..., Yn−1) − Γ(0)(Y1, ..., Yn−1)}

= lim
s→0

1

s
{ϑs

∗σ
H ,t

(Y1, ..., Yn−1) − ı∗σ
H ,t

(Y1, ..., Yn−1)}

= lim
s→0

1

s
{σ

H ,t
(ϑs∗Y1, ..., ϑs∗Yn−1) − σ

H ,t
(ı∗Y1, ..., ı∗Yn−1)}
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= lim
s→0

1

s
{σ

H ,t
(θt∗(ı∗Y1), ..., θt∗(ı∗Yn−1)) − σ

H ,t
(ı∗Y1, ..., ı∗Yn−1)}

= L
W̃
σ
H ,t

(ı∗Y1, ..., ı∗Yn−1) (by definition of Lie derivative).

By using Cartan’s identity we get

L
W̃
σ
H ,t

= W̃ ⌋ d σ
H ,t

+ d (W̃ ⌋σ
H ,t

)

and therefore by Step 1.

Γ̇(0) = ı∗(W̃ ⌋ d σ
H ,t

+ d (W̃ ⌋σ
H ,t

)). (118)

Now we have

d σ
H ,t

= d (ϕ2 ∧ ... ∧ ϕn)

=
n∑

I=2

(−1)Iϕ2 ∧ ... ∧ dϕI ∧ ... ∧ ϕn

=

n∑

I=2

(−1)Iϕ2 ∧ ... ∧
(
−

n∑

J=1

ϕJI ∧ ϕJ

)
∧ ... ∧ ϕn (119)

= −
n∑

I=2

(−1)Iϕ2 ∧ ... ∧ (ϕ1I ∧ ϕ1) ∧ ... ∧ ϕn. (120)

Note that equality (119) is the 1st structure equation of the coframe (ϕ1, ..., ϕn),

while equality (120) comes from the fact that J can only be equal to 1. Also, we

have

ϕ1I =
n∑

K=1

ϕ1I(ζK)ϕK .

Therefore, by substituting this identity into (120) we obtain

d σ
H ,t

= −
n∑

I=2

(−1)I(−1)I−1ϕ1 ∧ ... ∧ ϕ1I ∧ ... ∧ ϕn

=

n∑

I=2

ϕ1I(ζI)ϕ1 ∧ ... ∧ ϕI ∧ ... ∧ ϕn (since K must be equal to I)

=
m∑

i=2

ϕ1i(ζi)ϕ1 ∧ ... ∧ ϕn, (121)
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where (121) follows since the H -adapted coframe (ϕ1, ..., ϕn) for S on U satisfies,

by construction, item (iii) of Lemma 6.4, i.e.:

ϕiα(ζβ) = 0 ∀ i ∈ I1 = {1, ...,m}, ∀ α, β ∈ I2 = {m+ 1, ..., n}.

Thus we get

ı∗
(
W̃ ⌋ d σ

H ,t

)
=

(
W̃ ⌋ d σ

H ,t

)
|U

=
{ m∑

i=2

ϕ1i(ζi)
(
W̃ ⌋ ϕ1 ∧ ... ∧ ϕn

)}∣∣∣
U

=

{[
m∑

i=2

ϕ1i(ζi)

]
〈W̃ ,Nt〉σ

n−1
t

}∣∣∣∣∣
U

= −Hsc
H

〈W,N 〉σn−1|U (122)

since ı∗ζ1 = ϑ∗0ζ1 = ν
H
. Note that at the last line we have used Definition 6.15 and

Remark 6.16. Now the second term in (118) is easily computed by using the fact

that

ı∗(d (W̃ ⌋σ
H ,t

)) = d (ı∗(W̃ ⌋σ
H ,t

)). (123)

Moreover

ı∗(W̃ ⌋σ
H ,t

) = ı∗(W̃ ⌋ |PH (Nt)|H σn−1
t ) = (W ⌋ |PH (N )|H σn−1)|∂U =

{
|PH (N )|H (W ⌋σn−1)

}∣∣∣
∂U
.

Finally, using the last relation and equalities (118) and (122) we get

Γ̇(0) = −Hsc
H

〈W,N 〉σn−1 + d (|PH (N )|H (W ⌋σn−1))

and item (i) of the theorem follows by Remark 6.6 of Section 6.1. Now item (ii)

easily follows by using (115), Leibnitz’ rule, and then by integrating both sides of

(116). Finally, for the second term, we use Stokes’ Theorem and the fact that

(W ⌋ σn−1)|∂U = 〈W, η〉 (σn−2)|∂U .
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We now state a definition of “divergence” of a vector field on G with respect

to the H -perimeter form on a regular hypersurface.

Definition 7.5. Let G be a k-step Carnot group and let S ⊂ G be a smooth

immersed non-characteristic hypersurface with unit normal vector along S denoted

by N . If X ∈ X(G) we shall hereafter denote by Divσ
H
X the divergence of X

with respect to σ
H
, that is, the function satisfying

(Divσ
H
X)σ

H
|S = LXσH

|S .

Notice that X ∈ X(G), i.e. X is any smooth section of TG and it is not necessarily

tangent along S.

Proposition 7.6. Let G be a 2-step Carnot group and let S ⊂ G be a smooth

immersed non-characteristic hypersurface with unit normal vector along S denoted

by N . Let U ⊂ S be compact and suppose that the boundary ∂U is a smooth n− 2-

dimensional Riemannian submanifold with outward pointing unit normal η. Then

the following two items hold:

(i) For every smooth vector field X ∈ X(G) we have

(Divσ
H
X)σ

H
|S

=

{
div

VS
X+

1

|PH (N )|H

〈∑

β∈I2

nβ C
βν

H
,PH (X)

〉
H
−Hsc

H
〈PH (X), ν

H
〉H

}
σ
H
|S ;

(ii) Let x ∈ S and suppose that Xx ∈ HxS. Since HxS = HTxS ⊕ span{(ν
H
)x},

we set Xx := (Xν
H )x + (XHTS )x. Then, for every X ∈ C∞(G,H ) we have

(Divσ
H
X)σ

H
|S

=

{
div

HTS
(XHTS ) +

1

|PH (N )|H

〈∑

β∈I2

nβ C
βν

H
, X
〉
H
−Hsc

H
〈X, ν

H
〉H

}
σ
H
|S
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Proof. The proof is a consequence of Lemma 6.20 of Section 6.2 and of the previous

proof of Theorem 7.4. Indeed, using Cartan’s formula we get

(Divσ
H
X)σ

H
|S = (X ⌋ d σ

H
)|S + d (X ⌋σ

H
)|S . (124)

Now the second addend of the left hand side can easily be computed from Lemma

6.20 by noting that it does not depend on the ν
H
-component of X. Moreover, we

have already proved that, for every X ∈ X(G) the first addend of (124) turns out

to be (X ⌋ d σ
H
)|S = −Hsc

H
〈X,N 〉σn−1|S . Therefore, the proof follows by adding

these two terms using Remark 6.6 and definitions.

We can finally state the following (see also Theorem 6.24):

Corollary 7.7. Let G be a 2-step Carnot group and let S ⊂ G be a smooth

immersed non-characteristic hypersurface with unit normal vector along S denoted

by N . Let U ⊂ S be compact and suppose that the boundary ∂U is a smooth n− 2-

dimensional Riemannian submanifold with outward pointing unit normal η. Let

U ⊂ G be an open neighborhood of U = U ∩ S. Then for every smooth vector field

X ∈ X(U) we have

∫

U
Divσ

H
(X)σ

H
= −

∫

U
Hsc

H
〈PH (X), ν

H
〉H σ

H
−

∫

U
Hsc

H
〈PZ (X),PZ (N )〉σn−1

+

∫

∂U
〈X, η〉 |PH (N )|H σn−2. (125)

Proof. This is obvious from Theorem 7.4.

7.3 2nd variation of σ
H

in 2-step Carnot groups

In the present section we derive the formula for the 2nd variation of σ
H

for regular

non-characteristic hypersurfaces in 2-step Carnot groups, according to the general

discussion of Section 7.1. The calculation itself is quite difficult and also the result

has a very complicated expression. Thus we do not compute the boundary term of
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the variation, since we make use only of compactly supported vector fields. Also

in this case we shall use H -adapted moving frames in doing computations. The

proof of the following Theorem 7.8 can be regarded as a continuation of the proof

of Theorem 7.4 and we refer to Section 7.2 for notation and previous results.

Moreover, since Theorem 7.4 implies that the 1st variation of σ
H

only depend

on the normal component of W (i.e. the component of W along N ) we restrict

ourselves to the case of normal variations of U , that is, smooth variations with

variation vector field which is normal along U and to the case of horizontal normal

variations (see Theorem 7.10 below).

Theorem 7.8. Let G be a 2-step Carnot group and ı : U −→ G be the inclusion

into G of a smooth non-characteristic hypersurface U . Let ϑ : (−ǫ, ǫ)×U −→ G be a

smooth normal variation of ı, with variation vector field W ∈ C∞
0 (G,TG) such

that spt(W )∩U ⋐ U and Wx ∈ NxU ∀ x ∈ Int(U). Assume that U t = ϑt(U) is non-

characteristic for every t ∈ (−ǫ, ǫ). Furthermore, let Γ(t) = ϑ∗tσH ,t
and (ζ1, ..., ζn)

be an orthonormal moving frame for U , where U is an open set containing

Im(ϑ) (see Section 7.1). Below we shall denote by w the function w := 〈W,N 〉
|PH (N )|H

.

Then

(i)

Γ̈(0) =

{
−W (w)Hsc

H
+ w

[
w1

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
−Hsc

H
div

Z
(PZW )

]

−w

[
∆

HTS
w1 +

∑

α∈I2

〈
∇τS

α
ν
H
,
(
∇HTSwα + w1C

αν
H

)〉
−
w1

2

∑

α∈I2

‖Cαν
H
‖2

Gram

+
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

]}
σ
H
;

(ii)

IIint
U (σ

H
) =

∫

U

{
−W (w)Hsc

H
+ w

[
w1

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
−Hsc

H
div

Z
(PZW )

]

−w

[
∆

HTS
w1 +

∑

α∈I2

〈
∇τS

α
ν
H
,
(
∇HTSwα + w1C

αν
H

)〉
−
w1

2

∑

α∈I2

‖Cαν
H
‖2

Gram

+
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

]}
σ
H
.
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Preliminarily, we give a definition that will be used trough the proof of the

next results.

Definition 7.9. Let S be a smooth non-characteristic hypersurface and let (τ1, ..., τn)

be an H -adapted frame for S with H -adapted coframe (φ1, ..., φn). Then we define

RicH : NS −→ ν
H
S by the following

RicH (X) :=
∑

i∈I1

〈R(τi, X) τi, τ1〉H τ1 ∀ X ∈ NS.

We also set

RicH (X) = 〈RicH (X), τ1〉 (X ∈ NS).

Moreover we define RicH : ν
H
S −→ ν

H
S by the following

RicH (X) :=
∑

i∈I1

〈R(τi, X) τi, τ1〉H τ1 ∀ X ∈ ν
H
S,

and we set

RicH (X) = 〈RicH (X), τ1〉 (X ∈ NS).

Proof of Theorem 7.8. Since the variation vector field W along U is a normal vec-

tor field, by using the coordinates given by the orthonormal frame (ζ1, ..., ζn)

for the open set U (see, for instance, the proof of Theorem 7.4) we get that

W̃ = w̃1ζ1 +
∑

β∈I2
w̃βζβ.

Using the hypothesis and Theorem 7.4 gets us the local expression of the 1st

variation of σ
H

at the interior of U , i.e.

Γ̇(0) = −Hsc
H

〈PH (W ), ν
H
〉σ

H
−Hsc

H
〈PZ (W ),PZ (N )〉σn−1

= −Hsc
H

〈W,N 〉

|PH (N )|H
σ
H
. (126)
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More generally, we remark that we have already proved that on Int(U) the 1st

variation at t ∈ (−ǫ, ǫ) is given by

Γ̇(t) = ı∗(W̃ ⌋ d σ
H ,t

)

=
{ m∑

i=2

ϕ1i(ζi)
(
W̃ ⌋ ϕ1 ∧ ... ∧ ϕn

)}∣∣∣
U

=

{[
m∑

i=2

ϕ1i(ζi)

]
〈W̃ ,Nt〉σ

n−1
t

}∣∣∣∣∣
U

.

We then get for every t ∈ (−ǫ, ǫ) the relation

Γ̇(t) =

{[
m∑

i=2

ϕ1i(ζi)

]
〈W̃ ,Nt〉

|PH (Nt)|H
σ
H ,t

}∣∣∣∣∣
U

(127)

=

{[
m∑

i=2

ϕ1i(ζi)

]
〈W̃ ,Nt〉

|PH (Nt)|H
ϕ2 ∧ ... ∧ ϕn

}∣∣∣∣∣
U

.

Throughout this proof, to sake of simplicity, we shall set:

w :=
〈W,N 〉

|PH (N )|H
, wt :=

〈W̃ ,Nt〉

|PH (Nt)|H
.

According to the proof of Theorem 7.4 we then have to compute

Γ̈(0)|U = ı∗{L
W̃

(W̃ ⌋ d σ
H ,t

)}. (128)

To this aim we make use of (137) by noting that

Γ̇(t) =

{[
m∑

i=2

ϕ1i(ζi)

]
wt ϕ2 ∧ ... ∧ ϕn

}∣∣∣∣∣
U

=
m∑

j=2

{
wt ϕ2 ∧ ... ∧ ϕ1j︸︷︷︸

j−th place

∧... ∧ ϕn

}∣∣∣∣∣
U

. (129)

This easily follows from definitions and Lemma 6.3. Therefore we preliminarily

have to compute the following expressions:

(i) L
W̃

(ϕh) for h ∈ I1 \ {1} = {2, ...,m};
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(ii) L
W̃

(ϕα) for α ∈ I2 = {m+ 1, ..., n};

(iii) L
W̃

(ϕ1j) for j ∈ I1 \ {1}.

This can be done by means of Cartan’s formula and of the structure equations for

our H -adapted coframe (ϕ1, ..., ϕn). For the term appearing at item (i) we get

L
W̃

(ϕh) =
∑

J 6=h

{
ϕJ(W̃ )ϕJh − ϕJh(W̃ )ϕJ

}
.

Similarly, for the term appearing at item (ii), we have

L
W̃

(ϕα) = w̃1

m∑

h=2

(
ϕ1α(ζh) − ϕhα(ζ1)

)
ϕh + d w̃α.

Finally (iii) can be obtained as follows:

L
W̃

(ϕ1j) = W̃ ⌋ dϕ1j + d (W̃ ⌋ϕ1j)

=
∑

L6=1,j

{(
ϕ1L(W̃ )ϕLj − ϕLj(W̃ )ϕ1L

)
− Φ1j(W̃ ) + d (ϕ1j(W̃ ))

}

=
∑

L6=1,j,K

{(
ϕ1L(W̃ )ϕLj − ϕLj(W̃ )ϕ1L

)
− 〈R(ζK , W̃ ) ζj , ζ1〉ϕK + d (ϕ1j(W̃ ))

}

(130)

where in (130) the 2-forms ΦJK are the curvature 2-forms of the coframe (ϕ1, ..., ϕn)

for U , which are defined by

ΦJK(X,Y ) := ϕK(R(X,Y ) ζJ)

= 〈R(X,Y ) ζJ , ζK〉

for all X, Y ∈ X(G) (J, K = 1, ...n).

Now from (128) and (129) we get

Γ̈(t) =

m∑

j=2

L
W̃

{
wt ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= W̃ (wt)

[
m∑

i=2

ϕ1i(ζi)

]
σ
H ,t

+ wt

m∑

j=2

L
W̃

{
ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= I + II,
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where

II := wt

m∑

j=2

L
W̃

{
ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= wt

m∑

j, h=2

ϕ2 ∧ ... ∧ L
W̃

(ϕh) ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn (131)

+wt

m∑

j=2

∑

α∈I2

ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ L
W̃

(ϕα) ∧ ... ∧ ϕn (132)

+wt

m∑

j=2

ϕ2 ∧ ... ∧ L
W̃

(ϕ1j) ∧ ... ∧ ϕn = II1 + II2 + II3. (133)

To compute each of these terms we make use of the previous computations of the

terms (i), (ii) and (iii). More precisely, we get

II1 : =
∑

j,h∈I1\{1}

wt

{
ϕ2 ∧ ... ∧

(
ϕ1j(ζj)ϕj + ϕ1j(ζh)ϕh

)
∧ ...

... ∧
[∑

L6=h

(
ϕhL(W̃ )ϕL − wLϕhL

)]
∧ ... ∧ ϕn

}

=
∑

j,h∈I1\{1}

wt

{
ϕ1j(ζj)

[
−
∑

L6=h

wLϕhL(ζh)
]
− ϕ1j(ζh)

[
ϕhj(W̃ ) −

∑

L6=h

wLϕhL(ζj)
]}
σ
H ,t

=
∑

j,h∈I1\{1}

wt

{
w1ϕ1j(ζj)ϕ1h(ζh) − ϕ1j(ζh)

(∑

L6=h

wL〈[ζj , ζL], ζh〉
)}
σ
H ,t

=
∑

j,h∈I1\{1}

wtw1

{
ϕ1j(ζj)ϕ1h(ζh) − ϕ1j(ζh)〈[ζj , ζ1], ζh〉

}
σ
H ,t

=
∑

j,h∈I1\{1}

wtw1

{
ϕ1j(ζj)ϕ1h(ζh) − ϕ1j(ζh)(ϕ1h(ζj) − ϕjh(ζ1))〉

}
σ
H ,t

;

II2 := wt

∑

j∈I1\{1}

∑

α∈I2

{
ϕ1j(ζ1)

[
ζ1(w̃α) + w̃1

(
ϕ1α(ζj) − ϕjα(ζ1)

)]nt α

nt 1

+ϕ1j(ζj)ζα(w̃α) − ϕ1j(ζα)
[
ζj(w̃α) + w̃1

(
ϕ1α(ζj) − ϕjα(ζ1)

)]}
σ
H ,t

= wt

∑

j∈I1\{1}

∑

α∈I2

{
ϕ1j(ζj)ζα(w̃α) + −ϕ1j

(
ζα −

nt α

nt 1
ζ1

)[
ζj(w̃α) + w̃1

(
ϕ1α(ζj) − ϕjα(ζ1)

)]}
σ
H ,t
.
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Now we put II3 := (II3)a + (II3)b, where

(II3)a = wt

∑

j∈I1\{1}

{
ϕ2 ∧ ... ∧

{
−
∑

K

〈R(ζK , W̃ ) ζj , ζ1〉ϕK

+
∑

L6=1,j

[
ϕ1L(W̃ )ϕLj − ϕLj(W̃ )ϕ1L

]}
∧ ... ∧ ϕn

}

and, by using Lemma 6.3 and Definition 7.9, we get

(II3)a = −wt

{
RicH (W̃ )−

∑

j∈I1\{1}

∑

L6=1,j

[
ϕ1L(W̃ )ϕLj(ζj)− ϕLj(W̃ )ϕ1L(ζj)

]}
σ
H ,t
.

Furthermore we have

(II3)b := wt

m∑

j=2

ϕ2 ∧ ... ∧ d (ϕ1j(W̃ )) ∧ ... ∧ ϕn

= wt

m∑

j=2

ζj(ϕ1j(W̃ ))σ
H ,t
. (134)

Claim 1. We claim that the connection 1-forms ϕij are 0 whenever j, h ∈ I1 \{1}.

Proof. Consider a Riemannian orthonormal moving frame on U H-adapted to the

open set U = U∩S. This means that we have an orthonormal frame ξ = {ξ1, ..., ξn}

on U , satisfying ξ1(p) = N (p) (N is the Riemannian unit normal along S) and

such that

ξS = spanR{ξ2(p), ..., ξn(p)} = TpS

for every p ∈ U ⊂ S. Moreover let us denote by ε = {ε1, ..., εn} its dual co-frame.

Claim: It is always possible to choose another Riemannian orthonormal moving

frame ξ̃ for U H-adapted to U satisfying:

(i) ξ̃(p0) = ξ(p0);

(ii) The connection 1-forms ε̃IJ = 〈∇ξ̃I , ξ̃J〉 (I, J = 1, ..., n) for ξ̃ satisfies

ε̃ij(p0) = 0 for every i, j = 2, ..., n.

Here again, ξ̃S = {ξ̃2, ..., ξ̃n} is a tangent orthonormal frame for U . We stress that

the proof of this claim is standard and it can be found, for instance, in [88], pag.
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517-519, eq.(17). Therefore, from this fact the thesis easily follows by assuming

that at p0 the frame ξ satisfy ξi(p0) = ζi(p0) for every i ∈ I1 \ {1}, i.e. the set of

vectors {ξ2(p0), ..., ξm(p0)} is an orthonormal basis of the horizontal tangent space

Hp0S at p0, coinciding with that given at the beginning. In this case we get, in

particular, that

ε̃ij(p0) = 〈∇Xp0
ξ̃i, ξ̃j〉(p0) = 0 for every i, j ∈ I1 \ {1}.

By extending the orthonormal frame {ξ̃2, ..., ξ̃m} for the horizontal tangent space

to a full H -adapted frame ζ we get our initial claim.

Claim 2.We claim that 〈[W̃ , ϑt∗X],Nt〉 = 0 for every X ∈ C∞(U ,HTU).

Proof. A proof of this claim can be found in Spivak, [88], Ch. 9, pag. 521-522.

Claim 3.Let us set Ct :=
∑

α∈I2
ntα

nt1
Cα. Then we have

∇H

W̃
ζ1 = −∇HTUt w̃1 −

∑

α∈I2

ntα

nt1
∇HTUt w̃α − PHTUt(C

tW̃ ). (135)

Proof. Using the previous Claim 3 we get 〈[W̃ , ζj ],Nt〉 = 0 for every j ∈ I1 \ {1}.

Therefore

〈∇
W̃
ζj ,Nt〉 = 〈∇ζj

W̃ ,Nt〉 (j ∈ I1 \ {1}).

This implies that

−〈∇H

W̃
ν
H ,t
, ζj〉 = 〈∇ζj

W̃ , ν
H ,t

〉 +
∑

α∈I2

ntα

nt1

(
〈∇ζj

W̃ , ζα〉 − 〈∇
W̃
ζj , ζα〉

)

= ζj(w̃1) +
∑

α∈I2

ntα

nt1
ζj(w̃α) +

∑

α∈I2

∑

I

w̃I
ntα

nt1

(
〈∇ζj

ζI , ζα〉 − 〈∇ζI
ζj , ζα〉

)

= ζj(w̃1) +
∑

α∈I2

ntα

nt1
ζj(w̃α) +

∑

α∈I2

∑

I

w̃I
ntα

nt1
Cα

jI

= ζj(w̃1) +
∑

α∈I2

ntα

nt1
ζj(w̃α) + 〈CtW̃ , ζj〉 (j ∈ I1 \ {1} = {2, ...,m})

which is equivalent to the claim.
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At this point, by making use of Claim 3, we get that (134) can be computed

as follows:

(II3)b = wt

m∑

j=2

ζj(ϕ1j(W̃ ))σ
H ,t

= wtdiv
HTUt

(∇H

W̃
ζ1)

= wtdiv
HTUt

(
−∇HTUt w̃1 −

∑

α∈I2

ntα

nt1
∇HTUt w̃α − PHTUt(C

tW̃ )
)
σ
H ,t

= −wtdiv
HTUt

(
∇HTUt w̃1 +

∑

α∈I2

ntα

nt1
∇HTUt w̃α + PHTUt(C

tW̃ )
)
σ
H ,t

= −wt

{
∆

HTUt
w̃1 +

∑

α∈I2

(ntα

nt1
∆

HTUt
w̃α +

〈
∇H

(ntα

nt1

)
,∇HTUt w̃α

〉)

+div
HTUt

(PHTUt(C
tW̃ ))

}
σ
H ,t
.

In sequel we shall set

C :=
∑

α∈I2

nα

n1
Cα.

Now, tacking into account all the above computations, if we restrict to U by

assuming t = 0, we get that6

Γ̈(0) = {I + II1 + II2 + (II3)a + (II3)b}|t=0 =

{
−W (w)〈H, τ1〉H

+
∑

j,h∈I1\{1}

ww1

{
φ1j(τj)φ1h(τh) − φ1j(τh)(φ1h(τj) − φjh(τ1))

}

+w
∑

j∈I1\{1}

∑

α∈I2

{
φ1j(τj)τα(wα) − φ1j

(
τα −

nα

n1
τ1

)[
τj(wα) + w1

(
φ1α(τj) − φjα(τ1)

)]}

−w
{
RicH (W ) −

∑

j∈I1\{1}

∑

L6=1,j

[
φ1L(W )φLj(τj) − φLj(W )φ1L(τj)

]}

−w
{

∆
HTS

w1 +
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

}}
σ
H

6Note that, at t = 0, we have ζI = τI and ϕI = φI for I = 1, ..., n. Moreover, remind

that τ1 = ν
H
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=

{
−W (w)Hsc

H
+

∑

j,h∈I1\{1}

ww1

{
φ1j(τj)φ1h(τh) − φ1j(τh)φ1h(τj)

}

+w
∑

j∈I1\{1}

∑

α∈I2

{
φ1j(τj)τα(wα) − φ1j(τ

S
α )
[
τj(wα) + w1

(
φ1α(τj) − φjα(ν

H
)
)]}

−w
{
RicH (W ) −

∑

j∈I1\{1}

∑

L6=1,j

[
φ1L(W )φLj(τj) − φLj(W )φ1L(τj)

]}

−w
{

∆
HTS

w1 +
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

}}
σ
H

=

{
−W (w)Hsc

H
+ w

[
w1

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
−Hsc

H
div

Z
(PZW )

]

−w
∑

α∈I2

(
〈∇τS

α
ν
H
,∇HTSwα〉 + w1〈C

αν
H
,∇H

τS
α
ν
H
〉
)

−w
{
RicH (W ) + w1

∑

j∈I1\{1}

∑

α∈I2

φαj(νH )φ1α(τj)
}

−w
{

∆
HTS

w1 +
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

}}
σ
H

=

{
−W (w)Hsc

H
+ w

[
w1

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
−Hsc

H
div

Z
(PZW )

]

−w
∑

α∈I2

(
〈∇τS

α
ν
H
,∇HTSwα〉 + w1〈C

αν
H
,∇H

τS
α
ν
H
〉
)

−w
{
RicH (W ) + w1

∑

j∈I1\{1}

∑

α∈I2

1

4
〈[τ1, τj ], τα〉

2
}

−w
{

∆
HTS

w1 +
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

}}
σ
H

=

{
−W (w)Hsc

H
+ w

[
w1

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
−Hsc

H
div

Z
(PZW )

]

−w
∑

α∈I2

〈
∇τS

α
ν
H
,
(
∇HTSwα + w1C

αν
H

)〉
−

ww1

2

∑

j∈I1\{1}

∑

α∈I2

〈[τ1, τj ], τα〉
2

−w
{

∆
HTS

w1 +
∑

α∈I2

(nα

n1
∆

HTS
wα +

〈
∇H

(nα

n1

)
,∇HTSwα

〉)
+ div

HTS
(PHTS(CW ))

}}
σ
H

where in the last equality we have used the explicit expression of RicH (W ), i.e.

RicH (W ) = −w1
3
4

∑
j∈I1\{1}

∑
α∈I2

〈[τ1, τj ], τα〉
2. Indeed this result can easily be
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obtained by using (a’) of (78). The last expression achieves the proof once we note

that
∑

j∈I1\{1}
〈[τ1, τj ], τα〉

2 = ‖Cαν
H
‖2

Gram.

At this point we may state another similar result which give us the second

horizontal normal variation of σ
H

on regular non-characteristic hypersurfaces in

2-step Carnot groups. Also this formula is stated without boundary terms.

Theorem 7.10. Let G be a 2-step Carnot group. Let ı : U −→ G denote the

inclusion into G of a smooth non-characteristic hypersurface U and ϑ : (−ǫ, ǫ) ×

U −→ G be a smooth normal H -variation of ı, with variation vector field

W ∈ C∞
0 (G,H ) such that spt(W ) ∩ U ⋐ U and Wx ∈ (ν

H
)xU ∀ x ∈ Int(U).

Assume that U t = ϑt(U) is non-characteristic for every t ∈ (−ǫ, ǫ). Finally, let

Γ(t) = ϑ∗tσH ,t
and (ζ1, ..., ζn) be an orthonormal moving frame for U , where

U is an open set containing Im(ϑ) (see Section 7.1). Then we have

(i)

Γ̈(0) =

{
−W (w)Hsc

H
+ w2

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
− w∆

HTS
w

−w2
∑

α∈I2

〈∇τS
α
ν
H
, Cαν

H
〉 +

w2

2

∑

α∈I2

‖Cαν
H
‖2

Gram − w div
HTS

(w Cν
H
)

}
σ
H

(ii)

IIint
U (σ

H
) =

∫

U

{
−W (w)Hsc

H
+ w2

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
− w∆

HTS
w

−w2
∑

α∈I2

〈∇τS
α
ν
H
, Cαν

H
〉 +

w2

2

∑

α∈I2

‖Cαν
H
‖2

Gram − w div
HTS

(w Cν
H
)

}
σ
H

Proof. This proof can be regarded as a continuation of that of Theorem 7.8 and

we refer to it for the notation used in the sequel.

We have by hypothesis that the variation vector field W along U is a horizontal

normal vector field, and so using the coordinates given by the H -adapted frame
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(ζ1, ..., ζn) for the open set U we just get that W̃ = wtζ1. By using the hypothesis

and Theorem 7.4 we get the local expression of the first H -variation of σ
H

at the

interior of U , i.e.

Γ̇(0) = −Hsc
H

〈W, ν
H
〉σ

H
= −〈H,W 〉H σ

H
.

Notice that we have to calculate

Γ̈(0)|U = ı∗{L
W̃

(W̃ ⌋ d σ
H ,t

)}. (136)

We also have that the 1st variation on Int(U) at t ∈ (−ǫ, ǫ) is given by

Γ̇(t) = ı∗(W̃ ⌋ d σ
H ,t

)

=
{ m∑

i=2

ϕ1i(ζi)
(
W̃ ⌋ ϕ1 ∧ ... ∧ ϕn

)}∣∣∣
U

=
{[ m∑

i=2

ϕ1i(ζi)
]
w̃1 σH ,t

}∣∣∣
U

and then we have, for every t ∈ (−ǫ, ǫ), the relation

Γ̇(t) =
{[ m∑

i=2

ϕ1i(ζi)
]
w̃1 σH ,t

}∣∣∣
U

=
{[ m∑

i=2

ϕ1i(ζi)
]
w̃1 ϕ2 ∧ ... ∧ ϕn

}∣∣∣
U

=

m∑

j=2

{
w̃1 ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}∣∣∣
U
.

As in the previous theorem we have to compute the following quantities

(i) L
W̃

(ϕh) for h ∈ I1 \ {1} = {2, ...,m};

(ii) L
W̃

(ϕα) for α ∈ I2 = {m+ 1, ..., n};

(iii) L
W̃

(ϕ1j) for j ∈ I1 \ {1}.

Also in this case, we can do this by Cartan’s formula and the structure equations

for the H -adapted coframe (ϕ1, ..., ϕn). Clearly, we have many simplifications,
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because W̃ = wtζ1. For the term appearing at item (i) we have

L
W̃

(ϕh) =
∑

J 6=h

{
ϕJ(W̃ )ϕJh − ϕJh(W̃ )ϕJ

}
= wt

∑

J 6=h

{
ϕ1h − ϕJh(ζ1)ϕJ

}

= wt

∑

J 6=h

{
ϕ1h(ζJ) − ϕJh(ζ1)

}
ϕJ .

For the term appearing at item (ii), we have

L
W̃

(ϕα) = wt

m∑

h=2

(
ϕ1α(ζh) − ϕhα(ζ1)

)
ϕh.

Finally (iii) can be obtained as follows.

L
W̃

(ϕ1j) = W̃ ⌋ dϕ1j + d (W̃ ⌋ϕ1j)

= wt

∑

L6=1,j

{[
ϕ1L(ζ1)ϕLj − ϕLj(ζ1)ϕ1L

]
−
∑

K

〈R(ζK , ζ1) ζj , ζ1〉ϕK

}
+ d (ϕ1j(W̃ )).

We therefore have

Γ̈(t) =
m∑

j=2

L
W̃

{
wt ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= W̃ (wt)

[
m∑

i=2

ϕ1i(ζi)

]
σ
H ,t

+ wt

m∑

j=2

L
W̃

{
ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= I + II,

where

II := wt

m∑

j=2

L
W̃

{
ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

}

= wt

m∑

j, h=2

ϕ2 ∧ ... ∧ L
W̃

(ϕh) ∧ ... ∧ ϕ1j ∧ ... ∧ ϕn

+wt

m∑

j=2

∑

α∈I2

ϕ2 ∧ ... ∧ ϕ1j ∧ ... ∧ L
W̃

(ϕα) ∧ ... ∧ ϕn

+wt

m∑

j=2

ϕ2 ∧ ... ∧ L
W̃

(ϕ1j) ∧ ... ∧ ϕn =: II1 + II2 + II3.
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We substitute into this expression (i), (ii), (iii) above. This way we get

II1 : =
∑

j,h∈I1\{1}

wt

{
ϕ2 ∧ ... ∧

(
ϕ1j(ζj)ϕj + ϕ1j(ζh)ϕh

)
∧ ...

... ∧
[
wt

∑

J 6=h

{
ϕ1h(ζJ) − ϕJh(ζ1)

}
ϕJ

]
∧ ... ∧ ϕn

}

=
∑

j,h∈I1\{1}

w2
t

{
ϕ1j(ζj)ϕ1h(ζh) − ϕ1j(ζh)ϕ1h(ζj)

}
σ
H ,t

;

II2 : = w2
t

∑

j∈I1\{1}

∑

α∈I2

{
ϕ1j(ζ1)

(
ϕ1α(ζj) − ϕjα(ζ1)

)nt α

nt 1
− ϕ1j(ζα)

(
ϕ1α(ζj) − ϕjα(ζ1)

)}
σ
H ,t

= −w2
t

∑

j∈I1\{1}

∑

α∈I2

ϕ1j

(
ζα −

nt α

nt 1
ζ1

)(
ϕ1α(ζj) − ϕjα(ζ1)

)
σ
H ,t
. (137)

We put II3 := (II3)a + (II3)b, where

(II3)a = wt

∑

j∈I1\{1}

{
ϕ2 ∧ ... ∧

{
−
∑

K

〈R(ζK , W̃ ) ζj , ζ1〉ϕK

+
∑

L6=1,j

[
ϕ1L(W̃ )ϕLj − ϕLj(W̃ )ϕ1L

]}
∧ ... ∧ ϕn

}
(138)

and, by using Lemma 6.3 and Definition 7.9, we get

(II3)a = −w2
t

{
RicH (ζ1) −

∑

j∈I1\{1}

∑

L6=1,j

[
ϕ1L(ζ1)ϕLj(ζj) − ϕLj(ζ1)ϕ1L(ζj)

]}
σ
H ,t
.

Furthermore we have

(II3)b := wt

m∑

j=2

ϕ2 ∧ ... ∧ d (ϕ1j(W̃ )) ∧ ... ∧ ϕn = wt

m∑

j=2

ζj(ϕ1j(wtζ1))σH ,t

(139)

and we may compute this term by arguing exactly as in the previous proof of

Theorem 7.8 and, more precisely, by making use of Claim 1, Claim 2 and Claim 3
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we obtain

(II3)b = wt

m∑

j=2

ζj(ϕ1j(W̃ ))σ
H ,t

= wtdiv
HTUt

(∇H

W̃
ζ1)

= wtdiv
HTUt

(
−∇HTUt wt − wtPHTUt(C

tζ1)
)
σ
H ,t

= −wtdiv
HTUt

(
∇HTUt wt + wtPHTUt(C

tζ1)
)
σ
H ,t

= −wt

{
∆

HTUt
wt + div

HTUt
(wtPHTUt(C

tζ1))
}
σ
H ,t
.

From what we have previously seen and by using Claim 1 of the proof of Theorem

7.8, we get that

Γ̈(0) = {I + II1 + II2 + (II3)a + (II3)b}|t=0

=

{
− w

∂w

∂ν
H

Hsc
H

+
∑

j,h∈I1\{1}

w2
{
φ1j(τj)φ1h(τh) − φ1j(τh)φ1h(τj)

}

+w2
∑

j∈I1\{1}

∑

α∈I2

{
− φ1j

(
τα −

nα

n1
ν
H

)(
φ1α(τj) − φjα(ν

H
)
)}

−w2
{
RicH (ν

H
) −

∑

j∈I1\{1}

∑

L6=1,j

[
φ1L(ν

H
)φLj(τj) − φLj(νH )φ1L(τj)

]}

−w
{

∆
HTUt

w + div
HTUt

(wPHTUt(C
tζ1))

}}
σ
H

=

{
−W (w)Hsc

H
+ w2

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)

−w2
∑

α∈I2

〈∇τS
α
ν
H
, Cαν

H
〉 +

w2

2

∑

j∈I1\{1}

∑

α∈I2

〈[τ1, τj ], τα〉
2

−w
{

∆
HTS

w + div
HTS

(w Cζ1)
}}

σ
H

=

{
−W (w)Hsc

H
+ w2

(
〈H, ν

H
〉2H − ‖bH ‖2

Gram

)
− w∆

HTS
w

−w2
∑

α∈I2

〈∇τS
α
ν
H
, Cαν

H
〉 +

w2

2

∑

α∈I2

‖Cαν
H
‖2

Gram − w div
HTS

(w Cν
H
)

}
σ
H

which is the thesis.
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7.4 Addendum: Integration by parts and 1st variation

of σ
H

in k-step Carnot groups

The results previously stated can be generalized for k-step Carnot groups. Through-

out this Addendum, we shall generalize some of them, and, more precisely, the

theorem about the 1st variation of the H -perimeter form σ
H

and the integration

by parts formulae for smooth non-characteristic hypersurfaces.

However, many proofs given below will turn out to be slightly different from

the previous ones because we will make use just of the fixed left invariant frame

(X1, ..., Xn).

Let G be a k-step n-dimensional Carnot group and let S ⊂ G be a smooth

immersed non-characteristic hypersurface with unit normal vector along S denoted

by N . Let U ⊂ S be compact and suppose that the boundary ∂U is a smooth n−2-

dimensional submanifold with outward pointing unit normal η. Finally, U ⊂ G

will denote an open set having non-empty intersection with S and U := U ∩ S.

In this section we do not make use of the indices convention used for 2-step

Carnot groups.

In the sequel we shall set

I1 := {1, ...,m1}, I2 := {m1 + 1, ...,m2}, ..., Ik := {mk−1 + 1, ..., n}

Ω1 := ω1 ∧ ... ∧ ωm1 , Ω2 := ωm1+1 ∧ ... ∧ ωm2 , ...,Ωk := ωmk−1+1 ∧ ... ∧ ωmk
,

so that Ωn = Ω1 ∧ ... ∧ Ωk.

The next notions of horizontal second fundamental form and of horizontal mean

curvature, are analogous to the ones given in Definition 6.15.

Definition 7.11. We define the horizontal second fundamental form of S

to be the map bH : HTS × HTS −→ ν
H
S given by

bH (X,Y ) := 〈∇H

XY, νH 〉H ν
H

∀ X, Y ∈ HTS.

The trace of bH , denoted by H, is called the horizontal mean curvature of S.

Finally, the quantity Hsc
H

= 〈H, ν
H
〉H is the scalar horizontal mean curvature
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of S. Clearly, H ∈ ν
H
S and

H :=

m1∑

j=1

〈∇H

Xj
Xj , νH 〉H ν

H
= −

m1∑

j=1

〈∇H

Xj
ν
H
, Xj〉H ν

H
= −Hsc

H
ν
H
.

We begin by stating some preliminary lemmas.

Lemma 7.12. Let j ∈ I1. Then we have

d (Xi ⌋Xj ⌋Ωn)|S =





∑n
k=m1+1 c

k
ji nk σ

n−1|S (i ∈ I1);

∑n
k=i+1 c

k
ji nk σ

n−1|S (i ≥ m1 + 1 ⇔ i ∈ I2 ∪ ... ∪ Ik).

Definition 7.13. Throughout this section we shall set Ck
H := [ckij ]{i, j ∈I1} ∈ Mm1,m1(R)

and Ck
V := [ckji]{j ∈I1, i∈I2∪...∪Ik} ∈ Mm1,n−m1(R). Moreover we shall denote by

Ck
H : H −→ H and, respectively, by Ck

V : V2 ⊕ ... ⊕ Vk −→ H , the linear operators

associated with Cα
H and Ck

V . We shall also denote by

PV : g −→ V2 ⊕ ...⊕ Vk

the projection map onto V2 ⊕ ...⊕ Vk given, for X ∈ g, by

PV (X) :=
n∑

i=m1+1

〈X,Xi〉Xi

.

Proof of Lemma 7.12. This proof will be divided into two steps. We start with

the following:

Step 1. Computations of

d (Xi ⌋Xj ⌋Ωn)|S for i ∈ I1 (j = 1, ...,m1). (140)
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Proof. We have

α : = d (Xi ⌋Xj ⌋Ω1 ∧ Ω2 ∧ ... ∧ Ωk)|S

= d
(
(Xi ⌋Xj ⌋Ω1) ∧ (Ω2 ∧ ... ∧ Ωk)

)∣∣∣
S

=
(
d (Xi ⌋Xj ⌋Ω1) ∧ (Ω2 ∧ ... ∧ Ωk)

+(−1)m1−2(Xi ⌋Xj ⌋Ω1) ∧ d (Ω2 ∧ ... ∧ Ωk)
)∣∣∣

S

= (−1)m1

(
(Xi ⌋Xj ⌋Ω1) ∧ d (Ω2 ∧ ... ∧ Ωk)

)∣∣∣
S

(141)

since dωk = 0 ∀ k ∈ I1. Now setting β := d (Ω2 ∧ ... ∧ Ωk) we get

β = d (ωm1+1 ∧ ... ∧ ωn)

=
n∑

k=m1+1

(−1)k+m1+1ωm1+1 ∧ ... ∧ dωk ∧ ... ∧ ωn

=

n∑

k=m1+1

(−1)k+m1+1ωm1+1 ∧ ... ∧
(
−

1

2

∑

1≤r,s≤hl−1

ckrs ωr ∧ ωs

)
∧ ... ∧ ωn

(142)

whenever hl−1 < k < hl+1(⇔ k ∈ Il); see Remark 1.22 of Section 1.2. From (142)

we get

β = −
1

2

n∑

k=m1+1

∑

1≤r,s≤hl−1

ckrs (−1)k+m1+1ωm1+1 ∧ ... ∧ ωr ∧ ωs︸ ︷︷ ︸
k−th place

∧... ∧ ωn (143)

= −
1

2

n∑

k=m1+1

∑

1≤r,s≤hl−1

ckrs (−1)k+m1+1 (ωr ∧ ωs) ∧ (ωm1+1 ∧ ... ∧ ω̂k ∧ ... ∧ ωn).

Now we note that α 6= 0 if, and only if, we have

Ω1 = ±(Xi ⌋Xj ⌋Ω1) ∧ (ωr ∧ ωs).

This implies r = i and s = j or r = j and s = i. So, tacking into account

(141), (142), (143), using the skew-symmetry on the lower indices of the structural
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constants ckrs, one gets

α = −
n∑

k=m1+1

ckij (−1)k+1ω1 ∧ ... ∧ ω̂k ∧ ... ∧ ωn|S

=
n∑

k=m1+1

ckji (Xk ⌋Ωn)|S

=

n∑

k=m1+1

ckji nk σ
n−1|S .

Step 2. Computations of

d(Xi ⌋Xj ⌋Ωn)|S for i ≥ m1 + 1 ⇔ i ∈ I2 ∪ ... ∪ Ik (j = 1, ...,m1). (144)

Proof. We have

α = d (Xi ⌋Xj ⌋Ωn)
∣∣∣
S

= d
(
Xi ⌋

(
(Xj ⌋Ω1)

∧
(Ω2 ∧ ... ∧ Ωk)

))∣∣∣
S

= (−1)j+1d
(
Xi ⌋

(
(ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1)

∧
(Ω2 ∧ ... ∧ Ωk)

))∣∣∣
S

= (−1)i+jd
(
ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1︸ ︷︷ ︸

j∈I1

∧ωm1+1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn︸ ︷︷ ︸
i∈I2∪...∪Ik

)
|S

= (−1)i+j+m1−1(ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1)
∧
d (ωm1+1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn)|S

. (145)

since dωk = 0 ∀ k ∈ I1. Now, setting

β = ωm1+1 ∧ ... ∧ ω̂i ∧ ... ∧ ωn

we get

α = (−1)i+j+m1−1(ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1) ∧ d β|S
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so that we have to compute d β. We note that d β is a finite sum of terms of the

following type:

γ1 = ωm1+1 ∧ ... ∧ dωk ∧ ... ∧ ω̂i ∧ ... ∧ ωn,

γ2 = ωm1+1 ∧ ... ∧ ω̂i ∧ ... ∧ d ωk ∧ ... ∧ ωn.

But each n − m1-form of the type γ1 must be 0. Indeed dωk is a finite sum of

2-forms ωr ∧ ωs, with 1 ≤ r, s ≤ hl−1 whenever hl−1 < k < hl+1(⇔ k ∈ Il),

and so in the wedge product which defines α, there is at least one term ω2
r (or

ω2
s). Therefore, setting β := β1 ∧ ω̂i ∧ β2, where β1 := ωm1+1 ∧ ... ∧ ωi−1 and

β2 := ωi+1 ∧ ... ∧ ωn, we get

d β = (−1)i−m1−1β1 ∧ ω̂i ∧ d β2. (146)

Now we have

d β2 = d (ωi+1 ∧ ... ∧ ωn)

=

n∑

k=i+1

(−1)k+i+1ωi+1 ∧ ... ∧ dωk ∧ ... ∧ ωn

=
n∑

k=i+1

(−1)k+i+1ωm1+1 ∧ ... ∧
(
−

1

2

∑

1≤r,s≤hl−1

ckrs ωr ∧ ωs

)
∧ ... ∧ ωn

(147)

whenever hl−1 < k < hl+1(⇔ k ∈ Il); see Remark 1.22. From (147) we get

d β2 = −
1

2

n∑

k=i+1

∑

1≤r,s≤hl−1

ckrs (−1)k+i+1ωi+1 ∧ ... ∧ ωr ∧ ωs︸ ︷︷ ︸
k−th place

∧... ∧ ωn.

(148)

Then, tacking into account equations (145), (146) and (148) we obtain
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α = (−1)i+j+m1−1(−1)i−m1−1ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1 ∧ ... ∧ ω̂i ∧ d β2|S

= (−1)i+j+m1−1(−1)i−m1−1ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ωm1 ∧ ... ∧ ω̂i

∧(
−

1

2

n∑

k=i+1

∑

1≤r,s≤hl−1

(−1)k+i+1 ckrs ωi+1 ∧ ... ∧ ωr ∧ ωs︸ ︷︷ ︸
k−th place

∧... ∧ ωn

)∣∣∣
S

=
1

2

n∑

k=i+1

∑

1≤r,s≤hl−1

(−1)i+j+k ckrs ω1 ∧ ... ∧ ω̂j ∧ ... ∧ ω̂i ∧ ... ∧ (ωr ∧ ωs) ∧ ... ∧ ωn|S

=

n∑

k=i+1

(−1)k+1 ckji ω1 ∧ ... ∧ ω̂k ∧ ... ∧ ωn|S , (149)

where the last equality follows from the the skew-symmetry on the lower indices

of the structural constants. Finally, from (149) we get

α =
n∑

k=i+1

ckji (Xk ⌋Ωn)|S = −
n∑

k=m1+1

ckij nk σ
n−1|S . (150)

Now the proof of Lemma 7.12 follows by applying both Step 1 and Step 2.

By using the previous lemma we can prove the analogous of Lemma 6.20; see

Section 6.2.

Lemma 7.14. For every X ∈ X(G) we have

d (X ⌋σ
H
)|S =

{
divX +

[
〈H, ν

H
〉

〈X,N 〉

|PH (N )|H
−

〈JXνH ,N 〉

|PH (N )|H

]}
(σ

H
)|S

−
∑

k∈I2∪...∪Ik

(
〈nk C

k
H νH ,PH (X)〉H + 〈nk C

k
V νH ,PV (X)〉

)
(σn−1)|S .

Proof. Let (ν
H
)j (j = 1, ...,m1) denote the j-th horizontal component of the unit

H -normal of S, with respect to the frame (X1, ..., Xn), i.e. (ν
H
)j := 〈ν

H
, Xj〉 and
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ν
H

= ((ν
H
)1, ..., (νH )m1 , 0, ..., 0) and let X =

∑n
i=1 xiXi. First we note that, by

definition, σ
H

= (ν
H
⌋Ωn)|S . So we have

d (X ⌋σ
H
)|S = d (X ⌋ ν

H
⌋Ωn)|S =

n∑

i=1

m1∑

j=1

d (xi(νH )j Xi ⌋Xj ⌋Ωn)|S (151)

=

n∑

i=1

m1∑

j=1

{
Xi(xi (νH )j) (Xj ⌋Ωn)|S −Xj(xi (νH )j)(Xi ⌋Ωn)|S + xi (νH )j d (Xi ⌋Xj ⌋Ωn)|S

}
.

Now we remark that for Carnot groups we have

divX =

n∑

h=1

〈∇Xh
X,Xh〉 =

n∑

i, h=1

(
Xh(xi)δ

h
i + xi〈∇Xh

Xi, Xh〉
)

=
n∑

i=1

Xi(xi) +
1

2

n∑

i, h=1

xi(c
i
ij − ciji)

=
n∑

i=1

Xi(xi), (152)

where the last equality follows from the stratification hypothesis on the Lie algebra,

which implies that ciij = −ciji = 0 (i, j = 1, ..., n). Moreover we note that

n∑

i=1

m1∑

j=1

Xi(xi (νH )j) (Xj ⌋Ωn)|S

=

n∑

i=1

m1∑

j=1

(
Xi(xi) (ν

H
)j + xiXi(νH )j

)
(Xj ⌋Ωn)|S

= divX (σ
H
)|S +

n∑

i=1

( m1∑

j=1

xi (νH )j Xi(νH )j

)
(σ

H
)|S

= divX (σ
H
)|S (153)

since
∑

j(νH )j Xi(νH )j = 1
2Xi

(∑
j(νH )2j

)
= 0. Therefore, using (151), (152) and

(153), we get

d (X ⌋σ
H
)|S = divX (σ

H
)|S −

n∑

i=1

m1∑

j=1

(
xiXj(νH )j + (ν

H
)j Xj(xi)

)
ni (σ

n−1)|S

+
n∑

i=1

m1∑

j=1

xi (νH )j d (Xi ⌋Xj ⌋Ωn)|S
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=

{
divX −

[
div

H
ν
H

〈X,N 〉

|PH (N )|H
+

〈JXνH ,N 〉

|PH (N )|H

]}
(σ

H
)|S

+

n∑

i=1

m1∑

j=1

xi (νH )j d (Xi ⌋Xj ⌋Ωn)|S . (154)

Notice that −div
H
ν
H

= 〈H, ν
H
〉 = Hsc

H
is the scalar horizontal mean curvature of

S. Now, by using Lemma 7.12 and Definition 7.13 we finally get

d (X ⌋σ
H
)|S =

{
divX +

[
Hsc

H

〈X,N 〉

|PH (N )|H
−

〈JXνH ,N 〉

|PH (N )|H

]}
(σ

H
)|S

−
∑

k∈I2∪...∪Ik

[
〈Ck

H νH ,PH (X)〉H + 〈Ck
V νH ,PV (X)〉H

]
nk (σn−1)|S .

Therefore, as an application of the previous lemma, it follows a divergence-type

theorem for regular non-characteristic hypersurfaces in k-step Carnot groups.

Theorem 7.15 (Divergence-type Theorem). Let G be a k-step Carnot group

and let S ⊂ G be a smooth immersed non-characteristic hypersurface with unit

normal vector along S denoted by N . Let U ⊂ S be compact and suppose that the

boundary ∂U is a smooth n−2-dimensional Riemannian submanifold with outward

pointing unit normal η. Then for every smooth vector field X ∈ X(G) we have

∫

U
divX σ

H

+

∫

U

{
Hsc

H
〈X,N 〉 − 〈JXνH ,N 〉 −

n∑

k=m1+1

nk

(〈
Ck
H νH ,PH (X)

〉
H

+
〈
Ck
V νH ,PV (X)

〉)}
σn−1

=

∫

∂U
〈X, η〉 |PH (N )|H σn−2. (155)

Proof. The proof follows by Lemma 7.14, using Stokes’ Theorem and the fact that

(X ⌋σ
H
)|∂U = (|PH (N )|H 〈X, η〉)|∂U .
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We now state the analogous formulae for the 1st variation of σ
H

in k-step

Carnot groups. We refer to Section 7.1 for an introduction to the problem and for

some further notation that we will use below.

According to [55], we will consider deformations of the following type:

Definition 7.16. Let X ∈ X(G) be a fixed smooth vector field. We say that

ϑ : (−ǫ, ǫ) × U −→ U is a smooth deformation of ı : U −→ G generated by

X if, for each x ∈ U , the mapping

(−ǫ, ǫ) ∋ t 7−→ ϑt(x) := ϑ(t, x)

is the integral curve of X starting at x ∈ U .

Theorem 7.17. Let G be a k-step Carnot group and let ı : U −→ G denote the

inclusion into G of a smooth non-characteristic hypersurface U with boundary ∂U .

Moreover, let ϑ : (−ǫ, ǫ) × U −→ G be be a smooth deformation of U generated by

X ∈ X(G) and assume that U t = ϑt(U) is non-characteristic for every t ∈ (−ǫ, ǫ).

Finally, let Γ(t) = ϑ∗tσH ,t
denote the C∞ 1-parameter family of n− 1-forms on U

associated with ϑt. Then the following hold:

(i)

Γ̇(0) =
{
−Hsc

H
〈X,N 〉σn−1 + d (|PH (N )|H (X ⌋σn−1))

}∣∣∣
U

=
{
−Hsc

H
〈PH (X), ν

H
〉H σ

H
−Hsc

H
〈PZ (X),PZ (N )〉σn−1 + d (|PH (N )|H (X ⌋σn−1))

}∣∣∣
U
;

(ii)

IU (σ
H
) = −

∫

U
Hsc

H
〈PH (X), ν

H
〉H σ

H
−

∫

U
Hsc

H
〈PZ (X),PZ (N )〉σn−1

+

∫

∂U
〈X, η〉 |PH (N )|H σn−2,

where IU (σ
H
) := d

dt

∣∣∣
t=0

∫
U Γ(t) is the 1st variation of σ

H
on U .
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(iii) For every smooth vector field X ∈ X(U) we have

∫

U
Divσ

H
(X)σ

H
= −

∫

U
Hsc

H
〈PH (X), ν

H
〉H σ

H
−

∫

U
Hsc

H
〈PZ (X),PZ (N )〉σn−1

+

∫

∂U
〈X, η〉 |PH (N )|H σn−2,

where Divσ
H

(see Definition 7.5) is the divergence operator with respect to

σ
H

which turns out to be defined by the following identity:

Divσ
H
X = divX +

1

|PH (N )|H

〈 n∑

k=m1+1

nk C
k
H νH ,PH (X)

〉
H

+
1

|PH (N )|H

〈 n∑

k=m1+1

nk C
k
V νH ,PV (X)

〉
H
− 〈JXνH ,N 〉.

A posteriori will be clear that the previous item (iii) it is just an independent

reformulation of the previous Theorem 7.15. Now, to prove the theorem, it suffices

to determine Γ̇(0). Also, we note that if ∂
∂t

denote the canonical vector field along

the 1st factor in (−ǫ, ǫ) × U then X turns out to be its variation vector field, i.e.

X := ϑ∗
∂
∂t

∣∣
t=0

.

We may start with the following useful remark:

Lemma 7.18. For any X ∈ X(G) we have

Γ̇(0) = LX(σ
H ,t

)|U = (X ⌋ d (ν
H t ⌋Ωn))|U︸ ︷︷ ︸
a1

+ d (X ⌋σ
H ,t

)|U︸ ︷︷ ︸
a2

= ([X, ν
H t] ⌋Ωn)|U︸ ︷︷ ︸

b1

+(ν
H t ⌋ d (X ⌋Ωn))|U︸ ︷︷ ︸

b2

.

Proof. The first identity follows by applying Cartan’s formula and using the very

definition of σ
H ,t

, while for the second, we have to use a well-know characterization
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of the Lie derivative7.

Remark 7.19. The terms a1, a2, b1, b2, which appear in the above Lemma 7.18,

can be computed as follows. First we note that the Riemannian divergence theorem

give us

(X ⌋ d (Y ⌋Ωn))|Ut = (div Y ⌋Ωn)|Ut = div Y 〈X,Nt〉 (σn−1)|Ut ∀ X, Y ∈ X(G).

Thus we immediately see that:

(i) a1 := div ν
H
〈X,N 〉 (σn−1)|U ;

(ii) b2 := (divX ν
H t ⌋Ωn)|U = divX (σ

H
)|U .

Note that Definition 7.11 implies that div ν
H

= −〈H, ν
H
〉 = −Hsc

H
. Moreover,

by using Stoke’s Theorem, the term a2 can be computed in terms of a boundary

integral, if U is with boundary, or also, by a direct computation, as in the next

Lemma 7.14 which is the k-step analogous to Lemma 6.20.

Lemma 7.20. For any X ∈ X(G), X =
∑n

i=1 xiXi, we have

([X, ν
H t] ⌋Ωn)|Ut

=
{ ∑

k∈I2∪...∪Ik

[
〈ntk C

k
tH νH t,PH (X)〉H +〈ntk C

k
tV νH t,PV (X)〉

]
−〈JXνH t,Nt〉

}
(σn−1)|Ut .

Proof. We first notice that

[X, ν
H t] =

[
n∑

i=1

xiXi,

m1∑

j=1

(ν
H t)jXj

]
=

n∑

i=1

m1∑

j=1

[xiXi, (νH t)jXj ]

7if ω ∈ Λp(M) and X, Y ∈ (M), where M is a n-dimensional smooth manifold oriented

by Ωn, then

LX(Y ⌋ω) = [X,Y ] ⌋Ωn + Y ⌋LXω.
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=

n∑

i=1

m1∑

j=1

{
xiXi(νH t)j Xj − (ν

H t)j Xj(xi)Xi + xi(νH t)j [Xi, Xj ]
}

=

n∑

i=1

m1∑

j=1

n∑

k=m1+1

{
xiXi(νH t)j Xj − (ν

H t)jXj(xi)Xi + ckijxi (νH t)j Xk

}
.

(156)

From (156) we thus get

([X, ν
H t] ⌋Ωn)|Ut

=

{
n∑

i=1

m1∑

j=1

n∑

k=m1+1

{
xiXi((νH t)j)Xj − (ν

H t)jXj(xi)Xi + ckijxi(νH t)j

}
⌋Ωn

}∣∣∣∣∣
UT

=

n∑

i=1

m1∑

j=1

n∑

k=m1+1

{
xiXi(νH t)j ntj − (ν

H t)j Xj(xi)nti + ckijxi(νH t)jntk

}
(σn−1)|Ut

=
n∑

i=1

m1∑

j=1

n∑

k=m1+1

{
− (ν

H t)jXj(xi)nti + ckijxi(νH t)jntk

}
(σn−1)|Ut (157)

=
{ ∑

k∈I2∪...∪Ik

[
〈ntk C

k
tH (ν

H t),PH (X)〉H + 〈ntk C
k
tV νH t,PV (X)〉

]
− 〈JXνH t,Nt〉

}
(σn−1)|Ut ,

where equality (157) follows, since X
(
|ν

H t
|2
H

2

)
= 0; see the previous equation (153).

Note also that in the last line we have used Definition 7.13.

Proof of Theorem 7.17. Tacking into account the previous discussion, from Lemma

7.18 and Remark 7.19 we easily get that

Γ̇(0) = LX(σ
H ,t

)|U = (X ⌋ d (ν
H t ⌋Ωn))|U + d (X ⌋σ

H ,t
)|U =: I

= ([X, ν
H t] ⌋Ωn)|U + (ν

H t ⌋ d (X ⌋Ωn))|U =: II

and since (X ⌋ σn−1)|∂U = 〈X, η〉 (σn−2)|∂U , we have

I = div ν
H
〈X,N 〉 (σn−1)|U + d (|PH (N )|H (X ⌋σn−1)) (158)

= ([X, ν
H t] ⌋Ωn)|U + divX (σ

H
)|U = II.
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Therefore (i) follows by applying Definition 7.11, while (ii) follows immediately

from Stokes’ Theorem and the very definition of σ
H
. Now, using Definition 7.5,

item (ii) of Remark 7.19 and the previous Lemma 7.20, we get

(Divσ
H
X)σ

H
|U = divX σ

H
|U

+
∑

k∈I2∪...∪Ik

{
〈nk C

k
H νH ,PH (X)〉H + 〈nk C

k
V νH ,PV (X)〉 − 〈JXνH ,N 〉

}
σn−1|U

= divX σ
H
|U

+
{〈 n∑

k=m1+1

nk C
k
H νH ,PH (X)

〉
H

+
〈 n∑

k=m1+1

nk C
k
V νH ,PV (X)

〉
− 〈JXνH ,N 〉

}
σn−1|U

and so (iii) follows by using (158) integrating both sides and applying again Stokes’

Theorem for the second addend of I.

144



References

[1] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular

metric measure spaces, Adv. in Math., 2001.

[2] L. Ambrosio, N. Fusco, & D. Pallara, Functions of Bounded Variation and

Free Discontinuity Problems, Oxford University Press, 2000.

[3] L. Ambrosio & B. Kirchheim, Rectifiable sets in metric and Banach spaces,

Math.Ann. 318, 2000, 527-555.

[4] , Current in metric spaces, Acta Math.185, 2000, 1-80.

[5] L. Ambrosio & V. Magnani, Some fine properties of BV functions on sub-

Riemannian groups, To appear in Math.Z.

[6] L. Ambrosio & P. Tilli, Selected topics on “Analysis in Metric Spaces” , Scuola

Normale Superiore, Pisa, 2000.

[7] Z.M. Balogh, Size of characteristic sets and functions with prescribed gradients, To

appear on J. Reine Angew. Math.

[8] Z.M. Balogh & M. Rickly, Regularity of convex functions on Heisenberg groups,

Preprint 2003.
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[86] L.A. Santaló, Integral Geometry and Geometric Probability , Enc.Math., 1, 1976.

[87] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88, (1968),

62-105.

[88] M. Spivak, Differential Geometry, vol. IV, Publisch or Perish, 1964.

[89] E.M. Stein, Harmonic Analysis, Princeton University Press, 1993.

[90] R.S. Strichartz, Sub-Riemannian geometry, J. Diff. Geom., 24, 221-263, 1986.

Corrections: J. Diff. Geom., 30, 595-596, 1989.

[91] G. Talenti, The standard isoperimetric theorem, in Handbook of Convexity, Vol.

A, P.M.Gruber & J.M.Wills, eds, 73-123. Amsterdam:North Holland, 1993.

[92] V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Springer,

1984.

[93] N.Th. Varopoulos, Analysis on Lie groups, J. Funct.Anal., 76, 346-410, 1988.

[94] N.Th. Varopoulos, L. Saloff-Coste, & T. Coulhon, Analysis and Geometry

on Groups, Cambridge University Press, 1992.

[95] A.M. Vershik, & V.Ya Gershkovich, Nonholonomic Dynamical systems, Geom-

etry of Distributions and Variationals Problems, in V.I. Arnold, S.P. Novikov (eds.),

Dynamical systems VII, Springer-Verlag, 1996.

[96] S.K. Vodop’yanov, P-differentiability on Carnot Groups in different topologies and

related topics, Proc. on Analysis and Geometry , 603-670, Sobolev Inst.Press, Novosi-

birsk, 2000.

[97] W.P. Ziemer, Weakly Differentiable Functions, Springer Verlag, 1989.

151



Ringraziamenti

Giunto alla fine di questo lavoro, desidero ringraziare, nella mia lingua, tutte quelle

persone che, in vario modo, mi sono state vicino in questi ultimi anni. Alessia,

in primo luogo, e per infinite ragioni. Poi il mio fraterno amico Marco, che mi

fece appassionare alla Matematica. Poi Montse, Paolo e Silvano, compagni nelle

“fatiche” di questi mesi ed ancora Lidia e Marco M. e, nell’ordine tutti gli amici
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simpatia e disponibità, il personale non docente del Dipartimento di Matematica di

Bologna. In particolare, Francesco, Pietro e Valeria del Laboratorio di Informatica,

Patrizia della Biblioteca e Carlo della Portineria. Uscendo fuori dal Dipartimento,

volevo ringraziare i miei fedelissimi amici Gianmarco ed Ileana. Infine, la mia

famiglia, che pur lontana, mi ha sempre accompagnato nelle scelte: Margherita,

mia pazientissima sorella, Danielle e Stelio, i miei carissimi genitori, e mia zia Mara.

A tutti, per quello che con ciascuno ho condiviso, vanno i miei ringraziamenti.

152


