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Abstract. Let (Xn) be an exchangeable sequence of indicators and π the

probability distribution of lim supn Xn, where Xn = 1

n

P

n

i=1
Xi. Then,

Cn =
√

n
˘

Xn − E(Xn+1 | X1, . . . , Xn)
¯

converges stably (in particular, in distribution) provided π does not have a

singular continuous part. Moreover, Cn

P→ 0 in case π is absolutely continuous

with respect to Lebesgue measure, and
√

n Cn converges a.s. under a mild
Lipschitz condition on the density of π. Results of this type are useful in
Bayesian statistics where π is the prior distribution. Related results are also

obtained for the case where the Xn take values in an arbitrary measurable
space.

1. Introduction and motivations

A number of real problems reduce to predict the next outcome for a sequence of
events, that is, to evaluate

E
(

Xn+1 | X1, . . . ,Xn

)

= P (Xn+1 = 1 | X1, . . . ,Xn

)

where X1,X2, . . . are the indicators of such events.
Here, we focus on those situations where E

(

Xn+1 | X1, . . . ,Xn

)

can not be
calculated in closed form, and one decides to estimate it basing on the available
data X1, . . . ,Xn. Related references are [1], [2], [3], [4], [5], [11].

In case (Xn) is an exchangeable sequence, as assumed throughout, a reasonable
approximation for E

(

Xn+1 | X1, . . . ,Xn

)

is the observed frequency

Xn =
1

n

n
∑

i=1

Xi.

In line with de Finetti [9], the choice of Xn can be defended as follows. Suppose
(Zn) is an exchangeable sequence of random variables, with values in a Polish space
S, and D a class of Borel subsets of S. Then,

sup
B∈D

∣

∣

∣

1

n

n
∑

i=1

I{Zi∈B} − P
(

Zn+1 ∈ B | Z1, . . . , Zn

)

∣

∣

∣

a.s.→ 0 (1)

provided D is a Glivenko-Cantelli class in the i.i.d. case (that is, provided (1) holds
in the particular case where (Zn) is i.i.d.); see [4]. Roughly speaking, thus, the em-
pirical distribution 1

n

∑n
i=1 δZi

is a consistent estimate of the predictive distribution

P
(

Zn+1 ∈ · | Z1, . . . , Zn

)

for exchangeable data.
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Taking (1) as a starting point, the next step is to investigate the rate of conver-
gence. If S = {0, 1} and Zn = Xn, this means to investigate whether

C(an) = an

{

Xn − E
(

Xn+1 | X1, . . . ,Xn

) }

approaches a limit (in some sense) for suitable constants an > 0.
This is just the purpose of this paper. Letting V = lim supn Xn and

W (an) = an(Xn − V ), exchangeability of (Xn) yields

E
(

Xn+1 | X1, . . . ,Xn

)

= E
(

V | X1, . . . ,Xn

)

a.s..

Hence, C(an) = E
(

W (an) | X1, . . . ,Xn

)

a.s.. Also, supn E|W (
√

n)|r < ∞ for all
r > 0, as it is not hard to prove (see the proof of Theorem 2). If an√

n
→ 0, it follows

that
(

E|C(an)|r
)

1+r
r ≤ E|C(an)|1+r ≤ E|W (an)|1+r

≤ sup
m

E|W (
√

m)|1+r (
an√
n

)1+r → 0, as n → ∞, for all r > 0.

And what about an =
√

n ? The answer to this (natural) question depends on
the law π of V .

Our main result (Theorems 2 and 4) is that E|C(
√

n)|r → 0, for all r > 0, when-
ever π is absolutely continuous with respect to Lebesgue measure. One consequence
is

E
(

Xn+1 | X1, . . . ,Xn

)

= Xn + oP (
1√
n

). (2)

Under a mild Lipschitz condition on the density of π, one also obtains

E
(

Xn+1 | X1, . . . ,Xn

)

= Xn +
D

n
+ o(

1

n
) a.s. (2*)

for some real random variable D. In addition, if π does not have a singular continu-
ous part, C(

√
n) converges stably in the sense of Renyi; cf. Section 2. In particular,

C(
√

n) converges in distribution to the probability measure

P (V /∈ ∆) δ0 +
∑

v∈∆

P (V = v)N (0, v − v2),

where ∆ = {v : P (V = v) > 0} and N (0, σ2) denotes the centered Gaussian law
with variance σ2 (with N (0, 0) = δ0).

Finally, we make four brief remarks.

(i) To our knowledge, there is no general representation for the predictive dis-
tributions P

(

Zn+1 ∈ · | Z1, . . . , Zn

)

of an exchangeable sequence (Zn). Such a
representation would be very useful. Results like (2) and (2*) contribute to fill
the gap for indicators. The general case, where the Zn take values in an arbitrary
measurable space, is dealt with in Subsection 4.2.

(ii) In Bayesian statistics, π is the prior distribution. And priors are typically
assumed absolutely continuous with respect to Lebesgue measure (possibly, with
smooth densities). The results mentioned above, thus, apply to most Bayesian
problems.

(iii) Let p > 1 and c > 0. Those π which are absolutely continuous with respect

to Lebesgue measure, with a density f such that
(∫ 1

0
f(x)p dx

)
1
p ≤ c (or such that
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f ≤ c), can be characterized via their moments
∫

xj π(dx) = EV j = P
(

X1 = . . . = Xj = 1
)

.

This is the ”Markov moment problem”. We refer to [10] for more on this topic.

(iv) The results mentioned above straightforwardly extend to k-step predictions.
Let a1, . . . , ak ∈ {0, 1}. Then, P

(

Xn+1 = a1, . . . ,Xn+k = ak | X1, . . . ,Xn

)

can be

approximated by X
P

i
ai

n

(

1 − Xn

)k−P

i
ai

(where the possible indeterminate form

00 should be meant as 00 = 1). Moreover, the error

X
P

i
ai

n

(

1 − Xn

)k−P

i
ai − P

(

Xn+1 = a1, . . . ,Xn+k = ak | X1, . . . ,Xn

)

behaves asymptotically as
(

Xn − E
(

Xn+1 | X1, . . . ,Xn

) )

; see Subsection 4.1.

2. Stable convergence

Let (Ω,A, P ) be a probability space and S a metric space. We write B for the
Borel σ-field of S and Cb(S) for the set of real bounded continuous functions on
S. A random probability measure on S, defined on (Ω,A, P ), is a mapping N on
Ω × B such that: (i) N(ω, ·) is a probability measure on B for ω ∈ Ω; (ii) N(·, B)
is A-measurable for B ∈ B. The real random variable N(ω, f) =

∫

f(x)N(ω, dx),
where f is a bounded B-measurable function on S, is denoted by N(f).

Let us turn to stable convergence. Let (Zn) be a sequence of S-valued random
variables and N a random probability measure on S. Both (Zn) and N are defined
on (Ω,A, P ). Say that Zn converges stably to N in case

E
(

f(Zn) | H
)

→ E
(

N(f) | H
)

for all f ∈ Cb(S) and H ∈ A with P (H) > 0.

If Zn → N stably, then Zn converges in distribution to the probability measure
B 7→ EN(B) on B (just let H = Ω). Stable convergence has been introduced
by Renyi in [13] and subsequently investigated by various authors. A detailed
treatment, including some strengthened forms of stable convergence, is in [8].

3. Main results

In the sequel, as in Section 1, (Xn : n ≥ 1) is an exchangeable sequence of
indicators on the probability space (Ω,A, P ). We let

Xn =
1

n

n
∑

i=1

Xi, V = lim sup
n

Xn, ∆ = {v : P (V = v) > 0}.

Also,
π = P ◦ V −1

is the probability distribution of V , λ the Lebesgue measure on (0, 1), and N (a, b)
the Gaussian law with mean a and variance b ≥ 0 (with N (a, 0) = δa).

We first investigate stable convergence of E (f(Wn) | Gn), where f ∈ Cb(R) and

Wn = W (
√

n) =
√

n
(

Xn − V
)

, Gn = σ(X1, . . . ,Xn).

To this end, we begin with two introductory examples.
If (Xn) is i.i.d., then V = v a.s. for some v ∈ [0, 1] and a result of Renyi [13]

yields
√

n
(

Xn − v
)

→ N (0, v − v2) stably. Since
√

n
(

Xn − v
)

is Gn-measurable,

E (f(Wn) | Gn) = f(Wn) → N (0, v − v2) ◦ f−1 stably for all f ∈ Cb(R).
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Note that π is discrete in the i.i.d. case (in fact, π = δv).
Suppose now that (Xn) is a Polya sequence, that is, P (X1 = 1) = u

u+v and

E
(

Xn+1 | Gn

)

=
u +

∑n
i=1 Xi

u + v + n
a.s.

for some reals u, v > 0. When u, v are rationals, this probability assessment
describes a well known urn scheme. In any case, π is a beta distribution with
parameters u, v and

E
(

f(Wn) | Gn

) a.s.→ N (0, V − V 2)(f) for all f ∈ Cb(R). (3)

Condition (3) has been first proved in Example 6 of [8] (with convergence in prob-
ability in the place of a.s. convergence) and then in Corollary 4.2 of [7].

One conjecture is that (3) holds whenever π ≪ λ (and not only in the Polya
case). Provided this is true, further, the discrete and absolutely continuous cases
could be unified. Next result realizes this programme.

Theorem 1. Let f ∈ Cb(R). If π does not have a singular continuous part, then
E

(

f(Wn) | Gn

)

converges stably to the random probability measure

Mf = I{V /∈∆}δN (0,V −V 2)(f) + I{V ∈∆}N (0, V − V 2) ◦ f−1.

Moreover, condition (3) holds whenever π ≪ λ.

Proof. Let N denote the random probability measure N = N (0, V − V 2).
First, suppose π ≪ λ. In order to prove (3), it can be assumed Ω = {0, 1}∞, A

the Borel σ-field and Xn the canonical projections. In this case, (Xn) is a Polya
sequence under some probability measure P0 on A. Let π0 be the distribution of V
under P0 (recall that π0 is a beta distribution). Since π ≪ λ and λ is equivalent to
π0, then π ≪ π0 and de Finetti’s representation theorem implies P ≪ P0. Thus,

sup
A∈A

|P
(

(Xn+1, . . .) ∈ A | Gn

)

− P0

(

(Xn+1, . . .) ∈ A | Gn

)

| → 0, P -a.s.,

by Blackwell-Dubins result on merging [6]. Given f ∈ Cb(R), define

Un = |EP0

(

f(Wn) | Gn

)

− N(f)|, Vn = |E
(

f(Wn) | Gn

)

− EP0

(

f(Wn) | Gn

)

|.
By [7], since (Xn) is Polya under P0, then Un → 0, P0-a.s.. By Blackwell-Dubins
result on merging, Vn → 0, P -a.s.. Since P ≪ P0, one obtains

|E
(

f(Wn) | Gn

)

− N(f)| ≤ Un + Vn → 0, P -a.s..

Thus, condition (3) holds whenever π ≪ λ.

Next, suppose π does not have a singular continuous part. Fix f ∈ Cb(R),
−1 ≤ f ≤ 1, and let A = {V ∈ ∆}. Since Wn → N stably (see [5], Theorem 3.1),

E
(

Mf (g) | A ∩ H
)

= E
(

N(g ◦ f) | A ∩ H
)

= lim
n

E
(

g ◦ f(Wn) | A ∩ H
)

provided g ∈ Cb(R), H ∈ A and P (A ∩ H) > 0. It follows that

IAf(Wn) + IAcN(f) → Mf stably.

In order to prove E
(

f(Wn) | Gn

)

→ Mf stably, thus, it suffices showing that

E
∣

∣

∣
E

(

f(Wn) | Gn

)

− IAf(Wn) − IAcN(f)
∣

∣

∣
→ 0.
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Write ∆ = {v1, v2, . . .}. Since |f | ≤ 1, one obtains

E
∣

∣

∣
E

(

IAf(Wn) | Gn

)

− IAf(Wn)
∣

∣

∣

= E
∣

∣

∣

∑

j

f
(√

n(Xn − vj)
) (

P (V = vj | Gn) − I{V =vj}
)

∣

∣

∣

≤
∑

j

E
∣

∣

∣
P (V = vj | Gn) − I{V =vj}

∣

∣

∣

≤
m

∑

j=1

E
∣

∣

∣
P (V = vj | Gn) − I{V =vj}

∣

∣

∣
+ 2

∑

j>m

P (V = vj) for all m.

By martingale convergence, E|P (V = vj | Gn)− I{V =vj}| → 0 for fixed j, and thus

lim sup
n

E
∣

∣

∣
E

(

IAf(Wn) | Gn

)

− IAf(Wn)
∣

∣

∣
≤ 2 lim sup

m

∑

j>m

P (V = vj) = 0.

It remains to see that

E
∣

∣

∣
E

(

IAcf(Wn) | Gn

)

− IAcN(f)
∣

∣

∣
→ 0.

To this end, it can be assumed P (Ac) > 0. Denote Q(·) = P (· | Ac). On noting
that |f | ≤ 1 and

EQ

(

f(Wn) | Gn

)

=
E

(

IAcf(Wn) | Gn

)

P (Ac | Gn)
, Q-a.s.,

one obtains

E
∣

∣

∣
E

(

IAcf(Wn) | Gn

)

− IAcN(f)
∣

∣

∣

≤ E
∣

∣

∣
IA E

(

IAcf(Wn) | Gn

)

∣

∣

∣
+ EQ

∣

∣

∣
E

(

IAcf(Wn) | Gn

)

− N(f)
∣

∣

∣

≤ E
(

IA P (Ac | Gn)
)

+ EQ

∣

∣

∣
P (Ac | Gn)EQ

(

f(Wn) | Gn

)

− N(f)
∣

∣

∣

≤ E
(

IA P (Ac | Gn)
)

+ EQ

∣

∣

∣
P (A | Gn)

∣

∣

∣
+ EQ

∣

∣

∣
EQ

(

f(Wn) | Gn

)

− N(f)
∣

∣

∣
.

By martingale convergence,

E
(

IA P (Ac | Gn)
)

+ EQ

∣

∣

∣
P (A | Gn)

∣

∣

∣
= E

(

IA P (Ac | Gn)
)

+
E

(

IAc P (A | Gn)
)

P (Ac)
→ 0.

Finally, since π does not have a singular continuous part, the distribution of V
under Q is absolutely continuous with respect to λ. Also, (Xn) is still exchangeable
under Q. Hence, the first part of this proof yields

EQ

∣

∣

∣
EQ

(

f(Wn) | Gn

)

− N(f)
∣

∣

∣
→ 0.

�

Incidentally, the previous proof shows that condition (3) holds, even if (Xn) is
not exchangeable, provided the law of (Xn) is absolutely continuous with respect
to the law of a Polya sequence. For proving (3), in fact, we only used P ≪ P0.

Theorem 1 also sheds light on the rate of convergence of
{

Xn −E
(

Xn+1 | Gn

)}

,

which is our main purpose. Recall that E
(

Xn+1 | Gn

)

= E
(

V | Gn

)

a.s. and define

Cn = C(
√

n) =
√

n
{

Xn − E
(

Xn+1 | Gn

) }

= E
(

Wn | Gn

)

a.s..
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Theorem 2. If π does not have a singular continuous part, then Cn converges
stably to the random probability measure

M = I{V /∈∆}δ0 + I{V ∈∆}N (0, V − V 2).

Moreover E|Cn|r → 0, for all r > 0, whenever π ≪ λ.

The following lemma, needed for proving Theorem 2, is certainly known. Since
we do not know of any reference, however, we give it a proof.

Lemma 3. Let (Yn) be a sequence of real i.i.d. random variables on a common
probability space, with EY 2k

1 < ∞ and EY1 = 0, k = 1, 2, . . .. Then,

sup
n

E
{ (

∑n
i=1 Yi√

n

)2k}

≤ γk EY 2k
1

for some constant γk depending on k only.

Proof. Let S0 = 0 and Sn =
∑n

i=1 Yi. Then, Sn is a martingale with quadratic
variation [S]0 = 0 and [S]n =

∑n
i=1(Si − Si−1)

2 =
∑n

i=1 Y 2
i . By the well known

Burkholder-Davis-Gundy inequality, there is a universal constant γk such that
E

(

max0≤j≤n S2k
j

)

≤ γk E
(

[S]kn
)

. For such a γk and any integer n, one obtains

E
{ ( Sn√

n

)2k}

≤ γk

nk
E{

(

n
∑

i=1

Y 2
i

)k} =
γk

nk

n
∑

i1=1

. . .

n
∑

ik=1

E
(

Y 2
i1 . . . Y 2

ik

)

≤ γk EY 2k
1 .

�

Proof of Theorem 2. Let T denote the tail σ-field of (Xn). By exchangeability of
(Xn) and Lemma 3, for each integer k ≥ 1 there is a constant γk satisfying

sup
n

EW 2k
n = sup

n
E

(

E(W 2k
n | T )

)

≤ γk E
(

E(X2k
1 | T )

)

= γk EX2k
1 < ∞.

Further, EC2k
n ≤ EW 2k

n since Cn = E
(

Wn | Gn

)

a.s.. Hence, both the sequences
(|Wn|r) and (|Cn|r) are uniformly integrable for all real r > 0.

Next, suppose π does not have a singular continuous part. Let g : R → R

be a function satisfying |g(x) − g(y)| ≤ |x − y| and |g(x)| ≤ 1 for all x, y, and
let H ∈ A with P (H) > 0. To prove Cn → M stably, it is enough to see that
E

(

g(Cn) | H
)

→ E (M(g) | H). Since (Wn) is uniformly integrable, given ǫ > 0,
there is c > 0 such that

sup
n

E
(

|Wn| I{|Wn|>c}
)

<
ǫP (H)

4
and c2 >

1

ǫ
.

Define f(x) = x for |x| ≤ c, f(x) = c for x > c, and f(x) = −c for x < −c, and let
Un = E (f(Wn) | Gn). Since g is Lipschitz continuous and Cn = E

(

Wn | Gn

)

a.s.,

|g(Cn) − g(Un)| ≤ |Cn − Un| ≤ 2E
(

|Wn| I{|Wn|>c} | Gn

)

a.s.,

and this implies

E
(

|g(Cn) − g(Un)| | H
)

≤ 2

P (H)
E

(

|Wn| I{|Wn|>c}
)

<
ǫ

2
for all n.

Since N (0, V − V 2)(f) = 0, then Mf = δ0 = M on {V /∈ ∆}, where Mf is
the random probability measure appearing in Theorem 1. Further, since |g| ≤ 1,
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0 ≤ V ≤ 1 and c2 > 1
ǫ , one obtains

| N (0, V − V 2)(g ◦ f) −N (0, V − V 2)(g) | ≤ N (0, V − V 2)(|g ◦ f − g|)

≤ 2N (0, V − V 2)({x : |x| > c}) ≤ 2(V − V 2)

c2
≤ 2

c2

1

4
<

ǫ

2
.

To sum up, one can estimate as follows

|E
(

g(Cn) | H
)

− E
(

M(g) | H
)

| − |E
(

g(Un) | H
)

− E
(

Mf (g) | H
)

|
≤ |E

(

g(Cn) | H
)

− E
(

g(Un) | H
)

| + |E
(

Mf (g) | H
)

− E
(

M(g) | H
)

|
<

ǫ

2
+ E

(

I{V ∈∆}|Mf (g) − M(g)| | H
)

=
ǫ

2
+ E

(

I{V ∈∆} |N (0, V − V 2)(g ◦ f) −N (0, V − V 2)(g)| | H
)

≤ ǫ

2
+

ǫ

2
P (V ∈ ∆ | H) ≤ ǫ.

Since Theorem 1 yields E
(

g(Un) | H
)

→ E
(

Mf (g) | H
)

, one obtains

lim sup
n

|E
(

g(Cn) | H
)

− E
(

M(g) | H
)

| ≤ ǫ.

Therefore, Cn → M stably. In particular, if π ≪ λ, then Cn → M = δ0 stably,

that is, Cn
P→ 0. Hence E|Cn|r → 0, because of uniform integrability of (|Cn|r),

for all r > 0. This concludes the proof. �

At least two remarks on Theorem 2 are in order.
First, if π has a singular continuous part, we suspect that Cn converges stably

to a non null limit. But we have not a proof.
Second, √

n Cn = n
{

Xn − E
(

Xn+1 | Gn

) }

converges a.s. in case (Xn) is a Polya sequence. A conjecture is that
√

n Cn

converges a.s. whenever π ≪ λ. This is actually true, as we now prove, under some
conditions on the density. Say that a real function f on (0, 1) is almost Lipschitz
in case x 7→ f(x)xa(1 − x)b is Lipschitz on (0, 1) for some reals a, b < 1.

Theorem 4. If π admits an almost Lipschitz density with respect to λ, then√
n Cn

a.s.→ D for some real random variable D.

A few technical facts, needed for proving Theorem 4, are collected in the following
lemma.

Lemma 5. Let Ω = {0, 1}∞, A the Borel σ-field on Ω and Xn the canonical
projections. Let P0 be the probability on A which makes (Xn) a Polya sequence (for
some u, v > 0). If π ≪ λ, there is a nonnegative Borel function h on [0, 1] such
that h(V ) is a density of P with respect to P0. Moreover,

P (V ∈ B) = c

∫

B

h(x)xu−1 (1 − x)v−1 dx

for each Borel set B ⊂ [0, 1], where c > 0 is a constant.

Proof. Let N0 = {A ∈ A : P0(A) = 0} and S the symmetric σ-field on Ω = {0, 1}∞.
Since π ≪ λ, then P ≪ P0. Fix a version f of dP

dP0
and a finite permutation φ of
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Ω. Let ϕ be the finite permutation such that ϕ ◦ φ(ω) = ω for all ω ∈ Ω. By
exchangeability of both P and P0, one obtains

∫

A

f dP0 = P (A) = P (ϕ−1A) =

∫

(IA ◦ ϕ) f dP0 =

∫

A

(f ◦ φ) dP0

for all A ∈ A. Hence, {f 6= f ◦ φ} ∈ N0. Since finite permutations are countably
many, there is a nonnegative S-measurable function f1 on Ω satisfying {f 6= f1} ∈
N0. Since f1 is S-measurable and P0 exchangeable,

σ(f1) ⊂ S ⊂ σ
(

σ(V ) ∪N0

)

.

Hence, {f1 6= f2} ∈ N0 for some nonnegative σ(V )-measurable function f2 on Ω.
Such f2 is a version of dP

dP0
and f2 = h(V ) for some nonnegative Borel function h.

Finally, it suffices noting that the distribution of V under P0 is beta with parameters
u, v. �

Proof of Theorem 4. Since
√

n Cn is a Gn-martingale, it suffices proving that
supn

√
n E|Cn| < ∞. To this end, it can be assumed Ω = {0, 1}∞, A the Borel

σ-field and Xn the canonical projections.
Since π has an almost Lipschitz density, there is a version g of dπ

dλ such that

x 7→ g(x)xa(1−x)b is Lipschitz on (0, 1) for some a, b < 1. Let P0 be the probability
on A which makes (Xn) a Polya sequence with u = 1−a and v = 1− b. By Lemma
5, some version of dP

dP0
is of the form h(V ) where h is a nonnegative Lipschitz

function on (0, 1).
Using such version, Cn can be written as

Cn = E
(

Wn | Gn

)

=
E0

(

h(V )Wn | Gn

)

E0

(

h(V ) | Gn

) , P -a.s.,

where E0 denotes expectation under P0. Thus,

E|Cn| = E0

{

h(V )
|E0

(

h(V )Wn | Gn

)

|
E0

(

h(V ) | Gn

)

}

= E0 |E0

(

h(V )Wn | Gn

)

|.

Let

Vn = E0

(

V | Gn

)

= E0

(

Xn+1 | Gn

)

=
u +

∑n
i=1 Xi

u + v + n
.

Then,
√

n |E0

(

Wn | Gn

)

| = n |Xn − Vn| ≤ u + v, P0-a.s.. Since h is Lipschitz (and

thus bounded) on (0, 1) and P0

(

0 < Vn < 1, 0 < V < 1
)

= 1 for all n, it follows
that

E|Cn| ≤ E0 |h(Vn)E0(Wn | Gn) | + E0 |E0

(

(h(V ) − h(Vn))Wn | Gn

)

|

≤ (u + v) suph√
n

+ cE0

{

E0

(

|(V − Vn)Wn| | Gn

) }

where c is the Lipschitz constant of h. Letting Un =
√

n (V − Vn), one also obtains
√

n E|Cn| ≤ (u + v) suph + cE0

{

E0

(

|UnWn| | Gn

) }

= (u + v) suph + cE0|UnWn|.
As noted in the proof of Theorem 2, E0C

2
n ≤ E0W

2
n ≤ d for all n and some constant

d. Since Un = Cn − Wn, it follows that E0U
2
n ≤ 2 (E0C

2
n + E0W

2
n) ≤ 4 d and

√
n E|Cn| ≤ (u + v) suph + c

√

E0U2
n E0W 2

n ≤ (u + v) suph + 2 c d

for all n. This concludes the proof. �
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4. Miscellaneous results

The results obtained so far admit some generalizations.

4.1. k-step predictions. Let a1, . . . , ak ∈ {0, 1} and a =
∑k

i=1 ai. Then,

P
(

Xn+1 = a1, . . . ,Xn+k = ak | Gn

)

= E
(

V a (1 − V )k−a | Gn

)

is well approximated by X
a

n

(

1 − Xn

)k−a
(where the possible indeterminate form

00 is meant as 00 = 1). In addition, the asymptotic behaviour of

Tn =
√

n
{

X
a

n

(

1 − Xn

)k−a − E
(

V a (1 − V )k−a | Gn

) }

is quite similar to that of Cn.

Corollary 6. If π does not have a singular continuous part, then Tn converges
stably to the random probability measure

M(σ2) = I{V /∈∆}δ0 + I{V ∈∆}N (0, σ2) = N (0, I{V ∈∆} σ2),

where σ2 = k2V 2k−1(1 − V ) if a = k, σ2 = k2V (1 − V )2k−1 if a = 0, and

σ2 = (a − kV )2 V 2a−1(1 − V )2(k−a)−1 if 0 < a < k.

In particular, Tn
P→ 0 in case π ≪ λ.

Proof. Letting f(x) = xa(1 − x)k−a, Lagrange theorem yields

Tn =
√

n E
(

f(Xn) − f(V ) | Gn

)

=
√

n E
(

f ′(Vn) (Xn − V ) | Gn

)

= f ′(Xn)E(Wn | Gn) + E
(

(f ′(Vn) − f ′(Xn))Wn | Gn

)

a.s.

where Vn is between Xn and V . Let M = N (0, I{V ∈∆}V (1 − V )). Since Cn → M

stably (by Theorem 2), f ′ is continuous and Xn
a.s.→ V , one obtains

f ′(Xn)E(Wn | Gn) = f ′(Xn)Cn → N (0, I{V ∈∆}f
′(V )2V (1−V )) = M(σ2) stably.

Thus, it remains only to see that E
(

(f ′(Vn) − f ′(Xn))Wn | Gn

) P→ 0. Let Rn =

f ′(Vn) − f ′(Xn). Then, Rn
a.s.→ 0 and R2

n ≤ 4max0≤x≤1 f ′(x)2 for all n. Since
supn EW 2

n < ∞, it follows that

E|E
(

Rn Wn | Gn

)

| ≤ E|Rn Wn | ≤
√

EW 2
n ER2

n → 0.

�

4.2. General state space. Let (Zn) be an exchangeable sequence of random vari-
ables, defined on (Ω,A, P ) and taking values in the measurable space (S,B). Let
µn = 1

n

∑n
i=1 δZi

denote the empirical measure and

Gn = σ(Z1, . . . , Zn).

Given B ∈ B, let us consider

C∗
n =

√
n

{

µn(B) − E
(

I{Zn+1∈B} | Gn

) }

.

After Section 3, we know something about
√

n
{

µn(B) − E
(

I{Zn+1∈B} | GB
n

)}

where GB
n = σ(I{Z1∈B}, . . . , I{Zn∈B}). But this is not enough for C∗

n, since the
asymptotic behaviour of

√
n

{

E
(

I{Zn+1∈B} | GB
n

)

− E
(

I{Zn+1∈B} | Gn

) }

is unknown (to us). The arguments of Section 3, however, give some help.
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Let Z = (Z1, Z2, . . .) and ν a probability measure on B∞ such that

C∗
n

P→ 0 whenever Z ∼ ν. (4)

Theorem 7. Suppose P (Z ∈ ·) ≪ ν, where Z = (Z1, Z2, . . .) and ν is a probability
on B∞ satisfying (4). Then, E|C∗

n|r → 0 for all r > 0. In particular,

E
(

I{Zn+1∈B} | Gn

)

= µn(B) + oP (
1√
n

).

To avoid repetitions, we just give a sketch of the proof.

Proof of Theorem 7. Define VB = lim supn µn(B), W ∗
n =

√
n(µn(B) − VB) and

note that C∗
n = E

(

W ∗
n | Gn

)

a.s.. As in the proof of Theorem 2, the sequences
(|W ∗

n |r) and (|C∗
n|r) can be shown to be uniformly integrable for all r > 0. Thus,

it suffices proving that E|C∗
n| → 0. It can be assumed (Ω,A) = (S∞,B∞) and Zn

the canonical projections. Let P0 = ν and f a version of dP
dP0

. As in the proof of

Theorem 4, E|C∗
n| = E0 |E0

(

f W ∗
n | Gn

)

| where E0 denotes expectation under P0.
Since (W ∗

n) is uniformly integrable, given ǫ > 0, there is c > 0 such that

E0 |E0

(

f I{f>c} W ∗
n | Gn

)

| ≤ E0

(

f I{f>c} |W ∗
n |

)

= E
(

I{f>c} |W ∗
n |

)

< ǫ for all n.

Using such c, define Un = f I{f≤c} − E0

(

f I{f≤c} | Gn

)

. Then,

E|C∗
n| < ǫ + E0 |E0

(

f I{f≤c} W ∗
n | Gn

)

|
≤ ǫ + E0|E0

(

f I{f≤c} | Gn

)

E0

(

W ∗
n | Gn

)

| + E0|E0

(

Un W ∗
n | Gn

)

|
≤ ǫ + cE0|E0

(

W ∗
n | Gn

)

| +
√

E0U2
n E0W ∗ 2

n .

By (4), E0

(

W ∗
n | Gn

) P0→ 0. Since the sequence
(

E0

(

W ∗
n | Gn

))

is uniformly in-

tegrable under P0, then E0|E0

(

W ∗
n | Gn

)

| → 0. Thus, to conclude the proof, it

suffices noting that supn E0W
∗ 2
n < ∞ and

lim
n

E0U
2
n = lim

n
E0

{(

f I{f≤c} − E0

(

f I{f≤c} | Gn

))2}
= 0

by martingale convergence. �

Various examples of ν satisfying (4) are available in the Bayesian nonparametrics
framework; see e.g. [12] and references therein. One of the most popular is the law
of a Ferguson-Dirichlet sequence. If Z is such a sequence,

E
(

I{Zn+1∈B} | Gn

)

=
aP (Z1 ∈ B) + nµn(B)

a + n
a.s.

for some a > 0, and thus |C∗
n| ≤ a√

n
. Note that Ferguson-Dirichlet sequences reduce

to Polya’s for S = {0, 1}.
Let ν denote the law of a Ferguson-Dirichlet sequence. Characterizing those Z

such that P (Z ∈ ·) ≪ ν is quite easy in case S is finite (and B the power set of
S). Suppose in fact S = {x1, . . . , xk, xk+1} and P (Z1 = x) > 0 for all x ∈ S.
Define Vx = lim supn µn{x}. Then, P (Z ∈ ·) ≪ ν if and only if (Vx1

, . . . , Vxk
)

has an absolutely continuous distribution, with respect to Lebesgue measure, on

the set {(u1, . . . , uk) : ui > 0 for all i and
∑k

i=1 ui < 1}. Note that, in case of
indicators (S = {0, 1} and 0 < P (Z1 = 1) < 1), one obtains P (Z ∈ ·) ≪ ν if and
only if V = V1 has an absolutely continuous distribution with respect to Lebesgue
measure on (0, 1).
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For general state spaces, instead, we do not know of reasonably simple charac-
terizations of P (Z ∈ ·) ≪ ν.
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