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1 Introduction

This paper is devoted to the obstacle problem for a class of second order differential operators
of Kolmogorov type of the form

L =
m∑

i,j=1

aij(x, t)∂xixj
+

m∑
i=1

bi(x, t)∂xi
+

N∑
i,j=1

bijxi∂xj
− ∂t (1.1)

where (x, t) ∈ RN+1, m is a positive integer satisfying m ≤ N , the functions {aij(·, ·)} and
{bi(·, ·)} are continuous and bounded and the matrix B = {bij} is a matrix of constant real
numbers. Let Ω ⊂ RN+1 be an open subset, let ∂P Ω denote the parabolic boundary of Ω, let
g, f, ψ : Ω̄ → R be such that g ≥ ψ on Ω̄ and assume that g, f, ψ are continuous and bounded
on Ω̄. We consider the following problem for the operator L,

{
max{Lu(x, t)− f(x, t), ψ(x, t)− u(x, t)} = 0, in Ω,

u(x, t) = g(x, t), on ∂P Ω.
(1.2)

The structural assumptions imposed on the operator L, which will imply that L is a hypoelliptic
ultraparabolic operator of Kolmogorov type, as well as the regularity assumptions on aij, bi, f ,
ψ and g will be defined and discussed below. We note that in case m = N the assumptions we
impose imply that the operator L is uniformly elliptic-parabolic while if m < N then the operator
L is degenerate and not uniformly elliptic-parabolic. In particular, we are mainly interested in
the case m < N . The problem in (1.2) represents the obstacle problem for the operator L with
obstacle ψ, boundary data g and right hand side defined by f .

To motivate our study of the problem in (1.2) we note that obstacle problems are of fun-
damental importance in many applications in physics, biology and mathematical finance. In
particular, one important problem in mathematical finance is that of determining the arbitrage
free price of options of American type. More precisely, consider a financial model where the
dynamics of the state variables is described by a N -dimensional diffusion process X =

(
Xx,t0

t

)
which is a solution to the stochastic differential equation

dXx,t0
t = BXx,t0

t + σ(Xx,t0
t , t)dWt, Xx,t0

t0 = x, (1.3)

where (x, t0) ∈ RN × [0, T ] and W = {Wt} denotes a m-dimensional Brownian motion, m ≤ N .
An American option with pay-off ψ is a contract which gives the holder the right to receive a
payment equal to ψ(Xτ ) assuming that the holder choose to exercise the option at τ ∈ [0, T ].
Then, according to the theory of modern finance, see [17] for instance, the arbitrage free price,
at time t, of the American option, assuming that the risk-free interest rate is zero, is given by
the optimal stopping problem

u(x, t) = sup
t≤τ≤T

E[ψ(Xx,t
t )], (1.4)

where the supremum is taken with respect to all stopping times τ with values in [t, T ]. The main
result in [20] states that if u is the function in (1.4) then ũ(x, t) = u(x, T − t) is, assuming certain
restrictions on the obstacle ψ, a solution to a problem in the form (1.2), with f ≡ 0, g ≡ ψ and
Ω = RN × [0, T ], where in this case the operator L is the Kolmogorov operator associated to X:

L =
1

2

m∑
i,j=1

(σσT )ij∂xixj
+

N∑
i,j=1

bijxi∂xj
− ∂t. (1.5)
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σT denotes the transpose of σ. In the uniformly elliptic-parabolic case, m = N , the valuation
of American options has bee quite thoroughly studied, see [2], [16] and [15]. However, there are
significant classes of American options, commonly traded in financial markets, whose correspond-
ing diffusion process X is associated with Kolmogorov type operators which are not uniformly
elliptic-parabolic, i.e., in particular m < N . Two such examples are provided by American Asian
style options, see [1], and by American options priced in the stochastic volatility suggested in
[13], see also [7] and [11]. Furthermore, as noted in [9] a general (mathematical) theory for
American options in these settings is not yet available and the bulk of the literature focus mainly
on numerical issues.

The purpose of this paper is to advance the mathematical theory for the obstacle problem for
hypoelliptic ultraparabolic operators of Kolmogorov type and in particular to continue the study
of the obstacle problem initiated in [9] and [20]. In [9], and the related work in [20], a number
of important steps were taken towards developing a rigorous theory for the obstacle problem
in (1.2) and the optimal stopping problem in (1.4). In particular, the main result in [9] is the
existence, using the same set-up and assumption as in this paper, of a strong solution to the
problem in (1.2) in certain bounded cylindrical domains and in the strip RN×]0, T [. Moreover,
while the study in [9] was more directed towards existence results the main purpose of this paper
is to prove optimal interior regularity for solutions to the problem (1.2).

To be able to proceed with our discussion and to properly state our results we next introduce
the appropriate notation and describe the assumptions imposed on the operator L. Concerning
structural assumptions on the operator L and the problem in (1.2) we assume

H1 the coefficients aij = aji are bounded continuous functions for i, j = 1, . . . ,m. Moreover,
there exists a positive constant λ such that

λ−1|ξ|2 ≤
m∑

i,j=1

aij(x, t)ξiξj ≤ λ|ξ|2, ξ ∈ Rm, (x, t) ∈ RN+1;

H2 the operator

Ku :=
m∑

i=1

∂xixi
u +

N∑
i,j=1

bijxi∂xj
u− ∂tu (1.6)

is hypoelliptic, i.e. every distributional solution of Ku = f is a smooth solution, whenever
f is smooth;

H3 aij, bi, for i, j = 1, . . . ,m, and f belong to the space C0,α
K of Hölder continuous functions

defined in (1.17), for some α ∈]0, 1[. The function g in (1.2) is continuous in Ω̄.

Let

Y =
N∑

i,j=1

bijxi∂xj
− ∂t

and let Lie(Y, ∂x1 , .., ∂xm) denote the Lie algebra generated by the vector fields Y, ∂x1 , .., ∂xm . It
is well-known that H2 can be stated in terms of the well-known Hörmander condition [14]:

rank Lie(Y, ∂x1 , .., ∂xm) = N + 1. (1.7)
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Yet another condition, equivalent to H2 and (1.7), is that there exists a basis for RN such that
the matrix B has the form 



∗ B1 0 · · · 0
∗ ∗ B2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Bκ

∗ ∗ ∗ · · · ∗




(1.8)

where Bj, for j ∈ {1, .., κ}, is a mj−1 × mj matrix of rank mj, 1 ≤ mκ ≤ ... ≤ m1 ≤ m and
m+m1 + ...+mκ = N , while ∗ represents arbitrary matrices with constant entries. We also note
that the natural setting for operators satisfying a Hörmander condition is that of the analysis
on Lie groups. In particular, as shown in [18] the relevant Lie group related to the operator K
in (1.6) is defined using the group law

(x, t) ◦ (y, s) = (y + E(s)x, t + s), E(s) = exp(−sBT ), (x, t), (y, s) ∈ RN+1, (1.9)

where BT denotes the transpose of the matrix B. Moreover, if the matrices denoted by ∗ in
(1.8) are null then there is, based on the block structure of B defined in (1.8), a natural family
of dilations

Dr = diag(rIm, r3Im1 , .., r
2κ+1Imκ), δr = diag(Dr, r

2), r > 0, (1.10)

associated to the Lie group. In (1.14) Ik, k ∈ N, is the k-dimensional unit matrix and δr is by
definition a diagonal matrix. Moreover we set

q = m + 3m1 + ... + (2κ + 1)mκ, (1.11)

and we say that q+2 is the homogeneous dimension of RN+1 defined with respect to the dilations
(δr)r>0. Furthermore, we split the coordinate x ∈ RN as x = (x(0), x(1), ..., x(κ)) where x(0) ∈ Rm

and x(j) ∈ Rmj for all j ∈ {1, .., κ}. Based on this we define

|x|K =
κ∑

j=0

∣∣x(j)
∣∣ 1

2j+1 , ‖(x, t)‖K = |x|K + |t| 12 (1.12)

and we note that ‖δr(x, t)‖K = r‖(x, t)‖K and we recall the following triangular inequality (cf.
[10]): for any compact subset H of RN+1, there exists a positive constant c such that

‖z−1‖K ≤ c‖z‖K , ‖z ◦ w‖K ≤ c (‖z‖K + ‖w‖K) , z, w ∈ H. (1.13)

We also define the quasi-distance dK by setting

dK(z, w) := ‖w−1 ◦ z‖K , w, z ∈ RN+1. (1.14)

Note that, for every compact set H ⊂ RN+1 we have

dK(z, w) ≤ c dK(w, z), dK(z, w) ≤ c (dK(z, ζ) + dK(ζ, w)) , w, z, ζ ∈ H. (1.15)

We finally set, for any z ∈ RN+1 and H ⊂ RN+1,

dK(z, H) := inf {dK(z, w) | w ∈ H} . (1.16)

To simplify our presentation we will also assume the following technical condition:
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H4 the operator K is δr-homogeneous of degree two with respect to the dilations group (δr)r>0

in (1.10).

Note that, under assumption H4, the constant c in (1.13) does not depend on H.
Concerning the regularity assumptions on the functions aij, bi, f , ψ and g in (1.2) we will

formulate these assumptions using certain anisotropic Hölder spaces defined based on ‖ · ‖K . In
particular, let α ∈ (0, 1] and let Ω ⊂ RN+1. We denote by C0,α

K (Ω), C1,α
K (Ω) and C2,α

K (Ω) the
Hölder spaces defined by the following norms:

‖u‖C0,α
K (Ω) = sup

Ω
|u|+ sup

z,ζ∈Ω

z 6=ζ

|u(z)− u(ζ)|
‖ζ−1 ◦ z‖α

K

,

‖u‖C1,α
K (Ω) = ‖u‖C0,α

K (Ω) +
m∑

i=1

‖∂xi
u‖C0,α

K (Ω) + sup
z,ζ∈Ω

z 6=ζ

|u(z)− u(ζ)−∑m
j=1(zj − ζj)∂xj

u(ζ)|
‖ζ−1 ◦ z‖1+α

K

,

‖u‖C2,α
K (Ω) = ‖u‖C0,α

K (Ω) +
m∑

i=1

‖∂xi
u‖C0,α

K (Ω) +
m∑

i,j=1

‖∂xixj
u‖C0,α

K (Ω) + ‖Y u‖C0,α
K (Ω).

(1.17)

Moreover, we let C0(Ω) denote the set of functions which are continuous on Ω. Note that any
u ∈ C0,α

K (Ω), Ω bounded, is Hölder continuous in the usual sense since

‖ζ−1 ◦ z‖K ≤ cΩ|z − ζ| 1
2κ+1 .

Remark 1.1 It is known (cf. for instance [6], Theorem 2.16, [19], Theorem 4 or [3]) that if
u ∈ C0,α

K (Ω), ∂xj
u ∈ C0,α

K (Ω), j = 1, . . . , m and if

|u(z ◦ (0, s))− u(z)| ≤ C|s| 1+α
2 whenever z, z ◦ (0, s) ∈ Ω,

then u ∈ C1,α
K (Ω′) for every Ω′ compact subset of Ω.

Let k ∈ {0, 1, 2}, α ∈ (0, 1]. If ψ ∈ Ck,α
K (Ω′) for every compact subset Ω′ of Ω then we write

ψ ∈ Ck,α
K,loc(Ω). Furthermore, for p ∈ [1,∞] we define the Sobolev-Stein spaces

Sp(Ω) = {u ∈ Lp(Ω) : ∂xi
u, ∂xixj

u, Y u ∈ Lp(Ω), i, j = 1, ..., m}

and we let

‖u‖Sp(Ω) = ‖u‖Lp(Ω) +
m∑

i=1

‖∂xi
u‖Lp(Ω) +

m∑
i,j=1

‖∂xixj
u‖Lp(Ω) + ‖Y u‖Lp(Ω).

If u ∈ Sp(H) for every compact subset H of Ω then we write u ∈ Sp
loc(Ω).

Definition 1.2 We say that u ∈ S1
loc(Ω) ∩ C0(Ω) is a strong solution to problem (1.2) if the

differential inequality is satisfied a.e. in Ω and the boundary datum is attained pointwise.

Under suitable assumptions, existence and uniqueness of a strong solution to (1.2) have been
proved in [9] and [20].
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To state our results we will make use of the following notation. For x ∈ RN and r > 0 we
let Br(x) denote the open ball in RN with center x and radius r. We let e1 be the unit vector
pointing in the x1-direction in the canonical base for RN . We let

Q =
(
B1(

1
2
e1) ∩B1(−1

2
e1)

)×]− 1, 1[,

Q+ =
(
B1(

1
2
e1) ∩B1(−1

2
e1)

)× [0, 1[,

Q− =
(
B1(

1
2
e1) ∩B1(−1

2
e1)

)×]− 1, 0].

(1.18)

Then Q is a space-time cylinder, Q+ will be referred to as the upper half-cylinder and Q− will
be referred to as the lower half-cylinder. We also let, whenever (x, t) ∈ RN+1, r > 0,

Qr = δr(Q), Qr(x, t) = (x, t) ◦Qr, Q±
r = δr(Q

±), Q±
r (x, t) = (x, t) ◦Q±

r .

Then Qr(x, t) is the cylinder Q scaled to size r and translated to the point (x, t). We also note
that the volume of Qr(x, t) is rq+2 times the volume of Q, where q is the homogeneous dimension
in (1.11).

Remark 1.3 We set

d̃K((x, t), (ξ, τ)) = inf{r > 0 | (x, t) ∈ Qr(ξ, τ)}

that defines a distance equivalent to dK in the sense that

c̃−1dK((x, t), (ξ, τ)) ≤ d̃K((x, t), (ξ, τ)) ≤ c̃dK((x, t), (ξ, τ)), (x, t), (ξ, τ) ∈ RN+1,

for some positive constant c̃. It turns out that Qr(ξ, τ) is the ball of radius r and centered at
(ξ, τ) with respect to the distance d̃K. By (1.15), for any r0 > 0 there exists a positive constant
c such that:

i) if (x, t) ∈ Qr(ξ, τ) then (ξ, τ) ∈ Qcr(x, t) for r ∈]0, r0[;

ii) if (x, t) ∈ Qr(ξ, τ) then Qρ(x, t) ∈ Qc(r+ρ)(ξ, τ) for r, ρ ∈]0, r0[.

We also note that as a consequence we have that if (x, t) ∈ Qr(ξ, τ) then

Qr(ξ, τ) ⊆ QC1r(x, t) r ∈]0, r0[, (1.19)

for some positive constant C1.

The main reason we work with these cylinders is that these cylinders are regular for the
Dirichlet problem for the operators considered in this paper. In particular, the following theorem
holds.

Theorem 1.4 (Theorem 4.2 in [10]) Assume hypotheses H1-3. For any R > 0 and (x, t) ∈
RN+1, there exists a unique classical solution u ∈ C2,α

K,loc(QR(x, t))∩C0(QR(x, t)∪ ∂P QR(x, t)) to
the Dirichlet problem {

Lu = f, in QR(x, t),

u = g, on ∂P QR(x, t).
(1.20)
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We can now state the three main theorems proved in this paper. In the following, we use the
notation

cα =
m∑

i,j=1

‖aij‖C0,α
K (Ω) +

m∑
j=1

‖bj‖C0,α
K (Ω). (1.21)

Theorem 1.5 Assume hypotheses H1-4 with Ω = Q. Let ψ ∈ C0,α
K (Q) be such that ψ ≤ g on

∂P Q. If u is a strong solution to problem (1.2) in Q, then u ∈ C0,α
K (QR) and

‖u‖C0,α
K (QR) ≤ c

(
N, λ, α, cα, ‖f‖C0,α

K (Q), ‖g‖L∞(Q), ‖ψ‖C0,α
K (Q)

)
,

for some R ∈]0, 1[.

Theorem 1.6 Assume hypotheses H1-4 with Ω = Q. Let ψ ∈ C1,α
K (Q) be such that ψ ≤ g on

∂P Q. If u is a strong solution to problem (1.2) in Q, then u ∈ C1,α
K (QR) and

‖u‖C1,α
K (QR) ≤ c

(
N, λ, α, cα, ‖f‖C0,α

K (Q), ‖g‖L∞(Q), ‖ψ‖C1,α
K (Q)

)
,

for some R ∈]0, 1[.

Theorem 1.7 Assume hypotheses H1-4 with Ω = Q. Let ψ ∈ C2,α
K (Q) be such that ψ ≤ g on

∂P Q. If u is a strong solution to problem (1.2) in Q, then u ∈ S∞(QR) and

‖u‖S∞(QR) ≤ c
(
N, λ, α, cα, ‖f‖C0,α

K (Q), ‖g‖L∞(Q), ‖ψ‖C2,α
K (Q)

)
,

for some R ∈]0, 1[.

We note that Theorem 1.5, Theorem 1.6 and Theorem 1.7 concern the optimal interior regu-
larity for the solution u to the obstacle problem under different assumption on the regularity of
the obstacle ψ. In particular, the main differences between the theorems concern the smoothness
of the obstacle and Theorem 1.5 and Theorem 1.6 treat the case of non-smooth obstacles while
Theorem 1.7 treats the case of smooth obstacles. Whether or not an obstacle is smooth or not is
simply determined by whether or not Lψ is pointwise well-defined. Moreover, the results stated
in the theorems are the same: the solution is, up to S∞-smoothness, as smooth as the obstacle.

Concerning previous results we note that in the uniformly elliptic-parabolic case, m = N , and
in the case of smooth obstacles, there is a literature on the existence and regularity of solutions
to the problem in (1.2) and we refer to [12], [22], [23] and [4]. However, in the case of non-smooth
obstacles not very much is known, for the general problem in (1.2), even in the uniformly elliptic-
parabolic case, m = N , as there in this case are not many techniques available for the study
of the obstacle problem. However, in a recent paper [21] the theory for the obstacle problem
in the uniformly elliptic-parabolic case, m = N , was advanced also in the case of non-smooth
obstacle. Moreover, the approach outlined in [21] applies as well to certain fully non-linear
parabolic equations, see [21].

Concerning previous results in the non-uniformly elliptic-parabolic case, m < N , there are
to our knowledge no results available in the literature, even in the case of smooth obstacles,
of the type presented in this paper. In particular, our main theorems, Theorems 1.5, 1.6 and
1.7, are completely new. Concerning proofs, our arguments use blow-up techniques similar to
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[21] combined with several results concerning equations of Kolmogorov type established by the
third and fourth author with collaborators. We refer to the bulk of the paper for details of
the arguments. Finally we note that in future papers we intend to study the underlying free
boundary with the ambition to develop a regularity theory for free boundaries in the setting of
hypoelliptic ultraparabolic operator of Kolmogorov type.

The rest of this paper is organized as follows. In section 2 we collect a number of important
facts concerning operators of Kolmogorov type. In section 3 we then prove our main results, i.e.,
Theorems 1.5, 1.6 and 1.7.

2 Preliminaries on operators of Kolmogorov type

In this section we collect a number of results concerning operators of Kolmogorov type to be
used in the proof of Theorems 1.5, 1.6 and 1.7.

Theorem 2.1 (Theorem 1.3 in [10]) Assume hypotheses H1-3. Let R > 0 and (x, t) ∈ RN+1.
If u ∈ C2,α

K,loc(QR(x, t)) satisfies Lu = f in QR(x, t), then there exists a positive constant c,
depending on N , α, cα, λ and R, such that

‖u‖C2,α
K (QR/2(x,t)) ≤ c(‖u‖L∞(QR(x,t)) + ‖f‖C0,α

K (QR(x,t))).

Theorem 2.2 (Theorem 1.4 in [8]) Assume hypotheses H1-3. There exists a fundamental
solution Γ to the operator L in (1.1). More precisely, a classical solution to the Cauchy problem

{
Lu = f, in RN×]0, T [,

u = g, in RN ,
(2.1)

is given by

u(x, t) =

∫

RN

Γ(x, t, y, 0)g(y)dy +

t∫

0

∫

RN

Γ(x, t, y, s)f(y, s)dyds, (2.2)

whenever f ∈ C0,α
K,loc(RN×]0, T [) and g ∈ C0(RN) are bounded functions. Formula (2.2) also

holds whenever f and g satisfy the following growth conditions: there exists a positive M such
that

|f(x, t)| ≤ MeM |x|2 , |g(x)| ≤ MeM |x|2 , (x, t) ∈ RN×]0, T [. (2.3)

In this case T has to be sufficiently small (depending on M). Furthermore, u in (2.2) is the
unique solution to the problem in (2.1) in the class of all functions satisfying (2.3).

Let Γµ denote the fundamental solution to the constant coefficient Kolmogorov operator

Kµ = µ

m∑
i=1

∂xixi
+

N∑
i,j=1

bijxi∂xj
− ∂t (2.4)

for µ > 0. Combining [8], Theorem 1.4, and [10], Theorem 1.5, we have the following theorem.
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Theorem 2.3 Under hypotheses H1-3, there exist four positive constants µ−, µ+, c−, c+ such
that

c−Γµ−(x, t, y, s) ≤ Γ(x, t, y, s) ≤ c+Γµ+

(x, t, y, s)

for every (x, t), (y, s) ∈ RN+1, and 0 < t−s < T . We have µ− < λ < µ+, where λ is the constant
in H1, µ+ can be chosen arbitrarily close to λ and c+ and c− depend on µ+ and on T .

We note that the fundamental solution Γµ can be given explicitly. Let

C(t) :=

t∫

0

E(s)

(
Im 0
0 0

)
ET (s)ds, t ∈ RN ,

where the matrix Im equals the m×m-identity matrix and E(s) is defined as in (1.9). It is well
known, see e.g. [18], that H2 and (1.7) are equivalent to the condition that

C(t) > 0 for all t > 0. (2.5)

Assuming that (2.5) holds, we have that

Γµ(x, t, y, s) = Γµ(x− E(t− s)y, t− s, 0, 0) (2.6)

where Γµ(x, t, 0, 0) = 0 if t ≤ 0 and

Γµ(x, t, 0, 0) =
(4πµ)−N/2

√
det C(t)

exp

(
− 1

4µ
〈C(t)−1x, x〉 − tTr(B)

)
if t > 0. (2.7)

We also note that

Γµ(x, t, y, s) ≤ c(T )

‖(y, s)−1 ◦ (x, t)‖qK
for all (x, t), (y, s) ∈ RN×]0, T [, t > s, (2.8)

where q was introduced in (1.11). For (2.8) we refer to [10], Proposition 2.8.
Assumption H4 implies that the following identities hold:

C(r2t) = DrC(t)Dr, E(r2t)Dr = DrE(t), t ∈ R, r > 0, (2.9)

so that in particular we have

Γµ(x, t, 0, 0) =
(4πµ)−N/2

√
tq det C(1)

exp

(
− 1

4µ
〈C(1)−1D 1√

t
x,D 1√

t
x〉

)
if t > 0. (2.10)

Some analogous formulas also hold in general. Specifically, for every positive T there exist two
positive constants c′T and c′′T such that

c′T
〈
C−1(1)

(
D 1√

t
x + E(1)D 1√

t
y
)

, D 1√
t
x + E(1)D 1√

t
y
〉
≤

〈C−1(t)(x + E(t)y), x + E(t)y
〉 ≤

c′′T
〈
C−1(1)

(
D 1√

t
x + E(1)D 1√

t
y
)

, D 1√
t
x + E(1)D 1√

t
y
〉

,

(2.11)

for every (x, t) ∈ RN×]0, T ] (see (2.16), and (2.18) in [5]), and, as a plain consequence,

c̃′T tq ≤ det C(t) ≤ c̃′′T tq, t ∈]0, T ]. (2.12)

In the forthcoming sections we will need the following technical estimate.
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Corollary 2.4 Under assumptions H1-3, we define, for γ > 0 and R0 > 1, the function

u(x, t) =

∫

|y|K≤R0

Γ(x, t, y, 0)|y|γKdy, x ∈ RN , t > 0.

For every compact subset H ⊂ RN+1, there exists a positive constant c = c(γ,R0, H) such that

u(x, t) ≤ c‖(x, t)‖γ
K , (x, t) ∈ H.

Proof. By the triangle inequalities (1.13), we have

|y|K = ‖(y, 0)‖K ≤ c
∥∥(y, 0)−1

∥∥
K
≤ c2

(∥∥(y, 0)−1 ◦ (x, t)
∥∥

K
+ c‖(x, t)‖K

)
,

for any x, y ∈ RN and t ∈ R. By Theorem 2.3, we have

u(x, t) ≤ c+

∫

|y|K≤R0

Γ+(x, t, y, 0)|y|γKdy ≤ c′‖(x, t)‖γ
K

∫

|y|K≤R0

Γ+(x, t, y, 0)dy

+ c′′
∫

|y|K≤R0

Γ+
(
(y, 0)−1 ◦ (x, t)

) ∥∥(y, 0)−1 ◦ (x, t)
∥∥γ

K
dy.

We perform the change of variables

w = δ 1√
t

(
(y, 0)−1 ◦ (x, t)

)
= (ξ, 1) , ξ = D 1√

t
(x− E(−t)y) ,

and, by (2.11) and (2.12), we obtain

u(x, t) ≤ c′‖(x, t)‖γ
K + c′′t

γ
2 .

Obviously this estimate completes the proof of the lemma. 2

We end this section by proving two further results useful in the proof of Theorems 1.5-1.7.
The first one is a version of the Harnack inequality for non-negative solution u of Lu = 0
proved in [10] and the second one is a version of an estimate in “thin cylinders” proved in [5].
We first need to introduce some notations. For any positive T, R, and (x0, t0) ∈ RN+1 we put
Q−(T ) =

(
B1(

1
2
e1) ∩B1(−1

2
e1)

) × [−T, 0], and Q−
R(x0, t0, T ) = (x0, t0) ◦ δR (Q−(R−2T )). Note

that, from (1.10) it follows that T is the true height of Q−
R(x0, t0, T ). For α, β, γ ∈ R, with

0 < α < β < γ < 1, we set

Q̃−
R(x0, t0, T ) =

{
(x, t) ∈ Q−

R(x0, t0, T ) | t0 − γT ≤ t ≤ t0 − βT
}
,

Q̃+
R(x0, t0, T ) =

{
(x, t) ∈ Q−

R(x0, t0, T ) | t0 − αT ≤ t ≤ t0
}
.

We recall the following invariant Harnack inequality for non-negative solutions u of Lu = 0.

Theorem 2.5 (Theorem 1.2 in [10]) Under assumptions H1-3, there exist constants R0 > 0,
M > 1 and α, β, γ, ε ∈]0, 1[, with 0 < α < β < γ < 1, depending only on the operator L, such
that

sup
eQ−εR(x0,t0,R2)

u ≤ M inf
eQ+

εR(x0,t0,R2)
u,

for every positive solution u of Lu = 0 in Q−
R(x0, t0) and for any R ∈]0, R0[, (x0, t0) ∈ RN+1.
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Our first preliminary result is the following

Lemma 2.6 Assume H1-3. For any T > 0 and R̃ ≥ √
2T + 1 there exist constants c = c(α, cα)

and c̃ = c(α, cα, κ, R̃) such that

sup
Q−

R̃
∩{(x,t): t=−2T}

u ≤ c̃ inf
Q−

R̃/2
(0,0,T )

u,

for any positive solution u to Lu = 0 in Q−
R

(0, 0, 2T + 1) with R ≥ cR̃2κ+1.

Proof. Let u : Q−
R

(0, 0, 2T + 1) −→ R be a positive solution of Lu = 0, where R is a suitably

large constant that will be chosen lather. We aim to show that, for every (x, t) ∈ Q−
R̃/2

(0, 0, T ),

and (y,−2T ) ∈ Q−
R̃
, there exists a Harnack chain connecting (x, t) to (y,−2T ). Specifically, we

prove the existence of a finite sequence (Rj)j=1,...,k such that 0 < Rj ≤ R0, for any j = 1, . . . , k
and a sequence of points (xj, tj)j=1,...,k such that (x1, t1) = (x, t),

Q−
Rj

(xj, tj) ⊂ Q−
R
(0, 0, 2T + 1), (2.13)

with (xj+1, tj+1) ∈ Q̃−
εRj

(xj, tj, R
2
j ), for every j = 1, . . . , k − 1 and (y,−2T ) ∈ Q̃−

εRk
(xk, tk, R

2
k).

Using this construction and Theorem 2.5 we then find that u(xj, tj) ≤ Mu(xj−1, tj−1), j =
1, . . . , k, and that

u(y,−2T ) ≤ Mu(xk, tk) ≤ Mku(x, t).

To prove the existence of a Harnack chain connecting (x, t) to (y,−2T ) as above, we apply
the method previously used in the proof of Theorem 1.5 of [8]. The method concerns the problem
of finding the shortest Harnack chain, in order to minimize the integer k. It turns out that the
best choice is (xj, tj) = (γ(τj), t− τj), where

γ(τ) = E(−τ)
(
x + C(τ)C−1(t + 2T )(E(t + 2T )y − x)

)
, (2.14)

and τ1, . . . , τk are suitable real numbers such that τ1 = 0 < τ2 < · · · < τk < t − 2T . We finally
have

k ≤ 1 +
1

h
〈C−1(t + 2T )(x− E(t + 2T )y), x− E(t + 2T )y〉, (2.15)

for some positive constant h only depending on the operator L (we refer to [8] for more details).
Since the function in (2.15) continuously depends on (x, t) and (y,−2T ), the inequality stated
in Theorem 2.5 holds with

c̃ := max
{

M1+ 1
h
〈C−1(t+2T )(x−E(t+2T )y),x−E(t+2T )y〉 | (x, t, y,−2T ) ∈ Q−

R̃/2
(0, 0, T )×Q−

R̃

}
,

provided that (2.13) holds for j = 1, . . . , k.
To conclude the proof of Lemma 2.6, it is sufficient to show that (2.13) holds for j = 1, . . . , k,

as soon as R is suitably large. In fact, we will prove that

Q−(γ(τ), t− τ) ⊂ Q−
R
(0, 0, 2T + 1) for every τ ∈ [0, t + 2T ], (2.16)

holds (recall that t ∈ [−T, 0]) and we note that this is stronger statement compared to (2.13).
To proceed we first note that Q−(γ(τ), t − τ) ⊂ RN×] − 2T − 1, 0] for every τ ∈ [0, t + 2T ].

Concerning the lateral boundary of Q−
R
, we consider any (x, t) ∈ Q−

R̃/2
(0, 0, T ) and (y,−2T ) ∈ Q−

R̃
.
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We have that |xj| ≤
(
R̃/2

)2κ+1

and |yj| ≤ R̃2κ+1, for j =, . . . , N . Then, by the continuity of γ

in (2.14), there exists a positive constant c0 such that |γ(τ)| ≤ c0R̃
2κ+1, for every τ ∈ [0, t + 2T ].

Consider now any point (ξ0, τ0) ∈ Q−(γ(τ), t− τ). There exists (ξ1, τ1) ∈ Q− such that

(ξ0, τ0) = (γ(τ), t− τ) ◦ (ξ1, τ1) = (ξ1 + E(τ1)γ(τ), t− τ + τ1).

As a consequence, there exists a positive constant C1 such that

|ξ0| ≤ |ξ1|+ |E(τ1)γ(τ)| ≤ C1 (1 + |γ(τ)|) ≤ C1

(
1 + c0R̃

2κ+1
)

.

Hence, if we set c = 2κ c0 C1, and we choose R ≥ c R̃2κ+1, we have (ξ0, τ0) ∈ Q−
R

for every
(ξ0, τ0) ∈ Q−(γ(τ), t− τ). This proves (2.16) and hence the proof of Lemma 2.6 is complete. 2

Lemma 2.7 Assume H1-3. Let R > 0 be given. Then there exist constants R0, C0, C1 > 0,
R0 ≥ 2R, such that

sup
Q−R

|v| ≤ C0e
−C1R̃2

sup
∂P Q−

R̃
∩{(x,t): t>−R2}

|v|

for any R̃ ≥ R0 and for every v solution of Lv = 0 in Q−
R̃
(0, 0, R2) such that v(·,−R2) = 0.

Proof. To prove this lemma we proceed as in the proof of Theorem 3.1 of [5]. We let R̃ be
suitably large and to be chosen. Let r > 0 be such that {|y|K ≤ 2r} ⊂ B1(

1
2
e1) ∩ B1(−1

2
e1) and

let ϕ ∈ C∞(RN) be a non-negative function such that ϕ(x) = 1 if |x|K ≥ 2r, and ϕ(x) = 0 if
|x|K ≤ r. We define

w(x, t) :=
2

c−

∫

RN

Γ(x, t, y,−R2)ϕ
(
D1/R̃y

)
dy,

where c− the constant in Theorem 2.3, related to T = R2. Clearly, w is a non-negative solution

to the Cauchy problem Lu = 0 in RN×]−R2, 0], u(x,−R2) = ϕ
(
D1/R̃x

)
.

We note that, if (x, t) ∈ ∂P Q−
R̃

is such that t > −R2, then δ1/R̃(x, t) ∈ ∂P Q−(0, 0, R2/R̃2).
Moreover, for such (x, t) we deduce using Theorem 2.3 that

w(x, t) ≥ 2

∫

RN

Γµ−(x, t, y,−R2)ϕ
(
D1/R̃y

)
dy.

We next show that
∫

RN

Γµ−(x, t, y,−R2)ϕ
(
D1/R̃y

)
dy → 1, as R̃ → +∞, (2.17)

uniformly uniformly in (x, t) ∈ ∂P Q−
R̃
. Thus, there exists a positive R0 such that, if R̃ > R0, we

have w(x, t) ≥ 1 for every (x, t) ∈ ∂P Q−
R̃
∩ {(x, t) : t > −R2}. Thus, by our assumption on v we

see that the maximum principle implies that

v(x, t) ≤ w(x, t) sup
∂P Q−

R̃
∩{t>−R2}

|v|. (2.18)
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We next prove (2.17). By (2.11) and (2.12) we have that

Γµ−(x, t, y, s) ≤ c−T
(t− s)

q
2

exp
(
−C−

T

〈
C−1(1)

(
D 1√

t−s
x− E(1)D 1√

t−s
y
)

, D 1√
t−s

x− E(1)D 1√
t−s

y
〉)

,

for every (x, t), (y, s) ∈ RN+1 such that 0 < t− s < T . Then
∣∣∣∣
∫

RN

Γµ−(x, t, y,−R2)ϕ
(
D1/R̃y

)
dy − 1

∣∣∣∣ ≤

c−T (t + R2)−
q
2

∫

RN

exp
(
− C−

T

〈
C−1(1)

(
D 1√

t+R2
x− E(1)D 1√

t+R2
y
)
,

D 1√
t+R2

x− E(1)D 1√
t+R2

y
〉) ∣∣∣ϕ

(
D1/R̃y

)
− 1

∣∣∣ dη ≤

c−T

(
R̃2

t + R2

)q
2 ∫

RN

exp
(
− C−

T

〈
C−1(1)

(
D 1√

t+R2
x− E(1)D R̃√

t+R2

η
)
,

D 1√
t+R2

x− E(1)D R̃√
t+R2

η
〉)
|ϕ(η)− 1| dη

A direct computation shows that

τ−
q
2

∫

RN

exp
(
− C−

T

〈
C−1(1)

(
ξ − E(1)D 1√

τ
η
)
, ξ − E(1)D 1√

τ
η
〉)
|ϕ(η)− 1| dη −→ 0

as τ → 0+, uniformly for 2r ≤ |ξ|K ≤ 1. This concludes the proof of (2.17).
To complete the proof of the lemma we see that it is enough to prove an upper bound for w

in the set Q−
R. To do this we note that by Theorem 2.3, by (2.11), (2.11)2 and the definition of

ϕ, we have

w(x, t) ≤ 2
c+

c−

∫

RN

Γµ+

(x, t, y,−R2)ϕ
(
D1/R̃y

)
dy ≤ 2

c+

c−

∫

|y|K≥rR̃

Γµ+

(x, t, y,−R2)dy,

≤ c+
T

(t + R2)q/2

∫

|y|K≥rR̃

exp

(
− C+

T

〈
C−1(1)

(
D 1√

t+R2
x− E(1)D 1√

t+R2
y
)
,

D 1√
t+R2

x− E(1)D 1√
t+R2

y

〉)
dy.

(2.19)

If we set Q := E(1)TC−1(1)E(1), we have that Q is a symmetric strictly positive constant matrix.
Then, by the change of variable η = D 1√

t+R2

y in (2.19), we get

w(x, t) ≤ c0

∫

|η|K≥ rR̃√
t+R2

exp

(
−c+

〈
Q

(
η − E(−1)D 1√

t+R2

x

)
, η − E(−1)D 1√

t+R2

x

〉)
dη.

We next note that, since (x, t) ∈ Q−
R, we have t ∈ [−R2, 0] and hence the norm

∣∣∣E(−1)D 1√
t+R2

x
∣∣∣

is bounded by a constant. On the other hand,

〈Qη, η〉 ≥ λQ〈η, η〉 = λQ
κ∑

j=0

∣∣η(j)
∣∣2

|η|4j+2
K

|η|4j+2
K ≥ λQ|η|2K

κ∑
j=0

∣∣η(j)
∣∣2

|η|4j+2
K
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since |η|K ≥ rR̃√
t+R2 > 1 (for R0 suitably large). As a consequence, there exists a positive constant

CQ, if R̃0 is suitably large, such that

〈
Q

(
η − E(−1)D 1√

t+R2

x

)
, η − E(−1)D 1√

t+R2

x

〉
≥ CQ|η|2K

for every η ∈ RN+1 such that |η|K ≥ rR̃√
t+R2 . Thus

w(x, t) ≤c0

∫

|η|K≥ rR̃√
t+R2

exp
(−CQ c+|η|2K

)
dη

≤c0

(∫

RN

exp

(
−1

2
CQ c+|η|2K

)
dη

)
exp

(
−r2CQ c+R̃2

2(t + R2)

)
.

The lemma now follows if we let

C0 = c0

∫

RN

exp

(
−1

2
CQ c+|η|2K

)
dη and C1 =

r2CQ c+

2R2
.

2

3 Proof of the main theorems

In this section we prove Theorems 1.5, 1.6 and 1.7. In the following we always assume hypotheses
H1-4. Recall that cα was introduced in (1.21).

Definition 3.1 Let Ω ⊂ RN+1 be a given domain, k ∈ {0, 1, 2}, α ∈ (0, 1] and M1,M2,M3 be
three positive constants. Let ψ ∈ Ck,α

K (Ω), g ∈ C0(Ω), g ≥ ψ on ∂P Ω, and let u be a strong
solution to problem (1.2). Then, for k ∈ {0, 1, 2} we say that (u, g, f, ψ) belongs to the class
Pk(Ω, α, cα, M1,M2,M3) if

‖u‖L∞(Ω) ≤ M1, ‖f‖C0,α
K (Ω) ≤ M2, ‖ψ‖Ck,α

K (Ω) ≤ M3.

The proofs of Theorems 1.5, 1.6 and 1.7 are based on certain blow-up arguments. In partic-
ular, we introduce, for r > 0, the blow-up of a function v ∈ C0(Ω) as

vr(x, t) := v (δr(x, t)) , (3.1)

whenever δr(x, t) ∈ Ω. A direct computation shows that

Lv = f in Ω if and only if Lrv
r = r2f r in δ1/rΩ, (3.2)

where

Lr =
m∑

i,j=1

ar
ij∂xixj

+
m∑

i=1

rbr
i ∂xi

+
N∑

i,j=1

bijxi∂xj
− ∂t. (3.3)
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3.1 Optimal interior regularity: proof of Theorems 1.5, 1.6 and 1.7

To prove Theorems 1.5, 1.6 and 1.7 we first prove the following three lemmas.

Lemma 3.2 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P0(Q
−, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Q−r

|u| ≤ crα, r ∈]0, 1[.

Lemma 3.3 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P1(Q
−, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Q−r

∣∣∣u(x, t)−
m∑

i=1

∂xi
ψ(0, 0)xi

∣∣∣ ≤ cr1+α, r ∈]0, 1[.

Lemma 3.4 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P2(Q
−, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Q−r

|u− ψ| ≤ cr2, r ∈]0, 1[.

The statements of the previous lemmas are structurally the same. We set

Sk(u) = sup
Q−

2−k

|u|. (3.4)

To prove Lemma 3.2 and Lemma 3.3 we intend to prove that there exists a positive c̃ =
c̃ (N, λ, α, cα,M1, M2,M3) such that, for all k ∈ N,

Sk+1(u− F ) ≤ max

(
c̃

2(k+1)γ
,
Sk(u− F )

2γ
,
Sk−1(u− F )

22γ
, ....,

S0(u− F )

2(k+1)γ

)
, (3.5)

where F and γ are determined as follows:

¦ F ≡ 0 and γ = α in Lemma 3.2,

¦ F (x, t) =
m∑

i=1

∂xi
ψ(0, 0)xi and γ = 1 + α in Lemma 3.3.
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Indeed, if (3.5) holds then we see, by a simple iteration argument, that

Sk(u− F ) ≤ c̃

2kγ

and Lemma 3.2 and Lemma 3.3 follow.

Proof of Lemma 3.2 To prove (3.5) with F = 0 and γ = α, we assume that

(u, g, f, ψ) ∈ P0(Q
−, α, cα,M1,M2,M3).

We divide the argument into three steps.

Step 1 (Setting up the argument by contradiction). We first note that

u(x, t) ≥ ψ(x, t) = ψ(x, t)− ψ(0, 0) ≥ −M3‖(x, t)‖α
K , (x, t) ∈ Q−. (3.6)

Assume that (3.5) is false. Then for every j ∈ N, there exists a positive integer kj and
(uj, gj, fj, ψj) ∈ P0(Q

−, α, cα,M1, M2,M3) such that

Skj+1(uj) > max

(
jM3

2(kj+1)α
,
Skj

(uj)

2α
,
Skj−1(uj)

22α
, ....,

S0(uj)

2(kj+1)α

)
. (3.7)

Using the definition in (3.4) we see that there exists (xj, tj) in the closure of Q−
2−kj−1 such that

|uj(xj, tj)| = Skj+1(uj) for every j ≥ 1. Moreover from (3.6) it follows that uj(xj, tj) > 0. Using
(3.7) we can conclude, as |uj| ≤ M1, that j2−αkj is bounded and hence that kj →∞ as j →∞.

Step 2 (Constructing blow-ups). We define (x̃j, t̃j) = δ2kj ((xj, tj)) and ũj : Q−
2kj
−→ R as

ũj(x, t) =
uj(δ2−kj (x, t))

Skj+1(uj)
. (3.8)

Note that (x̃j, t̃j) belongs to the closure of Q−
1/2 and

ũj(x̃j, t̃j) = 1. (3.9)

Moreover we let L̃j = L2−kj (cf. (3.3)) and

f̃j(x, t) = 2−2kj
fj(δ2−kj (x, t))

Skj+1(uj)
, g̃j(x, t) =

gj(δ2−kj (x, t))

Skj+1(uj)
, ψ̃j(x, t) =

ψj(δ2−kj (x, t))

Skj+1(uj)
(3.10)

whenever (x, t) ∈ Q−
2kj

. Then, using (3.2) we see that

{
max{L̃jũj − f̃j, ψ̃j − ũj} = 0, in Q−

2kj
,

ũj = g̃j, on ∂P Q−
2kj

.

For any l ∈ N we have that

sup
Q−

2l

|ũj| =
Skj−l(uj)

Skj+1(uj)
≤ 2(l+1)α whenever kj > l. (3.11)
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In particular, we can conclude that

(ũj, ũj, f̃j, ψ̃j) ∈ P0(Q
−
2l , α, cα, M̃ j

1 , M̃
j
2 , M̃

j
3 ) (3.12)

where now P0 is the class related to operator L̃j and, by (3.10) and (3.11), we have

M̃ j
1 ≤ 2(l+1)α, M̃ j

2 ≤ 2−2kj
M2

Skj+1(uj)
, M̃ j

3 ≤ 2α(l−kj)
M3

Skj+1(uj)
. (3.13)

Moreover, using (3.7) we see that

lim
j→∞

M̃ j
2 = lim

j→∞
M̃ j

3 = 0. (3.14)

Step 3 (Completing the argument by contradiction). In the following we let l ∈ N be a suitable
large degree of freedom to be specified later. We consider j0 ∈ N such that kj > 2l for j ≥ j0.
We let ĝj denote the boundary values of ũj on ∂P Q−

2l and we let vj and ṽj be such that

{
L̃jvj = ‖f̃j‖L∞(Q−

2l )
in Q−

2l ,

vj = ĝj on ∂P Q−
2l ,

{
L̃j ṽj = −‖f̃j‖L∞(Q−

2l )
in Q−

2l ,

ṽj = max{ĝj, M̃
j
3} on ∂P Q−

2l .
(3.15)

We first prove that
vj ≤ ũj ≤ ṽj in Q−

2l . (3.16)

The first inequality in (3.16) follows from the comparison principle. To prove the second one, we
first note that ‖ψ̃j‖∞ ≤ M̃ j

3 and then by the maximum principle ṽj ≥ ψ̃j in Q−
2l . Furthermore

L̃j(ṽj − ũj) = −‖f̃j‖L∞(Q−
2l )

+ f̃j ≤ 0 in Ω := Q−
2l ∩ {(x, t) : ũj(x, t) > ψ̃j(x, t)},

and ṽj ≥ ũj on ∂Ω. Hence, the second inequality in (3.16) follows from the maximum principle.
We remark that, since ũj ≥ ψ̃j by (3.12), we can conclude that ĝj ≥ −M̃ j

3 in Q−
2l . Hence,

using the maximum principle we have, for any positive T ,

ṽj(x, t)− vj(x, t) ≤
(
max{0, M̃ j

3 − ĝj}+ 2T‖f̃j‖L∞(Q−
2l )

)
≤ 2

(
M̃ j

3 + TM̃ j
2

)
(3.17)

whenever (x, t) ∈ Q−
2l(0, 0, T ). In particular, we can conclude that

‖ṽj‖L∞(Q−
2l)
≤ max

{
2(l+1)α, M̃ j

3

}
+ 22lM̃ j

2 . (3.18)

We claim that there exists a positive constant C such that

ṽj(x, t) ≥ C for every (x, t) ∈ Q−
1/2, j ≥ j0. (3.19)

Once this claim is prove it follows from from (3.17) and (3.16) that

ũj(0, 0) ≥ vj(0, 0) ≥ ṽj(0, 0)− 2
(
M̃ j

3 + TM̃ j
2

)
≥ C − 2

(
M̃ j

3 + TM̃ j
2

)
,
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and hence, by (3.14), that ũj(0, 0) > 0 for j suitably large. This then contradicts the assumption
that ũj(0, 0) = ψ̃j(0, 0) = 0. Hence our original assumption was incorrect and the proof of the
lemma is complete.

In the proof of (3.19) we will use of Lemma 2.6 and 2.7 with T = 1, R = 1/2 and

R̃ =

(
2l

c

) 1
2κ+1

(3.20)

where c is the constant in Lemma 2.6. We write ṽj = wj + w̃j + ŵj on Q−
R̃
(0, 0, 1) where





L̃jwj = 0 in Q−
R̃
(0, 0, 1),

wj = 0 on ∂+
P Q−

R̃
(0, 0, 1),

wj = ṽj on ∂−P Q−
R̃
(0, 0, 1),





L̃jw̃j = 0 in Q−
R̃
(0, 0, 1),

w̃j = ṽj on ∂+
P Q−

R̃
(0, 0, 1),

w̃j = 0 on ∂−P Q−
R̃
(0, 0, 1),

{
L̃jŵj = −‖f̃j‖L∞(Q−

2l )
in Q−

R̃
(0, 0, 1),

ŵj = 0 on ∂P Q−
R̃
(0, 0, 1).

where

∂+
P Q−

R̃
(0, 0, T ) = ∂P Q−

R̃
(0, 0, T ) ∩ {t > −T}, ∂−P Q−

R̃
(0, 0, T ) = ∂P Q−

R̃
(0, 0, T ) ∩ {t = −T}.

By the maximum principle we easily see that

0 ≤ ŵj(x, t) ≤ (t + 1)‖f̃j‖L∞(Q−
2l )
≤ M̃ j

2 , (3.21)

whenever (x, t) ∈ Q−
R̃
(0, 0, 1). Hence, as t ∈ ]− 1, 0[ we see that |ŵj(x, t)| ≤ 1/4 in Q−

R̃
(0, 0, 1) if

j is sufficiently large. Moreover, by Lemma 2.7 and (3.18)

sup
Q−

1/2

|w̃j| ≤ C0e
−C1R̃2

sup
∂+

P Q−
R̃

|v| ≤ C0e
−C1R̃2

(
max

{
2(l+1)α, M̃ j

3

}
+ 22lM̃ j

2

)

and we note that the right hand side in this inequality tends, by the choice in (3.20), to zero as
l goes to infinity. Recalling that ṽj(x̃j, t̃j) ≥ ũj(x̃j, t̃j) = 1, we can conclude that by chosing l
suitably large we can ensure that

wj(x̃j, t̃j) ≥ 1

2
, j ≥ j0.

Using this and the maximum principle we can conclude that there exists at least one point
(x̄j, t̄j) ∈ ∂−P Q−

R̃
(0, 0, 1) such that

ṽj(x̄j, t̄j) = wj(x̄j, t̄j) ≥ 1

2
, j ≥ j0.

We next write ṽj = v̌j + v̂j where

{
L̃j v̌j = 0 in Q−

2l(0, 0, 2),

v̌j = ṽj on ∂P Q−
2l(0, 0, 2).

{
L̃j v̂j = −‖f̃j‖L∞(Q−

2l )
in Q−

2l(0, 0, 2),

v̂j = 0 on ∂P Q−
2l(0, 0, 2).
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As in (3.21), we easily see that |v̂j(x, t)| ≤ 1/4 in Q−
2l(0, 0, 2) if j is sufficiently large and hence

we can conclude that

v̌j(x̄j, t̄j) ≥ 1

4
, j ≥ j0.

Using Lemma 2.6 we infer that

inf
Q−

1/2

v̌j ≥ 1

4c̃
.

Since v̂j → 0 uniformly on Q−
2l(0, 0, 2) as j goes to infinity, we can conclude that

inf
Q−

1/2

ṽj ≥ inf
Q−

1/2

v̌j − ‖v̂j‖L∞ ≥ 1

8c̃

for any suitably large j. In particular, this proves (3.19) and hence the proof of Lemma 3.2 is
complete. 2

Proof of Lemma 3.3 We argue as in the proof of Lemma 3.2 to show that (3.5) holds with

F (x, t) =
m∑

i=1

∂xi
ψ(0, 0)xi and γ = α + 1. We assume that

(u, g, f, ψ) ∈ P1(Q
−, α, cα,M1,M2,M3).

We divide the argument into three steps.

Step 1 (Setting up the argument by contradiction). We first note that, since ψ ∈ C1,α
K ,

u(x, t) ≥ ψ(x, t) = ψ(x, t)− ψ(0, 0) ≥ F (x, t)−M3‖(x, t)‖1+α
K , (x, t) ∈ Q−. (3.22)

As in the proof of Lemma 3.2, we assume that (3.5) is false. Then for every j ∈ N, there exists
a positive integer kj and (uj, gj, fj, ψj) ∈ P1(Q

−, α, cα,M1, M2,M3) such that

Skj+1(uj − Fj) > max

(
jM3

2(kj+1)γ
,
Skj

(uj − Fj)

2γ
,
Skj−1(uj − Fj)

22γ
, ....,

S0(uj − Fj)

2(kj+1)γ

)
, (3.23)

where Fj(x, t) =
m∑

i=1

∂xi
ψj(0, 0)xi. By (3.4) there exists (xj, tj) in the closure of Q−

2−kj−1 such that

uj(xj, tj)−F (xj, tj) = Skj+1(uj −F ) for every j ≥ 1. Moreover, by (3.23) we infer that kj →∞
as j →∞.

Step 2 (Constructing blow-ups). We define (x̃j, t̃j) = δ2kj ((xj, tj)) and ũj : Q−
2kj
−→ R as

ũj(x, t) =
(uj − Fj) (δ2−kj (x, t))

Skj+1(uj − Fj)
. (3.24)

As before, we have that (x̃j, t̃j) belongs to the closure of Q−
1/2 and

ũj(x̃j, t̃j) = 1. (3.25)
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Now we let

f̃j(x, t) = 2−2kj
(fj − LFj) (δ2−kj (x, t))

Skj+1(uj − Fj)
, g̃j(x, t) =

(gj − Fj) (δ2−kj (x, t))

Skj+1(uj − Fj)
,

ψ̃j(x, t) =
(ψj − Fj) (δ2−kj (x, t))

Skj+1(uj − Fj)

(3.26)

whenever (x, t) ∈ Q−
2kj

. Then, by setting L̃j = L2−kj , we have

{
max{L̃jũj − f̃j, ψ̃j − ũj} = 0, in Q−

2kj
,

ũj = g̃j, on ∂P Q−
2kj

.

As in the proof of Lemma 3.2, we have

(ũj, ũj, f̃j, ψ̃j) ∈ P1(Q
−
2l , α, cα, M̃ j

1 , M̃
j
2 , M̃

j
3 ) (3.27)

where P1 is the class related to operator L̃j. However we prove our claim by using only the
semi-norm

N j
3 :=

m∑
i=1

∣∣∣∂xi
ψ̃j(0, 0)

∣∣∣ + sup
z,ζ∈Q−

z 6=ζ

|ψ̃j(z)− ψ̃j(ζ)−∑m
i=1(xi − ξi)∂xi

ψ̃j(ζ)|
‖ζ−1 ◦ z‖1+α

K

and remark that N j
3 + ‖ψ̃j‖C0,α

K (Q−) ≤ M̃ j
3 . Since LFj(x, t) =

m∑
i=1

bi(x, t)∂xi
ψj(0, 0),we have

M̃ j
1 ≤ 2(l+1)(1+α), M̃ j

2 ≤ 2−2kj
M2 + cαM3

Skj+1(uj − Fj)
. (3.28)

Furthermore,

N j
3 ≤ 2(1+α)(l−kj)

M3

Skj+1(uj − Fj)
.

To see this we note that ∂xi
ψ̃j(0, 0) = 0 and

∣∣∣∣∣(ψj − Fj) (z)− (ψj − Fj) (ζ)−
m∑

i=1

(xi − ξi)∂xi
(ψj − Fj) (ζ)

∣∣∣∣∣

=

∣∣∣∣∣

(
ψj(z)− ψj(ζ)−

m∑
i=1

(xi − ξi)∂xi
ψj(ζ)

)

−
m∑

i=1

(xi − ξi − (xi − ξi))∂xi
ψj(0, 0)

∣∣∣∣∣ ≤ M3‖ζ−1 ◦ z‖1+α
K .

Therefore, by (3.23), we have
lim
j→∞

M̃ j
2 = lim

j→∞
N j

3 = 0. (3.29)

Step 3 (Completing the argument by contradiction). This step is completely analogous to Step
3 in Lemma 3.2 except for the use of N j

3 in place of M̃ j
3 and γ now equals 1 + α. 2
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Proof of Lemma 3.4 We first note that we may assume that ψ ≡ 0. Indeed, using the fact that
Lψ ∈ C0,α

K we can consider ũ = u−ψ, f̃ = f −Lψ, g̃ = g−ψ in Q−. In particular, we note that
(ũ, g̃, f̃ , 0) ∈ P2(Q

−, α, cα, M̃1, M̃2, 0) where (M̃1, M̃2) only depends on M1,M2 and M3. From
here on we can now argue as in the proof of the previous two lemmas. In particular, we note
that

u(x, t) ≥ ψ(x, t) = 0, (x, t) ∈ Q−. (3.30)

and we assume that (3.5) is false with γ = 2. Then for every j ∈ N, there exists a positive integer
kj and (uj, gj, fj, 0) ∈ P2(Q

−, α, cα,M1,M2, 0) such that

Skj+1(uj) > max

(
j

22(kj+1)
,
Skj

(uj)

22
,
Skj−1(uj)

24
, ....,

S0(uj)

22(kj+1)

)
. (3.31)

By (3.4) there exists (xj, tj) in the closure of Q−
2−kj−1 such that uj(xj, tj) = Skj+1(uj) for every

j ≥ 1 and, by (3.31), kj →∞ as j →∞. The rest of the proof then follow along the same lines
as the proof of Lemma 3.2. 2

We next derive the following extensions of Lemmas 3.2, 3.3 and 3.4.

Lemma 3.5 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P0(Q, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Qr

|u| ≤ crα, r ∈]0, 1[.

Lemma 3.6 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P1(Q, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Qr

∣∣∣u(x, t)−
m∑

i=1

∂xi
ψ(0, 0)xi

∣∣∣ ≤ cr1+α, r ∈]0, 1[.

Lemma 3.7 Let α ∈ (0, 1] and let M1,M2,M3 be positive constants. Assume that

(u, g, f, ψ) ∈ P2(Q, α, cα,M1,M2,M3) and u(0, 0) = ψ(0, 0) = 0.

Then there exists c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Qr

|u− ψ| ≤ cr2, r ∈]0, 1[.

Proof of Lemma 3.5 Using Lemma 3.2 we see that we only have to prove that there exists a
constant c = c(N, λ, α, cα,M1,M2,M3) such that

sup
Q+

r

|u| ≤ crα, r ∈ [0, 1]. (3.32)
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We set v = v1 + v2 + v3 where





Lv1 = 0 in Q+,

v1 = 0 on ∂+
P Q+,

v1 = |u| on ∂−P Q+,





Lv2 = 0 in Q+,

v2 = |u| on ∂+
P Q+,

v2 = 0 on ∂−P Q+,

{
Lv3 = −‖f‖L∞(Q+) in Q+,

v3 = 0 on ∂P Q+,

where
∂+

P Q+ = ∂P Q+ ∩ {t > 0}, ∂−P Q+ = ∂P Q+ ∩ {t = 0}.
By the maximum principle we see that ψ ≤ u ≤ v in Q+ and hence we only have to prove that

sup
Q+

r

|v| ≤ crα, (3.33)

for r suitably small.
To continue we first note, using Lemma 3.2 and Corollary 2.4, that

|v1(x, t)| ≤ c

∫

|y|K≤R0

Γ(x, t, y, 0)|y|αKdy ≤ cα‖(x, t)‖α
K ,

for some R0 > 1. For any positive r we consider the function u2(x, t) = v2 (Drx, r2(t + 1)). By
applying Lemma 2.7 with R = 1 and R̃ = 1

r
we see that there exist positive constants C0, C1,

and R0 such that

sup
Q+

r

|v2| = sup
Q−

|u2| ≤ C0 exp
(
−C1R̃

2
)

sup
∂P Q−

R̃
∩{(x,t): t>−1}

|u2| ≤ C0 exp

(
−C1

r2

)
sup

∂+
P Q+

|v2|

whenever r ≤ 1
R0

. Since v2 agrees with |u| on ∂+
P Q+ we can conclude that

sup
Q+

r

|v2| ≤ C0 M1 exp

(
−C1

r2

)
≤ c2r

α, for every r ∈
]
0,

1

R0

]
.

Finally, we have

|v3(x, t)| ≤ ‖f‖L∞(Q+)

t∫

0

∫

RN

Γ(x, t, y, s)dyds ≤ t ‖f‖L∞(Q+) ≤ M2‖(x, t)‖2
K .

Put together these estimates prove that the claim in (3.33) is true. 2

Proof of Lemma 3.6 and 3.7. To prove these two lemmas we can use the same argument as
in the proof of Lemma 3.5. In particular, we now apply Corollary 2.4 with γ = α + 1 and γ = 2
in the proof of Lemma 3.6 and Lemma 3.7 respectively. 2

In order to prove Theorems 1.5, 1.6 and 1.7, we introduce some further notations. For
(x, t) ∈ Ω and r ∈ (0, 1), we introduce the blow-up of a function v ∈ C0(Ω) at (x, t) as

vr,(x,t)(y, s) := v
(
(x, t) ◦ δr(y, s)

)
, (3.34)
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whenever (x, t) ◦ δr(y, s) ∈ Ω, and the corresponding scaled operator,

L(y,s)
r =

m∑
i,j=1

a
r,(x,t)
ij (y, s)∂yiyj

+
m∑

i=1

rb
r,(x,t)
i (y, s)∂yi

+
N∑

i,j=1

bijyi∂yj
− ∂s. (3.35)

Proof of Theorem 1.5 We fix R ∈]0, 1[ such that Q2R ⊆ Q2RC1(x̂, t̂) ⊆ Q for every (x̂, t̂) ∈ Q2R,
where C1 is the constant in (1.19). Let F = Q2R∩{(x, t) : u(x, t) = ψ(x, t)}. If F is empty then
the result is a direct consequence of Theorem 2.1. We aim to prove that there exists a positive
constant ĉ = ĉ(N, λ, α, cα,M1,M2,M3) such that

sup
(x,t),(x̂,t̂)∈QR

(x,t)6=(x̂,t̂)

|u(x, t)− u(x̂, t̂)|
‖(x̂, t̂)−1 ◦ (x, t)‖α

K

≤ ĉ. (3.36)

If (x̂, t̂) ∈ Q2R ∩F , then we apply Lemma 3.5 and we get

|u(x, t)− u(x̂, t̂)| ≤ c‖(x̂, t̂)−1 ◦ (x, t)‖α
K for every (x, t) ∈ Q2RC1(x̂, t̂). (3.37)

The same result clearly holds whenever (x, t) ∈ QR ∩F . To complete the proof of Theorem 1.5
we therefore assume that (x, t), (x̂, t̂) ∈ QR \F . Let r = dK((x, t),F ) denote the distance from
(x, t) to F , as defined in (1.16) and let (x̃, t̃) ∈ F be such that r = dK((x, t), (x̃, t̃)). We divide
the proof into two cases.

Case 1. Assume (x̂, t̂) ∈ QR\Qr/2(x, t). Then dK

(
(x, t), (x̂, t̂)

)
> c0r for some universal positive

constant c0. By the triangle inequality (1.15) we have

dK((x̂, t̂), (x̃, t̃)) ≤ c
(
dK((x, t), (x̃, t̃)) + c dK((x, t), (x̂, t̂))

)
. (3.38)

Recalling that dK((x, t), (x̃, t̃)) ≤ 1
c0

dK((x, t), (x̂, t̂)), we see, using (3.37), that

|u(x, t)− u(x̂, t̂)| ≤ |u(x, t)− u(x̃, t̃)|+ |u(x̂, t̂)− u(x̃, t̃)|
≤ c

(
dK((x, t), (x̃, t̃))α + dK((x̂, t̂), (x̃, t̃))α

) ≤ ĉ‖(x̂, t̂)−1 ◦ (x, t)‖α
K ,

for some positive constant ĉ only depending on c0 and on the constant c in (1.15).

Case 2. Assume (x̂, t̂) ∈ Qr/2(x, t). We set

v(x̂, t̂) = u(x̂, t̂)− u(x̃, t̃).

¿From (3.38) it follows that there exists a positive universal constant c1 such that |v(x̂, t̂)| ≤ c1r
α.

Then the function w(y, s) = vr,(x,t)(y,s)
rα satisfies

|w(y, s)| ≤ c1 and Lr,(x,t)w(y, s) = r2−αf r,(x,t)(y, s) for (y, s) ∈ Q1/2. (3.39)

Hence, by the Schauder estimates in Theorem 2.1, we have

|w(y, s)− w(0, 0)| ≤ ĉ1‖(y, s)‖α
K ,
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for some positive constant ĉ1, that only depends on c1 and on the constants in Theorem 2.1.
Then, for (x̂, t̂) = (x, t) ◦ δr(y, s), we get

|u(x̂, t̂)− u(x, t)| ≤ ĉ1‖(x, t)−1 ◦ (x̂, t̂)‖α
K ,

and this completes the proof of Theorem 1.5. 2

Proof of Theorem 1.6 Let R and F be as in the proof of Theorem 1.5: we still assume that
F 6= ∅ otherwise the thesis is a trivial consequence of Theorem 2.1. In Theorem 1.5 we have
already proved that ‖u‖C0,α

K (QR) ≤ ĉ. We next prove that ‖∂xi
u‖C0,α

K (QR) ≤ ĉ for i = 1, . . . , m.

From Lemma 3.6, we see that ∂xi
u(x, t) = ∂xi

ψ(x, t) for every (x, t) ∈ F . Using the same
notations as in the proof of Theorem 1.5, we consider (x, t) ∈ QR \F and we let (x̃, t̃) ∈ F such
that r := dK((x, t),F ) = dK((x, t), (x̃, t̃)). Furthermore we define

v(x̂, t̂) = u(x̂, t̂)− u(x̃, t̃)−
m∑

i=1

∂xi
u(x̃, t̃)(x̂i − x̃i).

Then, by applying Lemma 3.6 in the cylinder Q2RC1(x̃, t̃), we see that

|v(x̂, t̂)| ≤ c2dK((x̂, t̂), (x̃, t̃))1+α, (x̂, t̂) ∈ Q2R,

for some positive universal constant c2. We next prove that

sup
(x̂,t̂)∈QR\F , (x̃,t̃)∈QR∩F

∣∣∂xi
u(x̂, t̂)− ∂xi

u(x̃, t̃)
∣∣ ≤ ĉ3dK((x̂, t̂), (x̃, t̃))α, i = 1, . . . ,m. (3.40)

Assume dK((x̂, t̂), (x̃, t̃)) ≤ 2r̂. In this case the function

w(y, s) =
vr̂,(x̂,t̂)(y, s)

r̂1+α
(3.41)

satisfies

|w| ≤ c′2 and Lr̂,(x̂,t̂)w = r̂1−α

(
f r̂,(x̂,t̂) +

m∑
i=1

b
r̂,(x̂,t̂)
i ∂xi

ψ(x̃, t̃)

)
in Q1/2. (3.42)

Hence, by the Schauder estimates in Theorem 2.1,

‖∂yi
w‖C0,α

K (QR) ≤ ĉ2, for i = 1, . . . , m. (3.43)

In particular, since

∂yi
w(0, 0) =

∂xi
u(x̂, t̂)− ∂xi

ψ(x̃, t̃)

r̂α

we have ∣∣∂xi
u(x̂, t̂)− ∂xi

u(x̃, t̃)
∣∣ ≤ ĉ2r̂

α ≤ ĉ2dK((x̂, t̂), (x̃, t̃))α. (3.44)

This completes the proof of (3.40) in case dK((x̂, t̂), (x̃, t̃)) ≤ 2r̂. Moreover, since (3.44) holds for
(x̂, t̂) = (x, t) (with r = r̂) we also have

sup
QR

|∂xi
u| ≤ ĉ2 + sup

QR

|∂xi
ψ|, i = 1, . . . , m,
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and hence we have established the appropriate estimate on the supremum of |∂xi
u|. To prove

(3.40) in case dK((x̂, t̂), (x̃, t̃)) ≥ 2r̂ we let (x̄, t̄) ∈ F be such that r̂ := dK((x̂, t̂), F ) =
dK((x̂, t̂), (x̄, t̄)). Then, by the triangular inequality, we see that

dK((x̄, t̄), (x̃, t̃)) ≤ c
(
dK((x̄, t̄), (x̂, t̂)) + dK((x̂, t̂), (x̃, t̃))

) ≤ c3dK((x̂, t̂), (x̃, t̃)).

Hence, using (3.43) it follows that

∣∣∂xi
u(x̂, t̂)− ∂xi

u(x̃, t̃)
∣∣ ≤

∣∣∂xi
u(x̂, t̂)− ∂xi

u(x̄, t̄)
∣∣ +

∣∣∂xi
ψ(x̄, t̄)− ∂xi

ψ(x̃, t̃)
∣∣

≤ ĉ2dK((x̂, t̂), (x̄, t̄))α + ‖ψ‖C1,α
K

dK((x̄, t̄), (x̃, t̃))α

≤ ĉ3dK((x̂, t̂), (x̃, t̃)).

This concludes the proof of (3.40).
We next complete the proof of the Hölder continuity of ∂xi

u. We divide the proof into two
cases.
Case 1. Assume (x̂, t̂) ∈ QR \ Qr/2(x, t). Then by the triangle inequality (3.38) and (3.40) we
have

|∂xi
u(x, t)− ∂xi

u(x̂, t̂)| ≤ |∂xi
u(x, t)− ∂xi

u(x̃, t̃)|+ |∂xi
u(x̂, t̂)− ∂xi

u(x̃, t̃)|
≤ ĉ3

(
dK((x, t), (x̃, t̃))α + dK((x̂, t̂), (x̃, t̃))α

)

≤ ĉ4‖(x̂, t̂)−1 ◦ (x, t)‖α
K .

Case 2. Assume (x̂, t̂) ∈ Qr/2(x, t). We consider the function w in (3.41) with (x̂, t̂) = (x, t).
From (3.43) it follows that

|∂xi
u ((x, t) ◦ δr(y, s))− ∂xi

u(x, t)| = rα |∂yi
w(y, s)− ∂yi

w(0, 0)| ≤ ĉ2 (r‖(y, s)‖K)α .

This concludes the estimate of ‖∂xi
u‖C0,α

K (QR).

We finally prove, whenever (x, t), (x̂, t̂) ∈ QR, that

∣∣∣∣∣u(x, t)− u(x̂, t̂)−
m∑

i=1

∂xi
u(x̂, t̂)(xi − x̂i)

∣∣∣∣∣ ≤ c‖(x, t)−1 ◦ (x̂, t̂)‖1+α
K , (3.45)

for some constant c only dependent on α, the operator L and the data f, g and ψ. We note that
if (x̂, t̂) ∈ F then the inequality in (3.45) follows from Lemma 3.6. Moreover, if (x, t) ∈ F then,
by Lemma 3.6 and (3.40), we have

∣∣∣∣∣u(x, t)− u(x̂, t̂)−
m∑

i=1

∂xi
u(x̂, t̂)(xi − x̂i)

∣∣∣∣∣ ≤
∣∣∣∣∣u(x̂, t̂)− u(x, t)−

m∑
i=1

∂xi
u(x, t)(x̂i − xi)

∣∣∣∣∣

+
m∑

i=1

∣∣∂xi
u(x, t)− ∂xi

u(x̂, t̂)
∣∣ |x̂i − xi| ≤ c‖(x, t)−1 ◦ (x̂, t̂)‖1+α

K .

To complete the proof of (3.45) we can therefore assume that (x, t), (x̂, t̂) ∈ QR \F and we let,
as before, r = dK((x, t),F ) and (x̃, t̃) ∈ F be such that r = dK((x, t), (x̃, t̃)). We divide the

25



proof into two cases.

Case 1. Assume (x̂, t̂) ∈ QR \ Qr/2(x, t). Then by the triangle inequality (3.38) and (3.40) we
have

∣∣∣∣∣u(x, t)− u(x̂, t̂)−
m∑

i=1

∂xi
u(x̂, t̂)(xi − x̂i)

∣∣∣∣∣ ≤
∣∣∣∣∣u(x, t)− u(x̃, t̃)−

m∑
i=1

∂xi
u(x̃, t̃)(xi − x̃i)

∣∣∣∣∣ +

∣∣∣∣∣u(x̃, t̃)− u(x̂, t̂)−
m∑

i=1

∂xi
u(x̂, t̂)(x̃i − x̂i)

∣∣∣∣∣ +
m∑

i=1

∣∣∂xi
u(x̃, t̃)− ∂xi

u(x̂, t̂)
∣∣ |xi − x̃i|

≤ c
(
dK((x, t), (x̃, t̃))1+α + dK((x̂, t̂), (x̃, t̃))1+α + dK((x, t), (x̃, t̃))dK((x̂, t̂), (x̃, t̃))α

)

≤ ĉ5‖(x̂, t̂)−1 ◦ (x, t)‖1+α
K .

Case 2. Assume (x̂, t̂) ∈ Qr/2(x, t). We consider the function w in (3.41) with (x̂, t̂) = (x, t).
Then by (3.42) and by the Schauder estimates in Theorem 2.1,

sup
Q1/2

|Y w| ≤ ‖Y w‖C0,α
K (Q1/2) ≤ ĉ6,

and
|w((y, s) ◦ (0, h))− w(y, s)| ≤ ĉ6|h|.

Therefore, setting δ = r2h, we have
∣∣u (

(x̂, t̂) ◦ (0, δ)
)− u

(
(x̂, t̂)

)∣∣ = r1+α |w((y, s) ◦ (0, h))− w(y, s)| ≤ ĉ6r
1+α|h| ≤ ĉ6|δ| 1+α

2 .

By Remark 1.1 it then follows that ‖u‖C1,α
K (QR) is bounded by a constant only dependent on α,

the operator L and the data f, g and ψ. 2

Proof of Theorem 1.7 We first note, as in the proof of Lemma 3.4, that it is not restrictive
to consider ψ ≡ 0 and hence we assume that

(u, g, f, ψ) ∈ P2(Q,α, cα,M1, M2,M3),

with ψ ≡ 0 and M3 = 0. Let R and F be as in the proof of Theorem 1.5. We intend to prove
that there exists ĉ = ĉ(N, λ, α, cα,M1,M2) < ∞ such that

‖u‖S∞(QR) ≤ ĉ. (3.46)

For any (x̂, t̂) ∈ QR ∩ {(x, t) : u(x, t) > 0}, we introduce

r̂ = r̂(x̂, t̂) = sup{r : Qr(x̂, t̂) ⊂ Q ∩ {(x, t) : u(x, t) > 0}}. (3.47)

As F ∩ ∂P Qr̂(x̂, t̂) 6= ∅ (by the maximum principle) we see that there exists (x̃, t̃) ∈ Q2R ∩F ∩
∂P Qr̂(x̂, t̂) such that Qr̂(x̂, t̂) ⊂ Qr̃(x̃, t̃) for some r̃ > 0 such that r̂ ≤ r̃ ≤ c0r̂, where c0 is a
suitable universal constant. Next using Lemma 3.7, we find

|u(x, t)| ≤ cr2 whenever (x, t) ∈ Qr(x̃, t̃) ∩Q 0 < r < r̃. (3.48)
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We next define, for every (x, t) ∈ Q, v(x, t) = r̂−2ur̂,(x̂,t̂)(x, t). Clearly, v satisfies Lr̂,(x̂,t̂)v = f r̂,(x̂,t̂)

in Q and by using (3.48) we see that

‖v‖L∞(Q) ≤ c, ‖f r̂,(x̂,t̂)‖C0,α
K (Q) ≤ M2.

Finally, using Theorem 2.1 we can therefore conclude that

‖v‖S∞(Q1/2(x̂,t̂)) ≤ ‖v‖C2,α
K (Q1/2(x̂,t̂)) ≤ ĉ.

where the constant ĉ only depends on N, λ, α, cα,M1,M2 and M3. Our claim (3.46) then follows
from the above inequality. This completes the proof of Theorem 1.7. 2

References

[1] E. Barucci, S. Polidoro, and V. Vespri, Some results on partial differential equations
and Asian options, Math. Models Methods Appl. Sci., 11 (2001), pp. 475–497.

[2] A. Bensoussan, On the theory of option pricing, Acta Appl. Math., 2 (1984), pp. 139–158.

[3] A. Bonfiglioli, Taylor formula for homogenous groups and applications, to appear in
Math. Z., (2008).

[4] L. Caffarelli, A. Petrosyan, and H. Shahgholian, Regularity of a free boundary in
parabolic potential theory, J. Amer. Math. Soc., 17 (2004), pp. 827–869 (electronic).

[5] C. Cinti and S. Polidoro, Bounds on short cylinders and uniqueness results for degen-
erate Kolmogorov equations, preprint AMS Acta, (2008).

[6] G. Citti, A. Pascucci, and S. Polidoro, On the regularity of solutions to a nonlinear
ultraparabolic equation arising in mathematical finance, Differential Integral Equations, 14
(2001), pp. 701–738.

[7] M. Di Francesco and A. Pascucci, On the complete model with stochastic volatility
by Hobson and Rogers, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004),
pp. 3327–3338.

[8] , On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math.
Res. Express, (2005), pp. 77–116.

[9] M. Di Francesco, A. Pascucci, and S. Polidoro, The obstacle problem for a class
of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
464 (2008), pp. 155–176.

[10] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaus-
sian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential
Equations, 11 (2006), pp. 1261–1320.

[11] P. Foschi and A. Pascucci, Path dependent volatility, Decis. Econ. Finance, 31 (2008),
pp. 13–32.

27



[12] A. Friedman, Variational principles and free-boundary problems, Robert E. Krieger Pub-
lishing Co. Inc., Malabar, FL, second ed., 1988.

[13] D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatility, Math.
Finance, 8 (1998), pp. 27–48.

[14] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967),
pp. 147–171.

[15] P. Jaillet, D. Lamberton, and B. Lapeyre, Variational inequalities and the pricing
of American options, Acta Appl. Math., 21 (1990), pp. 263–289.

[16] I. Karatzas, On the pricing of American options, Appl. Math. Optim., 17 (1988), pp. 37–
60.

[17] D. Lamberton, American options , in Statistics in finance, Hand, David J. (ed.) and Jacka,
Saul D. (ed.) Arnold Applications of Statistics Series. London: Arnold. x, 340 p., 1998.

[18] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend.
Sem. Mat. Univ. Politec. Torino, 52 (1994), pp. 29–63.

[19] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields. I.
Basic properties, Acta Math., 155 (1985), pp. 103–147.

[20] A. Pascucci, Free boundary and optimal stopping problems for American Asian options,
Finance Stoch., 12 (2008), pp. 21–41.

[21] A. Petrosyan and H. Shahgholian, Parabolic obstacle problems applied to finance, in
Recent developments in nonlinear partial differential equations, vol. 439 of Contemp. Math.,
Amer. Math. Soc., Providence, RI, 2007, pp. 117–133.

[22] P. van Moerbeke, Optimal stopping and free boundary problems, Rocky Mountain J.
Math., 4 (1974), pp. 539–578. Papers arising from a Conference on Stochastic Differential
Equations (Univ. Alberta, Edmonton, Alta., 1972).

[23] , An optimal stopping problem with linear reward, Acta Math., 132 (1974), pp. 111–151.

28


