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Abstract

We provide a common approach for studying several nonparametric
estimators used for smoothing functional data. Linear filters based on
different building assumptions are transformed into kernel functions via
reproducing kernel Hilbert spaces. For each estimator, we identify a den-
sity function or second order kernel, from which a hierarchy of higher
order estimators is derived. These are shown to give excellent representa-
tions for the currently applied symmetric filters. In particular, we derive
equivalent kernels of smoothing splines in Sobolev and polynomial spaces.
The asymmectric wecights arc obtained by adapting the kerncl functions
to the length of the various filters, and a theoretical and empirical com-
parison is made with the classical estimators used in real time analysis.
The former are shown to be superior in terms of signal passing, noise
suppression and speed of convergence to the symmetric filter.

Keywords: polynomial kernel regression, smoothing splines, functional
spaces, spectral properties, revisions.



1. Introduction

The estimation of the nonstationary mean of a time series is of great
interest in most scientific areas where observations are measured with
error, such as economics, finance, biostatistics, health, hydrology, labor
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market Based on the assumption that the time series can be decomposed
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A common approach is to use nonparametric smoothing estimators
which can be finite or infinite in length, under the main assumption that
the signal is a smooth function of time. The main methods discussed
here, based on different criteria of fitting and smoothing, are: (a) density
functions, (b) local polynomial fitting, (c¢) graduation theory, and (d)
smoothing spline regression.

A unified perspective for all of these different nonparametric estimators
is provided by means of the Reproducing Kernel Hilbert Space (RKHS)
methodology.

The main theory and systematic development of reproducing kernels

ilbert snaces was laid out bv Aronszain /10Kn\ who
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showed that the pr opertles of RKHS are intimately bounded up with
ies of nonnegative definite functions. Parzen (1959) was the first
to apply these concepts to time series problems by means of a strictly
parametric approach. From a nonparametric perspective, De Boor and
Lynch (1966) used this methodology in the context of cubic spline ap-
proximation. Later, Kimeldorf and Wahba (1971) proved that minimum
norm interpolations and smoothing problems with quadratic constraints
imply an equivalent Gaussian stochastic process.
Recently, reproducing kernel methods have been prominent as a frame-
work for penalized spline and quantile regression (see e.g. Wahba 1990),
and in the support vector machine literature, as described in Wahba

(1999), Evgeniou, Pontil, and Poggio (2000), Cristianini and Shawe-
Taylor (2000), and Pearce and Wand (2006).
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In this study we show how nonparametric estimators can be trans-
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and from which corresponding hierarchy of estimators are derived. The
density function provides the ”initial weighting shape” from which the
higher order kernels inherit their properties. This kernel representation



enables the comparison of estimators based on different smoothing crite-
ria, and has important consequences in the derivation of the asymmetric
filters which can be applied to the most recent observations. In particular

culdal,

those obtained by means of RKHS are shown to have superior properties
from the view poin i i i i isi
relative to the classical ones.

Section 2 describes the unified approach of RKHS to nonparametric
estimation, and discusses the classical symmetric smoothers and their
kernel representation. Section 3 illustrates, theoretically and empirically,
the behavior at the boundaries of equivalent reproducing kernels, with
particular emphasis on those corresponding to cubic smoothing splines.

Finally, Section 4 gives the conclusions.

2. Nonparametric estimators in RKHS

Let {y,t =1,2,..., N} denote the time series, specified as follows

Assumption 1 The time series {y;,t = 1,2,..., N} can be decomposed
into the sum of a systematic component, called the signal (or nonstation-
ary mean) g(t), plus an erratic component u;, called the noise, such that

ye = g(t) + uy. (1)
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The noise u; is assumed to
generally, to follow a stationary and invertible AutoRegressive Moving
Average (ARMA) process.
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of a family of square Lebesgue integrable random variables, i.e. fT Y (t)2dt <
o0 Hence, the random process {Y (1) hier belongs to the space

is a Hilbert space endowed with the inner product defined by
<Y(.Y(9) >pany= BY OV () = [ YOV () folt) fols)dtds (2

where Y (t),Y (s) € L?(T), and fo is a probability density function which
weights each observation to take into account its position in time. In the

following, L2(T) will be indicated as L2(fg).
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If the time series is without seasonality or seasonally adjusted, the
signal g represents the trend and cyclical components, usually referred to

as trend- mm]p when Jr‘hpv are estimated 1mnﬂv in rather short series, say

12 years or less. The determination of a Sult ble inferential methodology

ooth function, that is g belongs to

ASLmeti n 3 The signal g is

the Sobolev space WgH(T) - LQ(fO).
wh LT is the set of functions g
(k) k= 1,2,...p+ 1, in the sense
(Adams 1975)
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tion of the ime distance j between gy and the neighboring observations

€ L*(fo), whose weak derivatives
of distributions, belong to L2(f;)
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mutually uncorrelated with ;. Therefore the analysis of the signal can
be performed in the space P, C L?(fo) of polynomials of degree at most
p, being p a non-negative integer.

The coefficients ag, a1, ..., a, of the polynomial nonstationary mean
are estimated by projecting the observations in a neighborhood of y; on
the subspace P, or equivalently by minimizing the weighted least square

fitting criterion

n

m
min g — B = [ (ees — 66N foli)dj (4)
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where || - [[p denotes the Pp-norm, and the positive real number m de-

termines the neighborhood of ¢t on which the deviation between y;,; and
G1(j) is taken into account in the L2-sense. For this reason, 2m + 1 is
called the bandwidth. The weighting function fy depends on the distance
between the target point ¢ and each observation in the 2m 4+ 1 points
neighborhood (for m+1 <t < N —m).

The solution for a¢ provides the estimate §;(0), for which a general char-

acterization and explicit representation can be
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RKHS methodology.



Definition 1 Given a Hilbert space 'H, the reproducing kernel R is a
function

R:TxT — R
— R

satisfying the following properties:
1. R(t,.) e H,VteT;
2. <g(.),R(t,.) >=g(t), Vte T and g € H.

Condition 2. is called the repmducmg property: the value of the
RN
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R(t,.). R(t,.) is called the reproducing kernel since

< R(t,.), R(.,s) >= R(t,s). (5)
Corollary 1 The space P, is a reproducing kernel Hilbert space of poly-
mamnanle nm enine dosmnam T +hat de thore cmicte am elesment R (4. ) 2 D
TLOTiauS 0Ty SOTIE aoOTTiaLT _l., vitaGU 1S UIET CLLSLO Wit cLeriverut .ll/p\b, ~) iy § p,
such that

P(t) =< P(.),Ry(t;.) > VteT and VPeP,

The proof easily follows by the fact that any finite dimensional Hilbert

driioin lravrnao 1 (ape for A ila Rarlinet nd MTh
a (01 a 1

anare haa a ranradiicine atai
DJ:}CLL/U as a J.UlJlU Uucl 15 NCT111CT1 \DUU 11Ul cualldy PTLLLLIICU

Agnan 2003).

Theorem 2 Under the Assumptions 1, 2, and 3, the minimization prob-
i i
d tio:
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where Kpi1 is a kernel function of order p+ 1.

Proof. By the projection theorem (see e.g. Priestley 1981), each element
Ut 4 ()f ’rhe Hﬂber‘r space 1.2 (fn\ can be decomposed into the sum of 1"r°.
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where ITp, [y;+;] denotes the projection of the observations g1 5,5 = —m, ..., m,
on P,. By orthogonality, for every j € T’

Gt(0) = g = Ilp,[y:] =< p,[ys+;], Rp(4,0) >=< yi1j, Rp(4,0) > . (8)
Thus, ¢(0) is given by

WO = [ MRG0 ()0 )
= [ v RGO (10)

where R, is the reproducing kernel of the space P,. m

Hence, the estimate §; can be seen as a local weighted average of the
observations, where the weights are derived by a kernel function K of
order p + 1, where p is the degree of the fitted polynomial.

Definition 2 Given p > 2, K, is said to be of order p if

/ Ky(j)dj =1, and / jK,(j)dj =0, (11)
—m —m

fori=1,2,. — 1. In other words, it will reproduce a polynomial trend

of degree p — 1 wzmout distortion.

The followine result is fundamental (Berline + 1003)
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Corollary 3 Kernels of order (p+1), p > 1, can be written as products
of the reproducing kernel Ry(t,.) of the space P, C L?(fo) and a density
foimetinm Fa anith fAmite momente aim 40 order 9 That 2e
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Remark 1 (Christoffel-Darboux Formula) For any sequence (F;)o<i<p
of (p+ 1) orthonormal polynomials in L*(fo),

p
Ry(t,0) = > Pi(t)Pi(0). (13)
=0



Therefore, eq. (12) becomes

P
Kpia(t) = Z Pi(t)F5(0) fo(t). (14)
i=0

Applied to real data, the kernel acts as a locally weighted average or
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G= kyy;, t=1,2,.,N (15)
j=1

where ky; denotes the weights to be applied to the observations y; to
get the estimate g; for each point in time ¢. The weights r;; depend on
the shape of the nonparametric estimator K,.1 and on the value of a
bandwidth parameter b, such that

i
Kpi1 (_bl>
K = (16)

’ Zi]\il Kp+1 (t%) '

For any observed value y;, a weighted average is computed and each
weight is obtained as a function of the distance between the target point
t and the (t+j)’s, j = —m, ..., m, close to the target point that belong to
an interval whose amplitude is established by the bandwidth parameter
b.
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ture for time series s oothmg On e approach is based on least squares
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and inc o mis
and includes: (a) kernel cstimators, (b) local polynomia
graduation theory. A second approach corresponds to smoothing spline
regression. Smoothing splines introduce a roughness penalty term in the
minimization problem (4), searching for an optimal solution between both
fitting and smoothing of the data. This would require an adapted RKHS.
However, we show in our paper how an equivalent kernel representation
for the smoothing spline can be derived in the polynomial space P.

We provide a unified perspective for all of these different nonparametric
estimators, according to which they are transformed into kernel functions
and grouped into hierarchies with the following property: each hierar-
chy is identified by a density fy and contains estimators of order 2, 3,
4,... which are products of orthonormal polynomials with fy. The den-



sity function represents the second order kernel within the hierarchy, and
provides the ”initial weighting shape” from which the higher order kernels

inherit their properties. 'T‘hprpfnrn if fG is thilnn] nﬁnnrdina to a .qnpm'ﬁn

smoothing criteria, each kernel of the hierarchy inherits the optimality
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property at its own order. Kernel functions can
ering smoothers of different order within the same hierarchy as well as
kernels of the same order, but belonging to different hierarchies. Filters
of any length, including the infinite ones, can be derived in the RKHS
framework. Therefore, for every estimator we will identify the density
function fo and the corresponding reproducing kernel.

2. 1. Polynomial kernel regression

Local kernel regression deals with the problem of fitting a polynomial
trend to the observations ¥4, j = —m, ..., m, the value of the fitted func-
tion at 4 = 0 beine taken as the smoothed observation @ rosonting
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sion by a symmetric and nonnegative func
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where the parameter b determines the bandwidth of the weighting func-
tion, since Ko(z) =0, if | z [> 1.

Kernel estimators, local polynomial regression smoothers and filters de-
rived in the graduation theory differ in the degree of the fitted polynomial,
in the shape of the weighting function, and the neighborhood of obser-
vations taken into account. We shall discuss here the most often applied
nonstationary mean smoothers, namely the Gaussian kernel, the Loess
imator developed by Cleveland (1979), and the Henderson filter. To
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derive the Correspondmg kernel hierarchy by means of the RKHS method-
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ology, the density correspon
have to be calculated.

Kernel estimates are obtained by locally fitting linear polynomial trends
where p = 1, weighting the observations in a neighborhood of the target
point ¢ using a probability density function. The Gaussian kernel family

is already well known in the literature as Gram-Charlier hierarchy, stud-



ied among others by Deheveuls (1977), Wand and Schucany (1990), and
Granovsky and Muller (1991). The associated density is the standard

and the standard Hermite polynomials are those orthogonal respect to
this function. Starting from fyg, the third order estimator within the hi-
erarchy, denoted by K3, is easily determined by multiplying the density
with a combination of Hermite polynomials up to degree two

() 1 /3_t2 719\
3G\l) = exp\ 2} \ 5 } (18)

In the literature, methods for building kernels of order higher than two
start from second order smoothers, but no natural link is given between
different order estimators. On the other hand, hierarchies make clear
these relationships: two kernels in the same hierarchy differ by a product

of fo and a linear combination of orthonormal polynomials.
The LOESS estimator, n‘mmnn”v called LOWESS (T nr"nnv Weichted

LS4y

Scatterplot Smoother), is based on nearest neighbor welghts and is applied

in an iterative manner for robustification. It comnsists of locally fitting
polynomials of degree p by means of weighted least squares, where the
weighting function proposed by Cleveland (1979) is the tricube one
- 7N /o \ - PR VPRPN
Kop(t) = (1= [t[7)" 11,1 (1), (19)
where I|_; (%) denotes the indicator function. The second main parame-
ter along with p is the width of a neighborhood or amount of observations
around the estimated point. As it increases, the estimated trend becomes
smoother.
Dagum and Bianconcini (2006) derived the Loess kernel hierarchy based
on the tricube density
r(t) = &7 (1 — 13’1
\ - 1~y
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The third order kernel is given by
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and obtained via multiplication of for by a linear combination of its
orthonormal polynomials up to degree two. These latter are derived using
a determinantal expression based on the moments of the density function
for, as shown in Dagum and Bianconcini (2006).

Henderson’s starting point was the requirement that the filter should
reproduce a cubic polynomial trend without distortion. Henderson proved
that three alternative smoothing criteria give the same weight diagram,
as shown cxplicitly by Kenny and Durbin (1982) and Gray and Thomson
(1996): (1) minimization of the variance of the third differences of the
series defined by the application of the moving average; (2) minimization
of the sum of squares of the third differences of the coefficients of the
moving average formula; (3) fitting a cubic polynomial by weighted least
squares, where the weights are chosen as to minimize the sum of squares
of their third differences, and given by

Korr(j) oc {(m+1)? = 7 H{(m +2)" = H(m +3)° = 7} (22)

Dagum and Bianconcini (2007) showed that the weight diagram of the
Henderson smoother can be well-reproduce by two different density func-
tions and corresponding orthonormal polynomials. These functions are
the exact density fom derived by the penalty function Koy (Bianconcini
2006), and the biweight one

15

fos(t) = I

1— 1221 (). (23)
These authors proved that the two density functions are very close one
another, hence the former can be well-approximated by the latter. One
of the main advantages of this approximation is that the biweight density
function and the corresponding hierarchy do not need to be calculated
any time that the length of the filter changes, as happens for for. Fur-
thermore, it belongs to the well-known Beta distribution family, and the
corresponding orthonormal polynomials are the Jacobi ones, for which
explicit expressions for computation are available. In the following we
consider the biweight Henderson kernel hierarchy, whose third order esti-



mator results
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Kap(t) = —(1 —[t|)2 x ( T - 2142 (24)
S\ 1 \ [ \ 4 4 ) \ 7
Ficures 1(a ( and 1{0) chaw the oain fiimetiong of the clagaieal
6L,LJ.UD J_k(l/}, J_ku/, aliu J_k\_»/ VLIV VY viico 6@11l 1ULlIL LIULLD UL ullU viaooluadl

and RKHS representations of the 13-term Gaussian kernel, Loess and
Henderson symimnetric filters. It is apparent the very close approximation
of the RKHS representations with the classical ones.

Figure 1: Gain functions of the classical and RKHS representations of
symmetric 13-term (a) Gaussian kernel, (b) Loess, and (c¢) Henderson
filters
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son (1924), Schoenberg (1964) showed that a natural smoothing spline
estimator of order p + 1 arises by minimizing the loss function
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r . r \ 2
min ||yt—ﬁt||?,[,§+1 - /T (vt —Qt)zdtJr)\/T (g(pﬂ)(t)) dt (25)

gewi (1)

where || - [|;p+1 denotes the W} lnorm, and the parameter \ regulates

the balance between the goodness of fit and the smoothness of the curve.
As A — 0 the solution approaches an interpolating spline, whereas as



A — o0, the solution tends to the least squares line.
Eq. (25) equivalently defines the boundary value problem

V7

AgEFR(E) + g(t) = ()7 VtET (26)
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which has a unique solution if the corresponding homogenous system only
admits the null solution (see e.g. Gyorfy, Kohler, Krzyzak and Walk
2002). In particular, it is determined by the unique Green’s function

G\ (t, s), such that S func
/G)\ t, S dS =< Gy(t,9),y(s ) >L2(T) (27)

The derivation of G(t, s) corresponding to a smoothing spline of order
p+1 requires the solution of a (2p+2) x (2p+2) system of linear equations
for each value of A. A simplification is provided by studying G(¢, s)

as the reproducing kernel R, (¢,s) of the Sobolev space W} +1( T),
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into the family of Beppo-Levi spaces described in Thomas-Agnan (1991).
The corresponding reproducing kernel is translation invariant, and can
be expressed in terms of R;;1,1 as follows

'n—l-1 )\(t) — = 'n—l-LL ( \ (28)
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Agnan 1991).

Proposition 4
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Proposition 4 describes an equivalent kernel hierarchy for smoothing splines
afordorm 11 mn—1 9 T+ iq idontificd bhv +theo atandard T anlace
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R 1, obtained as second order estimator by selecting p = 1. Higher order
kernels are derived by multiplying 21 by a combination of trigonomet-
ric polynomials which take into account for the roughness penalty term



in (25). The third order smoother Rs3; is familiar to the nonparamet-

ric statisticians since it is the asymptotically equivalent kernel to cubic
smoothing spline derived by Silverman (1984). When the neighborhood

of points for the estimation is small, as in most socioeconomic cases, eq.

(9Q) givea a nanr annravitadi of +tha ~lg al 1Thie amoothine anlin
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The classical cubic smoothing spline is often represented by the influen-

A\ /YXT oo AN

tial matriz A(A) (Wahba 1990, Green and Silverman 1994), which relates
the estimated values g to the observations y as follows

g=ANy (30)

where §' = (g1, G2, .-, gn), and ¥’ = (y1, 92, ..., yn ). Each g; is a weighted
linear combination of all the observed values y;, with weights given by the
elements of the ¢-th row of A(A). In this study, we assume A as given, and
approximate each cubic spline predictor with time invariant linear filters.
This enables us to analyze the properties of the estimators looking at the

corresponding transfer functions.

To obtain a reproducing kernel representation of smoothing splines
coherent with that derived for local kernel regression estimators, we have
to find a density function fo according to which higher order kernels are

oht od via multinlication of £+ with corroenondin rtho al nolvno-
O0Talnilta via liuivipuvauivil Ui g W J.UJ.J. L/ULJ.L/DIJUJ.J.UJ.J.J.B orinonorman J:}Ul)’ LI

mials. This den81ty has to be taken into account for the regularized term
A f (np"‘l(wﬂzdo/ in eq. ( 5), in view of deriving the spline estimates as

1
solutlon of the weighted least squares minimization problem (4).
Starting from the results of Proposition 4, we first consider the standard
Laplace density multiplied by the corresponding orthonormal polynomi-
als. To evaluate the goodness of this approximation we calculate the
Euclidean distance A between the classical cubic smoothing spline CSS,
and the Correspondmg thlrd order kernel within each hierarchy K, both

~ 1 S £ A~

~F < pe
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[m 1/2

Aweights = \J Z | kess(d) — ki (4) |2 Again = \J Z | Gess(w) — G (w) |2,

j=—m

where w denotes the frequency in cycles per unit of time and G(w) is the
gain of the filter. For illustrative purposes, we compute these measures
for filter spans generally applied to monthly time series, that is 9, 13 and
23 terms, even if filter of any length can be considered. Table 1 shows
that the third order standard Laplace kernel presents large discrepancies
for each span indicating that asymptotically it does not approach to the

CSS. On the other hand, the equivalent kernel representation derived in



the Sobolev space R3 1 provides the worst approximation for the shortest

filter length, whereas it has a better performance as the span increases.
It follows that, given the poor performance of the standard Laplace esti-

mators, another density function need to be identified.
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F5m, 2m,, distribution famlly, 1ntr0duced by Prentice (1976) that presents
the standard Normal (mj, mo — 0) and Laplace (m1, mg — 00) as limit-
ing cases. A lot of densities belongs to this class of distributions, among
other the logistic (m; = mg = 1), and the exponential (m; # 0,ms — 0.
We concentrate on the former given its strong connection with the stan-
dard Laplace and other widely applied density functions, as recently
shown by Lin and Hu (2007). These authors modified and extended pre-
vious work by Mudholkar and George (1978), providing a characterization
of the logistic density in terms of sample median and Laplace distribu-
tion, as well as in terms of the smallest order statistics and exponential
density (qpp also Tnnes 2006); Fu_rt.hprmnrp) George and Ojo (1QRO\ and

It is given by
Kar(t hz/qt (21 2085152\ 32
() = goect? (5t) (5~ ) (32)

where sech is the hyperbolic secant functlon This estimator reall
approxi mates the CSS. wi

proximates the CSS, with a

closely

<

for all the spans.
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directly all the hierarchies we have derived. Figure 2 (a) shows the density
functions or second order kernels within each family, whereas Figure 2 (b)
illustrates the third order smoothers. For space reasons, we consider the
13-term filters, since it is the most often applied length in trend-cycle
estimation of monthly time series, but similar results are derived for 9-



Table 1: 2Z-norm distances between classical and reproducing kernel
smoothing splines

Filter length
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These hierarchies reproduce and describe several temporal dynamics
by estimating polynomial trends of different degrees, that solve several
minimization problem. This is shown in Figure 3, where we illustrate the
gain functions of 13-term third order kernels.

Loess and Henderson kernels present similar properties in terms of trend-
cycle estimation. They eliminate a large amount of noise and pass all the
power associated to the signal frequency band, 0 < w < 0.06. However,

they do not suppress power at the frequency w = 0.10, corresponding to
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Figure 3: Gain functions of symmetric 13-term third order kernels
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3. Boundary behavior

The kernels derived by means of the RKHS methodology provide a
new and unified way to represent nonparametric estimators used cur-
rnnﬂv The third order kernels in the tricube, hiwpi(rh‘r and ]n istic hier-

1CLL 2 11C WCLIICLS 110 LA Uy 1110

archies are equivalent kernels of the lassmal Loess of degree 2 (L ess 2)
Henderson filter, and cubic smoothing spline, respec
isons can be made for the third order Gaussian estimator which is already
a kernel function, and for which no counterpart exists in the literature.

The reproducing kernel representation has important consequences in
the derivation of the corresponding asymmetric smoothers, which are of
crucial importance in current analysis where the aim is to obtain the
estimate of the nonstationary mean for the most recent observations. In
the RKHS approach, the asymmetric smoothers are derived by adapting
the kernel functions to the length of the last m asymmetric filters, such
that

K (4)
Ktj = q ~—= 7 j: —m,...,q
i=—m K3 (3)
where j denotes the distance to the target point ¢t (t = N —m+1,...,N),
b is the bandwidth parameter selected in view of ensuring a symmetric

filter of length 2m + 1, and m + ¢ + 1 is the asymmetric filter length.



These boundary kernels only satisfy the condition f_qm Ks(t)dt = 1, mean-
ing that the estimator will reproduce without distortion only a constant
on the asymmetric support. Given the small number of points generally
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rade-off
between fitting and smoothing. Our main object is to analyze the good-
ness of the reproducing kernel representations versus the classical last
point asymmetric filters.

Cleveland (1979) showed that, in the middle of the series, Loess acts
as a symmetric moving average with window length 2m + 1. At the end
of the series, its window length remains 2m + 1, rather than decreasing
to m+1 as in the case of the most widely applied asymmetric concurrent
trend-cycle estimators. As discussed by Gray and Thomson (1996b), this
implies a heavier than expected smoothing at the ends of the series respect
to the middle, and represents a drawback, particularly for economic time
ries where turning points are important to identify. As shown in Figure
signal passing and noise suppression
the classical one. This implies smaller filter revisions as new data are
added to the series. The phase shifts for both filters (Figure 4 (b)) are
smaller than one month in the signal frequency band usually defined as
0 <w <£0.055.

Figure 4: (a) Gain and (b) phaseshift functions of the asymmetric (end
point) weights of the third order tricube kernel and the classical Loess 2
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Similar conclusions can be derived for the last point asymmetric Hen-
derson filter, as developed by Musgrave (1964). They are based on the

minimization of the mean squared revision between the final estimates

(obtained by the apphcatlon of the symmetrlc filter) and the prelimi-

to the constraint that the sum of the weights is equal to one (see e.g.

1

™ il 1009\ mi i 1 : 11 il FRS | 1 c o1 :
Doherty 1992). The assumption made is that at the end of the series,
the seasonally adjusted values follow a linear trend-cycle plus a purely
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The asymmetric filters for the natural cubic smoothing splines are
obtained by adding additional constraints, ensuring that the function is
of degree 1 beyond the boundary knots. In this study, the asymmetric
classical splines are obtained by fixing the A parameter to have a 2m + 1-
term symmetric filter, and then selecting the last m rows of the influential
matrix A(X). We illustrate the results for the last point asymmetric
weights corresponding to a 23 term symmetric filter because the spline
gives very poor results for short ]pncrthq such as 13 or less. Pia11r9 ﬁ(ﬂ.\

shows that the asymmetric kernel exhibits a gain function with better

properties of signal passing and noise suppression, without implying larger
phase shifts. These latter are smaller than one month for both filters (see

T 71NN
Figure 6(b)).



Figure 6: Gain Functions of the Asymmetric (End Point) Weights of the
Third Order Spline Kernel and the CSS Smoother
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3. 1. Empirical evaluation

This section examines how the third order logistic kernel performs on
real data in comparison with the classical cubic smoothing spline. For
empirical applications of the Loess and Henderson kernels, we refer the
reader to Dagum and Bianconcini (2006, 2007).

We apply the last point filters to a set of 50 time series taken from the
Hydman’s time series library (http://www-personal.buseco.monash.edu.au/ hyn-
dman/TSDL/). These series are related to different fields (finance, labor
market, production, sales, transports, meteorology, hydrology, physics,
and health), and are all seasonally adjusted. The periods selected vary

to sufﬁmently cover the various lengths published for these series.
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of the data. For each series, we apply the Generalized Cross Validation
(GCV) criteria (Craven and Wahba 1979) to estimate the A parameter,
and consequently the length of the filters to be applied by considering the
number of non-null elements in a central row of the matrix A(X). The
kernel estimator of the same length is then calculated. The smoothing
parameter A is known as hyperparameter in the Bayesian terminology,
and it has the interpretation of a noise to signal ratio: the larger the A
the smoother the output. In our sample, A ranges from a minimum of
0.013, at which corresponds a filter length equal to 7 terms, to a maxi-
mum of 15, which corresponds to a 43-term smoother. This enables us
to analyze the pattern of the two estimators on series characterized by



different degrees of variability.
The comparison is based on the relative filter revisions between the final
symmetric filter F' and the last point asymmetric filter P, that is,

D) Ft - Pt . 14 O AT /0N
Ri=— t=12,..]1 (33)
F
. . MSE(RK)
For each series, we calculate the ratio 37o (RO between the Mean Square
Trrar (MQARY) ~Ff +ha idiong correanondine o the +hird order laciatie
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The results illustrated in Figure 7 indicate that the ratio is always
smaller than one, showing that the logistic kernel last point predictor
introduces smaller revisions than the classical one. This implies that the
kernel estimates will be more reliable and efficient than the ones obtained
by the application of the classical cubic spline. In particular, in the 38%
of the sample the ratio is less than 0.7 and in general it is never greater
than 0.895.

4. Concluding remarks

We have introduced a kernel representation of several nonstation-
ary mean predictors by means of the Reproducing Kernel Hilbert Space
(RKHS) methodology. This approach encompasses, from a probabilistic
point of view, several nonparametric linear estimators developed in the
literature for smoothing functional data. In particular, we have shown
how an equivalent kernel representation for the smoothing spline can be
derived in the polynomial space P,. Hence, we provide a unified perspec-

tive, according to which every nonparametric estlmator can be trans-
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Comparisons can be performed between smoothers of different order
within the same hierarchy as well as kernel of the same order but belong-
ing to different hierarchies. The asymmetric weights of the kernels are
derived by adapting the third order functions to the length of the last
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Figure T7:
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asymmetric filters. We showed the performance for the classical cubic
smoothing splines and the corresponding reproducing kernel. Applied to
a set of 50 real series, we computed a measure of revision for the last
point filters. They show how the revisions are systematically smaller for
+tho Lkornel ranragentation than for the claagieal c1ibhic anline Theae reqiiliag
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conform to their respective gain functions.
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