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Abstract In this paper we show the following property of a non

Levi flat real hypersurface in Cn+1: if the unit characteristic di-

rection T is a geodesic, then it is an eigenvector of the second

fundamental form and the relative eigenvalue is constant. As an

application we prove a symmetry result, of Alexandrov type, for

compact hypersurfaces in Cn+1 with positive constant Levi mean

curvature.

1. Introduction

By using Codazzi equations and Chow Theorem, we show a

characterization result for non Levi flat real smooth hypersurfaces

in Cn+1, whose unit characteristic direction T is a geodesic. By

denoting with h the second fundamental form of M and with

hTT := h(T, T ), the main result of our work is:

Theorem 1.1. Let M be a non Levi flat real hypersurface in Cn+1.

If the characteristic direction T is a geodesic for M , then hTT is

constant.

Theorem 1.1 cannot be inverted. Indeed, in Section 4 we will

show a non Levi flat hypersurface whose characteristic direction is
1
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not a geodesic, but hTT is constant.

As an application of Theorem 1.1 we get a result of characterization

of spheres, of Alexandrov type:

Corollary 1.2. Let M be a compact real hypersurface in Cn+1

with positive constant Levi mean curvature. If the characteristic

direction T is a geodesic for M , then M is a sphere.

The problem of characterizing compact hypersurfaces with pos-

itive constant Levi mean curvature has recently received attention

from many mathematicians. Klingenberg in [4] showed that if the

characteristic direction of a compact hypesurface is a geodesic and

the Levi form is diagonal and positive definite, then M is a sphere.

Later on Hounie and Lanconelli proved that the boundary of a

compact Reinhardt domain in C2 with constant Levi curvature is

a sphere. Monti and Morbidelli in [8] proved that every Levi um-

bilical hypersurface for n ≥ 2, is contained either in a sphere or in

the boundary of a tube domain with spherical section.

Our paper is organized as follows. In Section 2 we introduce

notations and we prove that the characteristic direction T is a geo-

desic iff it is a curvature line. In Section 3 we recall the celebrated

Codazzi equations for the Levi-Civita connection. In Section 4 we

prove Theorem 1.1 by using Chow Theorem and we use the classical

Alexandrov Theorem to show Corollary 1.2.
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2. Curvature lines and geodesics

We recall some elementary facts in order to fix the notations.

Let M be a hypersurface in Cn+1 and let TM be the tangent space

to M . We denote by N the inner unit normal, and we define the

characteristic direction T ∈ TM as:

(1) T = J(N)

where J is the standard complex structure in Cn+1 (corresponding

to the multiplication by ±i). The complex maximal distribution

or Levi distribution HM is the largest subspace in TM invariant

under the action of J

(2) HM = TM ∩ J(TM)

i.e., a vector field X ∈ TM belongs to HM if and only if also

J(X) ∈ HM . Moreover, if g is the standard metric on M induced

by Cn+1, then every element in TM can be written as a direct

sum of an element of HM and one of the space generated by T , in

formulas

(3) TM = HM ⊕ RT

where dim(HM) = 2n and the sum is g-orthogonal:

(4) ∀X ∈ HM g(T, X) = 0

In the sequel we shall use the following notation: we will use a tilde

for all the objects in Cn+1 that induce on M the relative induced

objects. As an example, with g̃ we refer to the metric on Cn+1 and

with g we refer to the metric on M induced by g̃.
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We shall denote by ∇̃ the Levi-Civita connection in Cn+1. We

recall that both ∇̃ and g̃ are compatible with the complex structure

J , i.e.:

(5) J∇̃ = ∇̃J, g̃(·, ·) = g̃(J(·), J(·))

The second fundamental form h is defined as:

(6) h(V,W ) = g̃(∇̃V W,N) = g(A(V ),W ), ∀V, W ∈ TM

where A is the Weingarten operator, defined by

(7) A(V ) = −∇̃V N, ∀ V ∈ TM

The Levi form l is the hermitian operator on HM defined in the

following way:

∀X1, X2 ∈ HM , if Z1 = X1 − iJ(X1) and Z2 = X2 − iJ(X2), then

(8) l(X1, X2) = g̃(∇̃Z1Z̄2, N)

We compare the Levi form with the second fundamental form by

using the identity (see [2], Chap.10, Theorem 2):

(9) ∀X ∈ HM, l(X, X) = h(X,X) + h(J(X), J(X))

We recall that M is non Levi flat if at every point of M the Levi

form is not identically zero.

The classical mean curvature H and the Levi mean curvature L

are respectively:

(10) H =
1

2n + 1
tr(h), L =

1

n
tr(l)
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where tr is the canonical trace operator. A direct calculation leads

to the relation between H and L [7]:

(11) H =
1

2n + 1
(2nL + hTT )

Definition 2.1. Let V ∈ TM . V is a eigenvector for A (or for

h) if there exists a function (eigenvalue) λ : M → R such that

A(V ) = λV on M .

Let γ be the integral curve of V , i.e. γ ⊆ M is a line such that

γ̇ = V . If V is a eigenvector for A then we refer to γ as a curvature

line. Moreover, if V is unitary, then the value of λ is λ = h(V, V )

because

h(V, V ) = g(A(V ), V ) = g(λV, V ) = λg(V, V ) = λ

Definition 2.2. Let V ∈ TM . The integral curve of V is a geodesic

if ∇V V = 0 or equivalently: if ∇̃V V ∈ RN , i.e. if the field ∇̃V V

is normal to M .

It is well known that this definition of geodesic coincides with that

one of minimizing curve for the distance functional dp,q(γ), induced

by the metric g̃ of Cn+1, i.e. if p, q ∈ M , for all curves γ : [t1, t2] →
M such that γ(t1) = p and γ(t2) = q

dp,q(γ) =

∫ t2

t1

√
g(γ̇, γ̇)dt

and the geodesic is the curve that realizes min
(
dp,q(γ)

)

With an abuse of language, we will also refer to the vector field

V as a curvature line or a geodesic if the corresponding integral

curve is a curvature line or a geodesic respectively.
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Lemma 2.3. Let T be the characteristic direction of M . T is a

curvature line if and only if it is a geodesic.

Proof. If T is a curvature line, one has

(12) A(T ) = λT, λ = hTT

For all X ∈ HM , by using (4), one realizes that

(13) g(∇̃T N,X) = g(−A(T ), X) = −hTT g(T, X) = 0

Then for the compatibility of the complex structure J with the

connection ∇̃ and with the metric g̃, for all X ∈ HM we have

(14) 0 = g̃(∇̃T N, X) = g̃(J(∇̃T N), J(X)) = g̃(∇̃T T, J(X))

Moreover T is unitary (g(T, T ) = 1), and by differentiating along

T one has

(15) g̃(∇̃T T, T ) = 0

Therefore, by using (14) and (15) it is proved that

(16) ∇̃T T ∈ RN, ∇T T = 0

To prove the converse we can argue by inverting the previous

procedure. ¤

3. A Codazzi equation

In this section we write a Codazzi equation (see [5]) with the

notations of Section 2. The celebrated Codazzi equations assert

that: for all V,W,Z ∈ T (M)

(17) (∇V h)(W,Z) = (∇W h)(V, Z)
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where

(18) (∇V h)(W,Z) = V (h(W,Z))− h(∇V W,Z)− h(W,∇V Z)

By writing equation (17) with V = X e W = Z = T , where T is

the characteristic direction, we get

(19) (∇Xh)(T, T ) = (∇T h)(X,T )

Let

B = {T, X1, . . . , Xn, J(X1), . . . , J(Xn)} = {T,X1, . . . , Xn, Xn+1, . . . , X2n}

be an orthonormal basis of TM . For k = 1, . . . , 2n, we denote

Γk
XT = g(∇XT, Xk), Γk

TX = g(∇T X,Xk), ΓT
TX = g(∇T X,T )

In particular, by using (4) and (5) one has

ΓT
TX = g̃(∇̃T X, T ) = −g̃(∇̃T T, X) = g̃(∇̃N, J(X))

= −g(A(T ), J(X)) = −h(T, J(X)).

Therefore, with the usual convention to sum up and low equal

indices, (19) becomes:

X(hTT )− 2h(∇XT, T ) = T (h(T, X))− h(∇T X,T )− h(X,∇T T )

X(hTT )−2h(Γk
XT Xk, T ) = T (h(T, X))−h(Γk

TXXk+ΓT
TXT, T )−h(X,∇T T )

(20)

X(hTT ) = T (h(T, X))+
(
2Γk

XT−Γk
TX

)
h(Xk, T )−hTT h(T, J(X))−h(X,∇T T )
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4. An Alexandrov type result

In this section we first prove Theorem 1.1 by using (20). Then,

by using the classical Alexandrov Theorem for compact hypersur-

faces with constant mean curvature, we prove our symmetry result,

Corollary 1.2. Let us start with a lemma

Lemma 4.1. If M is non Levi flat, then M has the following H-

connectivity property: for every couple of points p, q ∈ M there

exists a curve γ : [0, 1] → M , such that γ(0) = p, γ(1) = q and

γ̇(t) ∈ HM for all t ∈ [0, 1].

Proof. It has been proved in [6, Corollary 3.1 and Remark 3.1] that

if M is not Levi flat then there is a basis {Xj, j = 1, . . . , 2n} of

HM such that the Hörmander’s rank condition holds:

(21) dim
(
span

{
Xj, [X`, Xk], j, k, ` = 1, . . . , 2n

})
= 2n + 1

With the notations of the present paper, an easier proof of (21)

can be obtained. Indeed, if M is non Levi flat then at every point

of M then there exists at least a vector field X ∈ HM such that

l(X, X) 6= 0. For Y = J(X) and Z = X − iY , one has

l(X, X) = g̃(∇̃ZZ̄, N) = g̃(∇̃X−iY X+iY,N) = g̃(∇̃XX+∇̃Y Y, N) =

= g̃(∇̃XY − ∇̃Y X,T ) = g̃([X, Y ], T ) 6= 0

This means that for every basis {Xj, j = 1, . . . , 2n} of HM the

Hörmander’s rank condition (21) holds. By Chow’s theorem we

then get the H-connectivity property. ¤
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Proof of Theorem 1.1. By Lemma 2.3 the characteristic direction

T is a curvature line. If T is a curvature line for M , then for all

V ∈ HM

h(T, V ) = g(A(T ), V ) = hTT g(T, V ) = 0

Moreover, since T is a geodesic, then ∇T T = 0 on M . Let X ∈
HM , the equation (20) becomes

X(hTT ) =T (h(T, X)) +
(
2Γk

XT − Γk
TX

)
h(Xk, T )+

− hTT h(T, J(X))− h(X,∇T T ) = 0
(22)

and hTT is constant on HM .

Since M is not Levi flat, by Lemma 4.1 for every couple of points

p, q ∈ M there exists a curve γ : [0, 1] → M , such that γ(0) = p,

γ(1) = q and γ̇(t) ∈ HM for all t ∈ [0, 1]. Therefore, by using an

arbitrary basis {X1, . . . , X2n} of HM , one obtains:

γ̇(hTT ) = αkXk(hTT ) = 0

Then hTT is constant along γ and therefore on M ¤

In general the converse of Theorem 1.1 does not hold, i.e. if the

coefficient of the second fundamental form hTT is constant, one

cannot conclude that the characteristic direction T is a geodesic

(or a curvature line), as the following example shows

Example 4.2. In C2 with coordinates zk = xk + iyk, k = 1, 2, we

consider the domain

Ω = {(z1, z2) ∈ C2 : f(x1, y1, x2, y2) = x2
1 + (ay1 + bx2)

2 − 1 < 0}
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with a, b constants such that a2 + b2 = 1. Let M be the real hyper-

surface defined by M := ∂Ω. We claim that if 0 < a < 1 then M

is non Levi flat and hTT = a2, but T is not a geodesic. Indeed, let

r = ay1 + bx2, then on M one has

Df = 2(x1, ar, br, 0), |Df | = 2

where D is the Euclidean gradient in R4. Therefore, by identifying

vector fields with first order partial differential operators, we get

N = −(x1∂x1 +ar∂y1 + br∂x2), T = J(N) = ar∂x1−x1∂y1− br∂y2

Then, by using T (r) = −ax1, one has

hTT = h(T, T ) = g̃(∇̃T T, N) = −T (ar)x1−T (x1)ar = a2x2
1+a2r2 = a2

We notice that M is isometric to the cylinder S1×R2 whose three

principal curvatures are 1,0,0; therefore the classical mean curva-

ture of M is H =
1

3
. From (11) it follows that 2L = b2, and since

b 6= 0 then M is non Levi flat. Moreover, since

∇̃T T = T (ar)∂x1 − T (x1)∂y1 − T (br)∂y2 /∈ RN

then T is not a geodesic.

As a consequence of Theorem 1.1 we get the proof of Corollary

1.2.

Proof of Corollary 1.2. If M has constant positive Levi mean cur-

vature, then M is non Levi flat, and since T is a curvature line,

one has that hTT is constant on M . By using the compactness of
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M , by (11) and by the classical Alexandrov’s theorem [1] we get

that M is a sphere. ¤
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