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Abstract

In this paper, we develop some new tools and theory that are useful in describing the
geometry of properly embedded, constant mean curvature surfaces in R3 with bounded
second fundamental form. More precisely, we prove dynamics type results for the space
of translational limits of such a surface. As a consequence of our main theorems, in
subsequent papers we obtain rigidity results for certain properly embedded, constant
mean curvature surfaces in R3 [23], as well as derive curvature estimates for complete,
embedded, constant mean curvature surfaces in complete locally homogeneous three-
manifolds.
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1 Introduction.

A general problem in classical surface theory is to describe the asymptotic geometric struc-
ture of a connected, noncompact, properly embedded, nonzero constant mean curvature
(CMC) surface M in R3. In this paper, we will show that when M has bounded second
fundamental form, for any divergent sequence of points pn ∈ M , a subsequence of the
translated surfaces M − pn converges to a properly immersed surface of the same constant
mean curvature and which bounds a smooth open subdomain on its mean convex side. The
collection T(M) of all these limit surfaces sheds light on the geometry of M at infinity.

We will focus our attention on the subset T (M) ⊂ T(M) consisting of the connected
components of surfaces in T(M) which pass through the origin in R3. Given a surface
Σ ∈ T (M), we will prove that T (Σ) is always a subset of T (M). In particular, we can
consider T to represent a function:

T : T (M) → P(T (M)),

where P(T (M)) denotes the power set of T (M). Using the fact that T (M) has a natural
compact metric space topology, we obtain classical dynamics type results on T (M) with
respect to the mapping T . These dynamics results include the existence of nonempty
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minimal T -invariant subsets in T (M) and are described in Theorem 2.3, which we refer to
as the CMC Dynamics Theorem in R3, or more simply as just the Dynamics Theorem.

Assume M ⊂ R3 is a connected, noncompact, properly embedded CMC surface with
bounded second fundamental form. In section 3, we describe several important consequences
of the Dynamics Theorem concerning elements of minimal invariant sets of T (M); some
of these consequences are contained in Theorem 3.3, which we call the Minimal Element
Theorem. For example, we prove that if M has an infinite number of ends, then T (M)
contains a surface in a minimal invariant set with a plane of Alexandrov symmetry; see
item 7 of Theorem 3.3. Another result that appears in this section is that whenever M has
finite genus, T (M) always contains a Delaunay surface1; in the special case that M has
finite topology, then this result follows from the main theorem in [13]. The full generality
of this result for finite genus M is needed in applications in [21, 23]. In [23], we apply
the existence of a Delaunay surface in T (M) to prove the isometric rigidity of such an
M (also see Remark 3.10). Another important application of this result is given in the
proof of the following statement, which can be found in [21]: Any complete, embedded,
noncompact, simply-connected CMC surface M in a fixed homogeneous three-manifold N
has the appearance of a suitably scaled helicoid nearby any point of M where the second
fundamental form is sufficiently large. This geometric result plays a key role in proving
that any such M has bounded second fundamental form, where the bound depends only on
a positive lower bound of the mean curvature of M and on an upper bound of the absolute
sectional curvature of N (see [21] for details and [27] for a related result). In section 4, we
prove Theorem 4.1 which implies that if M has a plane of Alexandrov symmetry, then M
has finite topology if and only if it has a finite number of ends greater than one.

The collection of properly embedded CMC surfaces with bounded second fundamental
form is quite large and varied (see [4, 10, 11, 14, 15, 16]). Classically, many of these examples
appear as doubly and singly-periodic surfaces. Furthermore, the techniques of Kapouleas
[10] and Mazzeo-Pacard [15] can be applied to obtain many nonperiodic examples of finite
and nonfinite topology. Some theoretical aspects of the study of these special surfaces
have been developed previously in works of Meeks [17], Korevaar-Kusner-Solomon [13] and
Korevaar-Kusner [12]; results from all of these three key papers are applied here. More
generally, the broader theory of properly embedded CMC surfaces in homogeneous three-
manifolds is an active field of research with many interesting recent results [2, 5, 9]. In [20],
we will generalize the ideas contained in this paper to obtain related theoretical results for
properly embedded separating CMC hypersurfaces of bounded second fundamental form
in homogeneous n-manifolds.

Acknowledgements: We thank Rob Kusner and Joaquin Perez for their helpful comments
on the results and proofs contained in this paper. We also thank Joaquin Perez for making
the figures that appear here.

1In this manuscript, Delaunay surfaces are the embedded CMC surfaces of revolution discovered by
Delaunay [3] in 1841.
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2 The Dynamics Theorem for CMC surfaces of bounded cur-
vature.

In this section, motivated by previous work of Meeks, Perez and Ros in [18], we prove
a dynamics type result for the space T (M) of certain translational limits of a properly
embedded, CMC surface M ⊂ R3 with bounded second fundamental form. All of these
limit surfaces satisfy the almost-embedded property described in the next definition.

Definition 2.1 Suppose W is a complete flat three-manifold with boundary ∂W = Σ
together with an isometric immersion f : W → R3 such that f restricted to the interior of
W is injective. This being the case, if f(Σ) is a CMC surface and W lies on the mean
convex side of Σ, we call the image surface f(Σ) a strongly Alexandrov embedded CMC
surface.

We note that, by elementary separation properties, any properly embedded CMC sur-
face in R3 is always strongly Alexandrov embedded. Furthermore, by item 1 of Theorem 2.3
below, any strongly Alexandrov embedded CMC surface in R3 with bounded second fun-
damental form is properly immersed in R3.

Recall that the only compact Alexandrov embedded2 CMC surfaces in R3 are spheres
by the classical result of Alexandrov [1]. Hence, from this point on, we will only consider
surfaces M which are noncompact and connected.

Definition 2.2 Suppose M ⊂ R3 is a connected, noncompact, strongly Alexandrov em-
bedded CMC surface with bounded second fundamental form.

1. T (M) is the set of all connected, strongly Alexandrov embedded CMC surfaces Σ ⊂
R3, which are obtained in the following way.

There exists a sequence of points pn ∈ M , limn→∞ |pn| = ∞, such that the translated
surfaces M − pn converge C2 on compact subsets of R3 to a strongly Alexandrov
embedded CMC surface Σ′, and Σ is a connected component of Σ′ passing through
the origin. Actually we consider the immersed surfaces in T (M) to be pointed in the
sense that if such a surface is not embedded at the origin, then we consider the surface
to represent two different elements in T (M) depending on a choice of one of the two
preimages of the origin.

2. ∆ ⊂ T (M) is called T -invariant, if Σ ∈ ∆ implies T (Σ) ⊂ ∆.

3. A nonempty subset ∆ ⊂ T (M) is called a minimal T -invariant set, if it is T -invariant
and contains no smaller nonempty T -invariant subsets.

4. If Σ ∈ T (M) and Σ lies in a minimal T -invariant subset of T (M), then Σ is called a
minimal element of T (M).

2A compact surface Σ immersed in R3
is Alexandrov embedded if Σ is the boundary of a compact three-

manifold immersed in R3
.
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With these definitions in hand, we now state our Dynamics Theorem; in the statement
of this theorem and throughout the remainder of this paper, B(p, R) denotes the open ball in
R3 of radius R centered at the point p and B(R) denotes the open ball of radius R centered
at the origin in R3.

Theorem 2.3 (Dynamics Theorem for CMC surfaces in R3) Let M ⊂ R3 be a con-
nected, noncompact, strongly Alexandrov embedded CMC surface with bounded second fun-
damental form. Let W be the associated complete flat three-manifold on the mean convex
side of M . Then the following statements hold:

1. M is properly immersed in R3.

2. There exist positive constants c1, c2 depending only on the norm of the second funda-
mental form of M , such that for any p ∈ M and R > 1,

c1 ≤
Area(M ∩ B(p, R))

Volume(W ∩ B(p, R))
≤ c2. (1)

In particular, Area(M ∩B(R)) ≤ cR3, for some constant c > 0 which depends only on
a bound for the norm of the second fundamental form of M . Furthermore, M has a
regular neighborhood of radius ε in W , where ε > 0 only depends on the norm of the
second fundamental form of M .

3. W is a handlebody3 and every point in W is a distance of less than 1
H from ∂W , where

H is the mean curvature of M .

4. T (M) is nonempty and T -invariant.

5. T (M) has a natural compact topological space structure induced by a metric dT (M).
The metric dT (M) is induced by the Hausdorff distance between compact subsets of R3.

6. If M is an element of T (M), then T (M) is a connected space. In particular, if M is
invariant under a translation, T (M) is connected.

7. A nonempty set ∆ ⊂ T (M) is a minimal T -invariant set if and only if whenever
Σ ∈ ∆, then T (Σ) = ∆.

8. Every nonempty T -invariant subset of T (M) contains a nonempty minimal T -invariant
subset. In particular, since T (M) is itself a nonempty T -invariant set, T (M) always
contains minimal elements.

9. Any minimal T -invariant set in T (M) is a compact connected subspace of T (M).

Proof. Corollary 5.2 in [22] implies items 1 and 2.
We now prove item 3. The proof that W is a handlebody is based on topological

techniques used previously to study the topology of complete, orientable flat three-manifolds
X with minimal surfaces as their boundaries. These techniques were first developed by

3A handlebody is a three-manifold with boundary which is homeomorphic to a closed regular neighborhood
of some connected, properly embedded simplicial one-complex in R3

.
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Frohman and Meeks [8] and later generalized by Freedman [7]. An important consequence
of the results and theory developed in these papers is that if ∂X is mean convex, X is not
a handlebody, and X is not a Riemannian product of a flat surface with an interval, then
X contains an orientable, noncompact, embedded, stable minimal surface Σ with compact
boundary. Suppose now that M ⊂ R3 is a strongly Alexandrov embedded CMC surface
with associated W . This being the case, since M is not totally geodesic, W cannot be a
Riemannian product of a flat surface with an interval. Therefore, if W is not a handlebody,
there exists an orientable, noncompact, embedded stable minimal surface Σ ⊂ W with
compact boundary. Since Σ is orientable and stable, a result of Fisher-Colbrie [6] implies Σ
has finite total curvature. It is well known that such a Σ has an end E asymptotic to an end
of a catenoid or a plane [25]. We will obtain a contradiction when E is a catenoidal type
end; the case where E is a planar end can be treated in the same manner. After a rotation
of M , assume that this catenoid is a vertical catenoid and E is graph over the complement
of a disk in the (x1, x2)-plane; assume the disk is B(R)∩{x3 = 0} for some large R. Let S2

be a sphere in R3 with mean curvature equal to the mean curvature of M , which lies below
E and which is disjoint from the solid cylinder {(x1, x2, x3) | x2

1 + x2
2 ≤ R2}. By vertically

translating S2 upward across the (x1, x2)-plane and applying the maximum principle for
CMC surfaces, we find that as S2 translates across E, the portions of the translated sphere
that lie above E do not intersect M = ∂W . Thus, some vertical translate Ŝ2 of S2 lies inside
W . Next translate Ŝ2 inside W so that it touches ∂W a first time. The usual application
of the maximum principle for CMC surfaces now gives the desired contradiction.

Note that if some point p ∈ W had distance at least 1
H from ∂W , then ∂B(p, 1

H ) is a
sphere of mean curvature H in W . The arguments in the previous paragraph show that no
such sphere can exist, and this contradiction completes the proof of item 3.

The uniform local area estimates for M given in item 2 and the bound on the second
fundamental form of M , together with standard compactness arguments, imply that for any
divergent sequence of points {pn}n in M , a subsequence of the translated surfaces M − pn

converges on compact subsets of R3 to a strongly Alexandrov embedded CMC surface M∞
in R3. The component M∞ of M∞ passing through the origin is a surface in T (M) (if
M∞ is not embedded at the origin, then one obtains two elements in T (M) depending on
a choice of one of the two pointed components). Hence, T (M) is nonempty.

Let Σ ∈ T (M) and Σ′ ∈ T (Σ). By definition of T (Σ), any compact domain of Σ′ can
be approximated arbitrarily well by translations of compact domains “at infinity” in Σ. In
turn, by definition of T (M), these compact domains “at infinity” in Σ can be approximated
arbitrarily well by translated compact domains “at infinity” on M . Hence, a standard
diagonal argument implies that Σ′ ∈ T (M). Thus, T (M) is T -invariant, which proves item
4.

Suppose now that Σ ∈ T (M) is embedded at the origin. In this case, there exists an
ε > 0 depending only on the bound of the second fundamental form of M , so that there
exists a disk D(Σ) ⊂ Σ∩B(ε) with ∂D(Σ) ⊂ ∂B(ε), ~0 = (0, 0, 0) ∈ D(Σ) and such that D(Σ)
is a graph with gradient at most 1 over its projection to the tangent plane T~0D(Σ) ⊂ R3.
Given another such Σ′ ∈ T (M), define

dT (M)(Σ,Σ′) = dH(D(Σ), D(Σ′)),
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where dH is the Hausdorff distance. If ~0 is not a point where Σ is embedded, then since
we consider Σ to represent one of two different pointed surfaces in T (M), we choose D(Σ)
to be the disk in Σ ∩ B(ε) containing the chosen point. With this modification, the above
metric is well-defined on T (M).

Using the fact that the surfaces in T (M) have uniform local area and curvature estimates
(see item 2), we will now prove T (M) is sequentially compact and hence compact. Let {Σn}n

be a sequence of surfaces in T (M) and let {D(Σn)}n be the related sequence of graphical
disks defined in the previous paragraph. A standard compactness argument implies that a
subsequence, {D(Σni)}ni of these disks converges to a graphical CMC disk D∞. Using item
2, it is straightforward to show that D∞ lies on a complete, strongly Alexandrov embedded
surface Σ∞ with the same constant mean curvature as M . Furthermore, Σ∞ is a limit
of compact domains ∆ni ⊂ Σni . In turn, the ∆ni ’s are limits of translations of compact
domains in M , where the translations diverge to infinity. Hence, Σ∞ is in T (M) and by
definition of dT (M), a subsequence of {Σn}n converges to Σ∞. Thus, T (M) is a compact
metric space with respect to the metric dT (M). We remark that this compactness argument
can be easily modified to prove that the topology of T (M) is independent of the sufficiently
small radius ε used to define dT (M). It follows that the topological structure on T (M) is
determined (ε chosen sufficiently small), and it is in this sense that the topological structure
is natural. This completes the proof of item 5.

Suppose now that M ∈ T (M). Note that whenever X ∈ T (M), then the path connected
set of translates Trans(X) = {X − q | q ∈ X} is a subset of T (M). In particular, Trans(M)
is a subset of T (M). We claim that the closure of Trans(M) in T (M) is equal to T (M).
By definition of closure, the closure of Trans(M) is a subset of T (M). Using the definition
of T (M) and the metric space structure on T (M), it is straightforward to check that T (M)
is contained in the closure of Trans(M); hence, Trans(M) = T (M). Since the closure of a
path connected set in a topological space is always connected, we conclude that T (M) is
connected, which completes the proof of item 6.

We now prove item 7. Suppose ∆ is a nonempty, minimal T -invariant set and Σ ∈ ∆.
By definition of T -invariance, T (Σ) ⊂ ∆. By item 4, T (Σ) is a nonempty T -invariant
set. By definition of minimal T -invariant set, T (Σ) = ∆, which proves one of the desired
implications. Suppose now that ∆ ⊂ T (Σ) is nonempty and that whenever Σ ∈ ∆, T (Σ) =
∆; it follows that ∆ is a T -invariant set. If ∆′ ⊂ ∆ is a nonempty T -invariant set, then
there exists a Σ′ ∈ ∆′, and then ∆ = T (Σ′) ⊂ ∆′ ⊂ ∆. Hence, ∆′ = ∆, which means ∆ is
a minimal T -invariant set and item 7 is proved.

Now we prove item 8 through an application of Zorn’s lemma. Suppose ∆ ⊂ T (M) is a
nonempty T -invariant set and Σ ∈ ∆. Using the definition of T -invariance, it is elementary
to prove that T (Σ) is a nonempty T -invariant set in ∆ which is a closed subset of T (M);
essentially, this is because the set of limit points of a set in a topological space forms a
closed set (also see the proofs of items 4 and 5 for this type of argument). Next consider
the set Λ of all nonempty T -invariant subsets of ∆ which are closed sets in T (M), and as
we just observed, this collection is nonempty. Also, observe that Λ has a partial ordering
induced by inclusion ⊂.

We first check that any linearly ordered set in Λ has a lower bound, and then apply
Zorn’s Lemma to obtain a minimal element of Λ. To do this, suppose Λ′ ⊂ Λ is a nonempty
linearly ordered subset and we will prove that the intersection

⋂
∆′∈Λ′ ∆

′ is an element of Λ.

6



In our case, this means that we only need to prove that such an intersection is nonempty,
because the intersection of closed (respectively T -invariant) sets in a topological space is
a closed set (respectively T -invariant) set. Since each element of Λ′ is a closed subset of
T (M) and the finite intersection property holds for the collection Λ′, then the compactness
of T (M) implies

⋂
∆′∈Λ′ ∆

′ 6= Ø. Thus,
⋂

∆′∈Λ′ ∆
′ ∈ Λ is a lower bound for Λ′. By Zorn’s

lemma applied to Λ under the partial ordering ⊂, ∆ contains a smallest, nonempty, closed
T -invariant subset Ω. We now check that Ω is a nonempty minimal T -invariant subset
of ∆. If Ω′ is a nonempty T -invariant subset of Ω, then there exists a Σ′ ∈ Ω′. By our
previous arguments, T (Σ′) ⊂ Ω′ ⊂ Ω is a nonempty T -invariant set in ∆ which is a closed
set in T (M), i.e., T (Σ′) ∈ Λ. Hence, by the minimality property of Ω in Λ, we have
T (Σ′) = Ω′ = Ω. Thus, Ω is a nonempty, minimal T -invariant subset of ∆, which proves
item 8.

Let ∆ ⊂ T (M) be a nonempty, minimal T -invariant set and let Σ ∈ ∆. By item 7,
T (Σ) = ∆. Since T (Σ) is a closed set in T (M) and T (M) is compact, then ∆ is compact.
Since Σ ∈ T (Σ) = ∆, item 6 implies ∆ is also connected which completes the proof of item
9. 2

Remark 2.4 It turns out that any complete, connected, noncompact, embedded CMC
surface M ⊂ R3 with compact boundary and bounded second fundamental form, is properly
embedded in R3, has a fixed sized regular neighborhood on its mean convex side and so
has cubical area growth; these properties of M follow from simple modifications of the
proof of these properties in the case when M has empty boundary (see [19, 22]). For such
an M , the space T (M) also can be defined and consists of a nonempty set of strongly
Alexandrov embedded CMC surfaces without boundary. We will use this remark in the
next section where M is allowed to have compact boundary. Also we note that items 4 -
9 of the Dynamics Theorem make sense under small modifications and hold for properly
embedded separating CMC hypersurfaces M with bounded second fundamental form in
noncompact homogeneous n-manifolds N , where T (M) is the set of connected properly
immersed surfaces that pass through a fixed base point of N and which are components
of limits of M under a sequence of “translational” isometries of N which take a divergent
sequence of points in M to the base point; see [20] for details.

3 The Minimal Element Theorem.

In this section, we give several applications of the Dynamics Theorem to the theory of
complete embedded CMC surfaces M in R3 with bounded second fundamental form and
compact boundary. We will obtain several results concerning the geometry of minimal
elements in T (M), when the area growth of M is less than cubical in R or when the genus
of the surfaces M ∩B(R) grows less than cubically in R. With this in mind, we now define
some growth constants for the area and genus of M in R3.

For any p ∈ M , we denote by M(p, R) the connected component of M ∩ B(p, R) which
contains p; if M is not embedded at p and there are two immersed components M(p, R),
M ′(p, R) corresponding to two pointed immersions, then in what follows we will consider
both of these components separately.
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Definition 3.1 (Growth Constants) For n = 1, 2, 3, we define:

Asup(M,n) = lim sup sup
p∈M

(Area[M(p, R)] ·R−n),

Ainf(M,n) = lim inf inf
p∈M

(Area[M(p, R)] ·R−n),

Gsup(M,n) = lim sup sup
p∈M

(Genus[M(p, R)] ·R−n),

Ginf(M,n) = lim inf inf
p∈M

(Genus[M(p, R)] ·R−n).

In the above definition, note that supp∈M (Area[M(p, R)] · R−n) and the other similar
expressions are functions from (0,∞) to R and therefore they each have a lim sup or a
lim inf, respectively.

By item 2 of Theorem 2.3 and Remark 2.4, Asup(M, 3) is a finite number. We now
check that Gsup(M, 3) is also finite. Since M has bounded second fundamental form, it
admits a triangulation T whose edges are geodesic arcs or smooth arcs in the boundary
of M of lengths bounded between two small positive numbers, and so that the areas of
2-simplices in T also are bounded between two small positive numbers. Let T (M(p, R))
be the set of simplices in T which intersect M(p, R). Note that for R large, the number
of edges in T (M(p, R)) which intersect M(p, R) is less than some constant K times the
area of M(p, R), where K depends only on the second fundamental form of M . Hence, the
number of generators of the first homology group H1(T (M(p, R)), R) is less than K times
the area of M(p, R). Since Genus[M(p, R)]) corresponds to at least Genus[M(p, R)] linearly
independent homology classes in H1(T (M(p, R)), R), then

Genus[M(p, R)] ≤ KArea[M(p, R)] for R large. (2)

In particular, since Asup(M, 3) is finite, equation (2) implies that Gsup(M, 3) is also finite.

Definition 3.2 Suppose that M ⊂ R3 is a connected, complete embedded CMC surface
with compact boundary (possibly empty) and with bounded second fundamental form.

1. For any divergent sequence of points pn ∈ M , a subsequence of the translated surfaces
M−pn converges to a properly immersed surface of the same constant mean curvature
which bounds a smooth open subdomain on its mean convex side. T(M) denotes the
collection of all such limit surfaces.

2. If there exists a constant C > 0 such that for all p, q ∈ M with dR3(p, q) ≥ 1,
dM (p, q) ≤ C · dR3(p, q), then we say that M is chord-arc. (Note that the triangle
inequality implies that if M is chord-arc and p, q ∈ M with dR3(p, q) < 1, then
dM (p, q) < 6C.)

We note that in the above definition and in Theorem 3.3 below, the embedded hypothesis
on the surface M can be replaced by the weaker hypothesis that M has a fixed size one-sided
neighborhood on its mean convex side (see Remark 2.4).

We now state the main theorem of this section. For the statement of this theorem, recall
that a plane P ⊂ R3 is a plane of Alexandrov symmetry for a surface M ⊂ R3, if it is a
plane of symmetry which separates M into two open components M+, M−, each of which
is a graph over a fixed subdomain of P .
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Theorem 3.3 (Minimal Element Theorem) Let M ⊂ R3 be a complete, noncompact,
connected embedded CMC surface with possibly empty compact boundary and bounded sec-
ond fundamental form. Then the following statements hold.

1. If Σ ∈ T (M) is a minimal element, then either every surface in T(Σ) is the translation
of a fixed Delaunay surface or every surface in T(Σ) has one end. In particular,
if Σ ∈ T (M) is a minimal element, then every surface in T(Σ) is connected and
T (Σ) = T(Σ).

2. Minimal elements of T (M) are chord-arc.

3. Let Σ be a minimal element of T (M). For all D, ε > 0, there exists a dε,D > 0 such
that the following statement holds. For every compact domain X ⊂ Σ with extrinsic
diameter less than D and for each q ∈ Σ, there exists a smooth compact, domain
Xq,ε ⊂ Σ and a translation, τ : R3 → R3, such that

dΣ(q, Xq,ε) < dε,D and dH(X, τ(Xq,ε)) < ε,

where dΣ is distance function on Σ and dH is the Hausdorff distance on compact sets
in R3. Furthermore, if X is connected, then Xq,ε can be chosen to be connected.

4. If M has empty boundary and lies in the halfspace {x3 ≥ 0}, then some minimal
element of T (M) has the (x1, x2)-plane as a plane of Alexandrov symmetry.

5. If M has an end representative4 E such that R3−E contains balls of arbitrarily large
radius, then T (M) contains a surface with a plane of Alexandrov symmetry.

6. The following statements are equivalent:

(a) Ainf(M, 3) = 0.

(b) Ginf(M, 3) = 0.

(c) T (M) contains a minimal element with a plane of Alexandrov symmetry.
(d) Ainf(M, 2) is finite.
(e) Ginf(M, 2) is finite.

7. If M has an infinite number of ends, then there exists a minimal element in T (M)
with a plane of Alexandrov symmetry.

8. If T (M) does not contain an element with a plane of Alexandrov symmetry, then the
following statements hold.

(a) There exists a constant F such that for any end representative E of a surface in
T(M), there exists a positive number R(E) such that

[R3 − B(R(E))] ⊂ {x ∈ R3 | dR3(x,E) < F}.

In particular, if E1 and E2 are end representatives of a surface in T(M), then
for R sufficiently large, the Hausdorff distance between E1−B(R) and E2−B(R)
is bounded from above by F .

4A proper noncompact domain E ⊂ M is called an end representative for M if it is connected and has
compact boundary.

9



(b) There is a uniform upper bound on the number of ends of any element in T(M).
In particular, there is a uniform upper bound on the number of components of
any element in T(M).

9. Suppose Σ is a minimal element of T (M). Then the following statements are equiva-
lent.

(a) Ainf(Σ, 2) = 0.

(b) Ginf(Σ, 2) = 0.

(c) Σ is a Delaunay surface.

(d) Ainf(M, 1) is finite.

(e) Ginf(M, 1) is finite.

The following corollary gives some immediate consequences of Theorem 3.3. The proof
of this corollary appears after the proof of Theorem 3.3.

Corollary 3.4 Let M ⊂ R3 be a complete, noncompact, connected, embedded CMC sur-
face with compact boundary and bounded second fundamental form. Then the following
statements hold.

1. Asup(M, 3) = 0 =⇒ Gsup(M, 3) = 0 =⇒
=⇒ Every minimal element in T (M) has a plane of Alexandrov symmetry.

2. Asup(M, 2) = 0 =⇒ Gsup(M, 2) = 0 =⇒
=⇒ Every minimal element in T (M) is a Delaunay surface.

We make the following conjecture related to the Minimal Element Theorem.

Conjecture 3.5 Suppose that M ⊂ R3 satisfies the hypotheses of Theorem 3.3. Then for
any minimal element Σ ∈ T (M) and for n = 1, 2, or 3,

lim
R→∞

Area[Σ ∩ B(R)] ·R−n and lim
R→∞

Genus[Σ ∩ B(R)] ·R−n

exist (possibly infinite). Furthermore,

Ainf(Σ, n) = Asup(Σ, n) = lim
R→∞

Area[Σ ∩ B(R)] ·R−n

Ginf(Σ, n) = Gsup(Σ, n) = lim
R→∞

Genus[Σ ∩ B(R)] ·R−n.

Proof of Theorem 3.3. We will postpone the proofs of items 1, 2, 3 to after the proofs of
the items 4 - 9 of the theorem.

Assume that M has empty boundary and M ⊂ {x3 ≥ 0}. We will prove item 4
which states that T (M) contains a minimal element with the (x1, x2)-plane as a plane of
Alexandrov symmetry. In [24], Ros and Rosenberg proved that some element of T (M) has
a horizontal plane of Alexandrov symmetry; we first give a similar proof of their result.
Let WM be the smooth open domain in R3 − M on the mean convex side of M . Note
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that WM ⊂ {x3 ≥ 0}. After a vertical translation of M , assume that M is not contained
in a smaller halfspace of {x3 ≥ 0}. Since M has a fixed size regular neighborhood on its
mean convex side and M has bounded second fundamental form, then for any sufficiently
small ε > 0, Mε = M ∩ {x3 ≤ ε} is a nonempty smooth graph of small gradient over its
projection to P0 = {x3 = 0}; we let Pt = {x3 = t}. Note that the mean curvature vector
to Mε is upward pointing. In what follows, RPt : R3 → R3 denotes reflection in Pt, while
Π: R3 → R3 denotes orthogonal projection onto P0.

For any t > 0, consider the new surface with boundary, M̂t, obtained by reflecting Mt =
M ∩ {x3 ≤ t} across the plane Pt, i.e., M̂t = RPt(Mt). Let T = sup{t ∈ (0,∞) | for t′ < t,
the surface Mt′ is a graph over its projection to P0, M̂t′ ∩ M = ∂M̂t′ = ∂Mt′ and the
infimum of the angles that the tangent spaces to M along ∂Mt make with vertical planes
is bounded away from zero}. Recall that by height estimates for CMC graphs with zero
boundary values [24], ε < T ≤ 1

H , where H is the mean curvature of M .
If there is a point p ∈ ∂MT such that the tangent plane TpM is vertical, then the

classical Alexandrov reflection principle implies that the plane PT is a plane of Alexandrov
symmetry. Next suppose that the angles that the tangent spaces to MT make with (0, 0, 1)
along ∂MT are not bounded away from zero. In this case, let pn ∈ ∂MT be a sequence of
points such that the tangent planes TpnM converge to the vertical and let Σ ∈ T (M) be a
related limit of the translated surfaces M − pn. One easily checks that Σ ∩ {x3 < 0} is a
graph over P0 and that its tangent plane at the origin is vertical. Now the usual application
of the boundary Hopf maximum principle at the origin, or equivalently, the Alexandrov
reflection argument, implies P0 is a plane of Alexandrov symmetry for Σ.

Suppose now that the tangent planes of M along ∂MT are bounded away from the
vertical. In this case, PT is not a plane of Alexandrov symmetry. So, by the usual application
of the Alexandrov reflection principle, we conclude that M̂T ∩ M = ∂M̂T = ∂MT . By
definition of T , there exist δn > 0, δn → 0, such that Fn = M̂T+δn ∩M is not contained in
∂MT+δn . We first show that not only is Π(Fn) contained in the interior of Π(MT ), but for
some η > 0, it stays at a positive distance at least η from Π(∂MT ) for δn sufficiently small.
In fact, since we are assuming that the tangent planes of M along ∂MT are bounded away
by a fixed positive angle from the vertical, if δ is small enough, the tangent planes of M
along ∂MT+δ are also bounded away by a fixed positive angle from the vertical. Thus, the
previous statement on the existence of an η > 0 is a consequence of the existence of a fixed
size one-sided regular neighborhood for M in WM .

The discussion in the previous paragraph implies that there exists a sequence of points
pn ∈ MT which stay at least η from ∂MT and such that the distance from RT (pn) and
M − MT is going to zero. The fact that pn stays at least η from ∂MT implies that for n
large there exists an ε > 0 such that RT (B(pn, ε)∩M) is disjoint from M and it is a graph
over Π(B(pn, ε)∩M). Consider the element Σ ∈ T (M) obtained as a limit of the translated
surfaces M − Π(pn) and let p = (0, 0, T ) ∈ Σ. From the way Σ is obtained, p is a positive
distance from ∂ΣT , RT (p) ∈ Σ−ΣT and Σ̂T is tangent to Σ−ΣT and lies on its mean convex
side. The maximum principle implies that PT is a plane of Alexandrov symmetry which
contradicts the assumption that tangent planes of M along ∂MT are bounded away by a
fixed positive angle from the vertical. This completes the proof that there exists a surface
Σ ∈ T (M) with the (x1, x2)-plane as a plane of Alexandrov symmetry. It then follows from
item 8 of Theorem 2.3 that the nonempty T -invariant set T (Σ) ⊂ T (M) contains minimal
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element of T (M) with the (x1, x2)-plane as a plane of Alexandrov symmetry, which proves
item 4.

We now prove item 5 holds. Assume now that M has possibly nonempty compact
boundary and there exists a sequence of open balls B(qn, n) ⊂ R3 − M . Note that these
balls can be chosen so that they are at distance at least n from the boundary of M and
so that there exist points pn ∈ ∂B(qn, n) ∩ M . After choosing a subsequence, we may
assume that the translated balls B(qn, n)− pn converge to an open halfspace K of R3 and
a subsequence of the translated surfaces M − pn gives rise to an element M∞ ∈ T (M) with
M∞ contained in the halfspace R3−K and ∂M∞ = Ø. By the previous discussion when M
has empty boundary (item 4), T (M∞) ⊂ T (M) contains a minimal element with a plane
of Alexandrov symmetry. This completes the proof of item 5.

We now prove item 6 in the theorem. First observe that 6d =⇒ 6a and that 6e =⇒ 6b.
Also, equation (2) implies that 6a =⇒ 6b and that 6d =⇒ 6e. We now prove that
6c =⇒ 6d . Suppose that T (M) contains a minimal element Σ which has a plane of Alexan-
drov symmetry and let WΣ denote the embedded three-manifold on the mean convex side
of Σ. In this case WΣ is contained in a slab, and by item 2 of Theorem 2.3, the area growth
of Σ is comparable to the volume growth of WΣ. Note that the volume of WΣ grows at most
like the volume of the slab which contains it, and so, the volume growth of WΣ and the
area growth of Σ are at most quadratic in R. By the definitions of T (M) and Ainf(M, 2),
we see that Ainf(M, 2) is finite which implies 6d.

In order to complete the proof of item 6, it suffices to show 6b =⇒ 6c. However,
since the proof of 6b =⇒ 6c uses the fact that 6a =⇒ 6c, we first show that 6a =⇒ 6c.
Assume that Ainf(M, 3) = 0 and we will prove that T (M) contains a surface Σ which lies
in a halfspace of R3. Since Ainf(M, 3) = 0, we can find a sequence of points {pn}n ⊂
M and positive numbers Rn, Rn → ∞, such that the connected component M(pn, Rn)
of M ∩ B(pn, Rn) containing pn has area less than 1

nR3
n. Since M has bounded second

fundamental form, there exists an ε > 0 such that for any q ∈ R3, if B(q, r) ∩M 6= Ø, then
Area(B(q, r + 1) ∩M) ≥ ε. Using this observation, together with the inequality Area(M ∩
B(pn, Rn)) ≤ 1

nR3
n and the equality Volume (B(pn, Rn)) = 4π

3 R3
n, it is straightforward to

find a sequence of points qn ∈ B(pn, Rn), numbers kn, with kn →∞, such that B(qn, kn) ⊂
[B(pn, Rn

2 ) −M(pn, Rn)] and such that there are points sn ∈ ∂B(qn, kn) ∩M(pn, Rn) with
|sn| → ∞ (see Figure 1). Let Σ ∈ T (M) be a limit surface arising from the sequence
of translated surfaces M(pn, Rn) − sn. Note that Σ is disjoint from the open halfspace
obtained from a limit of a subsequence of the translated balls B(qn, kn) − sn. Since Σ
lies in a halfspace of R3, item 4 in the theorem implies T (M) contains a minimal element
with a plane of Alexandrov symmetry. The existence of this minimal element proves that
6a =⇒ 6c.

We now prove that 6b =⇒ 6c and this will complete the proof of item 6. Assume
that Ginf(M, 3) = 0. Since Ginf(M, 3) = 0, there exists a sequence of points pn ∈ M and
Rn → ∞, such that the genus of M(pn, Rn) ⊂ B(pn, Rn) is less than 1

nR3
n. Using the fact

that the genus of disjoint surfaces is additive, a simple geometric argument, which is similar
to the argument that proved 6a =⇒ 6c, shows that there exists a sequence of numbers kn,
with kn →∞, such that one of the following holds:

1. There are points qn ∈ M(pn, Rn) diverging in R3 such that B(qn, kn) ⊂ B(pn, Rn) and
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Figure 1: Finding large balls in the complement of M(pn, Rn)

M(qn, kn) has genus zero.

2. There are points sn ∈ B(pn, Rn) diverging in R3 such that B(qn, kn) ⊂ B(pn, Rn
2 ) −

M(pn, Rn) and sn ∈ ∂B(qn, kn) ∩M(pn, Rn).

If statement 2 holds, then our previous arguments imply that T (M) contains a surface
Σ which lies in a halfspace of R3 and that T (M) contains a minimal element with a plane
of Alexandrov symmetry. Thus, we may assume statement 1 holds.

Since statement 1 holds, then the sequence of translated surfaces M − qn yields a limit
surface Σ ∈ T (M) of genus zero. If Σ has a finite number of ends, then Σ has an annular
end E. By the main theorem in [17], E is contained in a solid cylinder in R3. Under a
sequence of translations of E, we obtain a limit surface D ∈ T (Σ) which is contained in
a solid cylinder. By item 4, there is a minimal element D′ ∈ T (D) ⊂ T (M) which has a
plane of Alexandrov symmetry.

Suppose now M has an infinite number of ends. For each n ∈ N, there exists numbers,
Tn with Tn →∞, such that the number k(n) of noncompact components,

{Σ1(Tn),Σ2(Tn), . . . ,Σk(n)(Tn)},

in M−B(Tn) is at least n. Fix points pi(n) ∈ Σi(Tn)∩∂B(2Tn), for each i ∈ {1, 2, . . . , k(n)}.
Note that

∑k(n)
i=1 Area(M(pi(n), Tn)) ≤ Area(M ∩ B(3Tn)). If M has no boundary, then

Area(M ∩ B(3Tn)) ≤ c′(3Tn)3 = cT 3
n (see item 2 of Theorem 2.3). However the proof of

the existence of a fixed size regular neighborhood on the mean convex side of such an M
also shows that for Tn large, M − B(Tn) has a fixed size regular neighborhood on its mean
convex side even when M has nonempty boundary. Therefore, in any case, we obtain that
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for all n, there exists an i, such that

Area(M(pi(n), Tn)) ≤ c

n
T 3

n .

By definition of A(M, 3), we conclude that A(M, 3) = 0. Since we have shown that 6a
=⇒ 6c, T (Σ) contains a minimal element Σ′ with a plane of Alexandrov symmetry. Since
T (Σ) ⊂ T (M), T (M) contains a minimal element with a plane of Alexandrov symmetry.
Thus 6b =⇒ 6c which completes the proof of item 6.

We next prove item 7. Assume that M has infinite number of ends. By the arguments
in the previous paragraph, T (M) contains a minimal element with a plane of Alexandrov
symmetry. This proves that item 7 holds.

We next prove item 8a. Arguing by contrapositive, suppose that the conclusion of
item 8a fails to hold and we will prove that T (M) contains an element with a plane of
Alexandrov symmetry . Since the conclusion of 8a fails to hold, there exists a sequence of
surfaces Σ(n) ∈ T(M) with end representatives E(n), and positive numbers F (n) → ∞ as
n →∞ such that for any R(n) > 0, there exist balls Bn of radius F (n) such that

Bn ⊂ [R3 − (B(R(n)) ∪ E(n))].

Choose R(n) > F (n) sufficiently large so that ∂E(n) ⊂ B(R(n)
2 ) and let Bn be the

related ball of radius F (n) which lies outside of B(R(n)) and which is disjoint from E(n).
After rotating Bn around an axis passing through the origin, we obtain a new ball Kn ⊂
R3 − (B(R(n)) ∪ E(n)) of radius F (n) such that ∂Kn intersects E(n) at a point pn. After
choosing a subsequence, suppose that E(n)− pn converges to a surface Σ∞ ∈ T(M) which
lies in a halfspace of R3, the halfspace being a limit of some subsequence of translated
balls Bn − pn. By item 4, T (Σ∞) ⊂ T (M) contains a surface with a plane of Alexandrov
symmetry, which completes the proof of item 8a.

The proof of item 8b is a straightforward modification of the proof of item 7 and will be
left to the reader.

We now prove that item 9 holds. First observe that 9d =⇒ 9a and that 9e =⇒ 9b.
Also, equation (2) implies that 9a =⇒ 9b and that 9d =⇒ 9e. An argument similar to
the proof of 6c =⇒ 6d shows that 9c =⇒ 9d . In order to complete the proof of item 9, it
suffices to show 9b =⇒ 9c. Let Σ be a minimal element of T (M). By item 6, there exists
a minimal element of Σ′ ∈ T (Σ) with a plane of Alexandrov symmetry. By minimality of
Σ, Σ ∈ T (Σ′), and so Σ also has a plane P of Alexandrov symmetry (the same plane as Σ′

up to some translation). In particular, Σ lies in a fixed size slab in R3.
After a possible rotation of Σ, assume that P = {x3 = 0} and so, Σ ⊂ {−a ≤ x3 ≤ a} for

some a > 0. Since Ginf(Σ, 2) = 0, there exists a sequence of points pn = (x1(n), x2(n), 0) ∈
Σ, numbers Rn with Rn →∞, such that Genus(Σ(pn, Rn)) < 1

nR2
n. Similar to the proof of

6b =⇒ 6c, the fact that Ginf(Σ, 2) = 0 implies one of the following statements holds.

1. There exist a divergent sequence of points qn ∈ B(pn, Rn)∩Σ(pn, Rn)∩P and positive
numbers kn < Rn

2 with kn →∞ such that Genus(Σ(qn, kn)) = 0.

2. There exists a divergent sequence of points qn ∈ P and positive numbers kn with kn →
∞ such that B(qn, kn) ⊂ [B(pn, Rn

2 )−Σ(qn, Rn)] and points sn ∈ ∂B(qn, kn)∩Σ(pn, Rn)
with |sn| → ∞.
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We will consider the two cases above separately. If statement 1 holds, then a subsequence
of the translated surfaces Σ − qn yields a limit surface Σ∞ ∈ T (Σ) of genus 0 with P as a
plane of Alexandrov symmetry. If Σ∞ has a finite number of ends, then it has an annular
end. In this case, the end is asymptotic to a Delaunay surface. Therefore T (Σ) contains a
Delaunay surface Σ′ and since Σ is a minimal element, Σ ∈ T (Σ′) which implies Σ itself is a
Delaunay surface. Suppose Σ∞ has an infinite number of ends. Note that Σ∞ lies in a slab
which implies that Area(Σ∞ ∩B(R)) ≤ C2R

2. In this case, a modification of the end of the
proof that 6b =⇒ 6c shows that for each n ∈ N, there exist numbers Tn with Tn →∞ such
that the number k(n) of components {Σ1(Tn),Σ2(Tn), . . . ,Σk(n)(Tn)} in Σ∞ − B(Tn) is at
least n and, after possibly reindexing, there is a point p1(n) ∈ Σ1(Tn)∩∂B(2Tn), a constant
c3 such that Area(Σ1(p1(n), Tn) ≤ c3

n T 2
n . This implies that one can find diverging points qn ∈

B(p1(n), Tn)∩P and numbers rn →∞ such that B(qn, rn) ⊂ [B(p1(n), Tn
2 )−Σ1(p1(n), Tn)]

and there are points sn ∈ B(qn, rn) ∩ Σ1(p1(n), Tn) such that |sn| → ∞. It follows that a
subsequence of the surfaces Σ1(p1(n), Tn)− sn converges to a surface T (Σ∞) which lies in
halfspace whose boundary plane is a vertical plane. Item 6 of Theorem 2.3 implies that
T (Σ∞) contains a surface Σ′ with the plane P as a plane of Alexandrov symmetry as well
as a vertical plane of Alexandrov symmetry. Therefore, Σ′ is cylindrically bounded and so
it is a Delaunay surface. Since Σ ∈ T (Σ′), Σ is a Delaunay surface.

We now consider the case where statement 2 holds. A straightforward modification of
the proof of the case where statement 1 holds then demonstrates that there is a Σ′ ∈ T (Σ)
with the plane P and a vertical plane as a plane of Alexandrov symmetry. As before, we
conclude that Σ is a Delaunay surface. This completes the proof of item 9.

We now prove item 1. Let Σ be a minimal element in T (M). If Σ has a plane of
Alexandrov symmetry and T(Σ) has a surface Σ′ with more than one end, then Theorem
4.1, which does not depend on the proof of this item, implies that Σ′ has at least one annular
end, from which it follows that T (Σ) contains a Delaunay surface D. Since Σ and D are
minimal elements of T (Σ), then Σ ∈ T (Σ) = T (D), and so Σ is a translation of D. Since
Σ is a Delaunay surface (a translation of D), then clearly every surface in T(Σ) is also a
translation of a Delaunay surface, which proves item 1 under the additional hypothesis that
Σ has a plane of Alexandrov symmetry.

Thus, arguing by contradiction, suppose that Σ fails to have a plane of Alexandrov
symmetry and T(Σ) has a surface with more than one end. Since Σ is a minimal element,
then Σ ∈ T (Σ̃) for any Σ̃ ∈ T (Σ), and so no element of T (Σ) has a plane of Alexandrov
symmetry. By item 8b, there is a bound on the number of ends of any surface in T(Σ). Let
Σ′ ∈ T(Σ) be a surface with the largest possible number n of ends and let {E1, E2, . . . , En}
be pairwise disjoint end representatives for its n ends. By item 8a, the ends E1, E2, . . . , En

are uniformly close to each other. It now follows from the definition of T(Σ′) that every
element of T(Σ′) must have at least n components, one arising from a limit of translations
of each of the ends E1, E2, . . . , En.

By our choice of n, we find that every surface in T(Σ′) ⊂ T(Σ) has exactly n components.
From the minimality of Σ, Σ must be a component of some element Σ′′ ∈ T(Σ′). But then
our previous arguments imply T(Σ′′) contains a surface ∆ with n − 1 ends coming from
translational limits of the components of Σ′′ other than Σ and at least two additional
components (in fact n components) arising from translational limits of Σ ⊂ Σ′′. Hence,
T(Σ′′) ⊂ T(Σ′) contains a surface ∆ with at least n + 1 components, which contradicts the
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definition of n. This contradiction completes the proof of item 1.
We are now in a position to prove item 2 of the theorem. The first step in this proof is

the following assertion.

Assertion 3.6 Suppose Σ ∈ T(M) ∪ {M} and every element in T(Σ) is connected. There
exists a function f : [1,∞) → [1,∞) such that for every Ω ∈ T (Σ) and points p, q ∈ Ω with
1 ≤ dR3(p, q) ≤ R, then

dΩ(p, q) ≤ f(R)dR3(p, q).

Furthermore, if no element in T(Σ) has a plane of Alexandrov symmetry, then Σ is chord-
arc.

Proof. Suppose Σ ∈ T(M) ∪ {M} and every surface in T(Σ) is connected. If there fails to
exist the desired function f , then there exists a positive number R, a sequence of surfaces
Ω(n) ∈ T(Σ) and points pn, qn ∈ Ω(n) such that for n ∈ N,

1 ≤ dR3(pn, qn) ≤ R and n · dR3(pn, qn) ≤ dΩ(n)(pn, qn).

Since every surface in T(Σ) is connected T(Σ) = T (Σ). As T (Σ) is sequentially compact
and T (Σ) = T(Σ), the sequence of surfaces Ω(n)− pn ∈ T (Σ) can be chosen to converge to
a Σ∞ ∈ T(Σ) = T (Σ) and the points qn − pn converge to a point q ∈ Σ∞. Clearly Σ∞ has
a component passing through q which is different from a component of Σ∞ passing through
the origin because the intrinsic distance between ~0 ∈ Ω(n) − pn and qn − pn ∈ Ω(n) − pn

is at least n. But by assumption, every surface in T(Σ) is connected. This contradiction
proves the existence of the desired function f .

Suppose now that T (Σ) contains no element with a plane of Alexandrov symmetry
and let f be a function satisfying the first statement in the assertion. Since Σ is an end
representative of Σ itself, item 5 of the theorem implies that there exists an R0 > 0 such
that every ball in R3 of radius at least R0 intersects Σ in some point. Let k be a positive
integer greater than R0 + 1. Fix any two points p, q ∈ Σ of extrinsic distance at least 3k.
Let v = q−p

|q−p| and let n be the integer part of |q − p|. For i ∈ {1, 2, . . . , n}, let pi = p + kiv.
By our choice of k, a ball of radius k always intersects Σ at some point. For each i, let
qi ∈ Σ∩B(pi, k), where we chose q1 = p and qn = q. Since for each i < n, dR3(qi, qi+1) ≤ 3k,
then dΣ(qi, qi+1) ≤ f(3k)3k. By the triangle inequality,

dΣ(p, q) ≤ (n− 1)f(3k)3k ≤ 3f(3k)(nk) ≤ 3f(3k)dR3(p, q).

Thus, Σ is chord-arc, which completes the proof of the assertion. 2

We now return to the proof of item 2. Let Σ ∈ T (M) be a minimal element. By the last
statement in item 1, the minimal element Σ satisfies T (Σ) = T(Σ) and so, every surface
in T(Σ) is connected. Thus, by Assertion 3.6, if Σ fails to have a plane P of Alexandrov
symmetry, then Σ is chord-arc. Suppose now that Σ has a plane P of Alexandrov symmetry.
If Σ were to fail to be chord-arc, then the proof of item 9 shows that either Σ is a Delaunay
surface or else there exists an R0 > 0 such that every ball B of radius R0 and centered at
a point of P must intersect Σ. In the first case, Σ is a Delaunay surface, which is clearly
chord-arc. In the second case, the existence of points in B ∩ Σ allows one to modify the
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proof of Assertion 3.6 in a straightforward manner to show that Σ is chord-arc. Thus, item
2 of the theorem is proved.

In order to prove item 3, we need the following lemma.

Lemma 3.7 Let Σ be a minimal element in T (M). For all D, ε > 0, there exists a dε,D > 0
such that the following statement holds. For any BΣ(p, D) ⊂ Σ and for all q ∈ Σ, there
exists q′ ∈ Σ such that BΣ(q′, D) ⊂ BΣ(q, dε,D) and dH(BΣ(p, D) − p, BΣ(q′, D) − q′) < ε.
Here BΣ(p, R) denotes the intrinsic ball of radius R centered at p.

Proof. Arguing by contradiction, suppose that the claim in the lemma is false. Then there
exist D, ε > 0 such that the following holds. For all n ∈ N, there exist intrinsic balls
BΣ(pn, D) ⊂ Σ and qn ∈ Σ such that for any BΣ(q′, D) ⊂ BΣ(qn, n), then dH(BΣ(pn, D)−
pn, BΣ(q′, D)− q′) > ε. In what follows, we further simplify the notation and we let BΣ(p)
denote BΣ(p, D). After going to a subsequence, we can assume that the set of translated
surfaces, Σ−pn, converges C2 to a complete, strongly Alexandrov embedded, CMC surface
Σ∞ passing through the origin ~0. By item 1, Σ∞ is connected and we consider it to be
pointed so that BΣ(pn)−pn converges to BΣ∞(~0). Also, we can assume that BΣ(qn, n)− qn

converges to a complete, connected, pointed, strongly Alexandrov embedded CMC surface
Σ′
∞. The previous discussion implies that for any z ∈ Σ′

∞, there exists a sequence BΣ(zn) ⊂
BΣ(qn, n), such that

dH(BΣ(zn)− zn, BΣ′∞(z)− z) <
ε

4
for n large. (3)

Furthermore, we can also assume that

dH(BΣ(pn)− pn, BΣ∞(~0)) <
ε

4
, (4)

and since BΣ(zn) ⊂ BΣ(qn, n), then

dH(BΣ(pn)− pn, BΣ(zn)− zn) > ε. (5)

Recall that since Σ is a minimal element, item 7 in Theorem 2.3 implies that

Σ, Σ∞, Σ′
∞ ∈ T (Σ) = T (Σ∞) = T (Σ′

∞).

In order to obtain a contradiction it suffices to show that there exists α > 0 such that

dH(BΣ′∞(z)− z,BΣ∞(~0)) > α

for any z ∈ Σ′
∞ because this inequality clearly implies that Σ∞ /∈ T (Σ′

∞). Fix z ∈ Σ′
∞ and

let zn and pn be as given by equations (3) and (4).
In what follows, we are going to start with equation (5), apply the triangle inequality

for the Hausdorff distance between compact sets, then apply the triangle inequality and
equation (3), and finally we apply (4). For n large,

ε < dH(BΣ(pn)− pn, BΣ(zn)− zn) ≤
≤ dH(BΣ(pn)− pn, BΣ′∞(z)− z) + dH(BΣ′∞(z)− z,BΣ(zn)− zn) <

< dH(BΣ(pn)− pn, BΣ∞(~0)) + dH(BΣ∞(~0), BΣ′∞(z)− z) +
ε

4
<

<
ε

2
+ dH(BΣ′∞(z)− z, BΣ∞(~0)).
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This inequality implies dH(BΣ′∞(z)− z, BΣ∞(~0)) > ε
2 , which completes the proof of the

lemma. 2

Notice that if X ⊂ Σ is a compact domain of intrinsic diameter less than D, then there
exists a point p ∈ Σ such that X ⊂ BΣ(p, D). The next lemma is a consequence of Lemma
3.7 and the following observation regarding the Hausdorff distance: Given three compact
sets A,B, X ⊂ Σ with X ⊂ A, if dH(A,B) < ε, then there exists X ′ ⊂ B such that
dH(X, X ′) < ε.

Lemma 3.8 Let Σ be a minimal element of T (M). For all D, ε > 0, there exists a dε,D > 0
such that the following statement hold. For every smooth, connected compact domain X ⊂ Σ
with intrinsic diameter less than D and for each q ∈ Σ, there exists a smooth compact,
connected domain Xq,ε ⊂ Σ and a translation, i : R3 → R3, such that

dΣ(q, Xq,ε) < dε,D and dH(X, i(Xq,ε)) < ε,

where dΣ is distance function on Σ and dH is the Hausdorff distance on compact sets in R3.

In order to finish the proof of item 3, we remark that item 2 implies intrinsic and
extrinsic distances are comparable and so, the above lemma implies the first statement in
item 3. The second statement is an immediate consequence of the first statement, which
completes the proof.

Theorem 3.3 is now proved. 2

Proof of Corollary 3.4. We first prove item 1 of the corollary. By equation (2),
Asup(M, 3) = 0 implies Gsup(M, 3) = 0. On the other hand, if Gsup(M, 3) = 0, then
for any Σ ∈ T (M), Gsup(Σ, 3) = 0. In particular, for any minimal element Σ ∈ T (M),
Ginf(Σ, 3) = 0. By item 6 of Theorem 3.3, T (Σ) contains a minimal element Σ′ with a
plane of Alexandrov symmetry. Since Σ is a minimal element, Σ ∈ T (Σ′) and therefore has
a plane of Alexandrov symmetry. This proves that item 1 holds.

The proof of item 2 follows from arguments similar to the ones in the proof of item 1,
using item 9 of Theorem 3.3 instead of item 6. 2

Remark 3.9 In [20], we give a complete and natural generalization of Theorem 2.3 to the
more general case of separating CMC hypersurfaces M with bounded second fundamental
form in an n-dimensional noncompact homogeneous manifold N . In that paper, we obtain
some interesting applications of this generalization to the classical setting where N is Rn

or hyperbolic n-space, Hn, which are similar to the applications given in Theorem 3.3.

Remark 3.10 In [23], we prove that if M ⊂ R3 is a strongly Alexandrov embedded CMC
surface with bounded second fundamental form and T (M) contains a Delaunay surface,
then every intrinsic isometry of M extends to an isometry of R3. If T (M) contains a
surface with a plane of Alexandrov symmetry, then it is locally rigid5(see [26]). Theorem
3.3 gives several different constraints on the geometry or the topology of M that guarantee

5M is locally rigid if any one-parameter family of isometric immersions Mt of M , t ∈ [0, ε), M0 = M ,
with same mean curvature as M is obtained by a family of rigid motions of M .
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the existence of a Delaunay surface or a surface with a plane of Alexandrov symmetry in
T (M). In relation to these rigidity results, the first author conjectures that the helicoid
is the only complete, embedded, constant mean curvature surface in R3 which admits more
than one non-congruent, isometric, constant mean curvature immersion into R3 with the
same constant mean curvature. Since intrinsic isometries of the helicoid extend to ambient
isometries, the second author also conjectures that an intrinsic isometry of a complete,
embedded, constant mean curvature surface in R3 extends to an ambient isometry of R3.

4 Embedded CMC surfaces with a plane of Alexandrov sym-
metry and more than one end.

In this section we prove the following surprising result that uses techniques from the proof
of Theorem 3.3. In the next theorem the hypothesis that the surface M be embedded can
be replaced by the weaker condition that it is embedded outside of its Alexandrov plane of
symmetry.

Theorem 4.1 Suppose M is a not necessarily connected, complete embedded CMC surface
with bounded second fundamental form, compact boundary, a plane of Alexandrov symmetry
and at least n ends. If n is at least two, then M has at least n annular ends. Furthermore,
if M has empty boundary and more than one noncompact connected component, then each
noncompact component of M is a Delaunay surface.

The following corollary is an immediate consequence of the above theorem and the result
of Meeks [17] that a connected, noncompact, properly embedded CMC surface with one
end must have infinite genus.

Corollary 4.2 Suppose M is a connected, noncompact, complete embedded CMC surface
with bounded second fundamental form and a plane of Alexandrov symmetry. Then M has
finite topology if and only if M has a finite number of ends greater than one.

In regards to Theorem 4.1 when n = ∞, we note that there exist connected surfaces
satisfying the hypothesis of the theorem which are periodic and have an infinite number of
annular ends.

Proof. We first describe some of the notation that we will use in the proof of the theorem.We
will assume that M has a plane P of Alexandrov symmetry and P is the (x1, x2)-plane. We
let S1(R) = ∂(P∩B(R)). Assume that M is a bigraph over a domain ∆ ⊂ P and R0 is chosen
sufficiently large, so that ∂M ⊂ B(R0) and ∆− B(R0) contains n noncompact components
∆1,∆2, . . . ,∆n. Let M1, M2 ⊂ M denote the bigraphs with boundary over the respective
regions ∆1, ∆2. Let X be the component in P − (∆1 ∪ ∆2) with exactly two boundary
curves ∂1, ∂2, each a proper noncompact curve in P and such that ∂1 ⊂ ∂∆1, ∂2 ⊂ ∂∆2.
The curve ∂1 separates P into two closed, noncompact, simply-connected domains P1, P2,
where ∆1 ⊂ P1 and ∆2 ⊂ P2.

Now choose an increasing unbounded sequence of numbers {Rn}n∈N with R1 > R0

chosen large enough so that for i = 1, 2, the component of Pi∩B(R1) which intersects some
fixed point of Pi∩S1(R0) contains P1∩S1(R0) in its boundary; we will also assume that the
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circles S1(Rn) are transverse to ∂∆1∪∂∆2 for each n. By elementary separation properties,
for i = 1, 2, there exists a unique component σi(n) of Pi ∩ S1(Rn) which separates Pi into
two components, exactly one of whose closure is a compact disk Pi(n) with Pi ∩ S1(R0) in
its boundary; note that the collection of domains {Pi(n)}n forms a compact exhaustion of
Pi. See Figure 2.

Figure 2: P1(1) is the yellow shaded region containing σ1(1) and an arc of ∂1 in its boundary.

Since σ1(n) is disjoint from σ2(n) and each of these sets is a connected arc in S1(R0),
then, after possibly replacing the sequence {Rn}n∈N by a subsequence and possibly rein-
dexing P1, P2, for each n ∈ N the arc σ1(n) is contained in the interior of a closed halfspace
Kn of R3 with boundary plane ∂Kn being a vertical plane passing through the origin ~0 of
R3. Let ∆1(n) = ∆1 ∩ P1(n) and let M1(n) ⊂ M1 be the compact bigraph over ∆1(n).
Let K̂n be the closed halfspace in R3 with Kn ⊂ K̂n and such that the boundary plane
∂K̂n is a distance 2

H + R0 from ∂Kn, where H is the mean curvature of M . Note that
∂M1(n) is contained in the union of the solid cylinder over B(R0) and the halfspace Kn.
Thus, the distance from ∂M(n) to ∂K̂n is at least 2

H . By the Alexandrov reflection prin-
ciple and the 1

H height estimate for CMC graphs with zero boundary values and constant
mean curvature H, we find that M1(n) ⊂ K̂n. After choosing a subsequence, the halfs-
paces K̂n converge on compact subsets of R3 to a closed halfspace K. Since for all n ∈ N,
M1(n) ⊂ M1(n + 1) and

⋃∞
i=1 M1(n) = M1, one finds that M1 ⊂ K. After a horizontal

translation and a rotation of M1 around the x3-axis, we may assume that the new surface,
which we will also denote by M1, lies in {(x1, x2, x3) | x2 > 0} and it is a bigraph over a re-
gion ∆1 ⊂ {(x1, x2, 0) | x2 > 0}. A straightforward application of the Alexandrov reflection
principle and height estimates for CMC graphs shows that, after an additional horizontal
translation and rotation around the x3-axis, ∆1 also can be assumed to contain divergent
sequence of points pn = (x1(n), x2(n), 0) ∈ ∂∆1 such that x2(n)

x1(n) → 0 as n approaches infinity.
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See Figure 3.

Figure 3: Choosing the points pn and related data.

Assertion 4.3 The points pn can be chosen to satisfy the following additional properties:

1. The vertical line segments γn joining pn to (x1(n), 0, 0) intersect ∆1 only at pn and
x1(n+1)

x1(n) > n.

2. The surfaces M1− pn converge to a Delaunay surface F with P as a plane of Alexan-
drov symmetry and axis parallel to the x1-axis.

Proof. The proof that the points pn can be chosen to satisfy statement 1 is clear. To
prove that they can also be chosen to satisfy statement 2 can be seen as follows. Let
Sn ⊂ P be the circle passing through the points pn and (x1(n)

10 , 0, 0) with center on the line
{(x1(n), t, 0) | t < x2(n)} and let En denote the closed disk with boundary Sn. Consider
the family of translated disks En(t) = En − (0, t, 0) and let t0 be the largest t such that
En(t) intersects ∆1 at some point and let Dn = En(t0). By construction and after possibly
replacing by a subsequence, points in Dn ∩ ∆1 satisfy the first statement in the assertion
as well as the previous property that the ratio of their x2-coordinates to the x1-coordinates
limit to zero as n →∞. Next replace the previous point pn by any point of ∂Dn ∩M1, to
obtain a new sequence of points which we also denote by pn. A subsequence of the translated
surfaces M − pn converges to a strongly Alexandrov embedded surface M∞ ∈ T (M) which
has P as a plane of Alexandrov symmetry and which lies in the halfspace x2 ≥ 0. It follows
from item 4 of Theorem 3.3 (and its proof) that T (Σ) contains a Delaunay surface D with
axis being a bounded distance from the x1-axis and which arises from a limit of translates of
M∞. It is now clear how to choose the desired points described in the assertion, which again
we denote by pn, so that the translated surfaces M − pn converge to the desired Delaunay
surface F . This completes the proof of the assertion. 2
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As a reference for the discussion which follows, we refer the reader to Figure 3. By
Assertion 4.3, we may assume that around each point pn, the surface M1 is closely approxi-
mated by a translation of a fixed large compact region of F . Let Γn be the largest compact
extension of γn so that Γn − γn ⊂ ∆1 and let Γ̂n be a line segment extension of Γn near
the end point of Γn with positive x2-coordinate so that Γ̂n ∩∆1 = Γn ∩∆1 and so that the
length of Γ̂n − Γn is less than 1

n . Let qn denote the end point of Γ̃n which is different from
the point pn. Without loss of generality, we may assume that the line segments a(n) in
P joining qn, qn+1 are transverse to ∂∆1 and intersect ∆1 in a finite collection of compact
intervals. Note that if we denote by v(n) the upward pointing unit vector perpendicular to
a(n), then v(n) converges to (0, 1, 0) as n goes to infinity.

Now fix some large n and consider the compact region T (n) ⊂ P bounded by the
line segments Γ̂n, Γ̂n+1, a(n) and the line segment joining (x1(n), 0, 0) to (x1(n + 1), 0, 0).
Consider T (n) to lie in R2 and let T (n)×R ⊂ R3 be the related convex domain in R3. Let
M1(n) be the component of M1∩ (T (n)×R) which contains the point pn. Note that M1(n)
is compact with boundary consisting of an almost circle C(Γn) which is a bigraph over an
arc on Γn, possibly also an almost circle C(Γn+1) which is a bigraph over an interval on
Γn+1 and a collection of bigraph components over a collection of intervals In in the line
segment a(n).

We denote by α(n) the collection of boundary curves of M1(n). Let α2(n) be the subcol-
lection of curves in α(n) which intersect either Γn or Γn+1, that is α2(n) = {C(Γn), C(Γn+1)}.
Clearly, the collection of boundary curves of M1(n) which are bigraphs over the collec-
tion of intervals In = ∆1 ∩ a(n) is α(n) − α2(n). Let α3(n) be the subcollection of
curves in α(n) − α2(n) which bound a compact domain ∆(α) ⊂ M1 − ∂M1, and let
α4(n) = α(n)− (α2(n) ∪ α3(n)).

Assertion 4.4 For n sufficiently large, every boundary curve ∂ of M1(n) which is a graph
over an interval in In, bounds a compact domain ∆(∂) ⊂ M1− ∂M1; in other words, α4(n)
is empty.

Proof. For any α ∈ α(n) let ηα denote the outward pointing conormal to α ⊂ ∂M1(n) and
let D(α) be the planar disk bounded by α. Consider a boundary component ∂ ∈ α4(n).
By the “blowing a bubble” argument presented in [12], there exists another disk D̂(∂) on
the mean convex side of M1 of the same constant mean curvature as M1, ∂D̂(∂) = ∂D(∂).
Moreover, D̂(∂) is a graph over D(∂) and D̂(∂)∩(T (n)×R) = ∂D̂(∂) = ∂. Let η̂∂ denote the
inward pointing conormal to ∂D̂(∂). The disk D̂(∂) is constructed so that 〈η∂−η̂∂ , v(n)〉 ≥ 0
. See Figure 4.

The piecewise smooth surface M1(n) ∪ (
⋃

α∈α2(n)∪α3(n) D(α)) ∪ (
⋃

α∈α4(n) D̂(α)) is the
boundary of a compact region W (n) ⊂ (T (n)×R). An application of the divergence theorem
given in [13] to the vector field v(n) considered to be a constant vector field in R3 in the
region W (n) gives rise to the following equation:
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Figure 4: Blowing a bubble D̂(∂) on the mean convex side of M1.

∑
α∈α2(n)∪α3(n)

[∫
α
〈ηα, v(n)〉 − 2H

∫
D(α)

〈v(n), N(n)〉

]
+

+
∑

∂∈α4(n)

[∫
∂
〈η∂ , v(n)〉 − 2H

∫
D̂(∂)

〈v(n), N(n)〉

]
= 0, (6)

where H is the mean curvature of M and N(n) is the outward pointing conormal to W (n).
Note that

∑
α∈α2(n)

[∫
α〈ηα, v〉 − 2H

∫
D(α)〈v(n), N〉

]
= ε(n) converges to zero as n →∞ be-

cause v(n) converges to (0, 1, 0) and the curves C(Γn), C(Γn+1) converge to curves on Delau-
nay surfaces whose axes are perpendicular to (0, 1, 0). Also note that this application of the
divergence theorem in [13] implies that for α ∈ α3(n),

∫
α〈ηα, v(n)〉−2H

∫
D(α)〈v(n), N(n)〉 =

0. Thus, equation (6) reduces to the equation:

ε(n) +
∑

∂∈α4(n)

[∫
∂
〈η∂ , v(n)〉 − 2H

∫
D̂(∂)

〈v(n), N(n)〉

]
= 0. (7)
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On the other hand, for each ∂ ∈ α4(n)∫
∂
〈η∂ , v(n)〉 − 2H

∫
D̂(∂)

〈v(n), N(n)〉 =
∫

∂
〈η∂ − η̂∂ , v(n)〉 ≥ 0 (8)

and the length of each ∂ ∈ α4 is uniformly bounded from below. Since ε(n) is going to
zero as n goes to infinity, equations (7) and (8) above imply that for n large, the conormals
η∂ and η̂∂ are approaching each other uniformly (see Figure 4). Note that the intrinsic
distance of any point on the graphs D̂(∂) to ∂ is uniformly bounded (independent of ∂ and
n)6. The Harnack inequality, the above remark, the facts that D̂(∂) is simply-connected
and the second fundamental form of M is bounded, imply that there exists δ > 0 such that
if

∫
∂〈η∂ − η̂∂ , v(n)〉 < δ, then there is a disk ∆(∂) ⊂ M1−M1(n) which can be expressed as

a small graph over D̂(∂). The existence of ∆(∂) contradicts that ∂ ∈ α4(n), which means
α4(n) = Ø for n sufficiently large. This contradiction proves the assertion.

2

We now apply Assertion 4.4 to prove the following key partial result in the proof of
Theorem 4.1.

Assertion 4.5 M1 has at least one annular end.

Proof. By Assertion 4.4, for some fixed n chosen sufficiently large, every boundary curve α
of M(n) in the collection α(n)− α2(n) bounds a compact domain ∆(α) ⊂ M1 − ∂M1. By
the Alexandrov reflection principle and height estimates for CMC graphs, we find that the
surface M̂(n) = M(n) ∪

⋃
α∈α(n)−α2(n) ∆(α) must have two almost circles in its boundary

arising from α2(n) and that as k → ∞, there is a fixed half-cylinder C(n) ⊂ R3 that
contains M̂(n) =

⋃
n∈N M̂(n) ⊂ M . It then follows by the main result in [13] that M̂(n) is

asymptotic to a Delaunay surface, which proves the assertion. 2

It follows from the discussion at the beginning of the proof of Theorem 4.1 and Assertion
4.5 that if M has at least n ends, n > 1, then it has at least n− 1 annular ends. It remains
to prove that if M1,M2 are given as in the beginning of the proof of Theorem 4.1 with
M1 having an annular end, then M2 has an annular end as well. To see this note that the
annular end E1 ⊂ M1 is asymptotic to a Delaunay surface F and so after a rotation of M ,
M1 is a graph over a domain ∆1 which contains the limiting axis of F , which we can assume
to be the positive x1-axis. Now translate M2 in the direction (−1, 0, 0) so that its compact
boundary has negative x1-coordinates less than − 2

H , where H is the mean curvature of M ;
call the translated surface M ′

2 and let ∆′
2 ⊂ P be the domain over which M ′

2 is a bigraph. If
for some n ∈ N the line Ln = {(n, t, 0) | t ∈ R} is disjoint from M ′

2, then M ′
2 is contained in

a halfplane of P and our previous arguments imply M ′
2 has an annular end. Thus without

loss of generality, we may assume that every line Ln intersects ∂∆′
2 a first time at some

point sn with positive x2-coordinate.
For θ ∈ (0, π

2 ], let r(θ) be the ray with base point the origin and angle θ and let W (θ)
be the closed convex wedge of P bounded by r(θ) and the positive x1-axis. Let θ0 be the

6This uniform intrinsic distance estimate holds since CMC graphs are strongly stable (existence of a

positive Jacobi function) and there are no strongly stable, complete CMC surfaces in R3
; see [19] for a

proof of this well known result.
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infimum of the set of θ ∈ (0, π
2 ] such that W (θ) ∩ {sn}n∈N is an infinite set. Because of

our previous placement of ∂M ′
2, a simple application of the Alexandrov reflection principle

and height estimates for CMC graphs with zero boundary values implies that some further
translate M ′′

2 of M ′
2 in the direction (−1, 0, 0) must be disjoint from r(θ0). Finally, after a

clockwise rotation M̂2 of M ′′
2 by angle θ0, our previous arguments produce an annular end

of M̂2 of bounded distance from the positive x1-axis. Thus, we conclude that M2 also has
an annular end which completes the proof of the first statement in Theorem 4.1.

We next prove the second statement of the theorem. Suppose M ⊂ R3 is a complete,
properly embedded CMC surface with bounded second fundamental form and with the
(x1, x2)-plane P as a plane of Alexandrov symmetry. Suppose M contains two noncompact
components M1,M2 and we will prove that each of these surfaces is a Delaunay surface.

Consider M1 and M2 to be two disjoint end representatives of M defined as bigraphs
over two disjoint connected domains ∆1,∆2 in P , respectively. By previous argument, one
of these domains, say ∆1, lies in a halfplane in P which we may assume is {x2 ≥ 0}. Also,
previous arguments imply that after a rigid motion of M , we can further assume that M1

contains as annular end E+ with the property that for n ∈ N sufficiently large, the line
segments {(n, t, 0) | t > 0} intersect ∆1 for a first time in a point pn ∈ E1. Furthermore,
E+ is asymptotic to the end D+ of a Delaunay surface. Also we can assume that the half
axis of revolution of D+ lies in P and is a bounded distance from the positive x1-axis.

In the discussion which follows, we refer the reader to Figure 5. By the Alexandrov
reflection principle and the fact that M1 cannot be a graph, ∆1 must not be contained in
a convex wedge of P with angle less than π. Therefore, for n ∈ N sufficiently large the
line segments {(−n, t, 0) | t > 0} intersect a second annular end ∆1 in points p−n ∈ E−

for a first time. In this case the annular end E− is asymptotic to the end D− of another
Delaunay surface and the half axis of D− in P is a bounded distance from the negative
x1-axis.

Figure 5: A picture of M1 with two bubbles blown on its mean convex side.

Similar to our previous arguments, we define for each n ∈ Z with |n| sufficiently large,
curves γn,Γn, Γ̂n and points qn as we did before (see Figures 3 and 5). For each n ∈ N
sufficiently large, we define the line segment a(n) ⊂ P whose end points are the points
q−n, qn. Now define for any sufficiently large n, the compact region T (n) ⊂ P bounded
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by the line segments Γ̂−n, Γ̂n, a(n) and the line segment joining (−n, 0, 0) to (n, 0, 0) and
let T (n) × R ⊂ R3 be the related convex domain in R3. Let M1(n) be the component of
M1∩ (T (n)×R) which contains the point p−n. Note that M1(n) is compact with boundary
consisting of an almost circle C(Γ−n) which is a bigraph over an arc on Γ−n, possibly also
an almost circle C(Γn) which is a bigraph over an arc on Γn and a collection of bigraph
components over a collection of intervals In in the line segment a(n).

As in previous arguments, an assertion similar to Assertion 4.4 holds in the new setting.
With this slightly modified assertion, one finds that the almost circles C(Γ−n) and C(Γn)
bound a compact domain M̂1(n) ⊂ M1. A slight modification of the proof of Assertion 4.5
implies M1 is cylindrically bounded and so, by a theorem in [13], M1 is a Delaunay surface.
Note that the axis of M1 is an infinite line in ∆1 and so ∆2 also lies in a halfplane of P .
The arguments above prove that M2 is also a Delaunay surface, which completes the proof
of the theorem. 2

Remark 4.6 For every integer n > 1, there exists a surface Mn with empty boundary and
n ends which satisfies the hypotheses of the surface M in in the statement of Theorem 4.1
except for the bounded second fundamental form hypothesis but M has no annular ends.
Hence, the hypothesis in the theorem that M have bounded second fundamental form is a
necessary one in order for the conclusion of the theorem to hold.
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