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Abstract

In this paper, we study the scattering wave operators for a diatomic
molecules by using the Born-Oppenheimer approximation. Assuming that
the ratio h2 between the electronic and nuclear masses is small, we con-
struct adiabatic wave operators that, under some non trapping conditions,
approximate the two-cluster wave operators up to any powers of the pa-
rameter h.
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1 Introduction

In this paper, we discuss the scattering process of a diatomic molecule that
dissociates into two ions. The complexity of the problem is due to the rather
large number of particles, and, to overcome this difficulty, we apply the so called
Born-Oppenheimer approximation. The idea of this method is based on the fact
that, since the nuclei are much heavier than the electrons, their moving is slower
and then the movement of the electrons, being almost instantaneous, is perceived
by the nuclei as a surrounding electric field, if the parameter h, that represents
the square root of the ratio between the electronic and nuclear masses, is small.
Since the pioneering work of Born-Oppeneheimer (cfr.: [BoOp]) in 1927, many
works are devoted to the investigation of Born-Oppenheimer approximation in
spectral theory (cfr. :[CDS, Ha1, Ha2, Ha3, Ha4, Ha5, Ha6, HaJo, KMSW, Ma1,
MaSo1, MaSo2, PST, SpTe, Te]), but only few (cfr. :[Ra, KMW1, KMW2, Je1,
Je2, Je3, Je4]) investigate the applications of this method to scattering theory
for molecules. In this papers, the authors provide a mathematical justification
of the Born-Oppenheimer approximation for the two-cluster wave operators in
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diatomic molecular scattering. In particular, they construct an adiabatic wave
operators that gives, under some non trapping assumptions, an approximation
of the cluster wave operators modulo terms of order O(h), as the parameter
h tends to 0. The purpose of this paper is to improve the results of [KMW1]
by obtaining, in the case of smooth interactions, a good approximation of the
cluster wave operators up to any power of h. Following the idea of [NeSo, So,
MaSo1, MaSo2], we construct a quasi-invariant subspace and wave operators
acting on such invariant subspace that approximates the original wave operators
up to any order in h.
To begin with, let us introduce some notations.
Consider the Hamiltonian of a diatomic molecule with N electrons:

P = −h2∆x1 − h2∆x2 −
N∑

j=1

∆yj +
N∑

j=1

(W1,j(yj − x1) +W2,j(yj − x2))

+
∑

i,j∈{1,..,N}
i 6=j

Vi,j(yi − yj) +W (x2 − x1). (1.1)

Here x1, x2 ∈ IRn denote the positions of the two nuclei of massM , yj ∈ IRn, j =

1, .., N , the positions of the N electrons with mass m and h :=
√
m

M
.

In the following we assume that M is large enough with respect to m so that h
can be regarded as a semiclassical parameter.
Moreover we assume that the potentials are smooth and short range.
Let C = {C1, C2} be a cluster decomposition with Cj = {j} ∪C ′j , C ′j ⊂ {k, k =
1, .., N}, j = 1, 2. The cluster Hamiltonian is given by,

Pc = −h2∆x1 − h2∆x2 +Q0(x)

where,

Q0(x) =
2∑

k=1

( ∑
j∈C′

k

(
−∆yj +Wk,j(yj − xk)

)
+

∑
i,j∈C′

k
i 6=j

Vi,j(yi − yj)
)

(1.2)

and P can be written as,

P = −h2∆x1 − h2∆x2 +Q(x) = Pc + Ic(x)

where
Q(x) = Q0(x) + Ic(x)

and

Ic(x) = W (x2 − x1) +
∑
j∈C′

1

W2,j(yj − x2) +
∑
j∈C′

2

W1,j(yj − x1)

+
∑

i∈C′
1,j∈C′

2

Vi,j(yi − yj) +
∑

i∈C′
2,j∈C′

1

Vi,j(yi − yj). (1.3)
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Let us fix m eigenvalues ê1(h) ≤ ê2(h) ≤ ... ≤ êm(h), (dependent of h) of the
cluster Hamiltonian P̂c that one obtain from Pc by fixing the center of mass and
let us denote by Ê the spectral projection associated to these eigenvalues.
In the following, it will be shown that êj(h) = ej+O(h2) where ej are eigenvalues
of Q0(x) (that are independent of x, since Q0(x) is translation invariant).
Let f ∈ C∞0 (IR) be some cutoff function.
In this paper we are interested in the Born-Oppenheimer approximation of the
two cluster wave operators restricted to the the range of Ê i.e., denoting by P̂
the operator that one obtain from P by removing the kinetic energy of the total
center of mass, we study the wave operators

Ωc
±Êf(P̂c) = s− lim

t→±∞
eitP̂ e−itP̂cÊf(P̂c)

in L2(IRn(N+2)).
Assuming that there there are exactly m eigenvalues λj(x2−x1), j = 1, ..,m, of
Q(x) that converge to ej when |x2 − x1| → +∞, we will show that there exists
an orthogonal projection Π̂ that almost commutes with P and that converges to
Ê as |x2 − x1| → +∞, such that, on the range of Ê, the cluster wave operators
Ωc
± can be decomposed into,

Ωc
±Êf(P̂c) = ΩNAD

± ΩAD
± f(P̂c)

where
ΩAD
± f(P̂c) = s− lim

t→±∞
eitΠ̂P̂ Π̂e−itP̂cÊf(P̂c)

is the adiabatic wave operator and

ΩNAD
± = s− lim

t→±∞
eitP̂ e−itΠ̂P̂ Π̂Π̂f(Π̂P̂ Π̂)

is the non adiabatic wave operator. Moreover, if Ê is of rank one and a non-
trapping condition on Π̂P Π̂ holds, one can prove that

ΩNAD
± = I + O(h∞)

and that ΩAD
± is unitary equivalent to the cluster wave operator of the heavy

particles and the action of the electrons contributes as a small perturbation.
Our results are formulate in a slightly different way with respect to the one of
[Ra, KMW1, KMW2, Je1] since, here, we have preferred to keep the original
coordinates instead of working in cluster atomic coordinates as in the articles
mentioned above. The reason of the choice of this different coordinates system
is related on the fact that, in cluster atomic coordinates, all the potentials be-
come h-dependent and the construction of the projector Π̂ is more difficult to
obtain. On the other hand, it is easy to check that our results improve the one
of [KMW1] by giving an approximation of the wave operators up to any power
of the parameter h.
The plan of the paper is the following:
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In Section 2 we fix some notations and we state some preliminary results.
In Section 3, following the method of [NeSo, So, MaSo1, MaSo2], we construct
two pseudodiffential operators with operator valued symbols, Π̂g and Êg (de-
pending on some cutoff function g with Supp f ⊂ {g = 1}), that are both
projectors and almost commute with P̂ and P̂c respectively, modulo terms of
order O(h∞). Moreover, if the kinetic energy remains bounded, Êg approximate
Ê, modulo error terms of order O(h∞).
In Section 4, we prove the existence of ΩAD

± and ΩNAD
± and the decomposition

properties mentioned before.
In Section 5, assuming that the rank of Ê is one and that some non trapping
conditions holds, we prove that the adiabatic wave operators are good approxi-
mation (modulo terms of order O(h∞)) of the cluster wave operators restricted
to the range of Ê.

2 Some preliminaries

Let C = {C1, C2} be, as before, a cluster decomposition with Cj = {j} ∪ C ′j ,
C ′j ⊂ {k, k = 1, .., N}. Let us consider the cluster Hamiltonian,

Pc = −h2∆x1 − h2∆x2 +Q0(x)

with Q0 given by (1.2), and the molecular Hamiltonian,

P = −h2∆x1 − h2∆x2 +Q(x) = Pc + Ic(x)

with Q(x) = Q0(x) + Ic(x) and Ic(x) given by (1.3).
In the following, we assume that all the potentials are smooth and short range,
that is
(H1) W,W1,j ,W2,j , and Vi,j , i, j = 1, ..., N , i 6= j, are smooth and

|∂α
z W (z)|+ |∂α

z W1,j(z)|+ |∂α
z W2,j(z)|+ |∂α

z Vi,j(z)| ≤ C〈z〉−δ−|α|

for any α ∈ INn, for some δ > 1.
Let us remark that P commutes with all the translations

Tk : L2(IRn(N+2)) → L2(IRn(N+2)),
Tku(x1, x2, y1, .., yN ) = u(x1 + k, x2 + k, y1 + k, .., yN + k), k ∈ IRn, (2.1)

and that Pc commutes also with the translations

T c
k1,k2

: L2(IRn|C1|)⊗ L2(IRn|C2|) → L2(IRn|C1|)⊗ L2(IRn|C2|),
T c

k1,k2
= T c

k1
⊗ T c

k2
,

(T c
ki
φ)(xi, (yj)j∈C′

i
) = φ(xi + ki, (yj + ki)j∈C′

i
), ki ∈ IRn, i = 1, 2. (2.2)

Let us consider now, in each cluster, the change of variables U = U1⊗U2 where
Ui, i = 1, 2, is given by

Ri :=
xi + h2

∑
j∈C′

i
yj

1 + h2|C ′k|
ŷj := yj − xi, j ∈ C ′i,
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for i = 1, 2, where Ri represents the center of mass of the cluster Ci and ŷj the
relative positions between the electrons and the nucleus in the cluster. Such a
coordinate system defines a decomposition

L2(IRn(N+2)) = L2(IR2n)⊗ L2(IRnN )

and we have

UPcU
−1 = (−α1(h)∆R1 − α2(h)∆R2)⊗ I + I ⊗ Q̂0(h)

where αi(h) =
h2

1 + |C ′i|h2
and

Q̂0(h) = Q̃0 + h2
2∑

k=1

( ∑
j∈C′

k

Dŷj

)2 (2.3)

where

Q̃0 =
2∑

k=1

( ∑
j∈C′

k

(
−∆ŷj +Wk,j(ŷj)

)
+

∑
i,j∈C′

k
i 6=j

Vi,j(ŷi − ŷj)
)
. (2.4)

Assume that Q̃0 has at least m eigenvalues e1 ≤ e2 ≤ ... ≤ em, repeated
with their multiplicity, below its essential spectrum. By (2.3) and standard
perturbation theory, it is easy to show that there are m eigenvalues of Q̂0(h),
ê1(h) ≤ ê2(h) ≤ ... ≤ êm(h), such that

êj(h) = ej + O(h2).

Let π̂ be the projection onto the eigenspace associated to

σ̂0(h) = {ê1(h), ê2(h), ..., êm(h)}.

In this paper we are interested in the Born-Oppenheimer approximation of the
two cluster wave operators projected onto the eigenspace σ̂0(h), i.e. to the study
of,

Ωc
±Ê = s− lim

t→±∞
eitP e−itPcÊ,

in L2(IRn(N+2)) where,
Ê = U−1(I ⊗ π̂)U. (2.5)

Since P , Pc and Ê all commute with the translations (2.1) then P , Pc and Ê
also commute with the kinetic energy of the total center of mass of the system
given by,

KR =
h2

2 +Nh2
(Dx1 +Dx2 +

N∑
j=1

Dyj
)2.

Hence, denoting by

P̂ := P −KR, P̂c := Pc −KR, (2.6)
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we have:

Ωc
± = s− lim

t→±∞
eitP e−itPcÊ = s− lim

t→±∞
eitP̂ e−itP̂cÊ.

Moreover, denoting by Sx the unitary operator on L2(IRn|C′
1|) ⊗ L2(IRn|C′

2|),
given by,

Sx := Sx1 ⊗ Sx2 , (Sxk
φ)(y) = φ((yi + xk)i∈C′

k
), k = 1, 2,

we have
Q0(x) = SxQ̃0S−x

with Q̃0 defined in (2.4), and

Q(x) = SxQ̃(x2 − x1)S−x

where
Q̃(x2 − x1) = Q̃0 + Ĩc(x2 − x1)

Ĩc(x2 − x1) = W (x2 − x1) +
∑
j∈C′

1

W2,j(yj − (x2 − x1))

+
∑
j∈C′

2

W1,j(yj + (x2 − x1)) +
∑

i∈C′
1,j∈C′

2

Vi,j(yi − yj + (x2 − x1)).

This shows that the spectrum of Q0(x) is independent of x and that the one of
Q(x) depends on x2 − x1 only.
Let Σ(x2−x1) be the essential spectrum of Q(x), Σ0 := lim inf

|x2−x1|→+∞
Σ(x2 − x1)

and let us assume that em < Σ0. Then (see also Lemma 2.1 in [KMW1]), since

|Ĩc(x2 − x1)| ≤ C〈x2 − x1〉−δ〈y〉δ, (2.7)

we have,
lim

|x2−x1|→+∞
Q̃(x2 − x1) = Q̃0

in the sense of strong resolvent convergence in L2(IRnN ). Hence, every point in
the spectrum of Q̃0(x) is a limit of elements in Sp(Q̃(x2 − x1)).
By using the decay of the eigenfunctions of Q0(x) associated to the eigenvalues
ej , we can show that there are at least m eigenvalues of Q(x) counted with their
multiplicity that converges to some ej as |x2 − x1| → +∞.
In the following we assume that they are stable, that is,

(H2) There are exactly m eigenvalues λj(x2 − x1), j = 1, ..,m, (counted with
their multiplicity) of Q̃(x2−x1) (and then ofQ(x)) such that, for any j = 1, ..,m,

lim
|x2−x1|→+∞

λj(x2 − x1) = ej
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and, setting σ(x2 − x1) := {λ1(x2 − x1), λ2(x2 − x1), ..., λm(x2 − x1)}, one has

dist
(
Sp

(
Q̃(x2 − x1)

)
\ σ(x2 − x1)

)
, σ(x2 − x1)

)
≥ c > 0.

Now, let us take a complex oriented single loop Γ(x2 − x1) surrounding the set
σ(x2 − x1) and leaving the rest of the spectrum of Q̃(x2 − x1) in its exterior.
Without loss of generality one can suppose that Γ(x2 − x1) converges to Γ0, a
complex oriented single loop surrounding σ0 := {e1, e2, ..., em}, and leaving the
rest of the spectrum of Q̃0 in its exterior.
The spectral projection of Q(x) associated to σ(x2 − x1) can be written as

Π0(x) =
1

2iπ

∫
Γ(x2−x1)

(z −Q(x))−1dz. (2.8)

Under assumption (H2), one can also suppose that there exists R > 0 sufficiently
large such that

Sp(Q(x)) ∩ Γ0 = ∅, for |x1 − x2| > R.

Consequently, for |x1 − x2| > R, we can write the spectral projection onto the
eigenspaces associated to σ0 and σ(x2 − x1) respectively as,

E0(x) =
1

2iπ

∫
Γ0

(z −Q0(x))−1 dz, Π0(x) =
1

2iπ

∫
Γ0

(z −Q(x))−1 dz.

Our first result is the following (see also Theorem 2.2 in [KMW1]):

Proposition 2.1. Under the previous assumptions, one has, for any α ∈ IN6

‖∂α
x (Π0(x)− E0(x))‖L(L2(IRnN )) = O(〈x2 − x1〉−δ) (2.9)

Proof: We set, for p ∈ IR,

ζp(x) = 〈x2 − x1〉−p +
∑
j∈C′

1

〈x2 − yj〉−p +
∑
j∈C′

2

〈x1 − yj〉−p +
∑

i∈C′
1,j∈C′

2

〈yi − yj〉−p

kp(x) =
∑
j∈C′

1

〈yj − x1〉p +
∑
j∈C′

2

〈yj − x2〉p.

Then, for |x1 − x2| > R, we have,

Π0(x)− E0(x) =
1

2iπ

∫
Γ0

(z −Q(x))−1Ic(x)(z −Q0(x))−1 dz,

and, taking into account (H1) and applying standard commutator method, we
get

‖ζδ(x)−1(Π0(x)− E0(x))‖L(L2(IRnN )) = O(1). (2.10)
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Let us remark that, thanks to the exponential decay of the eigenfunction of Q̃0

or Q̃(x2 − x1) associated to ej and λj(x2 − x1), j = 1, ...,m, one has, for any
p > 0,

‖kp(x)E0(x)‖L(L2(IRnN )) + ‖kp(x)Π0(x)‖L(L2(IRnN )) = O(1). (2.11)

Moreover, since for any p > 0 there exists a positive constant C such that

ζp(x) ≤ C〈x2 − x1〉−pkp(x), (2.12)

from (2.11) and (2.12) one get,

‖ζp(x)Π0(x)‖L(L2(IRnN )) + ‖ζp(x)E0(x)‖L(L2(IRnN )) = O(〈x2 − x1〉−p) (2.13)

for any p > 0. Writing

Π0(x)− E0(x) = Π0(x)(Π0(x)− E0(x)) + (Π0(x)− E0(x))E0(x) (2.14)

and using (2.10) and (2.13) we obtain (2.9), for α = 0.
Suppose we have already proven the statement (2.9) for |α| ≤ k and let us prove
it for |α| = k + 1.
Using the identity (2.14), the inductive assumption and taking into account
that ∂α

x Π0(x) and ∂α
xE0(x) are bounded operators on L2(IRnN ), one has, for

|α| = k + 1,

∂α
x (Π0(x)− E0(x)) = Π(x)∂α

x (Π0(x)− E0(x))
+ ∂α

x (Π0(x)− E0(x))E0(x) + O(〈x2 − x1〉−δ). (2.15)

Then, since
∂α

x

(
(z −Q0(x))−1

)
, ∂α

x

(
(z −Q(x))−1

)
are also bounded operators on L2(IRnN ) for z ∈ Γ0, by assumption (H1), we
obtain that

‖ζδ(x)−1∂α
x (Π0(x)− E0(x))‖L(L2(IRnN )) = O(1)

and then, using (2.15) and (2.13), we get (2.9) for |α| = k + 1. •

3 Construction of a Quasi-Invariant Subspace

Let us construct here two orthogonal projections that almost commutes with
the operator P̂ and P̂c defined in (2.6). We have the following:

Theorem 3.1. Assume (H1)-(H2). Then, for any g ∈ C∞0 (IR), there exist

two orthogonal projections Πg, Eg on L2(IR(2+N)n), that commute with the
translations Tk and T c

k1,k2
, defined in (2.1) and (2.2) respectively, and verify,

Πg = Π0 + O(h), Eg = E0 + O(h). (3.1)

8



Moreover, Πg and Eg are h-admissible operators on L2(IR2n;L2(IRnN )) uni-

formly bounded as operators from L2(IR2n;L2(IRnN )) to L2(IR2n;H2(IRnN ))
and, for any f ∈ C∞0 (IR) with Supp f ⊂ {g = 1}, and any ` ≥ 0, one has

P̂ `[f(P̂ ),Πg] = O(h∞), P̂ `
c [f(P̂c), Eg] = O(h∞) (3.2)

and,

ζ−1
s (Πg − Eg)ζ−1

s′ = O(1) (3.3)

ζ−1
s (P̂ `[f(P̂ ),Πg]− P̂ `

c [f(P̂c), Eg])ζ−1
s′ = O(1) (3.4)

uniformly with respect to h > 0, if s+ s′ = δ.

Proof: The key point in the proof of the theorem is (as in [NeSo, So, MaSo1,
MaSo2]) the construction made in the following lemma:

Lemma 3.2. Under the previous assumptions, there exist functions

π̃j(x, ξ) =
∑
|α|≤j

aα,j(x)ξα, ẽj(x, ξ) =
∑
|α|≤j

bα,j(x)ξα

polynomial of degree j with respect to ξ, with smooth coefficients aα,j(x), bα,j(x) ∈
L(L2(IRnN )), that commute with the translation Tk and T c

k1,k2
defined in (2.1)

and (2.2) respectively, and such that the formal symbols

π̃(x, ξ;h) = Π0(x) +
∑
j≥1

π̃j(x, ξ)hj

ẽ(x, ξ;h) = E0(x) +
∑
j≥1

ẽj(x, ξ)hj

satisfy, at a formal series level,

π̃ = π̃∗ = π̃#π̃, ẽ = ẽ∗ = ẽ#ẽ, (3.5)

π̃#p− p#π̃ = 0, ẽ#pc − pc#ẽ = 0, (3.6)

π̃#p̂− p̂#π̃ = 0, ẽ#p̂c − p̂c#ẽ = 0. (3.7)

and, in addition, one has, for any α ∈ IN2n and for any j ≥ 1,

‖ζδ(x)−1∂α
x (aα,j(x)− bα,j(x))‖L(L2(IRnN )) = O(1). (3.8)

Here, we have denoted by p(x, ξ) = ξ21 +ξ22 +Q(x) the symbol of P (resp.: p̂(x, ξ)
the symbol of P̂ ), by pc(x, ξ) = ξ21 + ξ22 +Q0(x) the symbol of Pc (resp.: p̂c(x, ξ)
the symbol of P̂c) and by # the Weyl composition of symbols.

Proof: The construction of a symbol π̃ satisfying (3.5) and (3.6) can be done
following the same arguments used in the proof of Lemma 3.1 of [So] (see also
[Sj2]).
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Let us consider Γ(x, ξ) = {z ∈ C ; z − ξ2 ∈ Γ(x2 − x1)},
(
resp.: Γ0(ξ) = {z ∈

C ; z − ξ2 ∈ Γ0}
)
.

For z ∈ Γ(x, ξ)
(
resp.: z ∈ Γ0(ξ)

)
, p(x, ξ) − z

(
resp.: pc(x, ξ) − z

)
is invertible

and g0(x, ξ; z) = (p(x, ξ)− z)−1
(
resp.: gc

0(x, ξ; z) = (pc(x, ξ)− z)−1
)

is smooth
and bounded.
Let us define the symbol r(x, ξ;h, z)

(
resp.: rc(x, ξ;h, z)

)
, as,(

p(x, ξ)− z
)
#g0(x, ξ; z) = 1− r(x, ξ;h, z),(

resp. :
(
pc(x, ξ)− z

)
#gc

0(x, ξ; z) = 1− rc(x, ξ;h, z)
)

and the symbol g(x, ξ;h, z) =
∑

j h
jgj(x, ξ;h, z)

(
respectively, gc(x, ξ;h, z) =∑

j h
jgc

j(x, ξ;h, z)
)

as,

g = g0 + g0#
∑
j≥1

r#j , (resp. : gc = gc
0 + gc

0#
∑
j≥1

r#j
c ).

One can check that, for j ≥ 1, gj(x, ξ;h, z)
(
resp.: gc

j(x, ξ;h, z)
)

is given by
(see e.g. [Ba])

gj = g0

2j∑
m=1

∑
((αi),(βi))∈Ej

m

Cm((α)i, (β)i)
m∏

i=1

(
(∂αi

x ∂βi

ξ p)g0
)

(3.9)

gc
j = gc

0

2j∑
m=1

∑
((αi),(βi))∈Ej

m

Cm((α)i, (β)i)
m∏

i=1

(
(∂αi

x ∂βi

ξ pc)gc
0

)
(3.10)

where Ej
m = {((αi), (βi)) ∈ (ZZ2n

+ )
m × (ZZ2n

+ )
m

; |
m∑

i=1

αi| = |
m∑

i=1

βi| = j} and

Cm((α)i, (β)i) are universal constants. Let us define

π̃(x, ξ;h) = Π0(x) +
∑
j≥1

π̃j(x, ξ)hj ,

ẽ(x, ξ;h) = E0(x) +
∑
j≥1

ẽj(x, ξ)hj ,

where

π̃j(x, ξ) =
i

2π

∮
Γ(x,ξ)

gj(x, ξ, z) dz, (3.11)

ẽj(x, ξ) =
i

2π

∮
Γ0(ξ)

gc
j(x, ξ, z) dz. (3.12)

Then π̃, ẽ satisfies (3.5) and (3.6) and, by making the change of variable z →
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z − ξ2 in the integrals (3.11), (3.12), one can easily check that

π̃j(x, ξ) =
i

2π

∮
Γ(x2−x1)

gj(x, ξ, z + ξ2) dz =
∑
|α|≤j

aα,j(x)ξα,

ẽj(x, ξ) =
i

2π

∮
Γ0

gc
j(x, ξ, z + ξ2) dz =

∑
|α|≤j

bα,j(x)ξα

are polynomials operator-valued functions of degree j, with smooth coefficients.
Let us show that the construction of π̃(x, ξ;h) is unique. If

π̂(x, ξ;h) = Π0(x) +
∑
j≥1

π̂j(x, ξ)hj ,

is an other formal series with π̂j(x, ξ) polynomials operator-valued functions of
degree j, with smooth coefficients that satisfy (3.5), and (3.6), then

π̂#g − g#π̂ = 0.

Hence, by construction of Π̃,

π̂#π̃ − π̃#π̂ = 0,

and
(1− π̃)#π̂#(1− π̃)#π̂ = (1− π̃)#π̂.

Since, on the other hand, (1− π̃)#π̂ = O(h) then (1− π̃)#π̂ = (1− π̂)#π̃ = 0.
Thus

π̂ − π̃ = (1− π̃)#π̂ − (1− π̂)#π̃ − π̂#π̃ + π̃#π̂ = 0.

In the same way one can prove that ẽ(x, ξ;h) is unique.
Let us define now

π̂(x, ξ;h) := Π0(x) +
∑
j≥1

π̂j(x, ξ)hj , ê(x, ξ;h) := E0(x) +
∑
j≥1

êj(x, ξ)hj

with

π̂j(x, ξ) :=
∑
|α|≤j

Tkaα,j(x)T−kξ
α, êj(x, ξ) :=

∑
|α|≤j

T c
k1,k2

bα,j(x)T c
−k1.−k2

ξα

Then, π̂ and ê satisfy (3.5) and (3.6) and then, by the uniqueness, one obtain
that π̂j(x, ξ) = π̃j(x, ξ) and êj(x, ξ) = ẽj(x, ξ).
Hence aα,j(x) and bα,j(x) commutes with Tk for any k ∈ IRn and this proves
that (3.7) holds. By writing, for |x2 − x2| > R with R sufficiently large,

π̃j(x, ξ)− ej(x, ξ) =
i

2π

∮
Γ0

(gj(x, ξ, z + ξ2)− gc
j(x, ξ, z + ξ2)) dz

and using (3.9), (3.10) one can easily prove the decay properties (3.8 ) as
|x2 − x1| → ∞. •
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End of the proof of Theorem 3.1: To end the proof of the theorem, let us follow
the idea of [So] and [MaSo2].
Let g ∈ C∞0 (IR). Let us denote by Π̃j and Ẽj the differential operator with
(Weyl) symbol π̃j and ẽj . Writing g(P̂c)Ẽk = g(P̂c)(P̂c + i)N (P̂c + i)−N Ẽk

and g(P̂ )Π̃k = g(P̂ )(P̂ + i)N (P̂ + i)−N Π̃k, we see that the operators g(P̂ )Π̃k,
g(P̂c)Ẽk (k ≥ 0) are all h-admissible operators. In particular, they are all
bounded, uniformly with respect to h and it is easy to show that, by (3.8), one
has

‖ζs(x)−1(g(P̂ )Π̃k − g̃(P̂c)Ẽk)ζs′(x)−1‖L(L2(IRnN )) = O(1) (3.13)

if s + s′ = δ. Moreover, one can resum in a standard way the formal series of

operators
∞∑

k=0

hkg(P̂c)Ẽk,
∞∑

k=0

hkg(P )Π̃k(see, e.g., [Ma2] Lemma 2.3.3), in such

a way that, if we denote by E(g) and Π(g) such resummations, (see also Lemma
6.2 in [MaSo2]) for any ` ≥ 0, one has,

‖P̂ `
c (E(g)−E(g)∗)‖L(L2(IRn(N+2)) + ‖P̂ `(Π(g)−Π(g)∗)‖L(L2(IRn(N+2)) = O(h∞).

(3.14)
and,

‖ζs(x)−1(Π(g)− E(g))ζs′(x)−1‖L(L2(IRnN )) = O(1)

if s+ s′ = δ. We set,

Ẽg := E(g) + E(g)∗ − 1
2
(g(P̂c))E(g)∗ + E(g)g(P̂c)) + (1− g(P̂c))E0(1− g(P̂c))

Π̃g := Π(g) + Π(g)∗ − 1
2
(g(P̂ ))Π(g)∗ + Π(g)g(P̂ )) + (1− g(P̂ ))Π0(1− g(P̂ )).

Then, Ẽg, Π̃g are selfadjoint h-admissible operator, and since Π(g) = g(P̂ )Π0 +
O(h), E(g) = g(P̂c)E0 + O(h), we have,

‖Π̃g −Π0‖L(L2(IRn(N+2))) + ‖Π̃2
g − Π̃g‖L(L2(IRn(N+2))) = O(h)

‖Ẽg − E0‖L(L2(IRn(N+2))) + ‖Ẽ2
g − Ẽg‖L(L2(IRn(N+2))) = O(h). (3.15)

Arguing as in [MaSo2], Theorem 6.1, we obtain that, for any f ∈ C∞0 (IR) such
that Suppf ⊂ {g = 1},

‖P̂ `
c [f(P̂c), Ẽg]‖L(L2(IRn(N+2))) + ‖P̂ `[f(P̂ ), Π̃g]‖L(L2(IRn(N+2))) = O(h∞) (3.16)

and

P̂ `
c (Ẽ2

g − Ẽg)f(P̂c) = O(h∞), P̂ `(Π̂2
g − Π̃g)f(P̃ ) = O(h∞) (3.17)

for any ` ≥ 0.
Moreover, one has

‖ζs(x)−1(Π̃g − Ẽg)ζs′(x)−1‖L(L2(IRnN )) = O(1) (3.18)
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and one can easily check that

‖ζs(x)−1(P̂ `[f(P̂ ), Π̃g]− P̂ `
c [f(P̂c), Ẽg])ζs′(x)−1‖L(L2(IRnN )) = O(1). (3.19)

if s + s′ = δ. Then, following the arguments of [Ne1, Ne2, NeSo, So, MaSo1,
MaSo2], for h small enough, we can define the following orthogonal projections:

Eg :=
i

2π

∫
|z−1|= 1

2

(Ẽg − z)−1 dz, Πg :=
i

2π

∫
|z−1|= 1

2

(Π̃g − z)−1 dz.

Using [So], Formula (3.9), and [Ne1], Proposition 3, we obtain from (3.17),

P̂ `
c (Eg − Ẽg)f(P̂c) = O(h∞), P̂ `(Πg − Π̃g)f(P̂ ) = O(h∞), (3.20)

and, using (3.15), (3.16) (3.18) and (3.19), we complete the proof of the Theo-
rem. •

Remark 3.3. Writing, for any f ∈ C∞0 (IR) with Supp f ⊂ {g = 1},

f(P̂ )[P̂ ,Πg] = [f(P̂ )P̂ ,Πg]− [f(P̂ ),Πg]P̂

f(P̂c)[P̂c, Eg] = [f(P̂c)P̂c, Eg]− [f(P̂c), Eg]P̂c

and applying the results of Theorem 3.1, we also get

f(P̂ )[P̂ ,Πg] = O(h∞), f(P̂c)[P̂c, Eg] = O(h∞) (3.21)

and,
ζ−1
s (f(P̂ )[P̂ ,Πg]− f(P̂c)[P̂c, Eg])ζ−1

s′ = O(1) (3.22)

uniformly with respect to h > 0, if s+ s′ = δ.

Let us show now that Eg is a good approximation of Ê. We have the following:

Proposition 3.4. For any g ∈ C∞0 (IR) and for any g̃ ∈ C∞0 (IR) with Supp g̃ ⊂
{g = 1}, we have

(Eg − Ê)g̃(P̂c) = O(h∞).

Proof: Since Ê is a spectral projection of P̂c, from (3.21) we also have

g̃(P̂c)[Ê, Eg] = O(h∞)

for any g̃ ∈ C∞0 (IR) with Supp g̃ ⊂ {g = 1}. Hence

(1− Eg)Ê(1− Eg)Êg̃(P̂c) = (1− Eg)Êg̃(P̂c) + O(h∞)

and, since (1− Eg)Ê = O(h), we easily deduce,

(1− Eg)Êg̃(P̂c) = O(h∞).
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By the same arguments one also obtains that

Eg(1− Ê)g̃(P̂c) = O(h∞).

Thus

(Eg − Ê)g̃(P̂c) = Eg(1− Ê)g̃(P̂c)− (1− Eg)Êg̃(P̂c) + O(h∞) = O(h∞).

•

Remark 3.5. By using Theorem 3.1 and Proposition 3.4 one easily obtains
that, for any N ∈ IN , there exist ek,j ∈ IR, j = 2, ..., N, and CN > 0 such that,

|êk(h)− ek −
N∑

j=2

ek,jh
j | ≤ CNh

N+1

for k = 1, ...,m.

Theorem 3.6. Under assumption (H1)-(H2), for any g ∈ C∞0 (IR), there exists

an orthogonal projection Π̂g on L2(IR(2+N)n), that commute with the transla-
tions Tk, defined in (2.1), and verifies,

Π̂g = Π0 + O(h). (3.23)

Moreover, Π̂g is an h-admissible operator on L2(IR2n;L2(IRnN )) uniformly

bounded as operators from L2(IR2n;L2(IRnN )) to L2(IR2n;H2(IRnN )) and for
any f ∈ C∞0 (IR) with Supp f ⊂ {g = 1}, and one has

ζ−1
s (Π̂g − Ê)f(P̂c)ζ−1

s′ = O(1) (3.24)

and
ζ−1
s f(P̂ )[P̂ , Π̂g]ζ−1

s′ = O(h∞), (3.25)

uniformly with respect to h > 0, if s+ s′ = δ′ and 1 < δ′ < δ.

Proof: For g as in the theorem, let us choose g̃ ∈ C∞0 (IR) with Supp g̃ ⊂ {g = 1}
and Supp f ⊂ {g̃ = 1} and let us define the selfadjoint operator

Π̃g := Πg − g̃(P̂c)(Eg − Ê)− (Eg − Ê)g̃(P̂c) + g̃(P̂c)(Eg − Ê)g̃(P̂c). (3.26)

Taking into account Proposition 3.4, we have that Π̃g = Πg + O(h∞) = Π0 +
O(h), and moreover we have

(Π̃g − Ê)f(P̂c) = (Πg − Eg)f(P̂c). (3.27)

Using Remark 3.3, Proposition 3.4, (3.21) and taking into account that [P̂c, Ê] =
0 and the fact that P̂ = P̂c + Ic(x) , a straightforward computation gives,

f(P̂ )[P̂ , Π̃g] = f(P̂ )[P̂ ,Πg] + f(P̂ )[Ic(x), Π̃g −Πg]− f(P̂ )g̃(P̂c)[P̂c, Eg]

− f(P̂ )[P̂c, Eg)]g̃(P̂c) + f(P̂ )g̃(P̂c)[P̂c, Eg]g̃(P̂c) = O(h∞).(3.28)
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Moreover, since

Π̃g − Ê − (Πg − Eg) = (1− g̃(P̂c))(Eg − Ê)(1− g̃(P̂c))

and f(P̂c)(1− g̃(P̂c)) = 0, another straightforward computation gives,

f(P̂ )[P̂ , Π̃g] = f(P̂ )[P̂ ,Πg]− f(P̂c)[P̂c, Eg]

+ (f(P̂ )(P̂ + i)− f(P̂c)(P̂c + i))(P̂ + i)−1[P̂ , Π̃g −Πg]

− f(P̂c)Ic(x)(P̂ + i)−1[P̂ , Π̃g −Πg] + f(P̂c)[Ic(x), Π̃g −Πg].

Let us observe that all the operators involved in the previous formula except Ê
are constructed in such a way that, denoting by A one of these operators, we
have that, for any s ∈ IR,

ζsAζ
−1
s , ζ−1

s Aζs

are bounded operators. On the other hand, by taking into account the defini-
tion of Ê given in (2.5) and using the exponential decay of the eigenfunctions
of Q̂0(h), one can check directly that ζsÊζ−1

s and ζ−1
s Êζs are also bounded

operators.
Hence, using (3.22) and writing (see: [DiSj, Ma2]),

f(P̂ )(P̂+i)−f(P̂c)(P̂c+i) = − 1
π

∫
∂(f̃(z)(z + i))(P̂−z)−1Ic(x)(P̂c−z)−1dz dz̄

(3.29)
where f̃ is an almost analytic extension of f , we see that

ζ−1
s f(P̂ )[P̂ , Π̃g]ζ−1

s′ = O(1) (3.30)

if s+ s′ = δ′ < δ. Hence by interpolation and commutator estimates (3.28) and
(3.30) give

ζ−1
s f(P̂ )[P̂ , Π̃g]ζ−1

s′ = O(h∞), (3.31)

if s+ s′ = δ′ and 1 < δ′ < δ. Then, if one set

Π̂g :=
1

2πi

∫
|z−1|=1/2

(Π̃g − z)−1 dz,

we have

(Π̂g − Ê)f(P̂c) =
i

2π

∫
|z−1|=1/2

(Π̃g − z)−1(Π̃g − Ê)f(P̂c)(Ê − z)−1 dz (3.32)

and, using (3.27), one can easily obtain (3.24). Moreover, writing

f(P̂ )[P̂ , Π̂g] =
i

2π

∫
|z−1|=1/2

f(P̂ )(Π̃g − z)−1[P̂ , Π̃g](Π̃g − z)−1; dz

and using (3.27), we can conclude that (3.25) holds. •
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Corollary 3.7. Under the previous assumptions we also have,

〈x2 − x1〉s(Π̂g − Ê)f(P̂c)〈x2 − x1〉s
′
= O(1), (3.33)

〈x2 − x1〉sf(P̂ )[P̂ , Π̂g]Π̂g〈x2 − x1〉s
′
= O(h∞), (3.34)

〈x2 − x1〉sΠ̂gf(P̂ )[P̂ , Π̂g]〈x2 − x1〉s
′
= O(h∞) (3.35)

for any s+ s′ = δ′, 1 < δ′ < δ, uniformly with respect to h > 0.

Proof: By commutator estimates and exponential decay of the eigenfunctions
of Q̃(x2 − x1), Q̃0 and Q̂0(h) one has

ζδ′Π0〈x2 − x1〉δ
′
, ζδ′E0〈x2 − x1〉δ

′
, ζδ′Ê〈x2 − x1〉δ

′
= O(1).

Let us show that we also have

ζδ′Π̂g〈x2 − x1〉δ
′
= O(1). (3.36)

Writing
Π̂g −Π0 = (Π̂g −Π0)2 + (Π̂g −Π0)Π0 + Π0(Π̂g −Π0),

we obtain that the term

‖ζδ′(Π̂g −Π0)〈x2 − x1〉δ
′
‖ (3.37)

can be estimate by

‖ζδ′(Π̂g −Π0)〈x2 − x1〉δ
′
‖‖〈x2 − x1〉−δ′

(Π̂g −Π0)〈x2 − x1〉δ
′
‖

+‖ζδ′(Π̂g −Π0)ζ−1
δ′ ‖‖ζδ′Π0〈x2 − x1〉δ

′
‖

+‖ζδ′Π0〈x2 − x1〉δ
′
‖‖〈x2 − x1〉−δ′

(Π̂g −Π0)〈x2 − x1〉δ
′
‖.

Since ‖〈x2 − x1〉−δ′
(Π̂g −Π0)〈x2 − x1〉δ

′‖ = O(h), if h is sufficiently small, then
this term can be taken less than 1/2. Hence, one obtains that (3.37) can be
estimate by

2‖ζδ′(Π̂g −Π0)ζ−1
δ′ ‖‖ζδ′Π0〈x2 − x1〉δ

′
‖ (3.38)

+‖ζδ′Π0〈x2 − x1〉δ
′
‖‖〈x2 − x1〉−δ′

(Π̂g −Π0)〈x2 − x1〉δ
′
‖

and it is easy to check that (3.38) is uniformly bounded. Hence, writing

ζδ′Π̂g〈x2 − x1〉δ
′
= ζδ′Π0〈x2 − x1〉δ

′
+ ζδ′(Π̂g −Π0)〈x2 − x1〉δ

′

we obtain (3.36). Since

Π̂g − Ê = (Π̂g − Ê)Π̂g + Ê(Π̂g −Π0),

using (3.24), (3.36) and commutator estimates, one also obtains (3.33). More-
over (3.25) (3.36) and commutator estimates, give (3.34) and (3.35). •

Let us denote by Π̂⊥g = 1 − Π̂g and let us define P̂AD = Π̂gP̂ Π̂g. We have the
following result:
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Theorem 3.8. Under the same assumptions of Theorem 3.6, there exist two
bounded operators W,W0 : L2(IR(2+N)n) → L2(IR2n)⊕m such that

WW∗ = 1, W∗W = Π̂g (3.39)

W0W
∗
0 = 1, W∗

0W0 = Ê (3.40)

and
‖〈x2 − x1〉s(W−W0)f(P̂c)〈x2 − x1〉s

′
‖ = O(1) (3.41)

if s+ s′ = δ′, for 1 < δ′ < δ.
The operators Â := WP̂W∗ = WP̂ADW∗ and Â0 := W0P̂cW

∗
0 are h-admissible

operator on L2(IR2n)⊕m with domain H2(IR2n)⊕m, and their symbols â :=
â(x2 − x1, ξ;h) and â0 := â0(ξ;h), verify:

â(x2 − x1, ξ;h) =
1
2
(ξ1 − ξ2)2Im + Λ(x2 − x1) + hr(x2 − x1, ξ;h)(3.42)

â0(ξ;h) =
1
2
(ξ1 − ξ2)2Im + E0 + hrc(ξ;h). (3.43)

where

• Λ(x2−x1) is a m×m matrix depending smoothly on x2−x1, with spectrum
σ(x2 − x1),

• E0 is a m×m matrix with spectrum σ0

• 〈x2 − x1〉s(Â− Â0)f(Â0)〈x2 − x1〉s
′
= O(1), if s+ s′ = δ′ and 1 < δ′ < δ;

• r(x2 − x1, ξ;h) and rc(ξ;h) verify:

∂αr(x2 − x1, ξ;h), ∂αrc(ξ;h) = O(〈ξ〉)

for any multi-index α and uniformly with respect to (x, ξ) ∈ T ∗IR2n and
h > 0 small enough.

Proof: Since Π̂g − Π0 = O(h) and Ê − E0 = O(h), for h small enough we can
consider the unitary operators V and V0 on L2(IR(2+N)n) defined by the Nagy
formula,

V =
(
Π0Π̂g + (1−Π0)(1− Π̂g)

) (
1− (Π̂g −Π0)2

)−1/2

, (3.44)

V0 =
(
E0Ê + (1− E0)(1− Ê)

) (
1− (Ê − E0)2

)−1/2

. (3.45)

We have (see: [Ka] Chap.I.4 and [MaSo2]),

V∗V = VV∗ = 1, V∗0V0 = V0V
∗
0 = 1 and Π0V = VΠ̂g, E0V0 = V0Ê.

Observe that, by (2.9) and (3.33)

‖〈x2 − x1〉s(V− V0)f(P̂c)〈x2 − x1〉s
′
‖ = O(1) (3.46)
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if s+ s′ = δ′, for 1 < δ′ < δ.
Let us define Z : L2(IR2n;L2(IRnN )) → L2(IR2n)⊕m by,

Zψ(x) = (〈ψ(x), u1(x)〉L2(IRnN ), ..., 〈ψ(x), um(x)〉L2(IRnN )

where uj(x), are the eigenvalue of Q(x) associated to λj(x2 − x1), j = 1, ...,m,
and Z0 : L2(IR2n;L2(IRnN )) → L2(IR2)⊕m by,

Z0ψ(x) = (〈ψ(x), u0
1(x)〉L2(IRnN ), ..., 〈ψ(x), u0

m(x)〉L2(IRnN )

where u0
j (x), are the eigenvalue Q0(x) associated to ej , j = 1, ...,m, i.e. u0

j (x) =
Sxũ

0
j where ũ0

j are the eigenvalue of Q̃0. Moreover, let us set

W := Z ◦ V = ZL + O(h), W0 := Z0 ◦ V = Z0 + O(h). (3.47)

Proposition 2.1 and (3.46) give (3.41).
Denoting by

Sk : L2(IR2n) → L2(IR2n),
Skφ(x1, x2) = φ(x1 + k, x2 + k), k ∈ IR3

and

Sc
k1,k2

: L2(IR2n) → L2(IR2n),

Sc
k1,k2

φ(x1, x2) = φ(x1 + k1, x2 + k2), k1, k2 ∈ IR3

then, since Tkuj = uj and T c
k1,k2

u0
j = u0

j for any j = 1, ...,m,

SkW = W(Tk ⊕ ..⊕ Sk), Sc
k1,k2

W0 = W0(T c
k1,k2

⊕ ..⊕ Sc
k1,k2

).

Thanks to the properties of V, we see that WΠ̂g = W, W0Ê = W0 and, since
Z∗Z = Π0, Z∗0Z0 = E0 and ZZ∗ = Z0Z

∗
0 = 1, we also obtain:

W∗W = Π̂g ; WW∗ = 1, W∗
0W0 = Ê ; W0W

∗
0 = 1.

Then, defining

Â := WP̂W∗ = WP̂AD
g W∗, Â0 := W0P̂cW

∗
0

one easily obtains that Â and Â0 are operators on L2(IR2n)⊕m that commute
with S⊕m

k . This proves that a depends only on x2 − x1 and that A0 is inde-
pendent of x. An easy calculation (see also Chapter 10 in[MaSo2]) gives the
principal term in the asymptotic expansion of the symbols â and â0 and esti-
mates on all the derivatives of the remainder term r and rc. More precisely, by
using (3.41) one can also prove that

Â− Â0 = Λ(x2 − x1)− E0 +
∑
|α|=1

bα(x2 − x1)(hDx)α +Q(x2 − x1, hDx)

with

〈x2 − x1〉sbα(x2 − x1)〈x2 − x1〉s
′
, 〈x2 − x1〉sQ(x2 − x1, hDx)〈x2 − x1〉s

′
= O(1)

for any if s+ s′ = δ′, for 1 < δ′ < δ. •
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4 Born-Oppenheimer approximation of wave
operators

Let f ∈ C∞0 (IR) and consider the wave operators

ΩAD
± f(P̂c) := s− lim

t→±∞
eitP̂ AD

e−itP̂cÊf(P̂c)

ΩNAD
± := s− lim

t→±∞
eitP̂ e−itP̂ AD

Π̂gf(P̂AD).

We have the following:

Theorem 4.1. Let f ∈ C∞0 (IR) such that Supp f ⊂ {g = 1}. Under the
previous assumptions, the wave operators ΩAD

± ,ΩNAD
± exist, are complete and,

Ωc
±Êf(P̂c) = ΩNAD

± ΩAD
± Êf(P̂c).

Proof: Let us start by proving the existence of ΩAD
± . Since, by (3.33),

Π̂⊥g e
itP̂ AD

e−itP̂cÊf(P̂c) = Π̂⊥g e
−itP̂cÊf(P̂c) = −(Π̂g − Ê)f(P̂c)e−itP̂cÊ

= O(〈x2 − x1〉−δ′
)e−itP̂cÊ

for any δ′, 1 < δ′ < δ, and 〈x2 − x1〉−δ′
W∗

0〈x2 − x1〉δ
′
= O(1), then

‖Π̂⊥g eitP̂ AD

e−itP̂cÊf(P̂c)‖ ≤ C1‖〈x2 − x1〉−δ′
e−itP̂cf(P̂c)φ‖

≤ C2‖〈x2 − x1〉−δ′
e−itÂ0f(Â0)W0φ‖. (4.1)

Denoting by Ũ the change of variable

X =
1
2
(x1 − x2), R =

1
2
(x1 + x2), (4.2)

by F the Fourier transform with respect the R variable

(Ff)(X, ρ) = (2π)−n/2

∫
e−iRρf(X,R) dR (4.3)

and setting

B̂0 := ŨF−1Â0FŨ
−1 = −h

2

2
∆X + E0 + hrc(hDX , ρ;h)

then we have

〈x2 − x1〉−δe−itÂ0f(Â0)W0 = ŨF−1〈X〉−δe−itB̂0f(B̂0)FŨ−1W0. (4.4)

Hence, for φ in a dense subset of L2(IRn(2+N)),

‖〈X〉−δ′
e−itB̂0f(B̂0)ŨW0φ‖ ≤ C(φ)〈t〉−δ′

. (4.5)
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and then from (4.1), (4.4) and (4.5), we obtain

s− lim
t→±∞

Π̂⊥g e
itP̂ AD

e−itP̂cÊf(P̂c) = 0.

Therefore, we can reduced to prove the existence of

ΩAD
± f(P̂c) = s− lim

t→±∞
Π̂ge

itP̂ AD

e−itP̂cÊf(P̂c).

We have,

Π̂ge
itP̂ AD

e−itP̂cÊf(P̂c) = W∗WeitP̂ AD

WW∗
0e
−itP̂cÊf(P̂c)

+ Π̂ge
itP̂ AD

(1−WW∗
0)Êe

−itP̂cf(P̂c). (4.6)

As before, since (see (3.41)) 〈x2 − x1〉δ
′
(1−WW∗

0)Ê = O(1), we get, for φ in a
dense subset of L2(IRn(N+2)), that

‖Π̂ge
itP̂ AD

(1−WW∗
0)Êe

−itP̂cf(P̂c)φ‖ ≤ C(φ)〈t〉−δ′

and then
s− lim

t→±∞
Π̂ge

itP̂ AD

(1−WW∗
0)Êe

−itP̂cf(P̂c) = 0. (4.7)

In conclusion, from (4.6) and (4.7) we obtain

ΩAD
± f(P̂c) = W∗Ω̃±f(Â0)W0

where
Ω̃±f(Â0) = s− lim

t→±∞
eitÂe−itÂ0f(Â0). (4.8)

Taking into account that Â is unitary equivalent (cfr.: (4.2) and (4.3)) to the
operator

B̂ = ŨF−1ÂFŨ−1 = −h2∆X + Λ(X) + hr(hDX , ρ;h), (4.9)

acting on L2(IR) and depending on ρ ∈ IR as a parameter, and applying classical
Mourre estimates ([Mo]), one can obtain the existence and completeness of Ω̃±
and then the one of ΩAD

± . •
To study ΩNAD

± let us observe that one can write

ΩNAD
± f(P̂AD) = s− lim

t→±∞
f(P̂ )eitP̂ e−itP̂ AD

.

Then

d

dt
(f(P̂ )eitP̂ e−itP̂ AD

Π̂g) = eitP̂ f(P̂ )(P̂ − Π̂gP̂ Π̂g)Π̂ge
−itP̂ AD

By using (3.34) we obtain

f(P̂ )(P̂ − Π̂gP̂ Π̂g)Π̂g = f(P̂ )[P̂ , Π̂g]Π̂g = O(h∞〈x2 − x1〉−δ′
)Π̂g
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and thenwe get the existence of the wave operators ΩNAD
± . Since

Ωc
±Êf(P̂c) = ΩNAD

± ΩAD
± f(P̂c)

then R(Ωc
±) ⊂ R(ΩNAD

± ). Moreover, φ = ΩNAD
± ψ with ψ ∈ R(Π̂g) then there

exists θ ∈ R(Ê) such that ψ = ΩAD
± θ and then φ = Ωc

±θ . •

5 The adiabatic wave operators

In the following we assume that m = 1. In such a case, the computation given
in Chapter 10 of [MaSo2] shows that in the operators Â and Â0 the terms of
order h are absent, and then, they can be rewritten as

Â =
h2

2
(Dx1 −Dx2)

2 + λ1(x2 − x1) + h2L(x2 − x1, hDx1 , hDx2 ;h)

Â0 =
h2

2
(Dx1 −Dx2)

2 + e1 + h2L0(hDx1 , hDx2 ;h)

for some bounded operators L and L0. Let us assume us assume also that a
non trapping condition holds i.e. :

(H3) The classical Hamiltonian 1
2Ξ2 + λ1(X), X ∈ IRn, is non trapping at the

energy µ0.

Next, let us denote by R(z;h) = (P̂ − z)−1, by RAD(z;h) = (P̂AD − z)−1Π̂g

and by R⊥(z;h) = (Π̂⊥g P̂ Π̂⊥g − z)−1Π̂⊥g the resolvents of P̂ , P̂AD and Π̂⊥g P Π̂⊥g
respectively. Let us estimate the boundary value of the resolvents, by Mourre’s
commutator method.

Proposition 5.1. Under assumptions (H1), (H2) and (H3), if µ0 ∈ IR satisfy

µ0 < inf
x

inf(Sp(Q̃(x2 − x1) \ λ1(x2 − x1))

then there exists ε > 0 such that, if φ ∈ C∞0 (µ0− ε, µ0 + ε), Supp φ ⊂ {g = 1},
and, if 1

2 < s < δ′

2 , δ′ < δ, and λ ∈ (µ0 − ε, µ0 + ε) we have that

‖〈x2 − x1〉−sRAD(λ± i0)〈x2 − x1〉−s‖ ≤ Ch−1 (5.1)

and
‖〈x2 − x1〉−sR(λ± i0)φ(P̂ )〈x2 − x1〉−s‖ ≤ Ch−1 (5.2)

for some constant C > 0 independent of h.

Proof: Assumption (H3) guarantees that there exists a conjugate operator of B̂
defined in (4.9)and then , for s ∈ IR, s > 1

2 , one has

‖〈x2 − x1〉−s(B̂ − λ± i0)−1〈x2 − x1〉−s‖ ≤ Ch−1
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for λ ∈ (µ0 − ε, µ0 + ε), for some ε > 0 and then, since B̂ is unitary equivalent
to P̂AD, we obtain (5.1). Now, as in Theorem 3.4 of [KMW1] one can write

R(z;h) = RAD(z;h) +R⊥(z;h)− (M(z, h) +M(z̄;h)∗) +R(z;h)T (z, h) (5.3)

where

M(z, h) = R⊥(z;h)P̂RAD(z;h)
T (z;h) = Π̂gP̂ Π̂⊥g M(z, h) + Π̂⊥g P̂ Π̂gM(z̄;h)∗

Let us choose φ1, ψ1, φ2,∈ C∞0 (µ0 − ε, µ0 + ε), such that φ1φ = φ, ψ1φ = φ,
φ2φ1 = φ1, Supp φ2 ⊂ {g = 1} and let us write φ1(P̂ )T (z;h), as,

φ1(P̂ )T (z;h) = −
(
φ2(P̂ )Π̂gφ1(P̂ )[P̂ , Π̂g] + φ2(P̂ )[φ1(P̂ ), Π̂g][P̂ , Π̂g]

)
M(z, h)

+φ1(P̂ )[P̂ , Π̂g]M(z̄, h)∗

Then, by (3.34) and (3.35), one obtain

〈x2 − x1〉sφ1(P )T (z;h)ψ1(P̂ )〈x2 − x1〉−s = O(h∞)

uniformly in z = λ+ iθ, θ 6= 0. Hence

φ(P̂ )R(z;h) = φ(P̂ )
(
RAD(z;h) +R⊥(z;h)− (M(z, h) +M(z;h)∗)

)
× ψ1(P̂ )

(
1− φ1(P̂ )T (z, h)ψ1(P̂ )

)−1 (5.4)

Moreover, we have
R⊥(z;h) = O(1)

uniformly in h > 0, for z in a small complex neighborhood of µ0 and then from
(5.4) and (5.1) we get (5.2) •

Proposition 5.2. Under assumptions (H1), (H2) and (H3), if µ0 ∈ IR satisfy

µ0 < inf
x

inf(Sp(Q̃(x2 − x1) \ λ1(x2 − x1))

then there exists ε > 0 such that, if φ ∈ C∞0 (µ0− ε, µ0 + ε), Supp φ ⊂ {g = 1},
and 1

2 < s < δ′

2 , δ′ < δ,∫ +∞

−∞
‖〈x2 − x1〉−se−itP̂ AD/hφ(P̂AD)f‖2 ≤ C‖f‖2 (5.5)∫ +∞

−∞
‖〈x2 − x1〉−se−itP̂ /hφ(P̂ )f‖2 ≤ C‖f‖2 (5.6)

for all f ∈ L2(IRn(N+2)), uniformly in h.

Proof: The Proposition is a consequence of the resolvent estimates (5.1) and
(5.2), and the arguments of [Wa], Lemma 3.3. •
We have the following:
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Lemma 5.3. Let ψ,ψ1 ∈ C∞0 (IR), Supp ψ, Supp ψ1 ⊂ {g = 1}. Then we have

‖〈x2 − x1〉s
(
ψ(P̂AD)− ψ(P̂ )

)
ψ1(P̂AD)Π̂g〈x2 − x1〉s

′
‖ = O(h∞)

if s+ s′ = δ′ and 1 < δ′ < δ.

Proof: At first, let us observe that, for any φ, φ1 ∈ C∞0 (IR), Supp φ, φ1 ⊂ {g =
1}, one has

〈x2 − x1〉s(φ(P̂AD)− φ(P̂ ))Π̂gφ1(P̂ )Π̂g〈x2 − x1〉s
′
= O(h∞) (5.7)

for s+ s′ = δ′ < δ. Actually, one can write

(φ(P̂AD)− φ(P̂ ))Π̂g = − 1
π

∫
∂φ̃(z)(R(z)−RAD(z))Π̂gdz dz̄

where φ̃ is an almost analytic extension of φ, and then, one has

‖〈x2 − x1〉s(φ(P̂AD)− φ(P̂ ))Π̂gφ1(P̂ )Π̂g〈x2 − x1〉s
′
‖

≤ C‖〈x2 − x1〉s[P, Π̂g]Π̂gφ1(P̂ )Π̂g〈x2 − x1〉s
′
‖. (5.8)

Hence, writing

[P, Π̂g]Π̂gφ1(P̂ )Π̂g = [P, Π̂g]φ1(P̂ )Π̂g − Π̂g[P, Π̂g]φ1(P̂ )Π̂g

and applying (3.34) and (3.35), one obtains

〈x2 − x1〉s[P, Π̂g]Π̂gφ1(P̂ )〈x2 − x1〉s
′
= O(h∞)

and then, by (5.8), one obtains (5.7).
Let us now choose ψ2, .., ψN ∈ C∞0 (IR) such that ψjψj+1 = ψj for any j =
1, .., N − 1, and Supp ψN ⊂ {g = 1}. Let us write

(ψ(P̂AD)− ψ(P̂ )
)
ψ1(P̂AD)Π̂g

= (ψ(P̂AD)− ψ(P̂ )
)
Π̂gψ1(P̂AD)Π̂gψ2(P̂AD)Π̂g...Π̂gψN (P̂AD)Π̂g

= (ψ(P̂AD)− ψ(P̂ )
)
Π̂g(ψ1(P̂AD)− ψ1(P̂ ))Π̂gψ2(P̂AD)Π̂g...Π̂gψN (P̂AD)Π̂g

+(ψ(P̂AD)− ψ(P̂ )
)
Π̂gψ1(P̂ )Π̂gψ2(P̂AD)Π̂g...Π̂g(ψN (P̂AD)Π̂g

Applying (5.7) to the the pair (ψ,ψ1) we obtain

〈x2 − x1〉s(ψ(P̂AD)− ψ(P̂ )
)
ψ1(P̂AD)Π̂g〈x2 − x1〉s

′

= (ψ(P̂AD)− ψ(P̂ )
)
Π̂g(ψ1(P̂AD)− ψ1(P̂ ))Π̂gψ2(P̂AD)Π̂g...Π̂gψN (P̂AD)Π̂g

+O(h∞)

Iterating this procedure and applying (5.7) to the the pair (ψj , ψj+1), one easily
obtains

〈x2 − x1〉s(ψ(P̂AD)− ψ(P̂ )
)
ψ1(P̂AD)Π̂g〈x2 − x1〉s

= 〈x2 − x1〉s(ψ(P̂AD)− ψ(P̂ )
)
Π̂g(ψ1(P̂AD)− ψ1(P̂ ))Π̂g.......

.......Π̂g(ψN (P̂AD)− ψN (P̂ ))Π̂g〈x2 − x1〉s
′
+ O(h∞) (5.9)
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Since it is easy to check (see also Lemma 4.3 in [KMW1]) that, for any j =
1, .., N ,

〈x2 − x1〉s(ψ(P̂AD)− ψ(P̂ ))Π̂g〈x2 − x1〉s
′
= O(h)

〈x2 − x1〉s(ψj(P̂AD)− ψj(P̂ ))Π̂g〈x2 − x1〉s
′
= O(h),

we can conclude that the first term on the right hand side of (5.9) is of order
O(hN+1) and the Lemma follows. •

Let us prove now our main Theorem:

Theorem 5.4. Under assumptions (H1), (H2) and (H3), if µ0 ∈ IR, satisfy

µ0 < inf
x

inf Sp(Q̃(x2 − x1) \ λ1(x2 − x1))

then, there exists ε > 0 such that, for χ ∈ C∞0 (µ0−ε, µ0+ε), Supp χ ⊂ {g = 1},
we have

‖(ΩNAD
± − 1)χ(P̂AD)‖ = O(h∞) (5.10)

and
‖(Ωc

± − ΩAD
± )χ(P̂c)Ê‖ = O(h∞) (5.11)

as h→ 0.

Proof: Let us choose ε > 0 such that µ0+ε < inf Sp(Π̂⊥g P̂ Π̂⊥g )) and such that the
resolvent estimates of Proposition 5.1 hold. Let take χ, φ ∈ C∞0 (µ0 − ε, µ0 + ε),
Supp φ ⊂ {g = 1}, Supp χ ⊂ {φ = 1}. We have

(ΩNAD
+ − 1)χ(P̂AD)Π̂g =

i

h

∫ +∞

0

eitP̂ /hV e−itP̂ AD/hχ(P̂AD) dt

+ (φ(P̂ )− 1)χ(P̂AD)Π̂g (5.12)

where
V = φ(P̂ )(P̂ − Π̂gP̂ Π̂g)Π̂g = φ(P̂ )[P̂ , Π̂g]Π̂g

Hence, by (5.5), (5.6) and (3.34)

|〈
∫ +∞

0

eitP̂ /hV e−itP̂ AD/hχ(P̂AD)u dt, v〉|

≤ ‖〈x2 − x1〉δ
′/2V 〈x2 − x1〉δ

′/2‖‖u‖ ‖v‖ ≤ ChN+1‖u‖ ‖v‖ (5.13)

for any N ∈ IN , for all u, v ∈ L2, if 1 < δ′ < δ. Moreover, by Lemma 5.3

(φ(P̂ )− 1)χ(P̂AD) = (φ(P̂AD)− 1)χ(P̂AD) + O(h∞). (5.14)

Using (5.12), (5.13) and (5.14) we obtain (5.10). Moreover, writing

(Ωc
± − ΩAD

± )χ(P̂c)Ê = ΩNAD
± φ(P̂AD)ΩAD

± χ(P̂c)Ê = ΩAD
± χ(P̂c)Ê + O(h∞),

we get (5.11). •

24



References

[Ba] A. Balazard-Konlein, Calcul fonctionel pour des opérateurs h-
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