
A general matrix representation

for non-uniform B-spline subdivision

with boundary control

G. Casciola a, L. Romani a

aDepartment of Mathematics, University of Bologna,
P.zza di Porta San Donato 5, 40127 Bologna, Italy

Abstract

Boundary conditions are still an open question in the field of approximating subdi-
vision since the problem of determining a general construction of the endpoint rules
we need when subdividing a B-spline curve/surface with Bézier end conditions has
not been solved yet.

This consideration prompted us to present an efficient algorithm for the conversion
between B-spline bases defined over different knot-partitions, which turns out to be
extremely useful for computing a general formulation of the subdivision matrix
generating an endpoint-interpolating B-spline of arbitrary degree.

Key words: Spline-to-spline conversion; Cox-de Boor recurrence; Knot-insertion;
Non-uniform B-spline subdivision; Bézier end conditions.

1 Introduction

One of the most outstanding problems in approximating subdivision is that
the boundaries of the subdivision surfaces are not confined to be on the boun-
daries defined by the original control mesh. In the literature this problem has
been solved either by extending the boundary vertices of the control mesh or
by applying different subdivision rules to the boundary edges and vertices.
However these strategies do not always guarantee that the boundary curves
defined by the boundary edges are the boundary curves of the limiting subdi-
vision surface. This may cause problems when we have to join two subdivision
surfaces with intermediate control meshes, since two connected surfaces may
have to overlap at any finite step of subdivision.
Aim of this paper is therefore giving a general formulation of a non-uniform
spline-based subdivision scheme with Bézier end conditions.

18 January 2007

For any scheme of this type, the subdivision matrix describing the refine-
ment process can be derived from the corresponding spline-to-spline (bs2bs,
for short) conversion matrix. Such a matrix can be constructed by an easy-to-
use algorithm based on the Cox-de Boor recursive formula (de Boor, 1972).
The same algorithm can be also exploited in knot-insertion processes as an
interesting alternative to existing methods. In fact, it is both computationally
cheap (the bs2bs matrix construction of a degree-d spline requires only O(d2)
floating point operations, like it happens with Mørken’s formulation (Mørken,
1989)) of the generalized Oslo algorithm (Lyche et al., 1993)) and conceptually
straightforward.

2 A recursive matrix formula for converting non-uniform B-splines
on a single knot interval

Knot insertion processes are special cases of the more general problem of
transforming a spline between B-spline representations on two arbitrary knot
vectors. Obviously, the only splines that can be transformed exactly in this
way are those that lie in both spaces. The key to the settlement of this problem
lies therefore in finding the coefficients of the non-uniform degree-d B-splines
providing the representation of a polynomial piece of degree d into the new
degree-d B-spline basis. The solution proposed here is based on the Cox-de
Boor recursive formula (de Boor, 1972). More precisely, we derive a very ge-
neral recursively generated coefficient matrix that allows us to represent an
arbitrary degree polynomial in a B-spline basis over a new B-spline basis of
the same degree.
Let tk = {tk+j−d, · · · , tk, tk+1, · · · , tk+j+1} be an arbitrary knot-partition
defining the degree-d, d ≥ 1, non-uniform B-spline basis function Bk+j−d,d,tk

(x)
and let u` = {u`+i−d, · · · , u`, u`+1, · · · , u`+i+1} be the arbitrary knot-
partition defining the degree-d, d ≥ 1, non-uniform B-spline basis function
B`+i−d,d,u`

(x). Then, for any j = 0, · · · , d, let Bk+j−d,d,tk
(x) denote the d + 1

basis functions overlapping the single-span interval [tk, tk+1), for an arbitrary
k ∈ {d + 1, · · · ,]tk − d− 1} (see Fig.1).
Analogously, let B`+i−d,d,u`

(x), i = 0, · · · , d, denote the d + 1 basis func-
tions overlapping the single-span interval [u`, u`+1), for an arbitrary ` ∈ {d +
1, · · · ,]u` − d− 1}.
The key idea behind the polynomial transformation described above is to ex-
press each Bk+j−d,d,tk

(x), j = 0, · · · , d as a linear combination of the degree-d
B-splines B`+i−d,d,u`

(x), i = 0, · · · , d, by introducing for any j = 0, · · · , d a set

of coefficients
{
stk,u`,d

i,j

}
i=0,···,d

such that for any x ∈ R

Bk+j−d,d,tk
(x) =

d∑
i=0

stk,u`,d
i,j B`+i−d,d,u`

(x) ∀j = 0, · · · , d. (1)

2

t t t t t t t t... ...k−3 k−2 k−1 k k+1 k+2 k+3 k+4

k−3,2,tk
B B B Bk−2,2, k,2,t tk k k+1,2, ktB

ktk−1,2,

Fig. 1. Non-uniform quadratic B-splines Bk+j−2,2,tk
(x) for j = −1, 0, 1, 2, 3.

Then, introducing vectors of basis functions, we can rewrite the transformation
in (1) in a convenient matrix form as

[Bk−d,d,tk
(x) · · · Bk,d,tk

(x)] = [B`−d,d,u`
(x) · · · B`,d,u`

(x)] Stk,u`,d. (2)

In this way Stk,u`,d =
{
stk,u`,d

i,j

}
i,j=0,···,d

is the (d + 1) × (d + 1) matrix by

which we can multiply the column vector of control points of a given degree-d
polynomial in the basis {Bk+j−d,d,tk

(x)}j=0,...,d, to obtain the control points of
the same polynomial expressed in the new spline basis {B`+i−d,d,u`

(x)}i=0,...,d.
We now focus our attention on the determination of the entries of Stk,u`,d for
arbitrarily large d by recurrence over the polynomial degree. Since the non-
uniform degree-d B-splines Bk+j−d,d,tk

(x) with d ≥ 1 turn out to be defined
by the Cox-de Boor recursion formula (de Boor, 1972)

Bk+j−d,d,tk
(x) =

x−tk+j−d

tk+j−tk+j−d
Bk+j−d,d−1,tk

(x) +
tk+j+1−x

tk+j+1−tk+j+1−d
Bk+j+1−d,d−1,tk

(x) ,

(3)

by replacing in (3) the new B-spline representation given in (1) for the d + 1
B-spline basis functions over the interval [u`, u`+1), we obtain the relation

d∑
i=0

stk,u`,d
i,j B`+i−d,d,u`

(x) = (4)

d−1∑
i=0

[
x− tk+j−d

tk+j − tk+j−d

stk,u`,d−1
i,j−1 +

tk+j+1 − x

tk+j+1 − tk+j+1−d

stk,u`,d−1
i,j

]
B`+i+1−d,d−1,u`

(x).

Now, by substituting in the left hand member of (4) the Cox-de Boor recur-
rence relation on B`+i−d,d,u`

(x),

B`+i−d,d,u`
(x) = x−u`+i−d

u`+i−u`+i−d
B`+i−d,d−1,u`

(x) + u`+i+1−x
u`+i+1−u`+i+1−d

B`+i+1−d,d−1,u`
(x) ,

(5)

3

and by taking into account that

d∑
i=0

stk,u`,d
i,j

x− u`+i−d

u`+i − u`+i−d

B`+i−d,d−1,u`
(x) =

d−1∑
i=0

stk,u`,d
i+1,j

x− u`+i+1−d

u`+i+1 − u`+i+1−d

B`+i+1−d,d−1,u`
(x) (6)

and

d∑
i=0

stk,u`,d
i,j

u`+i+1 − x

u`+i+1 − u`+i+1−d

B`+i+1−d,d−1,u`
(x) =

d−1∑
i=0

stk,u`,d
i,j

u`+i+1 − x

u`+i+1 − u`+i+1−d

B`+i+1−d,d−1,u`
(x), (7)

we get that (4) can be reduced to

d−1∑
i=0

[
stk,u`,d

i+1,j

x− u`+i+1−d

u`+i+1 − u`+i+1−d

+ stk,u`,d
i,j

u`+i+1 − x

u`+i+1 − u`+i+1−d

]
B`+i+1−d,d−1,u`

(x) =

d−1∑
i=0

[
x− tk+j−d

tk+j − tk+j−d

stk,u`,d−1
i,j−1 +

tk+j+1 − x

tk+j+1 − tk+j+1−d

stk,u`,d−1
i,j

]
B`+i+1−d,d−1,u`

(x).

(8)

In this way, the following expression on the coefficients necessarily follows:

stk,u`,d
i+1,j

x− u`+i+1−d

u`+i+1 − u`+i+1−d

+ stk,u`,d
i,j

u`+i+1 − x

u`+i+1 − u`+i+1−d

= (9)

x− tk+j−d

tk+j − tk+j−d

stk,u`,d−1
i,j−1 +

tk+j+1 − x

tk+j+1 − tk+j+1−d

stk,u`,d−1
i,j

i = 0, ..., d− 1,
j = 0, ..., d.

Now evaluating (9) at x = u`+i+1−d, we get

stk,u`,d
i,j =

u`+i+1−d − tk+j−d

tk+j − tk+j−d

stk,u`,d−1
i,j−1 +

tk+j+1 − u`+i+1−d

tk+j+1 − tk+j+1−d

stk,u`,d−1
i,j (10)

i = 0, · · · , d− 1 j = 0, · · · , d,

while evaluating (9) at x = u`+i+1, it follows that

stk,u`,d
i+1,j =

u`+i+1 − tk+j−d

tk+j − tk+j−d

stk,u`,d−1
i,j−1 +

tk+j+1 − u`+i+1

tk+j+1 − tk+j+1−d

stk,u`,d−1
i,j (11)

i = 0, · · · , d− 1 j = 0, · · · , d.

4

Equations (10) and (11) can be unified by the following formula which, for any
h = 1, ..., d, allows us to generate the i−th row of the polynomial conversion
matrix Stk,u`,h (i ∈ {0, . . . , h}) starting from the initial value stk,u`,0

0,0 = 1, in
the following way:

stk,u`,h
i,j =

u− tk+j−h

tk+j − tk+j−n

stk,u`,h−1
i,j−1 +

tk+j+1 − u

tk+j+1 − tk+j+1−n

stk,u`,h−1
i,j (12)

where

u =

 u`+i+1−h if i ≤ h− 1

u`+h if i ≥ h

for any j = 0, . . . , h.

Directly from equation (12) we can work out the following computational
scheme

stk,u`,0
0,0 → stk,u`,1

0,0:1 → stk,u`,2
0,0:2 → · · · → stk,u`,d

0,0:d

↘

stk,u`,1
1,0:1 → stk,u`,2

1,0:2 → · · · → stk,u`,d
1,0:d

↘
. . . · · · → · · ·

↘

stk,u`,d−1
d−1,0:d−1 → stk,u`,d

d−1,0:d

↘

stk,u`,d
d,0:d

(13)

where the symbol stk,u`,h
i,0:h stand for the i−th row of Stk,u`,h, the arrow →

indicates the application of formula (10) and ↘ of (11). Such a scheme allows
us to compute the polynomial conversion matrix Stk,u`,d and all the sequence
of matrices Stk,u`,h for any h = 1, . . . , d.
Alternative arrangements of such an algorithm can be derived by selecting
different paths in (13), that is by considering together equations (10) and
(11) in different manners. For example, we observe that by solving the system
(10)-(11) subtracting the latter from the first, the column oriented procedure

stk,u`,d
i,j = stk,u`,d

i−1,j + (u`+i+1 − u`+i+1−d)

 stk,u`,d−1
i−1,j−1

tk+j − tk+j−d

−
stk,u`,d−1

i−1,j

tk+j+1 − tk+j+1−d

i = 1, · · · , d j = 0, · · · d (14)

5

where the starting values stk,u`,d
0,j ∀j = 0, ..., d are computed through (10) with

i = 0, can be worked out.
Common to the above procedures is that the computation of all the entries
in the Stk,u`,d matrix requires O(d3) floating point operations. In order to get
a formula competitive with the cheapest knot-insertion algorithm known in
the literature (Barry and Goldman, 1993), we have therefore to work out a
recurrence that allows us to fill the Stk,u`,d matrix with only O(d2) floating
point operations. To this aim, we solve the system given by equations (10)
and (11)

stk,u`,d

i,j =
u`+i+1−d−tk+j−d

tk+j−tk+j−d
stk,u`,d−1

i,j−1 +
tk+j+1−u`+i+1−d

tk+j+1−tk+j+1−d
stk,u`,d−1

i,j i = 0, · · · , d− 1

stk,u`,d
i,j =

u`+i−tk+j−d

tk+j−tk+j−d
stk,u`,d−1

i−1,j−1 +
tk+j+1−u`+i

tk+j+1−tk+j+1−d
stk,u`,d−1

i−1,j i = 1, · · · , d

(15)

in the following way

u`+i−(d−1) − tk+j−(d−1)−1

tk+j − tk+j−(d−1)−1

stk,u`,d−1
i,j−1 +

tk+j+1 − u`+i−(d−1)

tk+j+1 − tk+j−(d−1)

stk,u`,d−1
i,j =

u`+i − tk+j−(d−1)−1

tk+j − tk+j−(d−1)−1

stk,u`,d−1
i−1,j−1 +

tk+j+1 − u`+i

tk+j+1 − tk+j−(d−1)

stk,u`,d−1
i−1,j i = 1, · · · , d− 1

thus obtaining

stk,u`,d
i,j =

1

tk+j+1 − u`+i−d

{
(tk+j+1 − u`+i) stk,u`,d

i−1,j +
tk+j+1 − tk+j−d

tk+j − tk+j−d−1

∗ (16)

∗
[
(u`+i − tk+j−d−1) stk,u`,d

i−1,j−1 − (u`+i−d − tk+j−d−1) stk,u`,d
i,j−1

]} i = 1, · · · , d
j = 0, · · · , d

where the necessary starting values are computed through (10) with i = 0.
This time, directly from equation (16) we can work out the following compu-

6

tational scheme

stk,u`,0
0,0 → stk,u`,1

0,0:1 → stk,u`,2
0,0:2 → · · · → stk,u`,d

0,0:d

↓ ↓ ↓

stk,u`,1
1,0:1 stk,u`,2

1,0:2 · · · stk,u`,d
1,0:d

↓ ↓

stk,u`,2
2,0:2 · · · stk,u`,d

2,0:d

↓
. . .

...

↓

stk,u`,d
d,0:d

(17)

where the symbol stk,u`,d
i,0:d stand for the i−th row of Stk,u`,d, the arrow →

indicates the application of formula (10) and ↓ of (16). Thus, through this last
procedure one can fill the conversion matrix row by row (top to bottom and
left to right), with only O(d2) floating point operations.

2.1 MATLAB implementation

To efficiently generate the polynomial conversion matrix Stk,u`,d entirely, we
have implemented the MATLAB function bs2bs which takes as input the
degree d, the knot-partitions tk and u` with]tk and]u` knots respectively,
the indexes k ∈ [d + 1,]tk − d− 1] and ` ∈ [d + 1,]u` − d− 1] identifying the
non-trivial intervals [tk, tk+1) and [u`, u`+1) such that [tk, tk+1)∩ [u`, u`+1) 6= ∅.

function S=bs2bs(d,t,u,k,l)
S=zeros(d+1);
S(1,:)=bs2bs_first_row(d,t,u,k,l);
for ir=1:d

S(ir+1,:)=bs2bs_i_row(d,t,u,k,l,ir,S(ir,:));
end

In such a function, the first row of the polynomial conversion matrix Stk,u`,d is
generated by the module bs2bs_first_row (which implements equation (10)
with i = 0), while the i−th row, i ∈ {1, ..., d}, is computed by bs2bs_i_row

(which implements equation (16) for i = 1, ..., d).
Their codes are included below.

7

function S=bs2bs_first_row(d,t,u,k,l)
S=eye(1,d+1);
for h=1:d

beta_2=0.0;
uu=u(l+1-h);
for j=h:-1:1

d1=uu-t(k+j-h);
d2=t(k+j)-uu;
beta_1=S(j)/(d2+d1);
S(j+1)=d1*beta_1+beta_2;
beta_2=d2*beta_1;

end
S(1)=beta_2;

end

function Si=bs2bs_i_row(d,t,u,k,l,ir,S)
Si(1)=S(1)*(t(k+1)-u(l+ir))/(t(k+1)-u(l+ir-d));
for j=1:d

den=t(k+j+1)-u(l+ir-d);
fact=(t(k+j+1)-t(k+j-d))/(t(k+j)-t(k+j-d-1));
Si(j+1)=(fact*(S(j)*(u(l+ir)-t(k+j-d-1))-Si(j)*

(u(l+ir-d)-t(k+j-d-1)))+S(j+1)(t(k+j+1)-u(l+ir)))/den;
end

An application example

This kind of polynomial conversion matrix turns out to be extremely useful
when we have to resize a circle arc. For example, by simply typing the com-
mand S=bs2bs(2,t,u,3,3), where t = [0 0 0 1 1 1] and u = [−1 −1 −1 2 2 2],
we can compute the 3×3 matrix

S =

 4 −4 1
−2 5 −2
1 −4 4

that allows us to expand the quadratic arc defined over the interval [0,1] to
the interval [-1,2] (see Fig.2).

8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Example of circle arc resizing.

3 A general formulation of the spline-to-spline conversion matrix
on an arbitrary sequence of knot intervals

To compute the piecewise polynomial representation of a complete spline curve
defined on the knot-partition t =

⋃
k tk, over the new knot-partition u =

⋃
` u`,

we have to build the (]u− d− 1)× (]t− d− 1) rectangular matrix St,u,d by
composing all the polynomial conversion matrices Stk,u`,d in the following way:

St,u,d
`−d:`,k−d:k = Stk,u`,d. (18)

The MATLAB function bs2bs_global has been devised to solve this problem:
it takes as input the degree d, the knot-partitions t and u with]t and]u knots
respectively, to compute the whole spline conversion matrix St,u,d.

function S=bs2bs_global(d,t,u)
nt=length(t);
nu=length(u);
S=zeros(nu-d-1,nt-d-1);
[t_mult,t_single,nt_s]=knot_mult(d,t);
[u_mult,u_single,nu_s]=knot_mult(d,u);
st=d+1;
su=d+1;
row=1;
col=1;

9

Sl=bs2bs(d,t,u,st,su);
S(row:d+row,col:d+col)=Sl;
t_single(nt+1)=t(nt-d);
i=1;
for j=1:nu_s

if (u_single(j) == t_single(i))
st=st+t_mult(i);
col=col+t_mult(i);
i=i+1;

end
su=su+u_mult(j);
row=row+u_mult(j);
Sl=bs2bs(d,t,u,st,su);
S(row:d+row,col:d+col)=Sl;

end

In the procedure bs2bs_global, an auxiliary function knot_mult is called,
which, given an extended knot-partition, returns the break points with their
multiplicities (t_single and t_mult, respectively) as well as the cardinality
of t_single (nt_s). We include this straightforward code for completeness.

function [t_mult,t_single,nt_s]=knot_mult(d,t)
nt=length(t);
nt_s=0;
m=1;
for i=d+2:nt-d-1

if (t(i) < t(i+1))
nt_s=nt_s+1;
t_mult(nt_s)=m;
t_single(nt_s)=t(i);
m=1;

else
m=m+1;

end
end
t_single(nt_s+1)=t(nt-d);
t_mult(nt_s+1)=0;

3.1 The subdivision matrix of endpoint-interpolating B-splines

The subdivision matrix of a non-uniform degree-d B-spline interpolating the
endpoints can thus be generated through the function bs2bs_global(d,t,u)
where t and u are the knot partitions associated with the coarse and the
refined B-spline representations, respectively, characterized by d + 1 equal

10

starting values due to the Bézier end conditions.

Example 1. Subdivision rules of a binary cubic B-spline subdivision scheme
with Bézier end conditions.

By the command S=bs2bs_global(3,t,u), where t = [0 0 0 0 2 4 6 8 10 12]
and u = [0 0 0 0 1 2 3 4 5 6 7 8 9], we can compute the 9×6 matrix

S =
1

16

16 0 0 0 0 0
8 8 0 0 0 0
0 12 4 0 0 0
0 3 11 2 0 0
0 0 8 8 0 0
0 0 2 12 2 0
0 0 0 8 8 0
0 0 0 2 12 2
0 0 0 0 8 8

that allows us to define the binary refinement rules we need when subdividing
a cubic B-spline with Bézier end conditions.

Example 2. Subdivision rules of a binary quartic B-spline subdivision scheme
with Bézier end conditions.

By the command S=bs2bs_global(4,t,u), where t = [0 0 0 0 0 2 4 6 8 10
12 14] and u = [0 0 0 0 0 1 2 3 4 5 6 7 8 9 10], we can compute the 10×7
matrix

S =
1

48

48 0 0 0 0 0 0
24 24 0 0 0 0 0
0 36 12 0 0 0 0
0 9 33 6 0 0 0
0 0 20 25 3 0 0
0 0 4 29 15 0 0
0 0 0 15 30 3 0
0 0 0 3 30 15 0
0 0 0 0 15 30 3
0 0 0 0 3 30 15

that allows us to define the binary refinement rules we need when subdividing
a quartic B-spline with Bézier end conditions.

Example 3. Subdivision rules of a ternary cubic B-spline subdivision scheme
with Bézier end conditions.

11

By the command S=bs2bs_global(3,t,u), where t = [0 0 0 0 3 6 9 12 15 18]
and u = [0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12], we can compute the 12×6 matrix

S =
1

54

54 0 0 0 0 0
36 18 0 0 0 0
12 36 6 0 0 0
0 30 22 2 0 0
0 12 34 8 0 0
0 3 31 20 0 0
0 0 20 32 2 0
0 0 8 38 8 0
0 0 2 32 20 0
0 0 0 20 32 2
0 0 0 8 38 8
0 0 0 2 32 20

that allows us to define the ternary refinement rules we need when subdividing
a cubic B-spline with Bézier end conditions.

References

Barry, P.J., Goldman, R.N., 1993. Knot insertion algorithms. In: Goldman, R.N.,
Lyche, T. (Eds.), Knot-insertion and deletion algorithms for B-spline curves and
surfaces. SIAM, Philadelphia, 89-133.

de Boor, C., 1972. On calculating with B-splines. J. Approximation Theory 6, 50-62.

Lyche, T., Mørken, K., Strøm, K., 1993. Conversion between B-spline bases using the
generalized Oslo algorithm. In: Goldman, R., N., Lyche, T. (Eds.), Knot-insertion
and deletion algorithms for B-spline curves and surfaces. SIAM, Philadelphia, 135-
153.

Mørken, K., 1989. Contribution to the theory and applications of splines. Dr. Scient.
Thesis, Institutt for Informatikk, University of Oslo, Oslo, Norway.

12

