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Abstract

The paper treats the isometric deformability of non-simply-connected
constant mean curvature surfaces which are neither assumed embedded
nor complete. We prove that if a smooth oriented surface M immersed in
R

3 admits a nontrivial isometric deformation with constant mean curva-
ture H then every cycle in M has vanishing flux and, when H 6= 0, also
vanishing torque. The vanishing of all fluxes implies the existence of such
an isometric deformation when H = 0. Our work generalizes to constant
mean curvature surfaces a well-known rigidity result for minimal surfaces
(see for instance [4]).

1 Introduction.

It has long been wondered which smooth surfaces in R
3 can undergo a nontrivial

isometric deformation. Anderson [1] recently showed the nonexistence of such
deformation for compact embedded surfaces in R

3. Even if we allow immersions or
non compactness, or both, the occurrence of such deformations for non simply-
connected surfaces appears to be rare. The only place in surface theory where local
isometric deformations overtly present themselves is with surfaces of constant
mean curvature.

Within the class of isometric immersions of simply-connected surfaces, every
one of constant mean curvature admits a canonical 2π-periodic isometric defor-
mation — the associate deformation (see Section 3); this family also captures
(to within a congruence of R

3) all isometric immersions of that surface with this
constant mean curvature. However once the constant mean curvature surface M

has topology (i.e. π1(M) 6= 0) there is of necessity a continuum of latent period
conditions which must be satisfied for the canonical deformation, at the level of
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the universal cover M̃ , to descend to M . Our purpose here is to give necessary
conditions for the associate isometric deformation to exist.

A countable set of invariants associated with constant mean curvature surfaces
arises from two naturally defined closed vector-valued 1-forms ω and σ on M ,
called here flux and torque forms (see Section 4). Thus their periods over cycles
γ in M , W ([γ]) =

∫
γ
ω and T ([γ]) =

∫
γ
σ, depend only on the homology class of

γ and are called the flux and torque of that class. These quantities can be found
in [10] (see also [9]).

Theorem 1.1 Let x : M → R
3 be an isometric immersion of a smooth oriented

surface with constant mean curvature H. To within congruences, the family of
all isometric immersions of M with constant mean curvature H is either

(a) finite, or

(b) a circle (see the associate deformation in Section 3).

If (b) then

(i) every cycle in M has vanishing flux, and

(ii) every cycle in M has vanishing torque if H 6= 0.

There are many results on the isometric indeformability of constant mean
curvature surfaces with topology (see for instance [5, 10, 11, 12, 15, 16]. Typi-
cally, these follow from Theorem 1.1 bi exhibiting a cycle with nonzero flux (see
Section 5).

Are there non-simply connected constant mean curvature surfaces sat-
isfying Theorem 1.1 (i) — or even both Theorem 1.1 (i) and (ii)?

Do these conditions then guarantee the existence of a constant mean
curvature isometric deformation?

These are the central questions arising from this work. Both questions are
answered in the affirmative for minimal surfaces (see Section 4) but nothing is
known on either when H 6= 0.
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2 Isometric deformation of surfaces

Let x : M → R
3 be an immersion of a smooth oriented surface. The differential

x∗ of x is given by x∗(X) = Xx where the right-hand side is the derivative of the
vector-valued function x with respect to X. The induced metric g is given by

g(X, Y ) = 〈x∗(X), x∗(Y )〉 = 〈Xx, Y x〉

where 〈 , 〉 is the Euclidean metric on R
3. Let J denote the complex structure

induced by the orientation of M and let ξ be the oriented unit normal field to
the immersion x. The second fundamental form A of x is defined by

Xξ = −x∗(AX).

The Gauss equation is
detA = K

where K is the curvature of the metric g and Codazzi’s equation is

(∇XA)Y = (∇Y A)X

where ∇ is the Levi-Civita connection of the metric g; from now on the metric
will be denoted by 〈 , 〉. These equations come from differentiating the structure
equation

XY x = x∗(∇XY ) + 〈AX, Y 〉ξ. (1)

Now suppose xt : M → R
3 is a smooth 1-parameter family of immersions each

inducing the same metric 〈 , 〉; this is called an isometric deformation. The unit
normal field and second fundamental form of each immersion xt are denoted by
ξt and At respectively. From now on prime denotes differentiation with respect
to t.

Since 〈Xxt, Xxt〉 is independent of t we know that 〈Xx′
t, Xxt〉 = 0. Hence

Xx′
t = k(xt)∗(JX) + p(X)ξt where k is a function on M and p is a 1-form on M ,

both dependent on t.
Since 〈ξt, ξt〉 = 1 it follows that ξ′t = (xt)∗(Z) where Z is a vector field on M ,

dependent on t. Since 〈Xxt, ξt〉 = 0 it follows

〈Xx′
t, ξt〉 + 〈Xxt, ξ

′
t〉 = 0

and so p(X) = −〈X, Z〉. Thus

Xx′
t = k (xt)∗(JX) − 〈X, Z〉ξt. (2)
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In continuing the computation for the deformation we will drop the subscript t.
From equation (1)

XY x′ = X(kx∗(JY ) − 〈Y, Z〉ξ) =

= X(k)x∗(JY ) + k[x∗(∇XJY ) + 〈AX, JY 〉ξ] − X〈Y, Z〉ξ + 〈Y, Z〉x∗(AX) =

= x∗(X(k)JY + kJ∇XY + 〈Y, Z〉AX) + (k〈AX, JY 〉 − X〈Y, Z〉)ξ. (3)

Differentiating equation (1) with respect to t and using equation (2) gives

XY x′ = ∇XY (x′) + 〈A′X, Y 〉ξ + 〈AX, Y 〉x∗(Z) =

= kx∗(J∇XY ) − 〈∇XY, Z〉ξ + 〈A′X, Y 〉ξ + 〈AX, Y 〉x∗(Z) =

= x∗(kJ∇XY + 〈AX, Y 〉Z) + (〈A′X, Y 〉 − 〈∇XY, Z〉)ξ. (4)

Comparing normal components in equations (3) and (4) we obtain

A′X = −kJAX −∇XZ (5)

and comparing tangential components

X(k)JY = 〈AX, Y 〉Z − 〈Y, Z〉AX

which is equivalent to
∇k = −AJZ. (6)

Equations (5) and (6) are the integrability conditions of the deformation.
Finally note

Xx′ = (x∗(JZ) + kξ) × Xxt (7)

where × denotes the cross product on R
3. The vector-valued function η =

x∗(JZ) + kξ is called the Drehriss [3].

3 The associate surfaces of a constant mean cur-

vature surface

Let x : M → R
3 be an oriented surface with constant mean curvature H then, for

each t ∈ [0, 2π], the symmetric tensor field

At = cos(t)(A − HI) + sin(t)J(A − HI) + HI (8)

satisfies the Gauss-Codazzi equations with respect to the induced metric 〈 , 〉
and TrAt

2
≡ H . If M is simply-connected then, by the fundamental theorem

of surface theory, we obtain a one-parameter family of isometric immersions xt
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with second fundamental form At and therefore constant mean curvature H and
x0 = x. These immersions are uniquely determined to within a congruence or
rigid motion of R3 that is an orientation preserving isometry of R

3. Without loss
of generality, we may assume x(p0) = 0 for some p0 ∈ M and normalize the family
by xt(p0) = 0, ξt(p0) = ξ(p0) and (xt)∗(p0) = x∗(p0) ◦ Rotp0

(−t) where Rotp0
(θ)

denotes the oriented rotation of the tangent plane Tp0
M (with the induced metric)

through an angle θ. The resulting normalized isometric deformation xt : M → R
3,

t ∈ [0, 2π] is called the associate deformation here (see also [2]).
For example, let x : M → R

3 be an oriented simply-connected minimal surface
and choose the origin of R

3 on the surface, i.e. x(p0) = 0 for a certain p0 ∈ M .
Since ∆x ≡ 0, where ∆ is the Laplace operator of the induced metric on M , we
have a complex conjugate y : M → R

3 of x, unique to within a translation of R
3.

We may therefore assume y(p0) = 0 also. Then

xt = cos(t)x + sin(t)y

is a 1-parameter family of minimal isometric immersions of M into R
3 with second

fundamental form At as given in equation (8) above. Since by the Cauchy-
Riemann equations x∗(X) = y∗(JX) and x∗(JX) = −y∗(X) it is easy to see that
ξt does not change with t and (xt)∗p

= x∗p
◦ Rotp(−t)).

Returning now to the constant mean curvature case, if M is not simply-
connected then we may lift x to x̃ : M̃ → R

3 and let Ãt denote the lift of At to
M̃ . By the earlier discussion, Ãt is the second fundamental form of an isometric
immersion x̃t : M̃ → R

3 with constant mean curvature H and is unique to within
a motion of R

3. Fixing p0 ∈ M and p̃0 ∈ M̃ over p0, we may assume x̃t(p̃0) = 0,

ξ̃t(p̃0) = ξ(p0) and (x̃t)∗ep0
= x̃∗ep0

◦ Rotep0
(−t) for all t. With this normalization

we obtain a smooth isometric deformation

x̃t : M̃ → R
3, 0 ≤ t ≤ 2π

with constant mean curvature H . Of course x̃0 projects to x : M → R
3. Let

S = {t ∈ [0, 2π) | x̃t projects to xt : M → R
3}; this set of immersions of M in R

3

will be called the associate family for x : M → R
3. We now consider the structure

of S for a constant mean curvature surface M with topology. The first and most
interesting question is whether S contains an open interval.

Lemma 3.1 If xm : M → R
3, m = 1, 2, are isometric immersions with constant

mean curvature H then x2 is congruent to an associate of x1.
Thus if x : M → R

3 is an immersion with constant mean curvature H, all
other isometric immersions of M in R

3 with the same constant mean curvature
occur, to within congruences, in the family of associates of x.
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Proof. Locally on M we may choose positive isothermal coordinates (u, v), i.e.
{ ∂

∂u
, ∂

∂v
} is a positively oriented frame and the metric is of the form 〈 , 〉 =

e2ρ(du2+dv2). The second fundamental form of xm with respect to the coordinate
frame is written

Am =

[
H + αm βm

βm H − αm

]

Now, ωm = 〈Am
∂

∂w
, ∂

∂w
〉, is a complex function in the coordinate w = u+iv, where

∂
∂w

= 1
2
( ∂

∂u
− i ∂

∂v
) and 〈 , 〉 is extended by complex linearity. Clearly, Ωm = ωmdw2

is a well defined complex quadratic differential on M ; a simple computation gives
ωm = − i

2
e2ρ(βm + iαm). Codazzi’s equation in these isothermal coordinates reads

(ωm)w =
1

2
e2ρHw

and, since H is constant, ωm is holomorphic.
Since |ωm|

2 = e4ρ

4
(β2

m+α2
m) = e4ρ

4
(H2−K), by Gauss’ equation, it follows that

the meromorphic function ω2

ω1
is constant and of modulus one. Hence, ω2 = e−itω1.

It follows easily that

A2 = cos(t)(A1 − HI) + sin(t)J(A1 − HI) + HI.

Hence x2 is congruent to an associate of x1. 2

Assume S contains an interval [0, ε) then we have the associate deformation

xt : M → R
3

for 0 ≤ t ≤ ε. Since, by (8), A′ = J(A − HI) the integrability condition (5)
becomes

∇XJZ = (k + 1)AX − HX.

Replacing Y by JZ in the structure equation (1)

Xx∗(JZ) = x∗(∇XJZ) + 〈AX, JZ〉ξ =

= x∗((k + 1)AX − HX) + 〈X, AJZ〉ξ =

= x∗((k + 1)AX − HX) − 〈X,∇k〉ξ =

= −X((k + 1)ξ + Hx)

so that x∗(JZ) + (k + 1)ξ + Hx = V is a constant vector field along each sur-
face in the variation. From the normalization in the definition of the associate
deformation we obtain Z(p0) = 0 and (xt)∗p0

X = x∗p0
◦ Rotp0

(−t)X gives

d

dt
(xt)∗p0

X = x∗p0
(− sin(t)X − cos(t)JX) = −x∗p0

◦ Rotp0
(−t)JX.
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On the other hand, from equation (2),

d

dt
(xt)∗p0

X = X(x′
t) |p0

= k(xt)∗p0
(JX)−〈X, Z〉ξt(p0) = k(p0)x∗p0

◦Rotp0
(−t)JX.

Hence k(p0) = −1 and V ≡ 0, i.e. x∗(JZ) + (k + 1)ξ + Hx ≡ 0. Now Xx′
t =

(x∗(JZ) + kξ) × Xxt = −(Hx + ξ) × Xxt and since 〈Xxt, ξ〉 = 0 it follows, also
on differentiating with respect to t, that

ξ′ = −(Hx + ξ) × ξ.

We collect these facts in the following lemma

Lemma 3.2 If the associate deformation of x : M → R
3 exists then

Xx′ = −(Hx + ξ) × Xx,

ξ′ = −(Hx + ξ) × ξ.

4 The flux and torque of a cycle on an immersed

surface of constant mean curvature

To motivate the notions of flux and torque take an embedded oriented surface

x : M → R
3

with oriented normal ξ and constant mean curvature H ≥ 0. Imagining the
surface as a liquid membrane in equilibrium under a constant normal pressure
field F , the equilibrium equation is F = −2Hτξ [18], where τ is the surface
tension of the membrane. We may assume τ = 1.

Take a compact domain D in M and along each oriented boundary component
γ we insert a smooth embedded cap

k : K → R
3

that is k(∂K) = x(γ), then the orientation of γ determines an orientation on K.
Let νk be the oriented unit normal to K and η = Jγ̇ the oriented unit normal to
γ in M (see Figure 1).

Considering the domain D with caps inserted on each boundary component
the resulting closed surface is maintained in equilibrium by the application of a
total restorative force on each end —to counter the inherent forces due to pressure
and surface tension—of that end which total

2H

∫

K

νkdak +

∫

γ

ηds
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D

F

ξ

η K

γ

νkγ̇

Figure 1: Flux and Torque

where dak also denotes the area element in K.
Define W ([γ]) = 2H

∫
K

νkdak +
∫

γ
ηds as the flux of the component γ.

Let ω0 be the 1-form on M defined by ω0(X) = Hx×x∗(X) then dω0 = 2Hξda

where da is the area element of M . The corresponding 1-form ωk
0 on K, defined

by ωk
0(X) = Hk × k∗(X), satisfies dωk

0 = 2HνkdaK . If ω is the 1-form defined on
M by ω(X) = (Hx + ξ) × x∗(X) then

∫

γ

ω =

∫

γ

ω0 +

∫

γ

η =

∫

γ

ωk
0 +

∫

γ

ηds,

since ωk
0 = ω0 along γ. By Stokes’ theorem

∫

γ

ω =

∫

K

dωk
0 +

∫

γ

η = 2H

∫

K

νkdak +

∫

γ

ηds = W (γ).

Now ω is easily checked to be a closed 1-form on M for any immersed oriented
surface

x : M → R
3

of constant mean curvature H . Thus the quantity

W ([γ]) =

∫

γ

ω

depends only on the homology class of the cycle γ. This will be called the flux
or force of the immersion for the cycle γ.

Returning again to the domain D with ends capped as above the torque of
the inherent forces of pressure and surface tension at the end γ totals

2H

∫

K

k × νkdak +

∫

γ

x × ηds.

8



Define the torque of γ by

T (γ) = 2H

∫

K

k × νkdak +

∫

γ

x × ηds.

Define σ0(X) = 2
3
Hx× (x×x∗(X)). We can easily compute dσ0 = 2Hx×ξda.

The corresponding 1-form σk
0 on K defined by σk

0 (X) = 2
3
Hk × (k × k∗(X))

satisfies dσk
0 = 2Hk × νkdak. Thus

2H

∫

K

k × νkdak =

∫

∂K

σk
0 =

∫

γ

σ0

since σk
0 = σ0 along γ. Then T (γ) =

∫
γ
σ0 +

∫
x × ηds =

∫
γ
σ where σ is the

1-form defined by

σ(X) =
2

3
Hx× (x×x∗(X))+x×x∗(JX) =

1

3
x× [2(Hx+ ξ)×x∗(X)+x∗(JX)].

Again it is easy to check that σ is a closed 1-form on any immersed surface and
so

T ([γ]) =

∫

γ

σ

depends only on the homology class of γ.
To prove the consequences (i) and (ii) in Theorem 1.1 announced in the

introduction we need only show

Lemma 4.1 Let x : M → R
3 be an immersed surface of constant mean curvature

H admitting a nontrivial isometric deformation through surfaces of constant mean
curvature H then for the immersion x

(i) ω is exact;

(ii) σ is exact if H 6= 0.

Proof. Consider the associate family xt : M → R
3 with x0 = x then, from the

assumption of the lemma, xt is defined for 0 ≤ t < ε, for some ε > 0. As we saw
in Section 3,

Xx′ = −(Hx + ξ) × Xx = −ω(X).

Hence ω is exact.
We begin by calculating Xx′′. Write P = Hx + ξ

Xx′′ = −(P × Xx)′ = −P ′ × Xx + P × (P × Xx) =

= −Hx′ × Xx − ξ′ × Xx + P × (P × Xx) =

= −HX(x′ × x) + HXx′ × x − ξ′ × Xx + P × (P × Xx) =

= −HX(x′ × x) − H(P × Xx) × x + (P × ξ) × Xx + P × (P × Xx)
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X(x′′+Hx′ × x) = (Hx + P ) × (P × Xx) + (P × ξ) × Xx =

= (2Hx + ξ) × (P × Xx) − Xx × (P × ξ) =

= 2Hx× (P × Xx) + ξ × (P × Xx) − Xx × (P × ξ) =

= 2Hx× (P × Xx) − P × (Xx × ξ) − Xx × (ξ × P ) − Xx × (P × ξ)

= 2Hx× (P × Xx) + (Hx + ξ) × x∗(JX)

Thus

X(x′′ + Hx′ × x + x) = Hx × {2P × Xx + x∗(JX)} = 3Hσ(X).

Hence if H 6= 0 σ is exact if there exists an isometric deformation of x. 2

To prove parts (a) and (b) of Theorem 1.1 we need:

Lemma 4.2 Let x : M → R
3 be an immersion of a smooth oriented surface with

constant mean curvature H. Then either

(a) the associates xt : M → R
3 exist for all t ∈ [0, 2π], or

(b) there are only finitely many isometric immersions of constant mean curva-
ture H.

Proof. Let M̃ be the universal cover of M with the lifted metric and complex
structure (denoted 〈 , 〉 and J respectively), π : M̃ → M the projection and D be
the group of deck transformations of this cover which are, of course, orientation
preserving isometries. The lift Ãt of

At = cos t(A − HI) + sin tJ(A − HI) + HI

to the universal cover is the second fundamental form of the associate family

x̃t : M̃ → R
3

defined above. Since each deck transformation σ ∈ D preserves the lifted second
fundamental form Ãt, that is,

σ∗p
Ãt(p)(σ∗p

)−1 = Ãt(σ(p))

for all p ∈ M̃ , it follows that x̃t ◦ σ and x̃t have the same second fundamental
form. Hence x̃t ◦ σ = Φt(σ) ◦ x̃t, where Φt(σ) ∈ M the group of motions of R

3.
It easy to see that

Φt : D → M
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is a homomorphism for each t ∈ [0, 2π] and x̃t projects to xt : M → R
3 if and

only if Φt(D) = {I}.
Let S = {t ∈ [0, 2π] | x̃t projects to M}. Assuming S is infinite there exists

an infinite sequence of points {tn} of points in S with an accumulation point
t0 ∈ S. Then, for each σ ∈ D, Φtn(σ) = I so, by continuity, Φt0(σ) = I; it is also
easy to check all derivatives of Φt(σ) vanish at t = t0. Since for each σ ∈ D, Φt(σ)
is an analytic curve in M, it follows that Φt(σ) ≡ I for all t. Thus, S = [0, 2π] if
S is infinite. This proves that either (a) or (b) in Theorem 1.1 must hold. 2

Proposition 4.3 Let I(M) (resp. I0(M)) be the group of orientation preserving
isometries of M (resp. the subgroup of such isometries extending under x to a
congruence of R

3). If σ ∈ I(M) then x ◦ σ is congruent to an associate xt(σ) of
x. The map t : I(M) → [0, 2π] is a group homomorphism with kernel I0(M).

Proof.
Let σ ∈ I(M). Comparing the isometric immersions x and y = x ◦ σ the

respective oriented normals to these maps at p are ξ(p) and N(p) = ξ(σ(p)).
If B is the second fundamental form of y then, by its definition, (XN)p =
−y∗p

(B(p)X) = −x∗(σ(p))σ∗p
(B(p)X). But, since N = ξ ◦ σ,

(XN)p = ξ∗(σ(p))(σ∗p
X) = −x∗(σ(p))(A(σ(p))σ∗p

X).

Taken together, these give

B(p) = (σ∗p
)−1A(σ(p))σ∗p

.

Thus y has constant mean curvature H . By Lemma 3.1, y = x ◦ σ is congruent
to an associate xt(σ) of x. This defines a map t : I(M) → [0, 2π). Obviously,
t(σ) = 0 if and only if σ ∈ I0(M). To complete the proof of the theorem we must
show that t is a homomorphism.

For σ, τ ∈ I(M) let C denote the second fundamental form of x ◦ σ ◦ τ . As
before,

C(p) = ((σ ◦ τ)∗p
)−1A((σ ◦ τ)(p))(σ ◦ τ)∗p

=

= (τ∗p
)−1(σ∗(τ(p)))−1A(σ(τ(p)))σ∗(τ(p))τ∗p

=

= (τ∗p
)−1B(τ(p))τ∗p

Since x ◦ σ is congruent to the associate xt(σ) of x we have B = eit(σ)(A −
HI) + HI, where eit(A − HI) = cos t(A − HI) + sin tJ(A − HI). Thus

C(p) = eit(σ)(τ∗p
)−1(A − HI)(τ(p))τ∗p

+ HI(p) =

= eit(σ)[(τ∗p
)−1A(τ(p))τ∗p

− HI(p))] + HI(p) =

= eit(σ){eit(τ)(A − HI)(p)} + HI(p),
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since x ◦ τ is congruent to xt(τ). Thus

C(p) = ei(t(σ)+t(θ))(A − HI(p)) + HI(p).

and hence t(σ◦τ) = (t(σ)+t(τ)) mod 2π and the map t defines a homomorphism.

2

5 Application

We start this section by noticing that there exist complete, immersed minimal
surfaces with genus zero and finitely many ends admitting a nontrivial isomet-
ric deformation through minimal surfaces. First, let us recall the “Weierstrass
representation theorem”

Theorem 5.1 Suppose M is a minimal surface in R
3, M its Riemann surface,

g the stereographic projection of its Gauss map, dh = dx3 − idx3 ◦ J . Then M

may be represented (up to a translation) by the conformal immersion

x = Re

∫
Φ, where (9)

Φ = (Φ1, Φ2, Φ3) = ((g−1 − g)
dh

2
, i(g−1 + g)

dh

2
, dh). (10)

Conversely, let M be a Riemann surface, g : M → S a holomorphic function and
dh a holomorphic one-form on M . Then, provided that Re

∫
α

Φ = 0 for all closed
curves α on M , equation (9) and (10) define a conformal minimal mapping of
M into R

3, which is regular provided the poles and zeros of g coincide with the
zeros of dh. The holomorphic function g and holomorphic one form dh are the
so-called Weierstrass data.

With Theorem 5.1 in mind, it is easy to check that, for an immersed minimal
surface M , admitting a nontrivial isometric deformation through minimal surfaces
is equivalent to the condition that Im

∫
α

Φ = 0 for all closed curves α on M . Take
p1, ..., pn ∈ C and, for any k ∈ N, consider the following Weierstrass data

g =

n∑

i=1

(z − pi)
2k and dh = dz.

It is easy to check that this data yield non simply-connected, genus zero minimal
surfaces admitting a nontrivial isometric deformation through minimal surfaces.1

1We thank Fred Xavier for helpful conversations.
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There are many results on the isometric indeformability of a constant mean
curvature surfaces with topology (see for instance [5, 10, 11, 12, 15, 16]. Typically,
Theorem 1.1 may be used in this direction. In what follow, we give a criterion
which guarantees the isometric indeformability of a constant mean curvature
surfaces. In particular this result can be seen as a generalization of a rigidity
theorem of Choi-Meeks-White for minimal surface, see Theorem 1.2 in [5].

Theorem 5.2 Let x : M → R
3 be an isometric immersion of a smooth oriented

surface with constant mean curvature H. Suppose that a plane π intersects x(M)
transversally in a closed curve γ : [0, L] → M then

W ([γ]) =

∫ L

0

1

〈x∗(Jγ̇), T 〉
(〈x∗(Jγ̇), T 〉2 + H〈x ◦ γ, ξ〉)ds,

where T is the unit vector normal to π. In particular, if

∫ L

0

1

〈x∗(Jγ̇), T 〉
(〈x∗(Jγ̇), T 〉2 + H〈x ◦ γ, ξ〉)ds 6= 0

then M does not admit a nontrivial isometric deformation through surfaces of
constant mean curvature H. (Note that transversality implies that |〈x∗(Jγ̇), T 〉| >

0 therefore when H = 0 that integral is never zero.)

Proof. Without loss of generality, we can assume that π is the xy-plane. Clearly,

x ◦ γ = 〈x ◦ γ, x∗(γ̇)〉x∗(γ̇) + 〈x ◦ γ, x∗(Jγ̇)〉x∗(Jγ̇) + 〈x ◦ γ, ξ〉ξ

and
0 = 〈x ◦ γ, e3〉 = H〈x ◦ γ, x∗(Jγ̇)〉〈x∗(Jγ̇), e3〉 + 〈x ◦ γ, ξ〉〈ξ, e3〉.

Since the plane intersects x(M) transversally 〈x∗(Jγ̇), e3〉 6= 0 and consequently

〈x ◦ γ, x∗(Jγ̇)〉 = −
〈x ◦ γ, ξ〉〈ξ, e3〉

〈x∗(Jγ̇), e3〉
.

The discussion above yields the following,

〈(ξ + Hx ◦ γ) × x∗(γ̇), e3〉 =

= 〈x∗(Jγ̇) − H〈x ◦ γ, x∗(Jγ̇)〉ξ + H〈x ◦ γ, ξ〉x∗(Jγ̇), e3〉 =

= 〈x∗(Jγ̇), e3〉 + H(−〈x ◦ γ, x∗(Jγ̇)〉〈ξ, e3〉 + 〈x ◦ γ, ξ〉〈x∗(Jγ̇), e3〉) =

= 〈x∗(Jγ̇), e3〉 + H〈x ◦ γ, ξ〉(
〈ξ, e3〉

2

〈x∗(Jγ̇), e3〉
+ 〈x∗(Jγ̇), e3〉).

2
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Corollary 5.3 Let x : M → R
3 be an isometric immersion of a smooth oriented

surface with constant mean curvature H. Suppose that M has a plane of symme-
try π which intersects x(M) in a closed curve γ : [0, L] → M . If x ◦ γ lies in an
open disk of radius 1

H
then M does not admit a nontrivial isometric deformation

through surfaces of constant mean curvature H.

Proof. Since π is a plane of symmetry, we can assume that 〈x∗(Jγ̇), T 〉 = 1.
Therefore Theorem 5.2 gives

W ([γ]) = L + H

∫ L

0

〈x ◦ γ, ξ〉ds.

Suppose x ◦ γ lies in an open disk of radius 1
H

. Without loss of generality we

can assume that the disk is centered at the origin. Then |H
∫ L

0
〈x ◦ γ, ξ〉ds| < L

and therefore W ([γ]) 6= 0. 2

Definition 5.4 An embedding x : M → R
3 has a plane of Alexandrov symmetry

π if π is a plane of symmetry for x(M) and x(M)\{x(M) ∩ π} consists of two
graphs over π.

Theorem 5.5 Let x : M → R
3 be a complete proper isometric embedding of a

smooth oriented surface with constant mean curvature H. Suppose that M has
a plane of Alexandrov symmetry then M does not admit a nontrivial isometric
deformation through surfaces of constant mean curvature H.

In order to prove Theorem 5.5 we recall a result of Korevaar and Kusner,
Theorem 1.12 in [8].

Theorem 5.6 Let x : M → R
3 be an embedding of a smooth oriented surface with

constant mean curvature H. Suppose that a plane π intersects x(M) transversally
in a closed curve γ : [0, L] → M . Let Γ be the compact region in the plane π

bounded by x(γ). If

(i) the projection of ξ
∣∣
γ

onto the plane π is pointing outside the region Γ, or

(ii) γ is homologically non-trivial.

then W ([γ]) 6= 0.

Remark 5.7 As a consequence of the results in this paper and Theorem 5.6,
if x : M → R

3 satisfies the hypothesis of Theorem 5.6 then it does not admit a
nontrivial isometric deformation through surfaces of constant mean curvature H.
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Here is the proof of Theorem 5.5.

Proof.
If M does not have genus zero then π intersects x(M) in at least a simple

closed curve. If this simple closed curve satisfies item (i) in Theorem 5.6 then,
as pointed in Remark 5.7, we are done. If not, then x(M) must be compact
and therefore a round sphere (round sphere do not admit nontrivial isometric
deformation).

If M has genus zero and bounded second fundamental form, then M does not
admit such a deformation (see [10, 15]). In fact, M has an end asymptotic to
an unduloid (see [9, 14]). A simple compactness argument and the fact that an
unduloid does not admit such a deformation then proves this case.

If M has genus zero and unbounded second fundamental form, then for any
n ∈ N there exists p(n) ∈ x(M) such that |A|(p(n)) > n. Recall that there exists
a constant C depending only on H such that x3|A| < C (see for instance [17])
therefore |p3(n)| < C

|A|(p(n))
. After a sequence of translations of x(M) which take

p(n) to the origin, we obtain a sequence of constant mean curvature surfaces Mn

with a plane of Alexandrov symmetry and whose norms of the second fundamental
form is blowing up at the origin. Moreover, the distance from the origin to the
plane of symmetry is bounded by C

|An|(o)
.

Consider the non-negative function

Fn(x) = (1 − |x|)2|An(x)|2

over the connected component of Mn ∩ B1(0) containing the origin which we
denote by Mn(0). The function Fn is zero on the boundary of Mn(0) and therefore
it reaches its maximum at a point in the interior. Let q(n) be such point, i.e.

Fn(q(n)) = max
Mn(0)

Fn(x) = (|q(n)| − 1)2|A|2(q(n)) ≥ Fn(0) = |An(0)|2.

Fix σn > 0 such that 2σn < 1 − |q(n)| and

4σ2
n|A|2(q(n)) = 4|An(0)|2 = C2

n.

Since Fn achieves its maximum at q(n),

sup
Bσn(q(n))∩Mn(0)

σ2
n|An|

2 ≤ sup
Bσn(q(n))∩Mn(0)

σ2
n

Fn(x)

(|x| − 1)2
≤

≤
4σ2

n

(|q(n)| − 1)2
sup

Bσn (q(n))∩Mn(0)

Fn(x) =
4σ2

n

(|q(n)| − 1)2
Fn(q(n)) = 4σ2

n|A|2(q(n)).

(11)
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After translating the surfaces Mn so that the plane of Alexandrov symmetry
is the xy-plane and q(n) lies on the z axis, denote by M(q(n)) the translation of
Bσn

(q(n)) ∩ Mn(0). We have obtained the following

sup
M(q(n))

|An|
2 ≤ 4|A|2(q(n)),

4σ2
n|A|2(q(n)) = C2

n, and

|q3(n)| <
C

|A|2(q(n))
.

Let M ′
n be the connected component of M(q(n)) rescaled by a factor of

|A|2(q(n)). Notice that |q′3(n)| < C. A standard compactness argument implies
that this sequence converges to a non-flat, genus zero, embedded minimal surface
M∞ with bounded second fundamental form and hence properly embedded (see
[6, 13]). Since such a surface cannot be contained in a half-space (see [7]), the xy-
plane must be a plane of Alexandrov symmetry. This being the case, M∞ cannot
be a helicoid and therefore it does not admit a nontrivial isometric deformation
(see [15]). A simple compactness argument then implies that M does not admit
a nontrivial isometric deformation. 2
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