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Abstract

This paper develops an asymptotic theory for integrated
and near-integrated time series whose range is constrained in
some ways. Such a framework arises when integration and coin-
tegration analysis are applied to persistent series which are
bounded either by construction or because they are subject
to control. The asymptotic properties of some commonly used
integration tests are discussed; the bounded unit root distribu-
tion is introduced to describe the limiting distribution of the
first-order autoregressive coefficient of a random walk under
range constraints. The theoretical results show that the pres-
ence of such constraints can lead to drastically different asymp-
totics. Since deviations from the standard unit root theory are
measured through noncentrality parameters, simple measures
of the impact of range constraints on the asymptotic distribu-
tions are obtained. Finally, the proposed asymptotic frame-
work provides an extremely adequate approximation of the fi-
nite sample properties of the unit root statistics under range
constraints.



1 Introduction

Despite the extensive literature on modeling non-stationary economic
time series (see e.g. Engle and Granger, 1991, Banerjee et al., 1993,
and references therein) and limited-dependent variables (see e.g. Mad-
dala, 1986, Hsiao et al., 1999), a controversial and rarely discussed
topic is how to interpret and analyze time series whose behavior can
be well approximated by means of integrated processes (I(1)) but are
‘limited’ in the sense that their range is constrained in some ways.
Common cases arise in the context of composition ratios, such as
expenditure shares or unemployment rates, or in the presence of non-
negativity restrictions, e.g. for nominal interest rates. Moreover,
range constraints represent the standard framework in the context of
target zone exchange rates and, more generally, of time series which
are subject to control. In the following, time series satisfying (one-
sided or two-sided) range restrictions are called ‘limited’ or ‘bounded’.

Although limited time series cannot be integrated in the usual
sense!, in various theoretical and econometric contexts they are often
modelled in the I(1) framework. For example, several empirical mod-
els of European Monetary System exchange rates have been specified
in the framework of the (co-)integrated VAR model without taking
account of the presence of target zones (see, among many others, An-
thony and MacDonald, 1998; Svensson, 1993; see also Phillips, 2001).
Similarly, in their influential paper Nelson and Plosser (1982) reject
the unit root hypothesis in the U.S. unemployment rate (see the dis-
cussions in Caner and Hansen, 2001, and Abadir and Taylor, 1999),
while several authors have looked for possible cointegrating relations

' A partial attempt to define I(1) processes with range constraints is made by
Barr and Cuthbertson (1991, note 32), regarding investment shares. They observe
that “(...) although shares are I(1) in the data there is a theoretical problem in
that shares are bounded. Shares cannot be a random walk since such a series
is unbounded. However, a random walk is a very special case of an I(1) series,
namely linear with an additive Gaussian error. Near the boundary shares must
have a non-Gaussian error. Similar considerations apply to variables such as the
percentage unemployment and bilateral exchange rates (which are bounded below)
which have been examined using cointegration techniques”.



linking unemployment rates to other variables. Moreover, some the-
oretical models consistent with a unit root in the unemployment rate
have been proposed (see e.g. Blanchard and Summers, 1986; Lind-
beck and Snower, 1989). What is not generally discussed in the lit-
erature is (i) why in some cases the constraints can reasonably be
neglected and therefore standard I(1) modelling is still appropriate,
(ii) to what extent the misspecification error depending on the omis-
sion of the range constraints affects standard (co-)integration tests
and (iii) how to test for unit roots (or co-integration) in the presence
of range constraints.

The existence of range constraints makes the interpretation of
the outcome of unit root tests controversial. Suppose e.g. that the
I(1) hypothesis is rejected. Should such a rejection be attributed
to the presence of I(d) dynamics, |d| < 1, or does it depend on the
existing constraints? This question is extremely important, especially
since in the literature the I(1) hypothesis is usually rejected when
applied to limited time series, e.g. unemployment rates or nominal
interest rates, while it is not rejected in the great majority of empirical
applications to unlimited time series.

In this paper all these issues will be addressed within a unified
framework. This aim will be achieved by developing a new asymp-
totic theory which accounts for both nonstationarity and range re-
strictions. This approach allows to generalize the large-sample theory
for integrated and near-integrated processes to the case of range con-
straints. The standard unit root distribution can be extended to the
case of range constraints; standard theory, see e.g. Phillips (1987a,
1987b), is obtained as a special case. The limit ‘bounded unit root’
distribution depends on two non-centrality parameters which are ex-
pressed in terms of the position of the range limits. Such parameters
allow a rapid evaluation of the impact of range constraints on the
properties of unit root tests. Moreover, they allow to extend unit
root inference to the context of limited time series.

The paper is organized as follows. The next section defines in-
tegrated and near-integrated processes under range constraints and
some basic asymptotic results are derived. In Section 3 the bounded



unit root distribution is derived and analyzed in the context of unit
root statistics. Implications for unit root tests are discussed in Section
4. In Section 5 the problem of testing for unit roots in the presence
of range constraints is tackled. Two illustrative applications are re-
ported in Section 6. Section 7 concludes with a discussion on some
extensions of the results obtained.

2 Limited autoregressive processes

We start by considering a standard, integrated or near-integrated
(NI(1) hereafter), real-valued AR(1) process {S;}

A&:—%&4+%azmsw§o 1)

and a stochastic process { X;} which is obtained by properly mapping
the sample paths of {S;} onto an interval [b, b]. This can be done by
requiring that {AX;} depends on {AS;} in such a way that

X, € b0, all t (2)

almost surely (that is, AX; € [b— X3 1,0 — X;_1] a.s., all t). The
simplest process satisfying these requirements is obtained by assum-
ing that, conditionally on X; 1, AX; is determined by truncating
AS; between b — X;_1 and b — Xy_1; alternatively, by censoring AS;
inb— X;_ 1 and b — X;_1. Both (censored and truncated) types of
behavior near the limits can be nested within a more general class
of limited processes. The conditions which define such a class are
given as follows, where ‘5’ and ‘2 denote weak convergence and
convergence in probability respectively.

Definition 1 A stochastic process {X;}{ is called ‘limited near-inte-
grated of order 1°, or ‘bounded near-integrated of order 1°, briefly
BNI(1), if it satisfies (2) and the following set of conditions:

Al. process up := AXy can be decomposed as uy = A5t+§t—zt; where
{St} satisfies (1) and {€,}.{&} are non-negative processes such that,



conditionally on (X;—1,ASt), § >0 iff X1+ AS;p <band &, >0
iff Xeo1 + AS; > b

A2. {e}, see (1), is a zero-mean process satisfying the invariance
principle T—1/2 LZT{ et = AB (-), where X > 0 and B (+) is a standard
Brownian motion on C|0,1]; moreover, (1/T') Zle e 56?0 <
0? < 00, and maxi—1__ 1 |et| is op (T1/2);

A3. maxy—1,. T ét = 0p (T1/2) and max;—1,.. T Et = 0p (T1/2);

A4 b=cXTY2, b =e\TY?, ¢ <€ Xo=coATV?, c< ¢y <@

When a = 0, {X;} is called ‘limited integrated of order 17, or
‘bounded integrated of order 17, briefly BI(1).

REMARKS

1. Condition A := {A1, A2, A3, A4} defines the time series behavior
of {X;}. The basic principle is to separate the effect of the boundaries
from the dynamics which characterize {AX;} in the absence of range
restrictions. This is achieved through the decomposition of error
process {u;} given in condition Al. Specifically, A1l implies that
{Xi} has the component representation AX; = AS; + ¢, — &, and
hence Xy = Xo + St — My, M; := Zf;é(ét—i - Et—i)' Since in the
absence of limits X; = Xy + S, the difference M; = (X; — Xo) — St
represents the (cumulated) amount which controls the trajectory of
{Xi} in order to satisfy the range constraint (2). Note that £, and
&, are different from zero if and only if X; 1 + AS; does not respect
the range constraint. When X; 1 + AS; > b (or X;_1 +AS; < b), &
(§,) is large enough to ensure that X satisfies (2).2

2The rationale behind Assumption A is that any truncated/censored /reflected
random variable (r.v.) can be written as a random transformation of a r.v. with
infinite support. Consider for ease of notation the lower limit case only, and
suppose that a r.v. u is censored at b and that its distribution function (df) has
the form F, (z) = G (z)I(xz > b), where G (-) is an uncensored df. The same
distribution can be obtained by taking u := & + £,where ¢ is a r.v. with df G (-)
on all the real set and £ := (b—¢)I(e < b). Truncation at b, i.e. F,(z) =



2. The process {e:}, see A2, only needs to satisfy an invariance princi-
ple and is therefore Rényi-mixing (Phillips and Ouliaris, 1990), or I(0)

in a broad sense. Hence, the local-to-unity asymptotics of Phillips
(1987b) imply that ()\2T)_1/25[.T] L Ja (8) = Jo exp{—a (s —r)}dB(r),
i.e. an Ornstein-Uhlenbeck process. For a > 0, {S;} is therefore near-
integrated. In the special case @ = 0, AS; = ¢; and {S;} is I(1). Note
that {e;} should also satisfy a milder regularity condition, i.e. that
the extreme process max;—1,.. 7 |€¢| does not diverge ‘too much’ and
that a second-order weak law of large numbers applies.

3. Condition A3 is a technical assumption which is needed in order
to avoid that {X;} ‘jumps’ at the boundaries. Specifically, A2 and
A3 together implies that max; |AX;| is op (T1/2).

4. Condition A4 may appear unusual. It states the relation between
the position of the limits (b, b) and the sample size T. A4 is a key con-
dition in order to assess both empirically and theoretically to what
extent the limits impact the behavior of the process. As it will be
stressed later on, ¢ and € in A4 provide a way to measure the influ-
ence of such limits in finite samples. Moreover, they allow to derive
an asymptotic theory in the presence of range restrictions without
modelling the behavior of the process near the limits in a parametric
fashion. Finally, A4 enables us to obtain a convenient unification of
the (near-)unit root asymptotic theory with the limited-dependent
variable framework, and also to modify standard unit root inference
in order to take account of range constraints properly.

5. Since the limit parameters b and b depend on T, a time series
generated according to Definition 1 formally constitutes a triangular
array of the type {Xy7:t=0,1,...,7; T =0,1, ...}, see e.g. Phillips
(1987b). This notation is not essential to the discussion below; hence,
limited (near-)integrated processes will be simply denoted as {X;}.

[1 - G@®)] G (x) — G (b)) (z > b) can be obtained by simply taking € as a r.v.
with d.f. G () and by taking £ as a r.v. such that F¢.<p(x) = Fu(z+¢) and
Feje>p(2) = I(z > 0). Reflection at b, i.e. Fy(z) =[G () — G (2b—2)]l(z > b) is
given by taking e with d.f. G (-) and defining £ := (2b—z)I (e < b).



6. A bounded near-integrated process reverts (i) because of the limits
[b,b] and, if o > 0 in equation (1), (ii) because its driving process {S;}
has no unit roots. In the special case of bounded integrated dynamics,
i.e. a =0, the process is mean reverting in the close neighborhood of
b and b only; hence BI(1) processes differ from standard I(1) processes
just because of the range constraints. In Section 5 it will be shown
how the constraint o = 0 implied by the BI(1) model can be tested
against the alternative hypothesis of limited autoregressive dynamics
without a unit root.

A basic result is that limited NI(1) processes satisfy an invariance
principle as in the standard NI(1) framework; in this case, however,
the parameters ¢ and ¢ enter the limit Brownian functional. In order
to derive this property, we need to introduce the following definition.

Definition 2 Let Z be a stochastic process in C|0,1]. The bivariate
process (L,U) is said to be a ‘two-sided regulator’ of Z, with limits
a,b, a<b, if (1) Z8(s):=2(s)+L(s)—U(s)€a,b], (ii) L and U
are increasing and continuous with L (0) = U (0) =0 a.s., (iii) L and
U increases only when Z8 = a and Z° = b respectively. If Z = B, i.e.
a standard Brownian motion, then Z° is called ‘regulated Brownian
motion’.

The two-sided regulator controls the trajectory of a C[0, 1] process
by keeping its sample paths between the given limits a, b; the regu-
lated process lies in C[0, 1] as well. The reader can refer to Harrison
(1985) and Dixit (1993) for further insights.

Consider the follow continuous-time approximant of {X;}

X7 (8) := (Xjer) — Xo) , s €10,1] (3)

A\/_
on the cadlag space D := DI[0,1]. If DJ0,1] is endowed with the
uniform topology, see Billingsley (1968), the next theorem follows in
the unit root case (o =0).



Theorem 1 Let {X;} be a BNI(1) process, see Definition 1. More-
over, let X1 (-) be defined as in (3). Then, if « = 0, as T T oo
Xr() % nggg (+), where BE:ES (+) is a regulated Brownian motion
with boundaries at ¢ — cg, ¢ — ¢g.

This result differs from standard I(1) asymptotics mainly because
the limit process is not a standard Brownian motion, as e.g. in
Phillips (1987a), but is a regulated Brownian motion. The sample
paths of the limit process are therefore bounded between ¢ — ¢y and
¢ — ¢g- Theorem 1 obviously nests usual asymptotics since, for ¢g — ¢
and ¢ — ¢g equal to infinity, the standard invariance principle follows.

3 The ‘bounded unit root’ distribution

In this section we will show how the presence of range constraints
modifies the asymptotic framework of unit root tests. Specifically,
by relying on the weak convergence results of the previous section,
the so-called unit root distribution will be generalized to the case of
range constraints.

Given a sample {X;}{" drawn from a BI(1) process, with Xo = 0,
let pr be the sample first-order autoregressive coefficient, which solves
prY X2 = Xi-1AX;, where the summations run from ¢ = 1 to
t = T. It is well known that if no range constraints are imposed,
namely if ¢ = —oo and ¢ = +o00, pp has the following asymptotic
distribution (see Phillips, 1987a)

2 942
ﬂ}B(l) o’/

Tlor =1) 2 fol B(s)*ds

(4)

where 02 := plimg_, . T~} Zle e? is assumed to exist. In the special
case A2 = 02, the asymptotic distribution (4) is known as the unit
root (or Dickey-Fuller) distribution, Z in the following. By referring
to Theorem 1, it is straightforward to extend the asymptotics sum-
marized in (4) to the case of range constraints. This generalization
is presented in the next theorem.



Theorem 2 Under the conditions of Theorem 1, asT T oo

. BZ(1)? — 02/
Zy=T{pr—1) = —3——
2f0 Bg (s)" ds

()

where BE (+) is a regulated Brownian motion with boundaries at c,¢.

For A2 = 02 the sample autoregressive coefficient is asymptoti-
cally distributed as (2 [ BE (s)%ds)~1(BE (1)2 —1), which differs from
the usual unit root distribution since it is expressed in terms of func-
tionals of a regulated Brownian motion and not of a standard Brow-
nian motion. This distribution is called a ‘bounded unit root distri-
bution’, with parameters ¢ and ¢, and denoted as Z (c,¢).

Kernel estimates of the probability density function (pdf) asso-
ciated with the bounded unit root distribution for various values of
¢ = —c =:c >0, ie. under symmetric limits around the origin,
is reported in Figure 1. These are based on 50,000 Monte Carlo
(MC) replications where the limit regulated Brownian motion is ob-
tained as BE(s) = ¢S (B (s)), where ¢ (-) is the reflection function
(see Karatzas and Shreve, 1988, p. 97, for ¢ = 0 and ¢ = a) and
the Brownian motion B (-) is approximated by its discrete realization
from a sample of size 20,000; the rationale behind this algorithm is
that BE (s) 4 ¢S (B (s)), see Harrison (1985). For ¢ sufficiently large
the pdf is close to the standard unit root distribution. The presence
of limits translates the asymptotic distribution of the autoregressive
coefficient toward negative values: the smaller ¢ is, the more the
bounded unit root distribution is skewed toward negative values.

The 5% quantile of the bounded unit root distribution is reported
in Figure 2 for various values of ¢.* A selection of 5% quantiles of the

31t is worth noting that, although this algorithm allows exact simulatation of
the regulated Brownian motion over a discrete grid, simulation of functionals as
e.g. fol g(B¢ (s))ds requires the discretized time increment 1/7" to be extremely
fine in order to obtain an accurate assessment of the limit distribution, see As-
mussen et al. (1995).

“Quantiles of the bounded unit root distribution (as well as the quantiles of
the various statistics discussed in the paper) have been estimated over a grid of
values for ¢ = 0.20,0.21, ...,1.00, 1.02, ..., 2.00.

10



unit root distribution under symmetric limits is also reported in Table
1, third column (Z,) with c¢y/c = 0. Again, for ¢ sufficiently large the
quantiles correspond to those of the standard unit root distribution.
The 5% quantile tends to —oco as ¢ approaches 0.

Several implications can be derived from the results above. First,
in the presence of range constraints the large-sample limit of the first-
order autoregressive coefficient is non-standard. With respect to the
usual unit root distribution, the limit ‘bounded unit root’ distribution
has two more non-centrality parameters, ¢ and ¢. Second, the quan-
tiles of the bounded unit root distribution can be extremely different
from those of the standard unit root distribution. To which extent
the quantiles differ depends (i) on the distance of the boundaries from
the initial value of the process (through the parameters ¢, ¢) and (ii)
on the variability of the innovations to {X;} (through the long-run
variance )\2). Third, only for limits sufficiently far from the starting
value of the process the quantiles of the bounded unit root distribu-
tion are well approximated by the quantiles of the standard unit root
distribution.

REMARKS

7 (INITIAL CONDITIONS) The derivation of the bounded unit root
distribution is based on the condition Xy = 0. If, however, the process
starts in Xo := coAT"/2, where ¢y € [¢, 7, the weak convergence (5)
still holds with (c,¢) replaced by (¢ — co, ¢ — cp), provided that p is
based on the deviations from the initial value, i.e. on {X; — Xo}.
Note that the (5%) quantiles of the unit root distribution are highly
sensitive to the presence of asymmetric boundaries (i.e. —(c — cg) #
€ — ¢p), see Table 1, third column (Z,).

8 (ONE-SIDED LIMITS). One-sided limits can be treated as a special
case by setting ¢ = +oo (lower limit) or ¢ = —oo (upper limit). By
letting Xo = 0 and ¢ = +o0 the 5% quantile of the bounded unit root
distribution Z (¢, +00) is reported in Figure 3, while a selection of 5%
quantiles is reported in Table 2, second column (Z,). It is interesting
to observe that, as ¢ T 0, i.e. the process starts at the lower limit, the
quantiles converge to those of the standard unit root distribution.

11



This follows from the distribution equality By (-) 4 |B(-)|, see
d

Harrison (1985, p. xii), which implies that Z (0, +00) = Z.

9 (DETERMINISTIC TERM CORRECTIONS). If the computation of
the sample first-order autoregressive coefficient p is based on the de-
meaned series {X; — X}, the bounded unit root distribution has the
same form as derived above, but with BE (+) replaced by a demeaned

regulated Brownian motion, namely BE(-) — fol B¢ (s)ds. On the
other hand, the Z, statistic calculated from GLS-demeaned data, see
Elliott et at. (1996), has the limiting representation given in (5).

In a similar way, if the computation of p involves fitting a linear
time trend by OLS the limit distribution depends on a demeaned and
detrended regulated Brownian motion, namely

Ir:b:j

Ql

O
|
o)

(5) — o — Bs)?ds.

[N

1
— Bs, (a, B) = argmin/ (B
a8 Jo

There are important implications of the convergence results out-
lined above for unit root testing. Such implications are examined in
the next section.

4 Implications for unit root tests

The most common approach to testing for a unit root against stable
alternatives is to refer to statistic (5) as a left-sided test, i.e. to reject
the null of a unit root for large negative values of Z, := T (pr — 1).
By using the distribution results of the previous section it can be
reasonably argued that in some cases the rejection rate of the unit
root test can be substantially affected by range constraints.

To stress this result, assume that the d.g.p. is BI(1) with uncorre-
lated homoskedastic innovations (2 = A?). The rejection probability
of the I(1) hypothesis when standard critical values are employed —
estimated through MC simulation, see the previous section — is re-
ported in Figure 4; the significance level is set at 5%. As expected,

12



the rejection frequency is strongly related to the position of the lim-
its. There are at least two important consequences deriving from this
result.

On the one hand, since standard unit root inference in the frame-
work of limited time series could point to the rejection of the unit
root hypothesis, the researcher might erroneously conclude that the
process has no unit root whereas the d.g.p. is actually I(1) but sub-
ject to (one-sided or two-sided) range constraints. When testing for
unit roots in the presence of limited time series, an analysis of the
‘negligibility’ of the limits is therefore a necessary step before inter-
preting the outcome of standard unit root tests in the usual way.
Such a step is usually missing when unit root techniques are applied
to the analysis of limited time series.

On the other hand, Figure 4 also explains why the practitioner
might fail to reject the (false) standard I(1) model in the presence
of boundaries. As far as the boundaries are sufficiently far away, the
rejection frequencies of the unit root test when the d.g.p. is I(1) or
BI(1) are in fact identical. That is, unit root tests are not able to
detect the presence of the limits.

A further important implication is that, despite the fact that
the bounded unit root distribution (as well as the asymptotic dis-
tributions of other unit root test statistics, see below) depends on
three nuisance parameters, namely (¢ — ¢g,€ — ¢g, 0/)\), the unit root
statistic (5) can be rearranged in order to eliminate o/\ from its
asymptotic distribution; this can be achieved by following Phillips’

~2
(1987a) approach. Let (A", 32) be two consistent estimators for (A2, o2)
in the absence of range constraints (i.e. when ¢ = 400 and ¢ = —00),

see Davidson and de Jong (2000) and references therein; X2 is as-
sumed to be a sum-of-covariances estimator and can be based both
on first-differenced data and on first-order autoregression residuals.
The following lemma holds under some mild regularity conditions
(details are reported in the Appendix).

Lemma 3 Let the conditions of Theorem 1 hold. Then, as T T oo,
~2

N B2 gnd 52 B o2,

13



The main consequence of Lemma 3 is that Phillips’ (1987a) unit root

statistic )
. PN
Zy=T(pr—1)— 2
T2 Z;f:l X2,

satisfies 2,1 % Z(c,©), i.e. a bounded unit root distribution with
parameters (c,¢). Hence, the presence of range constraints does not
affect the consistency of the estimators of the nuisance parameters
(02, )\2) which do not enter the asymptotic distribution of the unit
root statistic. However, ¢ and ¢ are still two non-centrality parame-
ters affecting the asymptotic distribution of Zp and consequently the
outcome of the test.

REMARKS

10 (ONE-SIDED LIMITS). Consider the one-sided limit case, see Re-
mark 8 above. Such a case arises e.g. in the (co—)integration analysis
of nominal interest rates. For Xg = 0 and ¢ = +oo the rejection fre-
quencies of the Z, (Z,) unit root test are reported for a 5% nominal
level in Figure 5. As in the two-limit case, the rejection frequency
essentially depends on the distance between the starting value of the
process and the position of the limit. If, however, such a distance is
negligible, i.e. ¢ =~ 0, the quantiles are identical to those of the stan-
dard unit root distribution (see Remark 8); this result does not apply
when the test involves demeaning (or detrending) the original time
series. In general, in the one-limit case the rejection rate is not as
high as in the two-limit case; nevertheless, it can considerably exceed
the significance level.

11 (OTHER UNIT ROOT TESTS). Comparable evidence affects most

of the procedures usually employed to test for unit roots. The t-
ratio unit root test (Z; hereafter) based on the t statistic associ-
ated to 7 in the regression equation AX; = wX; 1+ error, has
asymptotic distribution (/o) (4 [ BS (s)? ds)_l/Q(BgE (s)2 = (a/N)?).

By Lemma 3, Phillips’ modified ¢ test Z; := (6/A)Z — {T(5% —

~2 ~ _ _

A7)/ @A X2 ) ~Y2 converges weakly to (4 [ B (s)*ds)~1/2(BE (s)*—

14



1), which differs from the usual asymptotic distribution since B (-)
replaces the Brownian motion B (). The von Neumann ratio test of

~2
Sargan and Bhargava (1983), based on the statistic VN := X" T2/ X2,
satisfies the convergence VN—1 2 i BE (8)2 ds, which implies that
the statistic VN tends to assume larger values with respect to the

standard limit distribution ([ B (s)%ds)~'. The variance-ratio test,
based on VR (8) := (A\T) 2 ZZ—[ﬁT} (X¢ — Xt_[gT])2, satisfies VR (6) %
f;(Bg (s)—Bg (s — 6))*ds, which is closer to 0 than the standard limit

distribution | ;(B (s)—B (s — 6))%ds. Asymptotic sizes for a 5% nom-
inal level are plotted in figures 4 (two-limit case) and 5 (one-limit
case). See also Tables 1 and 2.

12 (DETERMINISTIC TERM CORRECTIONS). As noticed for the bounded
unit root distribution, see Remark 8, if the initial condition is Xy =
coAT/2, results do not change provided that the tests are based
on {X; — Xo} (or on GLS-demeaned data) and (c,¢) is replaced by
(¢ — ¢, € — ¢p). If the tests are based on OLS-demeaned (demeaned
and detrended) variables, the asymptotic distributions of the consid-
ered test statistics depend on a demeaned (demeaned and detrended)
regulated Brownian motion.

13 (EMPIRICAL ASSESSMENT OF THE IMPACT OF THE LIMITS). Fig-
ures 2 and 4 provide a simple tool to understand to what extent in
the basic BI(1) model with symmetric limits the rejection of the unit
root hypothesis could depend on the presence of the limits. Figures
3 and 5 can be referred to in the case of a lower (upper) limit; similar
pictures can be easily obtained by simulation under any condition
on (¢ — ¢p,¢ — ¢p). Note, however, that since (c,¢) are generally not
known, they should be at least be estimated consistently. Section 5
tackles this issue.

We end this section by briefly investigating the power function of
the Z, unit root test in the presence of near-integrated dynamics and
range constraints. The d.g.p. is therefore BNI(1) with o > 0. Note
that the I(1) hypothesis is violated (i) because the d.g.p. has no unit
root and (ii) because of the range constraints. We might therefore

15



expect the rejection frequency to be higher than in the usual near-
integrated, NI(1), case.

To explore this issue we need to derive the asymptotic distribution
of the unit root tests when the d.g.p. is BNI(1) with & > 0. The
next result provides the result for the Z,, Z, statistics.

Theorem 4 Under the conditions of Theorem 1, if a > 0 then as

T7T o

~ w JE (1)2_02/>‘2

Zp:=T(pr —1) = gal - D)
2f0 JE, (8)"ds

where JE, (s) = Ja(s) + L(s) — U(s), Ja(:) being the diffusion
Jo (8) =
Jo exp{—a (s —r)}dB (r) and {L,U} is a two-sided regulator of Jo (-)
with limits ¢,c.  The heteroskedasticity and autocorrelation robust
statistic Z, satisfies (6) with o2 /\? replaced by unity.

(6)

Hence, with respect to the near-integrated framework, the asymp-
totic distribution of Z, depends on a regulated Ornstein-Uhlenbeck
process. For 02 = \? the distribution (6) can be denoted ‘bounded
near-unit root distribution’, Z, (¢, ¢) hereafter. The theorem can be
easily extended to the various unit root tests and to the case of (OLS
or GLS) deterministics correction.

The asymptotic rejection frequency of the Z, (Zp) test is plotted
for various values of o and ¢ := ¢ = —¢ (symmetric case) in Figure 6.
The figures are based on a MC experiment with 50,000 replications
where the limit regulated Ornstein-Uhlenbeck process is obtained by
applying the two-sided regulator, see Definition 2, to a discrete real-
ization of the Ornstein-Uhlenbeck process over a grid of 20,000 points.
In the left panel of the figure, the test is based on deviations from the
initial value, while in the right panel it is based on OLS-demeaned
data. The ratio A\/o is set to unity. For ¢ = 400 the usual rejection
rate of the Z, test when the d.g.p. is near-integrated is obtained,
see Elliott et al. (1996), Figures 1-2. As expected, Figure 6 shows
that in the presence of (symmetric) range constraints the unit root
Z, test tends to reject more often than in the absence of constraints.
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However, it should be underlined that this result concerns the sym-
metric case only. When the process starts near the boundaries, the
same evidence does not necessarily hold.

5 Testing the ‘bounded unit root’ hypothesis

When there are range constraints, instead of testing the (trivially
false) I(1) hypothesis the researcher should be more interested in test-
ing the ‘bounded I(1)’ hypothesis, against a non-unit root alternative,
e.g. the bounded, near-I(1) model. Our framework allows to tackle
this testing problem. Specifically, despite the fact that the bounded
unit root distribution (as well as the asymptotic distributions of the
other unit root test statistics) depends on three nuisance parame-
ters, (¢ — co,€— co,0/A), it is possible to define a proper rejection
region in order to test the BI(1) hypothesis at a given significance
level, hence avoiding spurious rejections caused by the presence of
the range constraints only.

The main result needed to develop a BI(1) test is given by the
following corollary of Lemma 3, which shows that the two unknown
parameters (c,¢) can be consistently estimated.

Corollary 5 Let the conditions of Theorem 1 hold. Moreover, let
~2 ~ =2
= bONT) V2 and T := b((X"T)" V2. Then, as T 1 00, € > ¢ and

P =
— C.

aly o)

Hence, given that the limits (b, b) are known, from the consistency

of (X2, 52) it follows that the two nuisance parameters of the bounded
unit root distribution (¢, ) can be consistently estimated by ¢ and @
respectively. Note that ¢ (and T as well) is ‘super-consistent’, in the
following sense: if T9(A — \) is O, (1), & > 0, it is straightforward to
show that TV/2t6(2 — ¢) = O, (1).

Therefore, if the d.g.p. is a BI(1) process, the rejection frequency
of the unit root test equalizes the selected significance level in large

~

samples as far as the quantiles of the Z(¢,¢) distribution are used,;
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the same result applies to all unit root tests previously discussed®.
In the following it will be shown that the asymptotics obtained so
far provide excellent results in small samples as well. However, the
power properties of the BI(1) test will be investigated beforehand.

5.1 Asymptotic power

It is interesting to compare the asymptotic power of BI(1) tests with
the asymptotic power function of standard unit root tests in the ab-
sence of range constraints. To analyze this issue we do not need any
further theoretical result since the distribution of the unit root statis-
tics under BNI(1) dynamics has already been obtained in Section 4,
Theorem 1 and since Corollary 5 remains valid.

In order to assess to which extent the triple {a,c,¢} affects the
asymptotic power function of the ‘bounded unit root’ tests, in Figure
7 the asymptotic power function of the Z, test is plotted for various
values of o and ¢ := ¢ = —¢ (symmetric case). The ratio A\/o is
set to unity. In the left panel of the figure the test is applied to
deviations from the initial value, while in the right panel the test
refers to OLS-demeaned data.

As expected, tests of the BI(1) hypothesis are less powerful than
standard I(1) tests, i.e. in the presence of range constraints it is more
difficult than in the usual case of no constraints to assess whether a
given series has a unit root. Moreover, the smaller ¢, the lower the
power of the test. It is also worth noting that, in the case of symmetric
constraints, OLS demeaning reduces the power of the test (for « close
to zero the test might have no power against BNI(1) alternatives).
The same evidence, however, is not always found when asymmetric
(or one-sided) boundaries are considered.

5 A selection of 5% quantiles and a GAUSS program for simulating the asymp-
totic quantiles of unit root tests for any choice of (c,¢) are available from the
webpage www2.stat.unibo.it/cavaliere/rconstr/.
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5.2 Finite sample size

In this section we briefly report the outcome of a set of Monte Carlo
simulations on the small sample properties of the limit-corrected unit
root tests outlined above. Since a key assumption (A4 in Definition
1) of BI(1) asymptotics is that the position of the limits depends
on T2, one could reasonably argue that the small sample accuracy
of the test (at least in terms of size) might be inadequate. In the
following it will be shown that this is not the case.

Initially, as the d.g.p. a BI(1) process {X}} is chosen with {e;} be-
ing a Gaussian i.i.d. process with zero mean and unit variance. The
(conditional) distribution of {e;} is reflected at the boundaries, see
footnote 2. Due to space constraint, we consider the symmetric limit
case only, i.e. ¢ = —¢ = ¢ and Xy = 0. Results for the asymmetric
case (as well as for different truncation mechanisms) do not substan-
tially differ. We consider the Z, and Z; unit root tests, both based on
the deviations of the observed series from the initial value and from
the sample average, as well as the tests based on autocorrelation and
heteroskedasticity corrections, namely the Z, and Z; Phillips-Perron
tests. For the latter tests, the estimator of the long-run variance A2
is based on a quadratic spectral kernel with bandwidth parameter
chosen according to Andrews’ (1991) automatic data-dependent pro-
cedure using the plug-in method based on an AR(1) model fit to the
data. The unit root tests employ the estimator of ¢ defined in Corol-
lary 5, namely ¢ = (_)(/)\\2T)_1/2 = B(X2T)_1/2. The critical values of
the asymptotic distribution under the null hypothesis are then re-
trieved through a linear interpolation of the critical values obtained
by simulation in Sections 3 and 4 (recall that the critical values had
been simulated for ¢ spanning from ¢ = 0.2 to ¢ = 2, with steps 0.01
for ¢ <1 and 0.02 for ¢ > 1).

The selected sample sizes are T' = 50, 100, 200, 500 and the num-
ber of MC replications is 50,000. Results are summarized in Table 3.
The small sample performance of the tests is excellent. The empirical
rejection frequency differs from the significance level only for ¢ = 0.3
and T = 50. Nevertheless, when ¢ = 0.3 and T is set to 100 the
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rejection rate is already very close to the nominal size for most tests.
For the other values of (¢,T') the asymptotic approximation of the
distribution of the tests considered is extremely well-behaving. Tests
based on demeaned data are generally better performing in terms of
size than tests based on deviations from the initial values. Moreover,
Zi-type tests are (to some extent) preferable to Z,-type tests. Fi-
nally, the results do not differ when the Phillips-Perron correction for
autocorrelation is employed.

Table 4 concerns the case of AR(1) errors; specifically, e, =
¢et—1 + vy where v, is drawn from ii.d. N (0,(1 —¢)) and ¢ = 0.3.
The long-run variance of {e;} is therefore equal to unity. In the auto-
correlated case the issue of precise estimation of the long-run variance
becomes crucial. Hence, together with the Phillips-Perron tests based
on Andrews’ (1991) HAC estimator of A\?, the results for unit root

~2
tests based on AR-type estimators of A2, hereafter A AR, are reported
in the following. The modified Phillips-Perron coefficient test is indi-
cated with Z;‘R, see Ng and Perron (2001, M Z, in their notation),

while me denotes the Said-Dickey-Fuller ¢ test. The number of lags
is chosen according to both the BIC and the MAIC criteria defined
in Ng and Perron (2001). Only demeaned-based tests are presented
in the table.

The simulation evidence is comparable to the one obtained in the
white noise case, although the tests tend to be slightly conservative
with respect to the usual unbounded I(1) framework. Tests based
on t-statistics usually perform better than coefficient-based tests, in
particular when AR-type estimators of the long-run variance are em-
ployed. In the latter case, the AR-BIC criterion is generally preferable
to both the AR-MAIC and Andrews’ estimator, exactly as in the case
of no limits.

Overall, the small sample performance of the asymptotic approxi-
mation combined with the use of empirical estimates of the boundary
parameters is adequate and the small sample size of the BI(1) test
appears to be largely satisfactory.
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6 Empirical illustrations

In this section, unit root inference in the presence of range constraints
will be discussed by referring to two common applications of standard
I(1) tests to limited time series, namely testing for exchange rate
mean reversion in the presence of a target zone and testing for a unit
root in the unemployment rate.

6.1 EMS Target zone exchange rates

This section examines an empirical problem which has often been
tackled in the literature, i.e. testing for exchange rate mean rever-
sion in the presence of a target zone. The reader can refer to Svensson
(1993) and Anthony and MacDonald (1998). Economic theories of
target zone exchange rates usually associate the rejection of the unit
root hypothesis with the presence of intramarginal Central Bank in-
terventions or mean reverting fundamentals (Delgado and Dumas,
1992). However, as noticed by Svensson (1993), the presence of the
target zone can be the source of mean reversion of the exchange rate.
In this framework, we will briefly show how the outcome of unit root
tests in the presence of (target zone-) range constraints can lead
to wrong economic conclusions and how the researcher can properly
modify the test procedure for taking the target zone into account.

The exchange rates of four currencies are considered, namely the
Danish Krone (DK), the French Franc (FF), the Irish Pound (IP),
the Dutch Guilder (NG), all against the Deutsche Mark (DM)®, see
Figure 8. Exchange rates have been transformed by taking logs and
multiplying by 100; the observation frequency is daily. The selected
sample starts on 87:01:12 and ends on 93:01:29. During such a period,
all the (bilateral) exchange rates considered were bounded within
+2.25% target zones, which had not been realigned.

5The data were obtained from Ecu-rates extracted from the BIS database. All
exchange rates are spot ecu-rates recorded at a daily central bank telephone con-
ference at 2.30 pm Swiss time. The bilateral exchange rates have been calculated
from these Ecu-rates.
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In Table 5 the (constant corrected) Phillips-Perron coefficient and
t tests (ch and Ztc thereafter) are reported The truncation lag

which enters the long run variance estimator )\ is chosen by follow-
ing the automatic data-dependent procedure proposed by Andrews
(1991) using the plug-in method based on an AR(1) model fit to
the residuals of the auxiliary regression of AX; on (1,Xt_1)/. The
selected significance level is 5%.

According to the standard critical values, no evidence of mean
reversion is found for the Danish Krone. Conversely, evidence against
the I(1) hypothesis is found for the French Franc, the Irish Pound and
the Dutch Guilder.

Does the rejection of the I(1) hypothesis depend on the pres-
ence of the target zone alone or should it be interpreted as evidence
of mean reverting fundamentals and/or intramarginal intervention?
Standard unit root analysis does not provide an answer to this ques-
tion. However, an answer can be given by employing the BI(1) test
introduced in Section 5. In Table 6 the estimates of the BNI(1) model
are reported as well as the asymptotic 5% quantiles associated with

Zy.c and Zt ¢ under the ‘bounded unit root’ null hypothesis. For the
DM/IP and the DM/NG exchange rates, the tests reject even when
boundary-corrected critical values are employed. Therefore we can
safely conclude that for these two exchange rates there is evidence
of mean reversion which cannot be attributed to the presence of the
target zone alone.

The result obtained for the DM/FF exchange rate is opposite.
Contrary to the results obtained when standard critical values are
employed, ‘bounded unit root’ tests do not lead to the rejection of
the null hypothesis: the observed mean reversion can be explained
with the presence of the target zone alone.

6.2 U.S. unemployment rate

In this section we analyze the monthly U.S. unemployment rate among
adult males from January, 1948 through August, 1999. These data
have been recently analyzed by Caner and Hansen (2001) by means
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of threshold autoregression methods over a slightly shorter period
(1956-1999); the reader can refer to their paper for further details on
data definition.

Our first question is whether the I(1) hypothesis is rejected over
the considered sample. By construction, the unemployment rate is
bounded and therefore the I(1) specification should not provide an
adequate representation of the data. We explore this issue by re-
ferring to the Phillips-Perron Z; unit root test, based on deviations
from the 1948:01 rate as well as on OLS-demeaned data. The long-
run variance is estimated through Andrews’ (1991) quadratic spectral
kernel HAC estimator based on first-order autoregression residuals.
The bandwidth parameter is set to 12 in order to take account of the
seasonal autocorrelation which affects changes in the unemployment
rate. For space constraints we do not consider other unit root tests,
whose conclusions do not differ from those summarized here.

The unit root ¢ statistics are given by Z; = —2.023 when devi-
ations from the initial value are considered and Z,C = —2.962 on
OLS-demeaned data. Both tests reject the I(1) model at the 5% sig-
nificance level (critical values are —1.95 and —2.86 respectively). The
researcher should therefore investigate whether such a rejection de-
pends on the existence of an upper limit and a lower limit or if it can
be attributed to the presence of mean reversion between the limits.

In Table 7 the parameter estimates of the BNI(1) model are re-
ported. The estimates of ¢—cg (above 10) and ¢—c¢p (around —0.325)
show that while the upper barrier (b = 100) is negligible, the lower
barrier (b = 0) is relevant: according to Figure 5, with a lower bar-
rier at —0.325 the asymptotic rejection frequency of the (5% nominal
level) Z; test is around 0.285 (0.138 for the OLS-demeaning test).
Therefore, the outcome of unit root tests is likely to be affected by
the presence of a lower boundary.

Boundary-corrected critical values can be easily obtained by refer-
ring to the criteria outlined in Section 5. The estimates of the critical
values for testing the BI(1) hypothesis against the BNI(1) alternative
are presented in the last column of Table 7: when the Z; test is com-
puted on the deviations from the initial value the 5% critical value
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is —2.800; when demeaned data are used the critical value becomes
—3.420. Hence, the BI(1) hypothesis is not rejected at the 5% level
and the unit root hypothesis should be therefore maintained.

It can be argued that the actual lower barrier which should be
taken into account is the ‘natural’ unemployment rate. If such a rate
is set e.g. to 1.9, the estimated BI(1) 5% critical values become —2.99
(deviations from Xg) and —3.58 (demeaned data), which again leads
to the maintenance of the BI(1) hypothesis.

Finally, if there is uncertainty on the position of the actual lower
(or upper) boundary, instead of attempting to estimate ¢ — ¢, see
above, a conservative test for the BI(1) hypothesis can be constructed.
Such a test is obtained by taking the largest (negative) critical value
over all admissible values of ¢ — ¢g. In the case of the unemploy-
ment rate, which is non-negative, ¢ — c¢g must belong to the set
[—Xo/(ATY?), min;<7{(X; — Xo)/(AT/?)}], where the unknown pa-
rameter A has to be replaced with its consistent estimator X. The
obtained (conservative) 5% critical values for the U.S. male unem-
ployment rate are —3.46 (deviations from Xy) and —3.66 (demeaned
data), not against the BI(1) hypothesis.

Overall, the unit root model with range constraints provides a
non-linear representation of the U.S. male unemployment rate dy-
namics. Note that by using a different non-linear model, i.e. Caner
and Hansen’s (2001) Threshold-AR model, strong evidence of non-
linearity (i.e. threshold effects) is found over the 1948-1999 period
but the unit root hypothesis is hardly rejected”. The BI(1) tests
obtained in this section provide comparable evidence, although non-
linearity is here explained by the impact of a lower boundary while
in Caner and Hansen’s (2001) model non-linearity depends on lagged
changes in the unemployment rate over a given time interval.

"Caner and Hansen (2001) find stronger evidence against the unit root hypoth-
esis over the 1978:12-1999:09 period, but fail to reject it over the 1956:01-1978:11
period. Mixed evidence is found over the full sample (1956-1999).
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7 Extensions and concluding remarks

The paper shows how the presence of range constraints affects the
asymptotic distribution of unit root tests. Testing for unit roots in
limited time series should always be carried out with caution since,
when the unit root hypothesis is rejected, range constraints can be the
cause of the rejection. The approach suggested in the paper provides
a way to assess the role of range constraints and it can be implemented
easily. It allows a quick evaluation of the relevance of the limits, and
also to test statistically if a given limited time series reverts because of
the presence of the limits alone (the ‘bounded unit root’ hypothesis)
or because it is mean reverting within such limits (the ‘bounded, near-
unit root’ hypothesis). The proposed asymptotic framework provides
an extremely adequate approximation of the finite sample properties
of unit root tests under range constraints.

The results obtained can be well extended to a multivariate frame-
work. While in the univariate case the presence of limits can bias
sample autocorrelations (as well as the probability of maintaining
the I(1) hypothesis) toward unity, in the multivariate case the lim-
its can increase the degree of cross-correlation between two or more
series. That is, the correlation which is spuriously induced by range
constraints might be erroneously confused with the existence of sys-
tematic covariation. Comparable outcomes can affect multivariate
unit root as well as cointegration tests, in that the stronger the
range constraints on the data, the higher the probability of the tests
to point toward (spurious) cointegration. The asymptotics and the
finite-sample methods discussed in this paper can be easily extended
to a multivariate framework.

Finally, it is worth noting that the asymptotics obtained provide a
basis for (asymptotic) power comparisons when the researcher wants
to test whether a given time series with (near-) integrated behavior
is bounded by unobservable limits. For example, in the context of
floating nominal exchange rates one might be interested in testing
whether a given bilateral exchange rate is regulated within an unde-
clared target zone. The asymptotics of Section 4 show which unit
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root tests are preferable in terms of power when the standard I(1)
hypothesis is tested against the bounded I(1) alternative.

A Mathematical Appendix

PROOF OF THEOREM 1. Consider the process {X;} defined recur-

sively as

Xio1+er if Xoo1 +e € [b,D)]

X, = b if X1 +e > b (7)
b

if Xpq1+6e0<b

with initial condition Xy = Xo. By setting Xr (+):= ()\QT)_I/2 X[.T]
the following Theorem holds.

Theorem 6 Under the conditions of Theorem 1, asT' T oo Xr ()5
B2 (+), where B () is a regulated Brownian motion with bound-
aries at c — cg, ¢ — cg.

To complete the proof it is sufficient to refer to the following Lemma.
Lemma 7 {X;} and {X;} satisfy the condition

max X — X < max|( max < max < max £ + max
t:O,...,T‘ t = (t:O,...,Tgt’t:O,...,Tét) = t:O,...,Tgt t:O,...,Tét

(®)

Since Lemma 7 and condition A3 imply that sup, | X7 (s)— X7 (s) | 2
0 we can apply Billingsley (1968), Theorem 4.1, to conclude that The-
orem 6 holds for Xr (-) as well.

PROOF OF THEOREM 6. The proof consists of two steps. First, in the
C'0, 1] space endowed with the uniform metric, we define a continuous
approximant which satisfies Harrison’s construction of the regulated
Brownian motion, and weak convergence is proved. Then, it is shown
that weak convergence holds for the D|0, 1] version too.
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To simplify notation set w.l.g. ¢ = 0 and initial value XO =
COAI:” 2 cg > 0, see A4. Process X; can be recursively defined
as Xy = Xo + S¢ + Ly — Vi, where S; = ZE:I g, Ly = 25:1 l;,
Vi = ZE:I vi, Iy = — (X1 + €t)]1{)~(t,1+et<0} and vy = (X1 + &1 —
E)‘Tl/2)ﬂ{)~(t_1+st>e)\Tl/2}' Clearly, X; € [0,eAT"/2], all ¢. In order to

define a C[0,1] approximant of X;, say X7 (s), let us define C[0,1]
approximations for all its components, i.e. S;, Ly and V;. For the
partial sum S; we can set
[sT]
1 (sT — [sT1)
St (s) = ——= E g + €5 —_— 9
T (5) )\ﬁizll [sT]+1 T 9)

which represents the process obtained by joining the points (¢ /7, ()\QT) 1/ St)
by means of straight lines. For V; and L; we define this approximation
in a slightly different way:

( L [sT]
—= > if vy =0
WT = [sT]
€lsT]+1  Y[sT]+1
Vi (s) = L6 o[]S
T = Vi T XUT 1 S[sT]+1 = sT]+1 UlsT]+1
N LTl if ’U[ TH'I >0
s
XH{5T>[5T]+7E[ST]+1_v[STH'l }
\ - ElsT]+1
( L [sT]
1=
_ - _ EsT]H1 s T 41
Ly (s) = . [sT) . | ST1sT] e e ,
AT 121 it WT 1— [sT]+1 ' [sT]+1 [sT]+1
B ElsT)+1 .
xT . i lfs7y41 > 0
ST>[ST}—|— sT]+1 sT]+1
- f[sT]+1

With respect to linear interpolations like (9), this construction still
interpolates ()\2T)_1/ 2X; but also satisfies the following properties:
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1. Ly (-) and Vrp (+) are increasing and continuous with Ly (0) =
Vr (0) = 0;

2. Xr(s) =co+ Sr(s)+ Ly (s) — Vir(s) € 0,7, all s € [0,1];

3. Ly (-) and Vi (-) increase only when X = 0 and X = € respec-
tively.

_ From Harrison (1985), Proposition 2.4.6, the continuous mapping
Xr(:)=9¢5(Sr(:)) =Sr(-)+co+ Lr (-) — Vr(-) is the unique func-
tional which regulates St (-) to lie within the interval [0, ¢| and which
satisfies properties 1 — 3. This allows to obtain the limit distribution
of X7 (-) by applying the Continuous Mapping Theorem (CMT, see
Billingsley, 1968) to the limit of ST (). Specifically, St (s) % B (s)
implies that Xp (s) = g5 (St (s)) = g§ (B (s)), which is a regulated
Brownian motion.

To prove weak convergence on the cadlag space D[0,1] it is suffi-
cient to prove that the process

Kr() = = (Lr() - L) - (Ve ()~ Vir)  (10)
et (6T = 7]

converges to 0 in probability on C[0,1]. Since both |Lr (s) — Lisp|
and |Vr (s) — Visr]| are smaller than (N2T)~1/2 |e sT]—i—l{ and since the
set of increasing points of Ly (s) and the set of increasing points of

Vr (s) are disjoint, it follows that

~ Xig
Xr(s) — [sT]

WT| =

\/— ‘€sT]+1| (sT — [sT7) \/7 |€[sT+1‘
(11)

therefore

sup | X (s) = V2T) /2Ky | < 20°7) 72 max_Jei] -
s€[0,1] t=1,....,T

=1l,...
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By condition A2, maxi—; 7 |e¢| is op (T1/2) which implies that (11)
is op (1) and convergence of the process (10) on D[0, 1] follows.

PROOF OF LEMMA 7. The lemma is proved by induction. Set
dy = maxyp<; | Xy — X¢|; since Xo = Xo, dop = 0, and therefore it is

enough to show that dy+1 < max(maxy<si1 ||, maxy <1 |€ 1) given

that the relation holds at time ¢. Suppose X; < X; and g41 < 0.

If Xt + Et+1 > 0, ’Xt+1 — Xt+1’ = ‘Xt — Xt‘, £t+1 = 0 and relation

(8) holds. If X; + e;41 < 0, Xy41 = 0; therefore, if X; + e,41 >

0, dps1 < diy &, = 0, dir < max(maxy < [Ey |, maxy< [€,[)

max(maxy <1 |Ep|, maxy<py g € t’D and the relation holds; on the

other side, if X+ ei41 <0, Xy = §t+1 and dy11 = max(dt,§t+1)

maxy <¢(§ o |)- By similar arguments, the induction proof also holds

if £441 > 0 and symmetrically if X; > )N(t.

PROOF OF THEOREM 2. As in Phillips (1987) write the unit root
statistics as the ratio between (1/2) (T-'X2-52),5% := T3 (AX;)?,
and T-25" X2 ;. Regarding the latter term, Theorem 1 and the
CMT ensure weak convergence to \2 1l B¢ (3)2 ds; regarding the for-
mer term, since 52 % o2, see Lemma 3 below, from the CMT it holds
that 771 X2 — 5% 5 \%(B%(1)? — 02/A?), which completes the proof.

Proor orF LEMMA 3. We prove the corollary for the case of one
limit in 0 and for the estimator

T-1 T
~2 1 .
j=-T+1 t=|j]+1

since under our assumptions the sample first-order autoregressive co-

~

efficient satisfies T'(¢ — 1) = O, (1), see Theorem 2, results do not

~2 —~
change if A is ba§\ed on the residuals X; — ¢X;_ 1, ie. if AX; is
replaced by (X; — ¢X;—1) in (12).

Firstly, the long-run variance estimator can be decomposed as:

T-1 T

~2 1 .

No= o doowd) Y AXAX
j=—T+1 t=|j|+1
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T-1 T

= = wi) > (€t+§t) (5t—\ﬂ+§t—\jl>

j=-T+1 t=|j|+1

1 T
- _ g .
= 7 2 “G) 2 ey
j=—T+1 t:UH‘l
T-1

1 R
+ o owl) > (étgt—\j\+€t£t—lj|+§t§t—\j\)13)

j=—T+1 t=|j]+1

where g7 is the bandwidth parameter/truncation lag. Assuming that
consistency under the no-limit case holds, i.e.

(T)> w(ifar)d ey > N

to complete the proof we only need to prove that the last term on the
r.h.s. of equation (13) goes to 0 in probability. Consider the following
inequalities

T-1 T

1 .
T 2 W) X (Gt ab g )| 09
j=—T+1 t=|jl+1
1 T—1 ' T
< 7 2w X [geuited, ek y,
j:—T-H t=|jl+1
<
< ZT ) max (tE%%Tlst\ max >Z3E
T-1
3Ly ]5\ &, g
< T1/2< 12 T ot T1/2 Z (i)

j=—T+1

as § , =0, all . Note that recursive substitutions allow to express
Xr as Xp = coTV? + Z:{:l et + ZtT:1 §,» implying that T2 =
T-1/2 Zzzl § = T2 Xp—co—T"1/2 Zle £¢ which converges weakly
to the well-defined random variable A(B2S (1) — B(1)). Now, sup-
pose that the kernel function w(-) satisfies the condition
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K. for 6 € (0,1/2), T~ Z;F:__lT_i_lw(j/qT) converges to a positive
scalar as T T oo;

and that conditions A2 and A3 are strengthened as follows:

A2 {e4} satisfies A2 and maxi—1,. 1 |et] = op (T1/2_5), where 6 is
defined by condition K;

A3 maxg—y,.. 7€, = 0p (T?7°) and maxe—,.,7& = op (I'°7°),
where 6 is defined by condition K.

Conditions K, A2" and A3' imply that
(IntamT_l/2 led] + mtaXT_l/Qét) Zw(j/qT) =o0p (1)

and (as T~Y2Ly = O, (1)) that (14) is o, (1) as well.
Finally, by setting gr = 0 it follows that 52 2 o2. Extension to
the two-limit case and to the case of demeaned data is similar. As

stressed above, due to the superconsistency of p when the d.g.p. is
BI(1) or BNI(1), see Theorems 2 and 4,the proof continues to hold

also if A\ is based on first-order autoregression residuals.

PROOF OF THEOREM 4. The proof follows the proof of Theorem 2
with &; replaced by AS; and Sp “ B replaced by St 2 J,. Note
that if the d.g.p. is BNI(1), Lemma 3 continues to hold and hence
2 P 2
A=
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tests based on {X; — Xy} tests based on {X; — X}

c=—c CO/Q Zp Zt Zp.c Zp.t

0.3 0 —22.715 —3.340 —31.834 —-3.972
1/4  —25.992 —3.569 —31.607 —3.967

1/2  —24.700 —3.472 —31.438 —-3.977

3/4 —15.945 —2.773 —31.504 —4.025

1 —9.093 —2.082 —32.339 —4.136

0.5 0 —10.889 —2.290 —25.078 —3.616
1/4  —13.639 —2.564 —25.246 —3.624

1/2  —21.750 —3.262 —25.989 —3.655

3/4 —18.905 —-3.019 —26.778 —3.709

1 —8.106 —1.946 —27.971 —3.857

0.7 0 —8.309 —1.979 —20.159 —-3.372
1/4 —9.550 —2.132 —-21.205 —-3.411

1/2  —14.753 —2.675 —23.689 —3.497

3/4 —23.416 —-3.372 —26.030 —3.613

1 —8.106 —1.946 —27.822 —3.808

0.9 0 —8.106 —1.946 —16.851 —3.172
1/4 —8.277 —1.975 —18.209 —3.228

1/2  —11.021 —2.299 —21.846 —3.383

3/4 —23.547 —3.388° —25.455 —3.559

1 —8.106 —1.946 —27.822 —-3.793

1.1 0 —8.106 —1.946 —15.132 —3.054
1/4 —8.112 —1.947 —16.353 —3.109

1/2 —9.164 —2.090 —20.042 —3.274

3/4 —19.648 —3.100 —24.646 —3.507

1 —8.106 —1.946 —27.822 —3.787

1.5 0 —8.106 —1.946 —14.205 —2.930
1/4 —8.106 —1.946 —14.606 —2.969

1/2 —8.140 —1.952 —17.040 —-3.117

3/4 —13.616 —2.562 —23.166 —3.426

1 —8.106 —1.946 —27.822 —3.786

Table 1: CRITICAL VALUES OF THE PHILLIPS-PERRON UNIT ROOT TESTS;
TWO-SIDED RANGE CONSTRAINTS. NOMINAL LEVEL: 5%.

Notes: When co/c = 0 the limits are symmetric around the starting value. When
co/c = 1 the process starts on the lower limit. Critical values have been obtained
through MC simulation by discretizing the limit regulated Brownian motion over
T = 20,000 segments and using 50, 000 replications.
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tests based on {X; — X} tests based

on {X; - X}

—C Zp Zt Zp.c Zt.c

0.0 —8.106 —1.946 —27.822 —3.786
0.1 -16.275 —2.800 —26.615 —3.646
0.2 24177 —-3.431 —25.813 —3.575
0.3 —17.780 —2.946 —24.350 —3.486
04 —12.596 —2.462 —22.761 —3.400
0.5  —9.965 —2.182 —-20974 -3.314
06 —8.663 —2.029 -19.169 —3.223
0.7 —8.207 —-1.964 —17.715 —3.144
08 —8.112 —1.948 —16.525 —3.087
09 —8.106 —1.946 —15.668 —3.034
1.0 —-8.106 —1.946 —15.067 —2.995
1.2 —-8.106 —1.946 —14.448 —2.945
1.4  —8.106 —-1.946 —14.216 —2.912
1.6  —8.106 —-1.946 —14.144 —2.891
1.8 —8.106 —-1.946 —14.139 —2.878
20 —8.106 —-1.946 —14.139 —-2.872
2.5  —8.106 —-1.946 —14.139 —2.866
3.0 —8.106 —1.946 —14.139 —2.864

Table 2: CRITICAL VALUES OF THE PHILLIPS-PERRON UNIT ROOT TESTS;
ONE-SIDED RANGE CONSTRAINTS. NOMINAL LEVEL: 5%.

Notes: When ¢ = 0 the process starts on the lower limit. Critical values have been
obtained through MC simulation by discretizing the limit regulated Brownian
motion over T' = 20,000 segments and using 50,000 replications.
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tests based on {X; — Xy}

tests based on {X; — Xy}

c T Zp Zt Zp Zt Zp.c Zt.c Zp.c Zt.c
0.3 50 11.875 26.615 11.785 26.625 2.135 7.325 2.345 7.860
100 8.075 14.435 8.030 14.270 3.350 6.025 3.590 6.235
250 5970 7940 5.890 7.860 3.645 4.700 3.655 4.745
500 5320  6.345 5.230 6.240 4.075 4.515 3.885 4.395
0.5 50 5.085 7.000 5.155 7.010 3.400 6.335 3.530 6.455
100 4.870  5.660 4.885 5.685 3.775 5.320 3.980 5.455
250  4.820  5.040 4.805 5.195 4.160 4.795 4.155 4.830
500 4920 5.015 4970 5.120 4.345 4.735 4.315 4.695
0.7 50 4390  5.155  4.535 5270 3.795 6.875 3.965 7.045
100  4.485 4.750  4.585  4.855 4.255 5.800 4.350 5.850
250  4.545 4.740  4.595  4.785 4.640 5.355 4.635 5.390
500  4.860  4.925 4910 4955 4.630 5.110 4.660 5.110
0.9 50 4330 4955 4500 5.100 3.685 6.670 3.975 6.940
100 4.495 4775 4730 4.860 3.990 5.705 4.175 5.865
250  4.585  4.695 4.670 4.765 4.470 5.105 4.495 5.185
500  4.815  4.885 4.885 4975 4.635 5.015 4.780 5.130
oo 50 4330 4940 4515 5.100 3.585 6.050 4.500 6.595
100  4.500 4.785 4.735  4.860 4.225 5435 4.700 5.660
250  4.580  4.690 4.665 4.755 4.365 5.135 4.750 5.340
500  4.815  4.880 4.890 4970 4.915 5.030 5.100 5.220

Table 3: FINITE SAMPLE NULL REJECTION PROBABILITIES WN MODEL;
c=10.3,0.5,0.7,0.9, 00, T' = 50, 100, 250, 500.
Notes: Z, and Z; denote the standard Dickey-Fuller coefficient and ¢ tests re-
spectively (without heteroskedasticity and autocorrelation correction). Z » and Z

denote the Phillips-Perron autocorrelation and heteroskedasticity-corrected tests.

The long-run variance A? is estimated according to Andrews’ (1991) HAC estima-

tor with quadratic spectral kernel and AR(1)-automatic bandwidth selection.

denotes tests based on demeaned data.
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Andrews MAIC BIC
c T Z, Z, ZAR ZAR ZAR AR

0.3 50 1.660 3.035 0.025 2.035 2.320 3.615
100 1.405 2.025 0.170 1.225 5.315 1.470
250 1.565 1.765 0.710 1.280 3.085 2.090
500 2.165 2.345 1.940 2.220 3.175 2.755

0.5 50 2200 4.220 0.080 3.285 2.450 5.780
100 2.100 3.080 0.140 2.360 4.965 3.615
250 2.680 3.085 0.865 2.755 2.910 3.525
500 2765 3.125 1.685 3.210 2.780 3.790

0.7 50 1760 4.580 0.185 4.085 2.540 6.850
100 2.210 3.770 0.195 3.295 3.685 4.555
250 2.890 3.710 0.915 3.905 2.030 4.365
500 3.460 3.905 1.385 4.120 2.005 4.640

0.9 50 1.390 4.805 0.320 4.425 3.235 7.045
100 2.065 3.970 0.440 3.960 4.000 5.030
250 2,900 4.110 1.400 4.330 2.300 4.680
500 3.450 4.235 1.690 4.570 2.245 4.800

oo 50 1.550 3.350 0.970 2.840 5.965 7.350
100 2195 3.190 1410 3.210 7.675 5.805
250 3.205 4.055 2.770 4.380 4.625 5.165
500 3.800 4.180 3.140 4.515 4.150 5.040

Table 4: FINITE SAMPLE NULL REJECTION PROBABILITIES AR(1) MODEL;
c=10.3,0.5,0.7,0.9,00, ¢ = 0.3, T' = 50, 100, 250, 500.

Notes: All tests are based on demeaned data. Z,,c and Z,c denote the Phillips-
Perron coefficient and t tests respectively, with long-run variance A2 estimated
according to Andrews’ (1991) HAC estimator with quadratic spectral kernel and
AR(1)-automatic bandwidth selection. Z;“R and Z{® denote the Modified co-
efficient test (Ng and Perron, 2001) and the augumented Said-Dickey-Fuller test
respectively. BIC and MAIC denote the critera for determining the number of lags
(k) in the Said-Dickey-Fuller regression, see Ng and Perron (2001). When the BIC
is used, 0 < k < 6 while when the MAIC is used, 0 < k < [12- (T/100)°-?].
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DK FF P NG
Z,. —12.843 —17.325 —34.204 —20.600
Zio  —2648  —3.243  —4.009 —3.242

Table 5: PHILLIPS-PERRON UNIT ROOT TESTS ON EMS EXCHANGE RATES,
1987-1993.

Notes: All exchange rates are against the Deutsche Mark. The unit root tests
are based on demeaned data. The long-run variance A? is estimated according
to Andrews’ (1991) HAC estimator with quadratic spectral kernel and AR(1)-
automatic bandwidth selection. Standard 5% critical values are —14.10 for the
ZM test and —2.86 for the Z . test.

DK FF P NG
a —13.023 —17.735 —34.789 —22.043
A2 0.013 0.010 0.012 0.001
c—co —0.402 —0.320 —0.342 —2.466
T—co 0.617 0.804 0.711 2.102

cv.(Z,.) —24935 —24.820 —24.896 —14.139
cv.(Zic) -3.610 —-3.590 —-3.606 —2.873

Table 6: EMS EXCHANGE RATES: ESTIMATION OF THE NBI(1) MODEL
AND BOUNDARY-CORRECTED CRITICAL VALUES OF THE PHILLIPS-PERRON
UNIT ROOT TESTS.

Notes: Critical values have been obtained through MC simulation by discretizing
the limit regulated Brownian motion over 7" = 20, 000 segments and using 50, 000
replications.
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o A2 c—cy <CT—0p Zy cv.(Zy)

deviations —3.416 0.140 —0.325 10.396 —2.022 —2.803
from X
defgz::ed —7.328 0.141 —0.324 10.357 —2.962 —3.472

Table 7: U.S. MALE UNEMPLOYMENT RATE: ESTIMATION OF THE NBI(1)
MODEL, PHILLIPS-PERRON UNIT ROOT TESTS AND BOUNDARY-CORRECTED
CRITICAL VALUES.

Notes: The long-run variance A\? is estimated according to Andrews’ (1991) HAC
estimator with quadratic spectral kernel and AR(1)-automatic bandwidth selec-
tion. Standard 5% critical values are —1.95 for the Z; test and —2.86 for the
Z1.c test. Boundary-corrected critical values have been obtained through MC
simulation by discretizing the limit regulated Brownian motion over 7" = 20,000
segments and using 50, 000 replications.

Figure 1: Probability density function of the bounded unit root distribution
for¢ = —¢=¢=0.3,0.5,1.1,400 (standard unit root distribution). Real-
izations of the bounded unit root distribution are obtained by discretizing
the limit regulated Brownian motion over 7' = 20,000 segments and using
50,000 replications; kernel estimates with Epanechnikov weights are com-
puted.
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Figure 2: 5% quantile of the bounded unit root distribution. Left panel:
deviations from the initial value. Right panel: demeaned data. Quantiles
are obtained by discretizing the limit regulated Brownian motion over T =
20,000 segments and using 50, 000 replications.
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Figure 3: 5% quantile of the bounded unit root distribution in the one-limit
case for various values of —c. Left panel: deviations from the initial value.
Right panel: demeaned data.

41



Figure 4: Size of the unit root tests for various values of ¢ = —¢ = ¢. DF-
rho: Z, unit root test; DF-t: Z; unit root test; VNR: von Neumann ratio
test; VR: variance-ratio test, 6 = 0.5. Left panel: deviations from the initial
value. Right panel: demeaned data.
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Figure 5: Size of the unit root tests in the one-limit case for various values
of —c. Left panel: deviations from the initial value. Right panel: demeaned
data. See Figure 4 for test definitions.
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Figure 6: Asymptotic power of the unit root Z, test for various values of
¢ = —c = c. Left panel: deviations from the initial value. Right panel:
demeaned data.
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Figure 7: Asymptotic power of the ‘bounded unit root’ Z, test for various
values of ¢ = —¢ = c¢. Left panel: deviations from the initial value. Right
panel: demeaned data.
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Figure 8: EMS exchange rates of the Danish Krone (DK), the French Franc
(FF), the Irish Pound (IP) and the Dutch Guilder (NL) against the Deutsche
Mark, 1987:01-1993:01. Percentage deviations from the central parity.
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