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Piazza di Porta S. Donato 5
40126 Bologna (Italy)

email: pascucci@dm.unibo.it
Web: http://www.dm.unibo.it/∼pascucci/

February 2009
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1 American options in discrete time

1.1 Discrete markets

We briefly recall the main results for market models in discrete time: we refer for instance to [38] and
[32] for a comprehensive description and complete proofs. We consider a discrete market model, built
on a probability space (Ω,F , P ) with Ω having a finite number of elements and where we assume that
P ({ω}) > 0 for every ω ∈ Ω. Given a time interval1 [0, T ], we suppose that all transactions take place
only at fixed dates

0 = t0 < t1 < · · · < tN = T,

and that the market consists of d+ 1 securities: one bond B with dynamics

{
B0 = 1,

Bn = Bn−1(1 + r), n = 1, . . . ,N,
(1.1)

where r is the risk-free rate, and d stocks S = (S1, . . . , Sd) with dynamics

{
Si0 ∈ R+,

Sin = Sin−1

(
1 + µin

)
, n = 1, . . . ,N,

(1.2)

where µin is a real random variable that represents the yield rate of the i-th asset over the n-th period
[tn−1, tn]. We set

µn = (µ1
n, . . . , µ

d
n)

and define the filtration {
F0 = {∅,Ω},
Fn = σ (µk | k ≤ n) , n = 1, . . . ,N.

As usual Fn represents the amount of information available in the market at time tn. We assume that
µn is independent of Fn−1 for any n = 1, . . . ,N , and FN = F .

Definition 1.1. A portfolio (or strategy) is a stochastic process in R
d+1

(α, β) = (α1
n, . . . , α

d
n, βn)n=1,...,N .

In the preceding definition αin (respectively βn) represents the amount of the asset Si (resp. of the
bond) held in the portfolio during the n-th period, i.e. from tn−1 to tn. Therefore we define the value
of the strategy (α, β) at time tn as

V (α,β)
n := αnSn + βnBn =

d∑

i=1

αinS
i
n + βnBn, n = 1, . . . ,N, (1.3)

and
V

(α,β)
0 = α1S0 + β1B0.

Usually, when (α, β) is fixed, we omit the superscript and simply write V instead of V (α,β).

Definition 1.2. We denote by A the family of the strategies (α, β) that are

1Let us recall that the unit of time is the year: to fix the ideas, t = 0 denotes today’s date and T the expiration date
of a derivative.
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i) self-financing, that is the relation

Vn−1 = αnSn−1 + βnBn−1 (1.4)

holds for every n = 1, . . . , N ;

ii) predictable, that is (αn, βn) is Fn−1-measurable for every n = 1, . . . ,N .

Note that if (α, β) ∈ A then V (α,β) is a real stochastic process adapted to the filtration (Fn) and we
have

Vn − Vn−1 = αn (Sn − Sn−1) + βn (Bn −Bn−1) ,

that is, the variation of the value of the portfolio only depends on the variation of the prices of the
assets. The discounted price of the i-th asset is the defined by

S̃in =
Sin
Bn

, n = 0, . . . ,N.

Note that, since B0 = 1, then S̃i0 = Si0. The discounted value of the strategy (α, β) is

Ṽn = αnS̃n + βn.

Then the self-financing condition reads Ṽn−1 = αnS̃n−1 + βn or equivalently

Ṽn = Ṽn−1 + αn(S̃n − S̃n−1). (1.5)

In particular we remark that a strategy is identified (recursively by (1.5)) by the initial wealth V0 and
the predictable process α.

1.2 Martingale measure and arbitrage price

Definition 1.3. Given a discrete market (B,S) on the probability space (Ω,F , P ), a martingale measure
is a probability Q on (Ω,F) such that:

i) Q is equivalent to P ;

ii) for every n = 1, . . . , N we have

EQ
[
S̃n | Fn−1

]
= S̃n−1, (1.6)

i.e S̃ is a Q-martingale.

By the martingale property, we have

S0 = S̃0 = EQ
[
S̃n

]
(1.7)

that has an important economic interpretation: it says that the expected value of the future normalized
prices is equal to the current price. Therefore (1.7) is a risk-neutral pricing formula: the expected value
of S̃n with respect to the measure Q corresponds to the value given by an investor who reckons that
the current market price of the asset is correct (and so he/she is neither disposed nor averse to buy the
asset).

A key property of any strategy (α, β) ∈ A is that its discounted value is a Q-martingale:

————————————————————————————————————————–
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Proposition 1.4. If Q is a martingale measure and (α, β) ∈ A, then Ṽ (α,β) is a Q-martingale: in
particular the following risk-neutral pricing formula holds:

V
(α,β)
0 = EQ

[
Ṽ (α,β)
n

]
, n ≤ N. (1.8)

Proof. Taking the expectation conditional to Fn−1 in the second formula in (1.5), we get

EQ
[
Ṽn | Fn−1

]
= Ṽn−1 + EQ

[
αn(S̃n − S̃n−1) | Fn−1

]
=

(since α is predictable)

= Ṽn−1 + αnE
Q
[
S̃n − S̃n−1 | Fn−1

]
= Ṽn−1

since S̃ is a Q-martingale. 2

Definition 1.5. A strategy (α, β) ∈ A is called an arbitrage if its value V is such that

i) V0 = 0;

ii) VN ≥ 0;

iii) P (VN > 0) > 0.

A discrete market is arbitrage-free if and only if there exist no arbitrage strategies.

Definition 1.6. A European-style derivative (or simply, a claim) is a random variable X on (Ω,F , P ).

X is called replicable if (α, β) ∈ A exists such that X = V
(α,β)
N : in that case (α, β) is called replicating

strategy. A market is complete if any European derivative is replicable.

Theorem 1.7. [Fundamental theorem of asset pricing]

i) A discrete market is arbitrage-free if and only if there exists at least one martingale measure.

ii) In an arbitrage-free market, X is replicable if and only if EQ [X] is constant, independent of
the martingale measure Q. In that case, for every replicating strategy (α, β) ∈ A and for every
martingale measure Q, it holds that

EQ
[
X̃ | Fn

]
= Ṽ (α,β)

n =: H̃n, n = 0, . . . ,N. (1.9)

The process H̃ is called discounted arbitrage price (or risk-neutral price) of X.

iii) An arbitrage-free market is complete if and only if there exists a unique martingale measure Q.

Note that, by (1.9), the arbitrage price of an option is independent of the martingale measure Q and
of the replicating strategy (α, β). Actually one can show that, in an arbitrage free market, a claim X
is replicable if and only if EQ [X] is independent of the martingale measure Q.

————————————————————————————————————————–
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1.3 Binomial model

In the binomial model there is only one risky asset defined by

Sn = Sn−1(1 + µn), n = 1, . . . ,N

where µn are i.i.d. random variables such that

1 + µn =

{
u with probability p,

d with probability 1 − p,

for p ∈]0, 1[ and 0 < d < u. In other terms, the law of µn is a linear combination of Dirac deltas:
pδu−1 + (1 − p)δd−1. Consequently we have

P (Sn = ukdn−kS0) =

(
n
k

)
pk(1 − p)n−k, 0 ≤ k ≤ n ≤ N.

The binomial model is the simplest example of a discrete market that is arbitrage-free and complete.

Theorem 1.8. In the binomial model the condition

d < 1 + r < u, (1.10)

is equivalent to the existence and uniqueness of the martingale measure Q, under which µ1, . . . , µN are
i.i.d. random variables and

Q(1 + µn = u) = q :=
1 + r − d

u− d
. (1.11)

1.4 American options

From now on we assume that the market S is arbitrage-free, that is there exists at least a martingale
measure Q.

An American derivative is characterized by the possibility of early exercise at every time tn, 0 ≤
n ≤ N , during the life span of the contract. To describe an American derivative it is therefore necessary
to specify the premium (i.e. the payoff) that has to be paid to the owner in case he/she exercises the
option at time tn with n ≤ N . For example, in the case of an American Call option with underlying
asset S and strike K, the payoff at time tn is Xn = (Sn −K)+.

Definition 1.9. An American derivative is a non-negative discrete stochastic process X = (Xn), adapted
to the filtration (Fn).

Since the choice of the best time to exercise an American option must depend only on the information
available at that moment, the following definition of exercise strategy seems natural.

Definition 1.10. A stopping time

ν : Ω −→ {0, 1, . . . ,N},

i.e. a random variable such that

{ν = n} ∈ Fn, n = 0, . . . ,N, (1.12)

is called exercise strategy (or exercise time). We denote the set of all exercise strategies by T0.

Intuitively, given a trajectory ω ∈ Ω of the underlying market, the natural number ν(ω) represents
the moment when one decides to exercise the American derivative. The condition (1.12) merely means
that the decision to exercise at time n depends on Fn, i.e. on the information available at time tn.

————————————————————————————————————————–
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Definition 1.11. Given an American option X and an exercise time ν ∈ T0, the random variable Xν

defined by
(Xν) (ω) = Xν(ω)(ω), ω ∈ Ω,

is called payoff of X relative to the strategy ν. An exercise time ν0 is called optimal in Q if

EQ
[
X̃ν0

]
= sup

ν∈T0

EQ
[
X̃ν

]
. (1.13)

We observe that the random variable X̃ν can be interpreted as the discounted payoff of an European

option: so EQ
[
X̃ν

]
gives the risk-neutral price of the option (this depending of course on the martingale

measure Q), when the option is exercised following the strategy ν.
In an arbitrage-free and complete market, the price of a European option with payoff XN is by

definition equal to the value of a replicating strategy: in particular, the discounted arbitrage price is
a Q-martingale. Pricing an American option is a slightly more delicate matter since it is clear that
it is generally not possible to determine a replicating strategy i.e. a strategy (α, β) ∈ A such that

V
(α,β)
n = Xn for any n: this is due to the fact that Ṽ (α,β) is a Q-martingale while X̃ is simply an

adapted process.
Let us begin by observing that, by arbitrage arguments, it is possible to find upper and lower bounds

for an initial price of X that will be denoted by H0. We set

A+
X = {(α, β) ∈ A | V (α,β)

n ≥ Xn, n = 0, . . . ,N},

the family of those strategies in A that super-replicate X. To avoid introducing arbitrage opportunities,

the price H0 must be less or equal to the initial value V
(α,β)
0 for every (α, β) ∈ A+

X and so

H0 ≤ inf
(α,β)∈A+

X

V
(α,β)
0 .

On the other hand we put

A−
X = {(α, β) ∈ A | there exists ν ∈ T0 s.t. Xν ≥ V (α,β)

ν }.

Intuitively, an element (α, β) of A−
X represents a strategy on which a short position is assumed to borrow

money and buy the American option, knowing that there exists an exercise strategy ν yielding a payoff

Xν greater or equal to V
(α,β)
ν , corresponding to the amount necessary to close the short position in

the strategy (α, β). The initial price H0 of X must necessarily be greater or equal to V
(α,β)
0 for every

(α, β) ∈ A−
X : if this were not true, one could easily build an arbitrage strategy. Then we have

sup
(α,β)∈A−

X

V
(α,β)
0 ≤ H0.

Therefore we determined an interval which the initial price H0 must belong to, in order to avoid
introducing arbitrage opportunities. Let us show now that risk-neutral pricing relative to an optimal
exercise strategy respects such conditions.

Proposition 1.12. In an arbitrage-free market, for every martingale measure Q it holds that

sup
(α,β)∈A−

X

V
(α,β)
0 ≤ sup

ν∈T0

EQ
[
X̃ν

]
≤ inf

(α,β)∈A+
X

V
(α,β)
0 . (1.14)

————————————————————————————————————————–
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Proof. For any (α, β) ∈ A−
X , there exists ν0 ∈ T0 such that V

(α,β)
ν0 ≤ Xν0 . Further, Ṽ (α,β) is a Q-

martingale and so by the Optional sampling theorem, we have

V
(α,β)
0 = Ṽ

(α,β)
0 = EQ

[
Ṽ (α,β)
ν0

]
≤ EQ

[
X̃ν0

]
≤ sup

ν∈T0

EQ
[
X̃ν

]
,

hence we obtain the first inequality in (1.14), by the arbitrariness of (α, β) ∈ A−
X .

On the other hand, if (α, β) ∈ A+
X then, again by the Optional sampling theorem, for every ν ∈ T0

we have
V

(α,β)
0 = EQ

[
Ṽ (α,β)
ν

]
≥ EQ

[
X̃ν

]
,

hence we get the second inequality in (1.14), by the arbitrariness of (α, β) ∈ A+
X and ν ∈ T0. 2

The definition of arbitrage price of an American option is based on the Doob’s decomposition theorem
which we first present.

Theorem 1.13. [Doob’s decomposition theorem]
Every discrete adapted process H can be decomposed in

H = M +A (1.15)

where M is a martingale such that M0 = H0 and A is predictable and such that A0 = 0. Moreover H
is a super-martingale if and only if A is decreasing.

Proof. We set M0 = H0, A0 = 0 and define recursively

Mn+1 = Mn +Hn+1 − E [Hn+1 | Fn]

= Hn+1 +

n∑

k=0

(Hk − E [Hk+1 | Fk]) ,
(1.16)

and

An+1 = An − (Hn − E [Hn+1 | Fn])

= −
n∑

k=0

(Hk − E [Hk+1 | Fk]) .
(1.17)

The thesis follows straightforwardly. 2

Under the hypothesis that the market is arbitrage-free and complete, the following theorem contains
the definition of the initial arbitrage price of an American derivative X.

Theorem 1.14. Suppose that there exists a unique martingale measure Q. Then there exists (α, β) ∈
A+
X ∩ A−

X and so we have:

i) V
(α,β)
n ≥ Xn, n = 0, . . . , N ;

ii) there exists ν0 ∈ T0 such that Xν0 = V
(α,β)
ν0 .

Consequently

EQ
[
X̃ν0

]
= V

(α,β)
0 = sup

ν∈T0

EQ
[
X̃ν

]
, (1.18)

defines the initial arbitrage price of X.

Proof. The proof is constructive and is made up of two main steps:

————————————————————————————————————————–
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1) construct the smallest super-martingale H̃ greater than X̃ , usually called Snell’s envelope of the
process X̃ ;

2) use Doob’s decomposition theorem to isolate the martingale part of the process H̃ and by this
determine a strategy (α, β) ∈ A+

X ∩ A−
X .

Then we can we conclude the proof of the theorem by showing that H̃0 = Ṽ
(α,β)
0 = V

(α,β)
0 and (1.18)

holds.
First step: we define iteratively the stochastic process H̃ by putting

H̃n =

{
X̃N , n = N,

max
{
X̃n, E

Q
[
H̃n+1 | Fn

]}
, n = 0, . . . ,N − 1.

(1.19)

Below we will see that the process H̃ defines the (discounted) arbitrage price of X. It is indeed an
intuitive notion of price that gives rise to the definition above: in fact the option X is worth HN = XN

at maturity and, at time tN−1, is worth

◦ XN−1 if one decides to exercise it;

◦ the arbitrage price of a European derivative with payoff HN and maturity N , in case one decides
not to exercise it, and we know that this equals 1

1+rE
Q [HN | FN−1].

Then it seems reasonable to define

HN−1 = max

{
XN−1,

1

1 + r
EQ [HN | FN−1]

}
,

and by repeating this argument backwards, we get definition (1.19).
Evidently, H̃ is an adapted non-negative stochastic process; further, for every n, we have

H̃n ≥ EQ
[
H̃n+1 | Fn

]
, (1.20)

that is H̃ is a Q-super-martingale. This means that H̃ “decreases in mean” and intuitively this cor-
responds to the fact that, moving forward in time, the advantage of the possibility of early exercise
decreases.

Actually H̃ is the smallest super-martingale that dominates X̃: in fact, if M is a Q-super-martingale
such that Mn ≥ X̃n then

Mn ≥ max{X̃n, E
Q [Mn+1 | Fn]}

for every n. Since
MN ≥ X̃N = H̃N ,

the thesis follows by induction. We recall that, in probability theory, the smallest super-martingale that
dominates a generic adapted process X̃ is usually called Snell’s envelope of X̃ .

Second step: we now prove that there exists (α, β) ∈ A+
X ∩A−

X . Since H̃ is a Q-super-martingale, by
Doob’s decomposition Theorem 1.13 we get

H̃ = M +A

where M is a Q-martingale such that M0 = H̃0 and A is a predictable decreasing process with null
initial value.

————————————————————————————————————————–
Andrea Pascucci A short course on American options



1.4 American options 9

By hypothesis the market is complete and so there exists a strategy (α, β) ∈ A that replicates the
European derivative MN in the sense that ṼN (α, β) = MN . Further, since M and Ṽ := Ṽ (α,β) are
Q-martingales with the same terminal value, they are equal:

Ṽn = EQ
[
ṼN | Fn

]
= EQ [MN | Fn] = Mn. (1.21)

Consequently, (α, β) ∈ A+
X since An ≤ 0. Moreover we have

V0 = M0 = H̃0,

so that (α, β) is a super-replicating strategy for X that has an initial cost equal to the price of the
option, as defined in (1.18).

In order to verify that (α, β) ∈ A−
X , we put:

ν0(ω) = min{n | H̃n(ω) = X̃n(ω)}, ω ∈ Ω. (1.22)

Since
{ν0 = n} = {H̃0 > X̃0} ∩ · · · ∩ {H̃n−1 > X̃n−1} ∩ {H̃n = X̃n} ∈ Fn

for every n, then ν0 is an stopping time, i.e. an exercise strategy. Further, ν0 is the first time that

X̃n ≥ EQ
[
H̃n+1 | Fn

]
and so intuitively it represents the first time that it is profitable to exercise the

option.
According to Doob’s decomposition Theorem (see in particular formula (1.16)), for n = 1, . . . ,N ,

we have

Mn = H̃n +

n−1∑

k=0

(
H̃k − EQ

[
H̃k+1 | Fk

])
,

and consequently
Mν0 = H̃ν0 (1.23)

since
H̃k = EQ

[
H̃k+1 | Fk

]
over {k < ν0}.

Then, by (1.21), we have
Ṽν0 = Mν0 =

(by (1.23))
= H̃ν0 =

(by the definition of ν0)
= X̃ν0, (1.24)

and this proves that (α, β) ∈ A−
X .

Conclusion: let us show now that ν0 is an optimal exercise time. Since (α, β) ∈ A+
X ∩ A−

X , by (1.14)
in Proposition 1.12 we get

V0 = sup
ν∈T0

EQ
[
X̃ν

]
.

On the other hand, by (1.24) and the Optional sampling theorem, it holds that

V0 = EQ
[
X̃ν0

]

and this concludes the proof. 2

————————————————————————————————————————–
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Remark 1.15. The preceding theorem is significant from both a theoretical and practical point of view:
on one hand it proves that there exists a unique initial price of X that does not give rise to arbitrage
opportunities. On the other hand it provides us with a constructive way to determine the main features
of X:

i) the arbitrage price by the recursive formula (1.19);

ii) a hedging strategy (α, β) ∈ A+
X ∩ A−

X ;

iii) an optimal exercise strategy ν0.

2

Formula (1.19) readily gives a recursive algorithm for determining the arbitrage price of an American
derivative: this is a particular case of a much more general methodology to solve stochastic optimal
control problems, that is called dynamic programming. As an example, in Paragraph 1.8 we will use
the dynamic programming to study the problem of pricing in an incomplete market.

Remark 1.16. Fixed n ≤ N , we denote by

Tn = {ν ∈ T0 | ν ≥ n}

the family of exercise strategies of an American derivative bought at time tn. A strategy νn ∈ Tn is
optimal if it holds that

EQ
[
X̃νn | Fn

]
= sup

ν∈Tn
EQ

[
X̃ν | Fn

]
.

If H̃ is the process in (1.19), we denote the first time that it is profitable to exercise the American
derivative bought at time n by

νn(ω) = min{k ≥ n | H̃k(ω) = X̃k(ω)}, ω ∈ Ω.

We can extend Theorem 1.14 and prove that νn is the first optimal exercise time following n. To be
more precise it holds that

H̃n = EQ
[
X̃νn | Fn

]
= sup

ν∈Tn
EQ

[
X̃ν | Fn

]
. (1.25)

The process H̃ in (1.19) is called discounted arbitrage price of X. 2

1.5 Asymptotics: the free-boundary problem

In the binomial model we now fix T , set δ = T
N and let N go to infinity: a well-known consistency

result states that, under natural assumptions, the binomial model approximates the standard Black &
Scholes model. More precisely, let us assume the following specific form of the parameters of the model:

u = eσ
√
δ, d = e−σ

√
δ, 1 + r = er0δ, (1.26)

for some positive constants σ and r0.
Given a function f = f(t, S) defined on [0, T ] × R+ (here f plays the role of the arbitrage price of

an American option with payoff ϕ(t, S)), the recursive pricing formula (1.19) becomes

{
f(T, S) = ϕ(T, S),

f(t, S) = max
{
ϕ(t, S), 1

1+r (qf(t+ δ, uS) + (1 − q)f(t+ δ, dS))
}
.

(1.27)

————————————————————————————————————————–
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If we set
f = f(t, S), fu = f(t+ δ, uS), fd = f(t+ δ, dS),

and define the discrete operator

Jδf(t, S) =
qfu + (1 − q)fd

1 + r
− f (1.28)

the second equation in (1.27) is equivalent to

max {Jδf(t, S), ϕ(t, S) − f(t, S)} = 0.

By using the standard Taylor expansion, it is not difficult to prove the following

Proposition 1.17. For every f ∈ C1,2([0, T ] × R+) we have

lim
δ→0+

Jδf(t, S)

δ
= LBSf(t, S),

for (t, S) ∈ ]0, T [×R+, where

LBSf(t, S) := ∂tf(t, S) +
σ2S2

2
∂SSf(t, S) + r0S∂Sf(t, S) − r0f(t, S) (1.29)

is the Black&Scholes differential operator.

Proof. We first note that by (1.26)

q =
1 + %− d

u− d
=

1

2
+

1

2σ

(
r − σ2

2

)√
δ + o(

√
δ) (1.30)

as δ → 0. By the second order Taylor expansion we get (by simplicity, we simply write f instead of
f(t, S))

fu − f = ∂tfδ + ∂SfS(u− 1) +
1

2
∂SSfS

2(u− 1)2 + o(δ) + o((u− 1)2) =

(by (1.26))
= σS∂Sf

√
δ + Lfδ + o(δ), δ → 0, (1.31)

where

Lf = ∂tf +
σ2

2
S∂Sf +

σ2S2

2
∂SSf,

and analogously
fd − f = −σS∂Sf

√
δ + Lfδ + o(δ), δ → 0. (1.32)

Then we have

Jδf(t, S) = −(1 + %)f + qfu + (1 − q)fd

= −rδf + q(fu − f − (fd − f)) + (fd − f) + o(δ) =

(by (1.31) and (1.32))
= −δrf + δLf +

√
δ(2q − 1)σS∂Sf + o(δ) =

(by (1.30))

= −δrf + δLf +
√
δ

((
r − σ2

2

)√
δ + o(

√
δ)

)
σS∂Sf + o(δ)

= δLBSf + o(δ),

as δ → 0 and this concludes the proof. 2
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1.6 Binomial algorithm for American options 12

By Proposition 1.17, the asymptotic version, as δ → 0, of the discrete problem (1.27) is given by
{

max {LBSf, ϕ− f} = 0, in [0, T [×R+,

f(T, S) = ϕ(T, S), S ∈ R+.
(1.33)

The convergence of binomial to Black&Scholes prices of American options was proved in [31], [2] and
[33].

Problem (1.33) is called a free boundary problem: it contains a differential inequality that, from
the theoretical point of view, is much more complex to study than the usual parabolic Cauchy problem
arising in the analysis of European options. Existence and uniqueness of the solution to problem (1.33)
will be proved in the next chapters.

1.6 Binomial algorithm for American options

In this paragraph we consider an American options with payoff of the form Xn = ϕ(n, Sn): this
includes the American put as a particular case. We use the notation

Sn,k := ukdn−kS0, n = 0, . . . ,N and k = 0, . . . , n, (1.34)

and denote the payoff by
Xn,k = ϕ(n, Sn,k).

The recursive definition (1.19) gives the following iterative formula for the arbitrage price H = (Hn,k)
of the derivative:

{
HN,k = XN,k, 0 ≤ k ≤ N,

Hn−1,k = max
{
Xn−1,k,

1
1+r (qHn,k+1 + (1 − q)Hn,k)

}
, 0 ≤ k ≤ n− 1,

(1.35)

for n = 1, . . . , N and q = 1+r−d
u−d .

Example 1.17. Let us consider an American Put option with strike K = 20 and price of the underlying
asset S0 = 20 in a three-period binomial model with parameters

u = 1.1, d = 0.9, r = 0.05.

The martingale measure is defined by

q =
1 + r − d

u− d
= 0.75.

By using the algorithm (1.35), at every step we compare the risk-neutral price to the value in case of
early exercise:

Hn−1,k = max

{
Xn−1,k,

1

1 + r
(qHn,k+1 + (1 − q)Hn,k)

}

= max

{
Xn−1,k,

1

1.05
(0.75 ∗Hn,k+1 + 0.25 ∗Hn,k)

}
.

In Figure 1 we put the price of the underlying asset and of the derivative respectively inside and outside
of the circle. The prices in boldface correspond to early exercise. For example, at the beginning we have
that X0 = 0 while

EQ
[
H̃1

]
=

1

1.05
(0.75 ∗ 0.12 + 0.25 ∗ 2) = 0.56

and so it is not profitable to exercise immediately. 2
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1.6 Binomial algorithm for American options 13

Figure 1 Arbitrage prices of an American Put option with strike 20 and S0 = 20 in a three-period
binomial model with parameters u = 1.1, d = 0.9 and r = 0.05

20

H0 = 0.56
22

H1,1 = 0.12

18

H1,0 = 2

24.2

H2,2 = 0

19.8

H2,1 = 0.52

16.2

H2,0 = 3.8

26.62

H3,3 = 0

21.78

H3,2 = 0

17.82

H3,1 = 2.18

14.58

H3,0 = 5.42

Let us now dwell on the hedging problem, first recalling how it can be solved in the European case.

Remark 1.18. We use notation (1.34) and denote by Hn,k the price, at the node Sn,k of the binomial

tree, of an European option with payoff HN = ϕ(SN ). The replication condition V
(α,β)
n = Hn is

equivalent to {
αnuSn−1,k + βnBn = Hn,k+1,

αndSn−1,k + βnBn = Hn,k.

The solution of the system gives the replicating strategy for the n-th period [tn−1, tn]:

αn,k =
Hn,k+1 −Hn,k

(u− d)Sn−1,k
, βn,k =

uHn,k − dHn,k+1

(u− d)(1 + r)n
. (1.36)

Coming back to the American case, theoretically the proof of Theorem 1.14 is constructive (since
it is based upon Doob’s decomposition) and identifies the hedging strategy with the replicating stra-
tegy of the European derivative MN . However, MN is a path-dependent derivative even if X is path-
independent. So the computation of the replicating strategy by the binomial algorithm can be burden-
some, since MN depends on the whole path of the underlying asset and not just on its final value. As
a matter of fact, this approach is not used in practice.

Instead, it is worthwhile noting that the process Mn depends on the path of the underlying asset
just because it has to keep track of the possible early exercises: but in the moment that the derivative
is exercised, hedging is no longer necessary and the problem gets definitely easier.

To fix the ideas, in the preceding example we consider the time n = 1 and so we have two cases:

• if S1 = S1,1 = 22 then
0.12 = H1,1 > X1,1 = 0,

so the option is not exercised, M2 = H̃2 and we can use the usual replication argument (cf.
formulas (1.36) below) to determine the strategy

α2 =
H2,2 −H2,1

(u− d)S1,1
, β2 =

uH2,1 − dH2,2

(u− d)(1 + r)
,

that, with an initial wealth H1,1, hedges the American derivative at the subsequent time;
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• if otherwise S1 = dS1,0 = 18, then

1.28 =
1

1 + r
EQ [H2] =

qH2,1 + (1 − q)H2,0

1 + r
< X1,0 = 2,

and so the option is exercised. Therefore the position is closed and it is not necessary to determine
the hedging strategy2.

By using standard binomial formulas (1.36) we determine the whole hedging strategy. In Figure 2 we
depict the strategy of the preceding example.

Figure 2 Hedging strategy for an American Put option with strike 20 and S0 = 20 in a three-period
binomial model with parameters u = 1.1, d = 0.9 and r = 0.05

20

α = −0.47 22

α = −0.12

18

24.2

α = 0

19.8

α = −0.55

16.2

26.62

21.78

17.82

14.58

1.7 Trinomial model

In the trinomial model we assume that there exists only one risky asset whose dynamics is given by

Sn = Sn−1(1 + µn), n = 1, . . . ,N

where µn are i.i.d. random variables such that

1 + µn =





u with probability p1,

m with probability p2,

d with probability p3 = 1 − p1 − p2,

(1.37)

for p1, p2 ∈]0, 1[ and 0 < d < m < u.
The trinomial model is the simplest example of an arbitrage-free and incomplete market. Trying to

determine a martingale measure by imposing condition (1.6) we infer

Sn−1(1 + r) = EQ [Sn−1 (1 + µn) | Fn−1] , (1.38)

2Anyway H1,1 = 1.28 is enough to super-replicate H2,1 and H2,0 at the subsequent time. In general, the hedging
formulas (1.36) provide a self-financing strategy that super-replicates the payoff of the American option.
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1.8 Pricing in an incomplete market by Dynamic Programming 15

and by setting, for n = 1, . . . , N,

qn1 = Q(1 + µn = u | Fn−1), qn2 = Q(1 + µn = m | Fn−1), qn3 = Q(1 + µn = d | Fn−1),

we get the linear system {
uqn1 +mqn2 + dqn3 = 1 + r,

qn1 + qn2 + qn3 = 1,
(1.39)

that generally admits infinite solutions, thus proving the non uniqueness of the martingale measure. On
the other hand, the condition VN = X of replicability for a claim X in the last period, gives the linear
system (dual of (1.39)) 




αNuSN−1 + βNBN = Xu,

αNmSN−1 + βNBN = Xm,

αNdSN−1 + βNBN = Xd,

that generally does not admit a solution (αN , βN ) thus proving the incompleteness of the market.

1.8 Pricing in an incomplete market by Dynamic Programming

We consider a standard trinomial market model, with N = 2, where the dynamics of the risky asset is
given by

S0 = 1, Sn = Sn−1(1 + µn), n = 1, 2

where µn are i.i.d. random variables defined on a probability space (Ω,F , P ), such that

P (µn = −1/2) = P (µn = 0) = P (µn = 1) =
1

3
, n = 1, 2.

We assume that the short rate is null, r = 0.
We consider the problem of pricing and hedging an European Call option with payoff

ϕ(S2) = (S2 − 1)+ ,

by minimization of the “shortfall” risk criterion. More precisely, by means of the Dynamic Programming
(DP) algorithm, we aim to determine a self-financing strategy with non-negative value V (that is, such
that Vn ≥ 0 for any n) that minimizes

EP [U(V2, S2)] ,

where
U(V, S) = (ϕ(S) − V )+

is the shortfall risk function.

We first represent the binomial tree with the prices of the underlying asset. By (1.5), the value V
of a self-financing strategy (α, β) satisfies

Vn = Vn−1 + αnSn−1µn = Vn−1 +





αnSn−1,

0,

−αnSn−1

2 .

(1.40)

Then Vn ≥ 0 for any n if and only if V0 ≥ 0 and

−Vn−1

Sn−1
≤ αn ≤ 2Vn−1

Sn−1
, n = 1, 2.

In the general framework of a model with N periods, the DP algorithm consists of two steps:

————————————————————————————————————————–
Andrea Pascucci A short course on American options



1.8 Pricing in an incomplete market by Dynamic Programming 16

1

2

1

1/2

4

Call

3

2 1

1 0

1/2 0

1/4 0

i) we compute
RN−1 (V, S) := min

α∈[−V
S
, 2V
S ]
EP [U (V + SαµN , S (1 + µN ))]

for S varying among the possible values of SN−1. Recalling that we are considering predictable
strategies, we denote by αN = αN (V ) the minimum point for V varying among the possible values
of VN−1;

ii) for n ∈ {N − 1, N − 2, . . . , 1}, we compute

Rn−1 (V, S) := min
α∈[−V

S
, 2V
S ]
EP [Rn (V + Sαµn, S (1 + µn))]

for S varying among the possible values of Sn−1. We denote by αn = αn(V ) the minimum point
for V varying among the possible values of Vn−1.

In our setting, as a first step of the DP algorithm we compute R1(V, S) for S ∈
{
2, 1, 1

2

}
. We have

R1 (V, 2) = min
α∈[−V/2,V ]

EP [U (V + 2αµ2, 2(1 + µ2))]

= min
α∈[−V/2,V ]

EP
[(

(2(1 + µ2) − 1)+ − (V + 2αµ2)
)+]

= min
α∈[−V/2,V ]

1

3

(
(3 − V − 2α)+ + (1 − V )+

)
=

4

3
(1 − V )+ ,

and the minimum is attained in
α2 = V. (1.41)

Next we have

R1 (V, 1) = min
α∈[−V,2V ]

EP [U (V + αµ2, 1 + µ2)]

= min
α∈[−V,2V ]

EP
[(
µ+

2 − (V + αµ2)
)+]

= min
α∈[−V,2V ]

1

3
(1 − V − α)+ =

1

3
(1 − 3V )+ ,
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and the minimum is attained in
α2 = 2V. (1.42)

Moreover we have

R1

(
V,

1

2

)
= min

α∈[−2V,4V ]
EP

[
U
(
V +

αµ2

2
,
1 + µ2

2

)]

= min
α∈[−2V,4V ]

EP






(

1 + µ2

2
− 1

)+

︸ ︷︷ ︸
=0

−
(
V +

αµ2

2

)

︸ ︷︷ ︸
≥0




+
 = 0,

and the minimum is attained in any
α2 ∈ [−2V, 4V ]. (1.43)

1 | V0

2 | 3V0

1 | V0

1
2 | 0

Payoff
Final value

for V0 = 1
3

4 | 9V0 3 3

2 | 3V0 1 1

1 | 0 0 0

2 | 3V0 1 1

1 | V0 0 1

3

1
2 | 0 0 0

1 | 0 0 0

1
2 | 0 0 0

1
4 | 0 0 0
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The second step consists in computing the risk at the initial time:

R0 (V, 1) = min
α∈[−V,2V ]

EP [R1 (V + αµ1, 1 + µ1)]

=
1

3
min

α∈[−V,2V ]
(R1 (V, 1) +R1 (V + α, 2))

=
1

3
min

α∈[−V,2V ]

(
1

3
(1 − 3V )+ +

4

3
(1 − (V + α))+

)

=
5

9
(1 − 3V )+ , (1.44)

and the minimum is attained in
α1 = 2V. (1.45)

By formula (1.44) for R0 (V, 1), it is clear that an initial wealth V ≥ 1
3 is sufficient to make the shortfall

risk null or, in more explicit terms, to super-replicate the payoff.
Next we determine the shortfall strategy, that is the self-financing strategy that minimizes the

shortfall risk. Let us denote by V0 the initial wealth: by (1.45) we have

α1 = 2V0.

Consequently, by (1.40) we get

V1 = V0 +





2V0, for µ1 = 1,

0, for µ1 = 0,

−V0, for µ1 = −1
2 .

Then by (1.41)-(1.42)-(1.43) we have

α2 =





3V0, if S1 = 2,

2V0, if S1 = 1,

0, if S1 = 1
2 ,

and we can easily compute the final value V2 by means of (1.40). We represent in the figure the
trinomial tree with the prices of the underlying asset and the values of the shortfall strategy inside the
circles. On the right side we also indicate the final values of the option and of the shortfall strategy
corresponding to V0 = 1

3 . We remark that we have perfect replication in all scenarios except for the
trajectory S0 = S1 = S2 = 1 for which we have super-replication: the terminal value of the shortfall
strategy V2 = 1

3 is strictly greater than the payoff of the call option that in this case is null.
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2 Obstacle problem for parabolic PDEs 19

2 Obstacle problem for parabolic PDEs

In this chapter we prove the existence of a solution to the free boundary problem

{
max{Lu− ru, ϕ− u} = 0, in ST :=]0, T [×R

N ,

u(0, ·) = ϕ, in R
N .

(2.46)

This corresponds to the construction of the Snell envelope (cf. Step 1 in the proof of Theorem 1.14).
Note that (2.46) is the continuous-time version of (1.19).

In (2.46) L is a parabolic operator with variable coefficients of the form

Lu :=
1

2

N∑

i,j=1

cij∂xixju+

N∑

i=1

bi∂xiu− ∂tu, (2.47)

where (t, x) is an element of R × R
N and (cij) is a symmetric matrix, under the assumption that the

coefficients cij = cij(t, x), bj = bj(t, x) and r = r(t, x) are bounded Hölder continuous functions (cf.
Hypothesis 2). We shall systematically use the notation

Lru = Lu− ru.

In Chapter 4 we shall prove that the price of an American option can be expressed in terms of the
solution u to (2.46). By the first equation in (2.46) we get that u ≥ ϕ so the strip

ST :=]0, T [×R
N

is divided in two parts:

i) the exercise region where u = ϕ;

ii) the continuation region where u > ϕ and Lru = 0 i.e. the price of the derivative verifies a
Black-Scholes’ type PDE.

T

X

Continuation region

Exercise region Ku=0

u=n u>n

Indeed problem (2.46) is equivalent to:





Lru ≤ 0, in ST ,
u ≥ ϕ, in ST ,
(u− ϕ)Lru = 0, in ST ,
u(0, x) = ϕ(0, x), x ∈ R

N .

(2.48)

This kind of problem is usually called obstacle problem. The solution is a function such that:
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i) it is super-solution3 of Lr (i.e. it holds that Lru ≤ 0);

ii) it is greater or equal to the obstacle which is represented by the function ϕ;

iii) it solves the equation Lru = 0 when u > ϕ;

iv) it assumes the initial condition.

Actually we can verify that u is the smallest super-solution greater than the obstacle, in analogy with
the notion of Snell envelope. The obstacle problem is a particular free-boundary problem, since the
boundary that separates the continuation and exercise regions is an unknown of the problem.

One of the main features of problem (2.46) is that in general it does not admit a classical solution
belonging to C2 even if ϕ is a smooth function. Therefore it is necessary to introduce a weak formulation
of the problem that may be based upon different notions of a generalized solution. A general theory of
existence and regularity has been developed by many authors since the seventies.

The variational approach to problem (2.48) consists of looking for the solution as a minimum of a
functional within an appropriate functional space whose elements possess first order square integrable
weak derivatives. In the literature the variational approach has been developed in Bensoussan and Lions
[9], Kinderlehrer and Stampacchia [30], Friedman [21] and applied to financial modeling by Bensoussan
[7], Jaillet, Lamberton and Lapeyre [24]. More recently, since the introduction of the notion of viscosity
solution (cf. Crandall, Ishii and Lions [13]), the pricing of American options in the viscosity sense have
been studied in Barles [3], Fleming and Soner [17], Varadhan [41]. The notions of variational solution
and, above all, of viscosity solution are very weak and allow one to get existence results under very
general hypotheses.

Another notion of generalized solution, the so called solution in strong sense or strong solution,
has been studied (cf. Friedman [20]). Strong solutions have second order weak derivatives so that the
PDE can be written pointwisely a.e.; even though the theory of strong solutions generally requires more
restrictive hypotheses (that are indeed verified practically in all the actual cases), strong solutions should
be preferable in financial applications because of their better regularity properties. For this reason, we
shall seek the solution to the problem (2.46) in this framework, following the presentation in [16], [38]
and [39].

2.1 Fundamental solutions and the Cauchy problem

We suppose that the operator L in (2.47) is uniformly parabolic, i.e. the following holds:

Hypothesis 1. There exists a positive constant Λ such that

Λ−1|ξ|2 ≤
N∑

i,j=1

cij(t, x)ξiξj ≤ Λ|ξ|2, t ∈ R, x, ξ ∈ R
N . (2.50)

The prototype for the class of uniformly parabolic operators is the heat operator with constant
coefficients, that has the identity matrix as (cij) and bi ≡ 0.

3The term “super-solution” comes from the well-known fact in the classical theory of differential equations, that under
rather general hypotheses, by the maximum principle, it holds that Lru ≤ 0 if and only if u ≥ HO

u for every domain O for
which the Dirichlet problem for Lr with boundary datum u(

LrH = 0, in O,

H |∂O = u,
(2.49)

is solvable with solution H = HO
u .
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In the theory of parabolic equations, it is natural to give to the time variable t “double weight” with
respect to the space variables x. In order to introduce the hypothesis below, we define the parabolic
Hölder spaces.

Definition 2.19. Let α ∈]0, 1[ and O be an open subset of R
N+1. We denote with CαP (O), the space of

functions u, bounded on O and for which there exists a constant C such that

|u(t, x) − u(s, y)| ≤ C
(
|t− s|α2 + |x− y|α

)
, (2.51)

for every (t, x), (s, y) ∈ O. We define the norm

‖u‖Cα
P

(O) = sup
(t,x)∈O

|u(t, x)| + sup
(t,x),(s,y)∈O

(t,x)6=(s,y)

|u(t, x) − u(s, y)|
|t− s|α2 + |x− y|α

.

Let us denote respectively with C1+α
P (O) and C2+α

P (O) the Hölder spaces defined by the following norms:

‖u‖C1+α
P

(O) = ‖u‖Cα
P

(O) +

N∑

i=1

‖∂xiu‖CαP (O),

‖u‖C2+α
P

(O) = ‖u‖C1+α
P

(O) +
N∑

i,j=1

‖∂xixju‖CαP (O) + ‖∂tu‖Cα
P

(O).

We write u ∈ Ck+αP,loc(O) if u ∈ Ck+αP (O1) for every bounded open set O1 such that O1 ⊆ O.

We assume the following regularity hypothesis on the coefficients of the operator:

Hypothesis 2. The coefficients are bounded and Hölder continuous: cij , bj , r ∈ CαP (RN+1) for some
α ∈]0, 1[ and for every 1 ≤ i, j ≤ N .

The following classical results hold (see, for instance, [19] or the more recent exposition [15]):

Theorem 2.20. [Existence of a fundamental solution]
Under the Hypotheses 1 and 2, the operator Lr has a fundamental solution Γ = Γ(t, x; s, y) that is a
positive function, defined for x, y ∈ R

N and t > s, such that for every bonded and continuous function
ϕ on R

N , the function u defined by

u(t, x) =

∫

RN

Γ(t, x; s, y)ϕ(y)dy, x ∈ R
N , t > s, (2.52)

and by u(s, ·) = ϕ, belongs to C2+α
P (]s,+∞[×R

N ) ∩ C([s,+∞[×R
N ) and solves the Cauchy problem

{
Lu− ru = 0, in ]s,+∞[×R

N ,

u(s, ·) = ϕ, in R
N .

(2.53)

2.2 Functional setting and a priori estimates

We now introduce the definition of parabolic Sobolev spaces where we aim to set the obstacle problem
and we present some preliminary results to prove the existence of a strong solution. The proof of such
results can be found, for example, in Lieberman [34].
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Definition 2.21. Given a domain O in R × R
N and 1 ≤ p ≤ ∞, we denote with Sp(O) the space of

the functions u ∈ Lp(O) for which the weak derivatives

∂xiu, ∂xixju, ∂tu ∈ Lp(O)

for every i, j = 1, . . . , N . We write u ∈ Sploc(O) if u ∈ Sp(O1) for every bounded domain O1 such that
O1 ⊆ O.

We point out that, as in Definition 2.19 of the parabolic Hölder spaces, the time derivative has
double weight.

Definition 2.22. A strong solution to the problem (2.46) is a function u ∈ S1
loc(ST )∩C(ST ) satisfying

the equation
max{Lru, ϕ− u} = 0

almost everywhere in ST and assuming the initial datum pointwisely. We say that ū is a strong super-
solution to (2.46) if u ∈ S1

loc(ST ) ∩ C(ST ) and it verifies
{

max{Lrū, ϕ− ū} ≤ 0, a.e. in ST ,
ū(0, ·) ≥ ϕ, in R

N ,
(2.54)

The parabolic version of the classical Sobolev-Morrey embedding theorem holds. In the following
statements O1, O2 denote bounded domains in R × R

N with O1 ⊆ O2.

Theorem 2.23 (Sobolev-Morrey embedding theorem). For every p > N + 2 there exists a positive
constant C depending only on p,N,O1 and O2, such that

‖u‖C1+α
P

(O1)
≤ C‖u‖Sp(O2), α = 1 − N + 2

p
,

for all u ∈ Sp(O2).

A second useful result from classical functional analysis is the following a priori interior estimate.

Theorem 2.24 (Interior estimates in Sp). Assume that Lr satisfies Hypothesis 1 and has bounded
continuous coefficients. Then for every p ∈]1,∞[ there exists a positive constant C, depending only on
p,N,Lr, O1 and O2, such that

‖u‖Sp(O1) ≤ C
(
‖u‖Lp(O2) + ‖Lru‖Lp(O2)

)
,

for all u ∈ Sp(O2).

2.3 Strong solutions

We lay down the hypotheses on the obstacle function:

Hypothesis 3. The function ϕ is continuous on ST , locally Lipschitz continuous and for every bounded
open set O such that O ⊆ ST there exists a constant C such that

N∑

i,j=1

ξiξj∂xixjϕ(t, x) ≥ C|ξ|2 ξ ∈ R
N , (t, x) ∈ O, (2.55)

in the distributional sense, i.e.

N∑

i,j=1

ξiξj

∫

O
ϕ∂xixjψ ≥ C|ξ|2

∫

O
ψ,

for all ξ ∈ R
N and ψ ∈ C∞

0 (O) with ψ ≥ 0.
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Condition (2.55) gives the local lower boundedness of the matrix of the second order spatial (dis-
tributional) derivatives. We point out that all the functions belonging to C2 verify Hypothesis 3 and
also all the locally Lipschitz continuous and convex functions, including so the payoff functions of the
call and put options. On the contrary the function ϕ(x) = −x+ does not satisfy condition (2.55) since
its second order distributional derivative is a Dirac delta with negative sign that is “not bounded from
below”.

Remark 2.25. It is worth noting, since it will be used in the sequel, that a consequence of the previous
hypothesis is that Lrϕ is locally lower bounded.

The main result of this chapter is the following existence result.

Theorem 2.26. Under the Hypotheses 1, 2 and 3, if there exists a strong super-solution ū to the problem
(2.46), then there exists also a strong solution u such that u ≤ ū in ST . Moreover, u ∈ Sploc(ST ) for
every p ≥ 1 and consequently, by the embedding Theorem 2.23, u ∈ C1+α

P,loc(ST ) for all α ∈]0, 1[.

Remark 2.27. In typical financial applications, the obstacle is related to the option payoff function ψ:
for example, in the case of a call option, N = 1 and

ψ(S) = (S −K)+, S > 0.

In general, if ψ is a Lipschitz continuous function, then there exists a positive constant C such that

|ψ(S)| ≤ C(1 + S), S > 0,

and after the transformation
ϕ(t, x) = ψ(t, ex),

we have that
|ϕ(t, x)| ≤ C(1 + ex), x ∈ R.

In this case a super-solution of the obstacle problem is

ū(t, x) = Ceγt (1 + ex) , t ∈ [0, T ], x ∈ R,

where γ is an appropriate positive constant: in fact it is evident that ū ≥ ϕ and moreover, when N = 1,

Lrū = Ceγt (−r − γ) + Cex+γt
(

1

2
c11 + b1 − r − γ

)
≤ 0,

for γ large enough. 2

Remark 2.28. Concerning the regularity of the solution, we emphasize that on the grounds of Definition
2.19 of the space C1+α

P,loc, the strong solution u of Theorem 2.26 is a locally Hölder continuous function,
together with its first spatial derivatives ∂x1u, . . . , ∂xNu of exponent α for all α ∈]0, 1[.

2.4 Obstacle problem on bounded cylinders: the penalization method

In this section we prove existence and uniqueness of a strong solution to the obstacle problem

{
max{Lu− ru, ϕ− u} = 0, in B(T ) :=]0, T [×B,
u|∂PB(T ) = g,

(2.56)

where B is the Euclidean ball with radius R, R > 0 being fixed in all this section,

B = {x ∈ R
N | |x| < R},
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2.4 Obstacle problem on bounded cylinders: the penalization method 24

and ∂PB(T ) denotes the parabolic boundary of B(T ):

∂PB(T ) := ∂B(T ) \ ({T} ×B).

The idea is to find a solution to (2.56) as the limit of solutions to a sequence of approximating problems,
involving non-linear PDEs for which standard existence results are available.

We impose a condition analogous to Hypothesis 3 on the obstacle:

Hypothesis 4. The function ϕ is Lipschitz continuous on B(T ) and the weak convexity condition (2.55)
holds with O = B(T ). Furthermore g ∈ C(∂PB(T )) and g ≥ ϕ.

We say that u ∈ S1
loc(B(T )) ∩ C(B(T )) is a strong solution to problem (2.56) if the differential

equation is verified a.e. on B(T ) and the boundary datum is taken pointwisely. The main result of this
section is the following

Theorem 2.29. Under the Hypotheses 1, 2 and 4 there exists a strong solution u to the problem (2.56).
Moreover, for every p ≥ 1 and O, domain satisfying O ⊆ B(T ), there exists a positive constant c,
depending only on Lr, O,B(T ), p and on the L∞-norms of g and ϕ, such that

‖u‖Sp(O) ≤ c. (2.57)

We prove Theorem 2.29 by using a penalization technique. We consider a family (βε)ε∈ ]0,1[ of
functions in C∞(R): for every ε > 0, βε is a bounded, increasing function with bounded first order
derivative such that

βε(0) = 0, βε(s) ≤ ε, s > 0.

Moreover we require that
lim
ε→0

βε(s) = −∞, s < 0.

The penalized problem is defined as

{
Lru = βε(u− ϕ), in B(T ),

u|∂PB(T ) = g.
(2.58)

The existence of a classical solution to (2.58) is guaranteed by the following result (cf., for instance, [19]
or [16]).
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Theorem 2.30. Under Hypotheses 1 and 2, let us take g ∈ C (∂PB(T )) and h = h(z, u) ∈ Lip
(
B(T ) × R

)
.

Then there exists a classical solution u ∈ C2+α
P (B(T )) ∩C(B(T )) to the problem

{
Lru = h(·, u), in B(T ),

u|∂PB(T ) = g.

Moreover there exists a positive constant c, depending only on Lr, h and B(T ), such that

sup
B(T )

|u| ≤ ecT (1 + ‖g‖L∞). (2.59)

Proof of Theorem 2.29. We apply Theorem 2.30 with

h(·, u) = βε(u− ϕ),

in order to infer the existence of a classical solution uε ∈ C2+α
P (B(T )) ∩ C(B(T )) of the penalized

problem (2.58). After the simple change of variable

v(t, x) = et‖r‖∞u(t, x),

we can always assume that r ≥ 0.
The crucial estimate to be proved is the following

|βε(uε − ϕ)| ≤ c̃ (2.60)

with c̃ constant not depending on ε.
Since βε ≤ ε we have to prove only the estimate from below. We denote with ζ a minimum point

of the function βε(uε − ϕ) ∈ C(B(T )) and we suppose that βε(uε(ζ) − ϕ(ζ)) ≤ 0, otherwise there is
nothing to prove. If ζ ∈ ∂PB(T ) then

βε(g(ζ) − ϕ(ζ)) ≥ βε(0) = 0.

Viceversa, if ζ ∈ B(T ), then, since βε is an increasing function, also uε − ϕ assumes the (negative)
minimum in ζ and therefore4

L(uε − ϕ)(ζ) − r(u− ϕ)(ζ) ≥ 0,

i.e.
Lruε(ζ) ≥ Lrϕ(ζ). (2.61)

4We remark that if v ∈ C2 has a minimum in ζ, then we have

∇v(ζ) = 0, ∂tv(ζ) = 0, D
2
v(ζ) ≥ 0.

Then there exists a symmetric and positive semi-definite matrix M such that

D
2
v(ζ) = M

2 =

 
NX
h=1

mihmhj

!
i,j

=

 
NX
h=1

mihmjh

!
i,j

and therefore we have

Lv(z) =
1

2

NX
i,j=1

cij(z)
NX
h=1

mihmjh =
1

2

NX
h=1

 
NX

i,j=1

cij(z)mihmjh

!
≥ 0.

In our case v = uε − ϕ, and although ϕ is generally not a C2 function, the above argument can be made rigorous by a
standard regularization technique.
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Now, by Hypothesis 4 (see also Remark 2.25), Lrϕ(ζ) is bounded from below. So by (2.61) we get

βε(uε(ζ) − ϕ(ζ)) = Lruε(ζ) ≥ Lrϕ(ζ) ≥ c̃,

with c̃ not depending on ε thus proving the estimate (2.60).
By the maximum principle5 we have

sup
B(T )

|uε| ≤ sup
B(T )

|g| + T c̃. (2.62)

Then by the a priori estimates in Sp, Theorems 2.24, and the estimates (2.60), (2.62) we infer that the
norm ‖uε‖Sp(O) is bounded uniformly with respect to ε, for every open set O included with its closure
in B(T ) and for every p ≥ 1. It follows that there exists a subsequence of (uε) weakly convergent for
ε → 0 in Sp (and in C1+α

P ) on compact subsets of B(T ) to a function u (and by (2.60) we also have
u ≥ ϕ). Furthermore

Lru = lim
ε→0

Lruε = lim
ε→0

βε(uε − ϕ) ≤ 0 in L1
loc,

so that Lu ≤ 0 a.e. in B(T ). Finally, Lru = 0 a.e. on the set {u > ϕ}.
We next conclude the proof of Theorem 2.29 by showing that u ∈ C(B(T )) and u = g on ∂PB(T ).

To study the behaviour of the solution at the boundary, we use a standard tool in PDE theory, the
barrier functions: given a point (t, x) ∈ ∂PB(T ), a barrier function for Lr in (t, x) is a function
w ∈ C2(V ∩B(T ); R), where V is a neighborhood of (t, x), such that

i) Lrw ≤ −1 in V ∩B(T );

ii) w(t, x) = 0 and w > 0 in V ∩B(T ) \ {(t, x)}.
It is well known that that every point of the parabolic boundary of B(T ) admits a barrier function (cf.,
for instance, [19] p.68 or [38], Lemma 8.25).

Given z̄ = (t̄, x̄) ∈ ∂PB(T ) and δ > 0, we consider an open neighborhood V of z̄ such that

|g(z) − g(z̄)| ≤ δ, for z = (t, x) ∈ V ∩ ∂PB(T ),

and a barrier function w for Lr in V ∩ ∂PB(T ) exists. We put

v±(z) = g(z̄) ± (δ + kδw(z))

where kδ is a sufficiently large constant such that

Lr(uε − v+) = βε(uε − ϕ) − Lrv
+ ≥ βε(uε − ϕ) + kδ + r(g(z̄) + δ) ≥ 0,

and uε ≤ v+ on ∂(V ∩ B(T )). Note that, by (2.60) and (2.62), the constant kδ can be chosen to be
independent of ε. Then, by the maximum principle we have uε ≤ v+ on V ∩B(T ), and by an analogous
argument, we also have uε ≥ v− on V ∩B(T ).

Thus as ε→ 0+, we get

g(z̄) − δ − kδw(z) ≤ u(z) ≤ g(z̄) + δ + kδw(z), z ∈ V ∩B(T ),

and consequently

g(z̄) − δ ≤ lim inf
z→z̄

u(z) ≤ lim sup
z→z̄

u(z) ≤ g(z̄) + δ, z ∈ V ∩B(T ).

This proves the thesis by the arbitrariness of δ. 2

We conclude this section by proving a comparison principle for the obstacle problem.

5For any v ∈ C2, it holds
sup
B(T )

|v| ≤ sup
∂pB(T )

|v| + T sup
B(T )

|Lrv|.
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Proposition 2.31. If u is a strong solution to the problem (2.56) and v a super-solution, i.e. v ∈
S1

loc(B(T )) ∩ C(B(T )) and
{

max{Lrv, ϕ − v} ≤ 0, a.e. in B(T ),

v|∂PB(T ) ≥ g,

then u ≤ v in B(T ). In particular the solution to (2.56) is unique.

Proof. By contradiction, we suppose that the open set defined by

D := {z ∈ B(T ) | u(z) > v(z)}
is not empty. Then, since u > v ≥ ϕ in D, we have that

Lru = 0, Lrv ≤ 0 in D,

and u = v on ∂D. Then the maximum principle implies u ≤ v in D and we get a contradiction. 2

2.5 Obstacle problem on the strip

We prove Theorem 2.26 by solving a sequence of obstacle problems on a family of bounded cylinders
that cover the strip ST , namely

Bn(T ) =]0, T [×{|x| < n}, n ∈ N.

For every n ∈ N, let us consider a function χn ∈ C(RN ; [0, 1]) such that χn(x) = 1 if |x| ≤ n − 1
2 and

χn(x) = 0 if |x| ≥ n, and we set

gn(t, x) = χn(x)ϕ(t, x) + (1 − χn(x))ū(t, x), (t, x) ∈ ST .
By Theorem 2.29, for every n ∈ N, there exists a strong solution un to the problem

{
max{Lru, ϕ− u} = 0, in Bn(T ),

u|∂PBn(T ) = gn,

By Proposition 2.31
ϕ ≤ un+1 ≤ un ≤ ū, in Bn(T ),

and we can conclude the proof by using again the arguments of Theorem 2.29, based upon the a priori
estimates in Sploc and the barrier functions.

Remark 2.32. Theorem 2.26 gives an existence result: the uniqueness of the strong solution in the
class of non-rapidly increasing functions will be proved in the next chapter as a consequence of the
representation formula of Theorem 3.36.

Remark 2.33. The strong solution found in Theorem 2.26 is also a solution in the weak and viscosity
senses. This means that the other weaker notions on generalized solution gain the stronger regularity
properties of the strong solutions, in particular they are in C1+α

P,loc(ST ) for all α ∈]0, 1[. A proof of this
claim can be found, for instance, in [16].

Remark 2.34. Regarding the optimal regularity of the solution to the obstacle problem (2.46), using the
(quite involved) techniques developed by L. Caffarelli and his collaborators, it is possibile to prove that
the solution is, up to S∞-regularity, as smooth as the obstacle function: in particular, if ϕ ∈ C2+α

P,loc we

not only have that u ∈ Sploc(ST ) for every p ≥ 1 as proved in Theorem 2.26, but also that u ∈ S∞
loc(ST ),

that is we have the local Lipschitz continuity of the first order derivatives. For more details we refer to
Caffarelli, Petrosyan and Shahgholian [11], Petrosyan and Shahgholian [40], Frentz, Nyström, Pascucci,
and Polidoro [18].
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3 Optimal stopping problem

In this chapter we prove a representation formula for the strong solution to the obstacle problem

{
max{Lu− ru, ϕ− u}, in ST := ]0, T [×R

N ,

u(T, ·) = ϕ,
(3.63)

where r and ϕ are given functions and, with the notation (cij) = σσ∗,

L =
1

2

N∑

i,j=1

cij∂xixj +

N∑

j=1

bj∂xj + ∂t (3.64)

is the Kolmogorov operator associated to the N -dimensional SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt. (3.65)

More precisely, we represent u in terms of the solution of the optimal stopping problem related to (3.65)
thus proving in particular the existence of a solution to such a problem. Note that L in (3.64) is the
backward6 version of the operator considered in the previous chapter.

In (3.65) we denote by W = (W 1, . . . ,WN ) a standard Brownian motion defined on a filtered space
(Ω,F , P,Ft). As usual we put

Lru = Lu− ru

and assume Hypotheses 1 and 2, i.e. Lr is a uniformly parabolic operator with bounded and Hölder
continuous coefficients. Under these assumptions, the SDE (3.65) has a solution X and, by Theorem
2.20, the operator L has a fundamental solution Γ that is the transition density of the process X: more
precisely, if Xt,x denotes the solution to (3.65) starting from x at time t then, for any T > t, Γ(t, x, T, ·)
is the density of the random variable Xt,x

T , i.e.

P
(
Xt,x
T ∈ H

)
=

∫

H
Γ(t, x, T, y)dy

for any Borel set H.
We also recall the following generalized7 Ito formula (cf., for instance, Theorem 5.79 in [38]):

Theorem 3.35. Let f = f(t, x) ∈ Sp(R × R
N ) with p > 1 + N+2

2 . Then we have

df(t,Xt) = Lf(t,Xt)dt +

N∑

i,j=1

σij(t,Xt)∂xif(t,Xt)dW
j
t .

3.1 Feynman-Kac representation and uniqueness

The main result of this chapter states that the solution to the obstacle problem (3.63) can be expressed
in terms of the solution to the optimal stopping problem related to the diffusion X.

Theorem 3.36 (Feynman-Kač formula). Under Hypotheses 1 and 2, let u be a strong solution to (3.63)
such that

|u(t, x)| ≤ Ceλ|x|
2
, (t, x) ∈ ST , (3.66)

6In the simplest case, L = 1
2
4 + ∂t is the backward (or adjoint, since it is obtained by integration by parts) version of

the standard heat operator 1
2
4− ∂t.

7The standard Ito formula holds true for C2 functions: recall that its proof is based on Taylor formula.
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for some positive constants C and λ, with λ sufficiently small. Then for any (t, x) ∈ ST , we have

u(t, x) = sup
τ∈Tt,T

E
[
e−

R τ
t
r(s,Xt,x

s )dsϕ(τ,Xt,x
τ )
]
,

where Tt,T denotes the family of the stopping times with values in [t, T ].

Remark 3.37. Since Theorem 3.36 gives a representation formula, it also implies the uniqueness of
the strong solution satisfying estimate (3.66).

Proof. As for the standard Feynman-Kač formula, the proof is based on the Itô formula: since a strong
solution is generally not in C2, then we have to apply the generalized Itô formula in Theorem 3.35 by
means of a localization argument. For more clarity, we only treat the case r = 0.

We set BR = {x ∈ R
N | |x| < R}, R > 0, and for a fixed x ∈ BR we denote by τR the first exit time

of Xt,x from BR. Under our assumptions, it is well-known that E [τR] is finite.
We show that for any (t, x) ∈ ]0, T [×BR and τ ∈ Tt,T such that τ ≤ τR a.s., it holds

u(t, x) = E

[
u(τ,Xt,x

τ ) −
∫ τ

t
Lu(s,Xt,x

s )ds

]
. (3.67)

Since u ∈ Sploc(ST ) for any p ≥ 1 then, for any positive and suitably small ε, there exists a function uε,R

such that uε,R ∈ Sp(RN+1) for any p ≥ 1 and uε,R = u in ]t, T − ε[×BR.
We next apply Itô formula to uε,R and using the fact that uε,R = u in ]t, T − ε[×BR, we get

u(τ,Xt,x
τ ) = u(t, x) +

∫ τ

t
Lu(s,Xt,x

s )ds +

∫ τ

t
∇u(s,Xt,x

s )σ(s,Xt,x
s )dWs, (3.68)

for any τ ∈ Tt,T such that τ ≤ τR ∧ (T − ε). Since u ∈ C1+α
P,loc then (∇u)σ is a bounded function on

]t, T − ε[×BR so that

E

[∫ τ

t
∇u(s,Xt,x

s )σ(s,Xt,x
s )dWs

]
= 0.

Thus, taking expectations in (3.68), we conclude the proof of formula (3.67), since ε > 0 is arbitrary.

Next we recall that Lu ≤ 0 a.e.: since the law of Xt,x is absolute continuous with respect to the
Lebesgue measure, we have

E

[∫ τ

t
Lu(s,Xt,x

s )ds

]
≤ 0, τ ∈ Tt,T ,

so that from (3.67) we deduce

u(t, x) ≥ E
[
u(τ ∧ τR,Xt,x

τ∧τR)
]
, τ ∈ Tt,T . (3.69)

Now we pass to the limit as R→ +∞: it holds

lim
R→+∞

τ ∧ τR = τ

and, by the growth condition (3.66), we have

∣∣∣u(τ ∧ τR,Xt,x
τ∧τR)

∣∣∣ ≤ C exp

(
λ sup
t≤s≤T

∣∣Xt,x
s

∣∣2
)
.
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By standard maximal estimates (cf. for instance Theorem 9.32 in [38]) the random variable on the right
hand side is integrable, thus by the dominated convergence theorem, passing to the limit in (3.69) as
R→ +∞, we infer

u(t, x) ≥ E
[
u(τ,Xt,x

τ )
]
≥ E

[
ϕ(τ,Xt,x

τ )
]
.

This proves that
u(t, x) ≥ sup

τ∈Tt,T
E
[
ϕ(τ,Xt,x

τ )
]
.

We conclude the proof by setting

τ0 = inf{s ∈ [t, T ] | u(s,Xt,x
s ) = ϕ(s,Xt,x

s )}.

Since Lu = 0 a.e. on {u > ϕ}, it holds

E

[∫ τ0∧τR

t
Lu(s,Xt,x

s )ds

]
= 0,

so that by (3.67) we have

u(t, x) = E
[
u(τ0 ∧ τR,Xt,x

τ0∧τR)
]
.

Using the previous argument to pass to the limit as R→ +∞, we finally deduce

u(t, x) = E
[
u(τ0,X

t,x
τ0 )
]

= E
[
ϕ(τ0,X

t,x
τ0 )
]
.

2

3.2 Gradient estimates

Using the Feynman-Kač representation, it is possible to prove useful properties of the strong solution
under additional specific assumptions. For instance, let us assume that the function ϕ is Lipschitz
continuous in x, uniformly in t, that is

|ϕ(t, x) − ϕ(t, y)| ≤ C|x− y|, (t, x), (t, y) ∈ ST ,

for some positive constant C. Then we can prove that the spatial gradient ∇u = (∂x1u, . . . , ∂xNu) is
bounded in ST . More precisely the following proposition holds.

Proposition 3.38. Under the hypotheses of Theorem 3.36, let us assume that ϕ and the coefficients of
the SDE (3.65) are Lipschitz continuous in x, uniformly in t, on ST . Moreover let r be constant or ϕ
be a bounded function. Then the strong solution u of the obstacle problem (3.63) verifies

∇u ∈ L∞(ST ).

Proof. Let us first consider the case of constant r. The thesis follows by the general inequality

∣∣∣∣sup
τ
F (τ) − sup

τ
G(τ)

∣∣∣∣ ≤ sup
τ

|F (τ) −G(τ)|

valid for any functions F,G. Indeed, by Feynman-Kač formula, we have

|u(t, x) − u(t, y)| ≤ sup
τ∈Tt,T

E
[
e−r(τ−t)

∣∣ϕ(τ,Xt,x
τ ) − ϕ(τ,Xt,y

τ )
∣∣
]
≤
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(by the Lipschitz condition, for some positive constant c)

≤ c sup
τ∈Tt,T

E
[∣∣Xt,x

τ −Xt,y
τ

∣∣] ≤

(by the well-known continuous dependence on the initial datum of the solution of a SDE with Lipschitz
continuous coefficients)

≤ c1|x− y|,
where the constant c1 depends only on T and on the Lipschitz constants of ϕ and of the coefficients.

In case ϕ is bounded, the thesis follows by an analogous argument, using the fact that the product
of bounded Lipschitz continuous functions

(t, x) 7→ e−
R τ
t
r(s,Xt,x

s )dsϕ(τ,Xt,x
τ )

is a Lipschitz continuous function. 2
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4 American options in continuous time

In this chapter we present the main results on pricing and hedging American derivatives by extending to
continuous time the ideas introduced in the discrete-market setting. Even in the simplest Black-Scholes
market model, the hedging and pricing problems for American options need very refined mathematical
tools. In the complete-market setting, Bensoussan [8] and Karatzas [27], [28] developed a probabilistic
approach based upon the notion of Snell envelope in continuous time and the Doob-Meyer decomposi-
tion. The problem was also studied by Jaillet, Lamberton and Lapeyre [24] who employed variational
techniques, and more recently by Oksendal and Reikvam [37], Gatarek e Świech [22] who employed the
theory of viscosity solutions. Here we present an analytical Markovian approach, based upon the exis-
tence results for the obstacle problem and the Feynman-Kač representation formula previously proved.
In order to avoid technicalities and to show clearly the main ideas, we only consider the Black-Scholes
market model case: the case of a complete market with N risky assets can be treated in a complete
analogous way.

4.1 Pricing and hedging in the Black-Scholes model

Since in the theory of American options, dividends play an essential role, we assume the following
risk-neutral dynamics for the underlying asset under the martingale measure Q:

dSt = (r − q)Stdt + σStdWt. (4.70)

In (4.70) r is the risk-free rate, σ is the volatility parameter, q ≥ 0 is the dividend yield and W is a
real Brownian motion on the filtered space (Ω,F , Q,Ft). Then the discounted price S̃t = e−rtSt has
the following dynamics:

dS̃t = −qS̃tdt+ σS̃tdWt. (4.71)

Definition 4.39. An American option is a process of the form

(ψ(t, St))t∈[0,T ]

where ψ is a convex Lipschitz continuous function on [0, T ] × R+: ψ(t, St) represents the premium
obtained by exercising the option at time t.

An exercise strategy is a stopping time on (Ω,F , Q,Ft) taking values in [0, T ]: we denote with TT
the family of all exercise strategies. We say that τ0 ∈ TT is an optimal strategy if

EQ
[
e−rτ0ψ(τ0, Sτ0)

]
= sup

τ∈TT
EQ

[
e−rτψ(τ, Sτ )

]
.

The following result relates the parabolic obstacle problem to the corresponding problem for the
Black-Scholes differential operator

LBSf(t, S) :=
σ2S2

2
∂SSf(t, S) + (r − q)S∂Sf(t, S) + ∂tf(t, S) − rf(t, S).

Theorem 4.40. There exists a unique strong solution f ∈ Sploc(]0, T [×R+), p ≥ 1, to the obstacle
problem {

max{LBSf, ψ − f} = 0, in ]0, T [×R+,

f(T, ·) = ψ(T, ·), in R+,
(4.72)

satisfying the following properties:
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i) for every (t, x) ∈ [0, T [×R+, we have

f(t, x) = sup
τ∈TT
τ∈[t,T ]

EQ
[
e−r(τ−t)ψ(τ, St,xτ )

]
, (4.73)

where St,x is solution to the SDE (4.70) with initial condition St = x;

ii) f admits first partial derivative with respect to S in the classical sense and we have

∂Sf ∈ CαP,loc ∩ L∞(]0, T [×R+), ∀α ∈]0, 1[. (4.74)

Proof. With the change of variables

u(t, x) = f(t, ex), ϕ(t, x) = ψ(t, ex)

the problem (4.72) is equivalent to the obstacle problem
{

max{Lu− ru, ϕ− u} = 0, in ]0, T [×R,

u(T, ·) = ϕ(T, ·), in R,

for the parabolic operator with constant coefficients

Lu =
σ2

2
∂xxu+

(
r − q − σ2

2

)
∂xu+ ∂tu.

The existence of a strong solution is guaranteed by Theorem 2.26 and by the following Remark 2.27.
Furthermore, again by Remark 2.27, u is upper bounded by a super-solution and lower bounded by ϕ
so that an exponential-growth estimate similar to (3.66) holds: then we can apply the Feynman-Kač
representation theorem, Theorem 3.36, which justifies formula (4.73) and proves the uniqueness of the
solution. Finally, the global boundedness of the gradient can be proved by proceeding as in the proof
of Proposition 3.38. 2

We now consider a strategy (αt, βt) with8 α ∈ L
2
loc and β ∈ L

1
loc, whose value process is defined as

Vt = V
(α,β)
t := αtSt + βtBt.

Hereafter, for greater convenience, when (αt, βt) is fixed we omit the superscript and simply write Vt

instead of V
(α,β)
t . We recall that (αt, βt) is self-financing if and only if

dVt = αt (dSt + qStdt) + βtdBt.

Substituting (4.70) in the previous formula and using the identity βtBt = Vt − αtSt, we obtain the
following

Proposition 4.41. Put Ṽt = e−rtVt. A strategy (α, β) is self-financing if and only if

dṼt = αt

(
dS̃t + qS̃tdt

)
,

i.e.

Ṽt = V0 +

∫ t

0
αsdS̃s +

∫ t

0
αsqS̃sds

= V0 +

∫ t

0
αsσS̃sdWs. (4.75)

In particular every self-financing strategy is determined only by its initial value and by its α-component.
Furthermore, Ṽ is a Q-local martingale.

8
L
p
loc denotes the space of the progressively measurable processes Y such that

R T
0

|Yt|
pdt is finite a.s.
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On the grounds of the previous proposition, the discounted value of all self-financing strategies is a
local martingale: in the following we are interested in the strategies whose value is a true martingale.
Therefore we denote by A the family of the self-financing strategies (α, β) such that9 α ∈ L

2(P ): a
noteworthy example is represented by the strategies with α bounded process. It is known (cf., for
instance, Proposition 10.33 in [38]) that the discounted value of every (α, β) ∈ A is a Q-martingale. Let
us now prove a version of the no-arbitrage principle.

Lemma 4.42. [No-arbitrage principle]
Let V 1, V 2 be the values of two self-financing strategies in A and assume that

V 1
τ ≤ V 2

τ a.e. (4.76)

for some τ ∈ TT . Then it holds that
V 1

0 ≤ V 2
0 .

Proof. The thesis is immediate consequence of (4.76), of the martingale property of Ṽ 1, Ṽ 2 and of
Doob’s optional sampling theorem. 2

Just as in the discrete case, we define the rational price of an American option by comparing it
from above and from below to the value of appropriate self-financing strategies. Such an argument
is necessary because, differently from the European case, the payoff ψ(t, St) of an American option
is not replicable in general, this meaning that there does not exist a self-financing strategy assuming
the same value of the payoff at every single time. In fact by Proposition 4.41 the discounted value of
a self-financing strategy is a martingale (or, in analytical terms, solution to a parabolic PDE) while
ψ(t, St) is a generic process, not necessarily a martingale.

Let us call
A+
ψ = {(α, β) ∈ A | V (α,β)

t ≥ ψ(t, St), t ∈ [0, T ] a.s.},
the family of self-financing strategies that super-replicate the payoff ψ(t, St). Intuitively, in order to
avoid arbitrage opportunities, the initial price of the American option must be less or equal to the initial

value V
(α,β)
0 for every (α, β) ∈ A+

ψ .
Furthermore, let us set

A−
ψ = {(α, β) ∈ A | there exists τ ∈ TT t.c. ψ(τ, Sτ ) ≥ V (α,β)

τ a.s.}.

We can think of (α, β) ∈ A−
ψ as a strategy on which we assume a short position to obtain funds to invest

in the American option. In other words, V
(α,β)
0 represents the amount that we can initially borrow to

buy the option that has to be exercised, exploiting the early-exercise possibility, at time τ to obtain the

payoff ψ(τ, Sτ ) which is greater or equal to V
(α,β)
τ , amount necessary to close the short position on the

strategy (α, β). To avoid arbitrage opportunities, intuitively the initial price of the American option

must be greater or equal to V
(α,β)
0 for all (α, β) ∈ A−

ψ .
These remarks are formalized by the following result that can be proved as Proposition 1.12.

Proposition 4.43. We have

sup
(α,β)∈A−

ψ

V
(α,β)
0 ≤ sup

τ∈TT
EQ

[
e−rτψ(τ, Sτ )

]
≤ inf

(α,β)∈A+
ψ

V
(α,β)
0 .

In particular for every (α, β) ∈ A−
ψ ∩ A+

ψ , it holds

V
(α,β)
0 = sup

τ∈TT
EQ

[
e−rτψ(τ, Sτ )

]
.

9
L

2(P ) denotes the space of the progressively measurable processes Y such that EP
hR T

0
|Yt|

2dt
i

is finite.
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Theorem 4.45 below allows us to say that there exists (ᾱ, β̄) ∈ A+
ψ ∩A−

ψ and therefore the following
definition is well-posed.

Definition 4.44. The arbitrage price of the American option ψ(t, St) is the initial value of any strategy
(ᾱ, β̄) ∈ A+

ψ ∩ A−
ψ : in particular, we have

V
(ᾱ,β̄)
0 = inf

(α,β)∈A+
ψ

V
(α,β)
0 = sup

(α,β)∈A−

ψ

V
(α,β)
0 = sup

τ∈TT
EQ

[
e−rτψ(τ, Sτ )

]
.

Theorem 4.45. Let f be the strong solution to the obstacle problem (4.72). The self-financing strategy
(α, β) defined by

V
(α,β)
0 = f(0, S0), αt = ∂Sf(t, St),

belongs to A+
ψ ∩ A−

ψ . Consequently f(0, S0) is the arbitrage price of ψ(t, St). Furthermore an optimal
exercise strategy is defined by

τ0 = inf{t ∈ [0, T ] | f(t, St) = ψ(t, St)}, (4.77)

and it holds that

V
(α,β)
0 = EQ

[
e−rτ0ψ(τ0, Sτ0)

]
= sup

τ∈TT
EQ

[
e−rτψ(τ, Sτ )

]
,

where

St = S0e
σWt+

�
r−q−σ2

2

�
t
,

is the solution to the SDE (4.70) with initial condition S0.

S

T

S*

K

Proof. The idea is to use the generalized Itô formula, Theorem 3.35, to compute the stochastic dif-
ferential of f(t, St) and to separate the martingale part from the drift part of the process10. Since
f ∈ Sploc([0, T ]×R+), we do not have a global estimate of f and its derivatives (and therefore of LBSf),
but only a local one: then we must use a localization argument. Fixed R > 0, we consider the stopping
time

τR = T ∧ inf{t | St ∈]0, 1/R[∪]R,+∞[}.
As in the proof of Theorem 3.36, by Itô formula we have that, for all τ ∈ TT ,

e−r(τ∧τR)f(τ ∧ τR, Sτ∧τR) = f(0, S0) +

∫ τ∧τR

0
σS̃t∂Sf(t, St)dWt +

∫ τ∧τR

0
e−rtLBSf(t, St)dt (4.78)

10This corresponds to Step 2 in the proof of Theorem 1.14. In a general framework, this kind of result is usually called
the Doob-Meyer decomposition theorem.
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or equivalently, by (4.75),

e−r(τ∧τR)f(τ ∧ τR, Sτ∧τR) = Ṽτ∧τR +

∫ τ∧τR

0
e−rtLBSf(t, St)dt, (4.79)

where Ṽ is the discounted value of the self-financing strategy (α, β) defined by the initial value f(0, S0)
and αt = ∂Sf(t, St). Let us point out the analogy with the hedging strategy and the delta of a European
option. A crucial remark is that Ṽ is a Q-martingale (not only a local one) since ∂Sf is a bounded
function by (4.74), and therefore (α, β) ∈ A.

Let us now prove that, for all τ ∈ TT , it holds that

lim
R→∞

Ṽτ∧τR = Ṽτ . (4.80)

In fact we have

E

[(∫ τ

τ∧τR
σS̃t∂Sf(t, St)dWt

)2
]

=E

[(∫ T

0
σS̃t∂Sf(t, St)1{τ∧τR≤t≤τ}dWt

)2
]

=

(by the Itô isometry, since the integrand belongs to L
2)

= E

[∫ T

0

(
σS̃t∂Sf(t, St)1{τ∧τR≤t≤τ}

)2
dt

]
−−−−→
R→∞

0

by the dominated convergence Theorem, being ∂Sf ∈ L∞.

Now we can prove that (α, β) ∈ A+
ψ ∩ A−

ψ . First of all, since LBSf ≤ 0 a.e. and St has positive
density, by (4.79), we have

Vt∧τR ≥ f(t ∧ τR, St∧τR)

for all t ∈ [0, T ] and R > 0. Taking the limit in R, by (4.80) and the continuity of f , we have

Vt ≥ f(t, St) ≥ ψ(t, St), t ∈ [0, T ],

and this proves that (α, β) ∈ A+
ψ .

Secondly, since LBSf(t, St) = 0 a.s. on {τ0 ≥ t} with τ0 defined by (4.77), again by (4.79) we have

Vτ0∧τR = f(τ0 ∧ τR, Sτ0∧τR)

for all R > 0. Taking the limit in R as above, we get

Vτ0 = f(τ0, Sτ0) = ψ(τ0, Sτ0).

This proves that (α, β) ∈ A−
ψ and concludes the proof. 2

4.2 American call and put options

By Theorem 4.45 we have the following expressions for the prices of call and put American options in
the Black-Scholes model, with risk-neutral dynamics (4.70) for the underlying asset:

C(T, S0,K, r, q) = sup
τ∈TT

E

[
e−rτ

(
S0e

σWτ+
�
r−q−σ2

2

�
τ −K

)+
]
,

P (T, S0,K, r, q) = sup
τ∈TT

E

[
e−rτ

(
K − S0e

σWτ+
�
r−q−σ2

2

�
τ
)+
]
.
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In the preceding expressions, C(T, S0,K, r, q) and P (T, S0,K, r, q) denote respectively the prices at time
0 of call and put American options with terminal time T , initial price of the underlying asset S0, strike
K, interest rate r and dividend yield q. For American options explicit formulas as in the European
case are not known, and to compute the prices and the hedging strategies is generally necessary to use
numerical methods.

The following result establishes a symmetry relation between the prices of American call and put
options.

Proposition 4.46. We have that

C(T, S0,K, r, q) = P (T,K, S0, q, r). (4.81)

Proof. If we set

Zt = eσWt−σ2

2
t,

we recall that Z is a Q-martingale with unitary mean and, with respect to the measure Q̃ defined by

dQ̃

dQ
= ZT ,

the process
W̃t = Wt − σt

is a Brownian motion.
Let us note that we have

C(T, S0,K, r, q) = sup
τ∈TT

EQ

[
Zτe

−qτ
(
S0 −Ke

−σWτ+
�
q−r+σ2

2

�
τ
)+
]

= sup
τ∈TT

EQ

[
ZT e

−qτ
(
S0 −Ke

−σWτ+
�
q−r+σ2

2

�
τ
)+
]

= sup
τ∈TT

E
eQ [e−qτ (S0 −Ke

−σfWτ+
�
q−r−σ2

2

�
τ
)+
]
.

The thesis follows because, by symmetry, −W̃ is a Q̃-Brownian motion. 2

We study now some qualitative properties of the prices: on the grounds of Proposition 4.46 it is
enough to consider the case of the American put. In the following statement we denote with

P (T, S) = sup
τ∈TT

E

[
e−rτ

(
K − Se

σWτ+
�
r−q−σ2

2

�
τ
)+
]
, (4.82)

the price of the American put option.

Proposition 4.47. The following properties hold:

i) for all S ∈ R+, the function T 7→ P (T, S) is increasing. In other words, if we fix the parameters
of the option, the price of the put option decreases when we get closer to maturity;

ii) for all T ∈ [0, T ], the function S 7→ P (T, S) is decreasing, convex and

lim
S→0+

P (T, S) = K; (4.83)
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iii) for all (T, S) ∈ [0, T [×R+, we have that

−1 ≤ ∂SP (T, S) ≤ 0.

Proof. i) is trivial. ii) is immediate consequence of (4.82), of the properties of the payoff function and
of the fact that the properties of monotony and convexity are preserved by the sup operation, i.e. if
(gτ ) is a family of increasing and convex functions then also their sup

g := sup
τ
gτ

is increasing and convex.
Then ∂SP (T, S) ≤ 0 since S 7→ P (T, S) is decreasing. Furthermore, if we set ψ(S) = (K − S)+ we

have
|ψ(S) − ψ(S′)| ≤ |S − S′|,

and so to prove the third property it is enough to proceed just as in the proof of Proposition 3.38 and
to observe that

∣∣∣∣E
[
e−rτψ

(
S0e

σWτ+
�
r−q−σ2

2

�
τ
)
− e−rτψ

(
S′

0e
σWτ+

�
r−q−σ2

2

�
τ
)]∣∣∣∣

≤ |S0 − S′
0|E

[
e
σWτ−

�
q+σ2

2

�
τ
]
≤

(since q ≥ 0)

≤ |S0 − S′
0|E

[
eσWτ−σ2

2
τ

]
=

(since the exponential martingale has unitary mean)

= |S0 − S′
0|.

2

4.3 Early exercise premium

In this section, we study the relation between the prices of the European put option and American put
option by introducing the concept of early exercise premium. In the following we denote by f = f(t, S)
the solution to the obstacle problem (4.72) relative to the payoff function of the put option

ψ(t, S) = (K − S)+.

For t ∈ [0, T ], we define11

S∗(t) = inf{S > 0 | f(t, S) > ψ(t, S)}.
S∗(t) is called critical price at time t and corresponds to the point where f “touches” the payoff ψ; the
map t 7→ S∗(t) is called the free boundary. Note that S∗(t) < K for t < T : in fact if we had S∗(t) ≥ K
then it should hold that

f(t, S∗(t)) = ψ(t, S∗(t)) = 0,

and this is absurd since f > 0 by definition (4.82).

11Mathematically or by arbitrage arguments, it can be proved that the set {S > 0 | f(t, S) > ψ(t, S)} is non-empty and
S∗(t) > 0.
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Remark 4.48 (Smooth fit principle). Since the first order derivative ∂SP of the American put price
is (Hölder) continuous12, we immediately get the following additional information at the free boundary:

∂SP (t, S∗(t)) = ∂Sψ(t, S∗(t)) = −1. (4.84)

Condition (4.84) is usually known as the smooth fit principle.

S

T

S*

K

Lemma 4.49. For all (t, S) ∈ [0, T [×R+, we have that

LBSf(t, S) = (qS − rK)1{S<S∗(t)}. (4.85)

In particular LBSf is a bounded and discontinuous function.

Proof. Since S∗(t) ∈]0,K], by (4.83) and the convexity of S 7→ f(t, S) (cf. Proposition 4.47-ii)), we
infer that f(t, S) = K − S for S ≤ S∗(t). Moreover, by definition of S∗, we have f(t, S) > ψ(t, S) for
S > S∗(t) and therefore we conclude that

LBSf(t, S) =

{
0, for S > S∗(t),

qS − rK, for S < S∗(t).

2

Remark 4.50. By (4.85), knowing that LBSf ≤ 0, we deduce that S∗(t) ≤ rK
q : in particular, if q > r

then lim
t→T−

S∗(t) < K. 2

Now we go back to formula (4.78) with τ = T : since LBSf is bounded, we can take the limit as
R→ +∞ and then get

e−rT f(T, ST ) = f(0, S0) +

∫ T

0
e−rtLBSf(t, St)dt+

∫ T

0
σS̃t∂Sf(t, St)dWt,

and taking expectation, by (4.85),

p(S0) = P (S0) +

∫ T

0
e−rtEQ

[
(qSt − rK)1{St≤S∗(t)}

]
dt, (4.86)

where p(S0) and P (S0) denote respectively the price at time 0 of the European and American options
with maturity T . The expression (4.86) gives the difference P (S0)− p(S0), usually called early exercise
premium: it quantifies the value of the possibility of exercising before maturity. (4.86) has been proved
originally by Kim [29].

12This is generally true for any strong solution by Remark 2.28.
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4.4 Numerical methods

Standard finite difference schemes can be adapted to the numerical solution of the obstacle problem:
Brennan and Schwartz [10] first investigated these methods and the applications to the pricing of options
with early exercise. Jaillet, Lamberton and Lapeyre [24] and Han-Wu [23] gave a rigorous justification
of the method (see also Zhang [43] for a complete proof of strong convergence of the schemes and an
extension to models with jumps). Barraquand and Martineau [5], Barraquand and Pudet [6], Dempster
and Hutton [14] propose various refinements of the previous techniques which lead to more accurate
approximations of exotic options. Among other numerical methods proposed in literature we quote the
finite elements in Achdou and Pironneau [1], the ADI methods in Villeneuve and Zanette [42] and the
wavelet methods in Matache, Nitsche and Schwab [36]. In a different spirit, semi-explicit approximation
formulas were given by MacMillan [35], Barone-Adesi and Whaley [4], Carr and Faguet [12], Jourdain
and Martini [25, 26].
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