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Abstract

In the solution of ill-posed problems by means of regularization meth-
ods, a crucial issue is the computation of the regularization parameter.
In this work we focus on the Truncated Singular Value Decomposition
(TSVD) and Tikhonov method and we define a method for computing the
regularization parameter based on the behavior of Fourier coefficients. We
compute a safe index for truncating the TSVD and consequently a value
for the regularization parameter of the Tikhonov method. An extensive
numerical experimentation is carried out on the Hansen’s Regtool [3] test
problems and the results confirm the effectiveness and robustness of the
method proposed.

Keywords: Singular Value Decomposition, Regularization methods, Tikhonov
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1 Introduction

In this work discrete ill-posed problems are solved by means of regularization
methods based on Singular Value Decomposition (SVD). By discrete ill-posed
problems we intend a class of least squares problems:

min
x
‖Hf − g‖2, H ∈ Rm×n, g ∈ Rm, m ≥ n

where the matrix H is ill conditioned with smoothly decaying singular val-
ues. Such matrices are obtained by the discretization of ill-posed problems such
as Fredholm first kind integral equations that model many imaging problems.
These problems are very sensitive to small data perturbations such as noise
present in the data g, usually represented by a random process, or errors in the
matrix H.

A great variety of direct and iterative regularization methods can be found
in the literature, they mainly replace the ill-posed problem with a nearby well
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posed one which is less sensitive to perturbations. One well known method is the
Tikhonov method which computes a regularized solution xλ as the minimizer
of the discrete Tikhonov functional:

min
x
‖Hf − g‖22 + λ‖Lf‖22

where λ > 0 is the regularization parameter and L is either the identity matrix
or a well conditioned discrete approximation to some derivative operator.

For practical implementation of such methods it is necessary to compute a
suitable value of the regularization parameter λ.

In this work, we focus on small-medium size problems where the Singular
Value Decomposition (SVD) can be efficiently computed. Analyzing the behav-
ior of the Fourier coefficients in terms of the Discrete Picard Condition [2], we
define a rule for computing the index for truncating the singular values in the
Truncated Singular Value Decomposition (TSVD) method, and consequently a
value for the regularization parameter λ of the Tikhonov method.

The effectiveness and robustness of our rule is evaluated by comparison one
of the most widely used and successful method i.e. the Generalized Cross Vali-
dation method.

In section 2 the properties of the TSVD and Tikhonov methods are reported
with respect to the value of the regularization parameter. In section 3 the rule
proposed is reported and analyzed. Finally in section 4 an extensive numerical
experimentation is carried out on the Hansen’s Regtool [3] test problems.

2 The Discrete Picard Condition

In this section we recall the main properties of the regularization methods with
respect to the SVD.

Let fLS be the minimal norm solution of the least squares problem:

min
f
‖Hf − g‖2, H ∈ Cm×n, g ∈ Cm, (m ≥ n) (1)

let r be the rank of the matrix H and let H = USV ∗ be the SVD of H. It is
possible to characterize fLS in terms of the SVD of the matrix H:

fLS =
n∑

i=1

u∗i g
σi

vi

where σi are the singular values, σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · =
σn = 0, ui (i = 1, . . . , m) and vi (i = 1, . . . , n) are the columns of the unitary
matrices U and V respectively. When (1) is the discretization of an ill-posed
problem (such as the Fredholm fist kind integral equation) fLS is dominated by
the errors present in g (data noise) and H, therefore it is necessary to introduce
regularization methods for filtering out the components that cause the errors.
A regularized solution can be computed as follows:

freg =
n∑

i=1

Φ(σi)
u∗i g
σi

vi (2)
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where Φ is the filter function with values in the interval [0, 1]. By means of the
filter function we characterize the following regularization methods:

• Truncated Singular Value Decomposition method (TSVD) where Φ ≡ Φk

is an ideal low pass filter:

Φk(σi) =
{

1 if σi >= σk(i.e. i <= k)
0 otherwise

where the threshold value σk is defined by the regularization parameter k.

• Tikhonov regularization method (Tikh) where Φ ≡ Φα is a least squares
smoothing filter:

Φα(σi) =
σ2

i

σ2
i + α2

and the value of the regularization parameter α defines the behavior of the
filter function as follows:

– α << σi ⇒ Φα(σi) ≈ 1 i.e. the i-th term in (2) is almost unchanged;

– α >> σi ⇒ Φα(σi) ≈ 0 i.e. the i-th term in (2) is damped to zero.

The function Φα behaves like a smooth low pass filter of the solution terms,
damping the components relative to the singular values smaller than α.

In both cases, the proper determination of the regularization parameter is
a crucial issue: too small values of α or σk (i.e. large values of k in TSVD)
produce a noisy solution dominated by the errors present in the system, while
large values of α (i.e. small values of k in TSVD) produce a smooth blurred
solution.

The decay rate of the Fourier coefficients |u∗i g| with respect to the singular
values σi is a key point to determine the properties of the regularized solution
freg.

The Discrete Picard Condition [2] is a property of the ratio between the
Fourier coefficients |u∗i g| and the singular values σi, which is stated as follows.

If the Fourier coefficients |u∗i g| decay to zero faster than the sin-
gular values, then the regularized solution freg has the same regular-
ity properties as the exact solution f .

The check of this property may be not easy since |u∗i g| may have a non
monotonic behavior. A rule based on the moving geometric mean has been
proposed in [2]. Further analysis of the Fourier coefficients concerns the terms
that can be included in the regularized solution. As pointed out in [1] (pg. 70,
71):

the number of terms k′ that can be safely included in the solution
freg is such that:

k′ ≤ min(iH , ig) (3)

3



where iH is the index at which σi begin to level off and ig is the index
at which |u∗i g| begin to level off. The value iH is proportional to the
error present in the matrix H (i.e. model error) while the value ig
is proportional to the errors present in the data g (i.e. noise error).

An example of this issue is shown in figure 1 reporting the plots of the
singular values σi (blue line), |u∗i g| (green crosses) and |u∗i g|/σi (red o) for
the Foxgood (1(a), 1(b)) and Phillips (1(c), 1(d)) test problems taken from
Hansens’s Regtool, both in absence and presence of noise on the data g (see
section 4 for the details).

We observe that in the Foxgood test problem 25 ≤ iH ≤ 35 while ig ' 30
for noiseless case and ig < 10 at high noise values. For this test problem, the
amount of noise present in the data determines the value k′ in (3) and we can
observe a quite evident minimum value in the curve |u∗i g|/σi.

In the Phillips test problem we can observe that the singular values do not
level off at machine epsilon (∼ 2.2e−16) but have a smooth decreasing behavior
toward a minimum value > 10−5, so we have iH ' n where n is the dimension
of the problem (n = 100 in this example). In the noiseless case, the coefficients
|u∗i g| can be splitted into two successions: one that level off at machine epsilon
(we can interpret this as numerically zero values) and the other that decreases
faster than the singular values curve and fulfils the Picard condition. In this
case the value of k′ in (3) is given by iH and practically no truncation is needed
in the TSVD (figure 1(c)). In the case of high noise we observe that the values
|u∗i g| settle down around the noise value corresponding to increasing values of
the curve |u∗i g|/σi (figure 1(d)).

If the value at which the singular values level off is very small (machine
epsilon) then the index k′ is determined by the value of ig (error data) otherwise
the model error is dominant in the low noise cases.

3 The MinMax Rule

We define here a criterion for computing the values of the regularization param-
eter based on the terms that can be safely included in the freg solution.

Definition 1 (MinMax Rule). Let ϕi be the succession of the solution coeffi-
cients

ϕi =
|u∗i g|
σi

, i = 1, . . . , n

and let us separate the terms ϕi in two sets:

ρ1 = {ϕi : ϕi ≥ σi} , ρ2 = {ϕi : ϕi < σi}
Let K1 be the number of elements in ρ1, K2 be the number of elements in ρ2

and Smin = mini(σi), compute the index k∗ such that:

case I If Smin ≤ 1.e − 13 or K2 = 0 (i.e. the sequence ρ2 is empty) then k∗ is
the index relative to the minimum value in the sequence ρ1.
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case II Otherwise k∗ is the smallest index among the last 5 elements in ρ2 such
that |u∗k∗+1g|

σk∗+1
> σk∗+1

Then k∗ is chosen as the regularization parameter of the TSVD method and

α∗ = σ(k∗)

is the regularization parameter for the Tikhonov method.

When the minimum singular value (Smin) is close to the machine epsilon
(or the sequence ρ2 is empty), than ρ1 is used to determine the regularization
index. In this case the data noise is assumed to be predominant with respect to
the model errors and the sequence ρ1 shows a quite evident minimum value.

An example of this case is reported in figure 2 relative to the Foxgood test
problem. In this case only the sequence ρ1 is computed since K2 = 0 as shown
in figure 2(a) for the noiseless case and in figure 2(c) for the high noise case.
In the noiseless case ρ1 has a spurious minimum (figure 2(a)) that causes the
error to be greater to the optimal one (2(b)). In the noisy case (figure 2(c)) we
observe that the computed value is very close to the optimal (figure 2(d)).

In the case II of the MinMax Rule the model errors are predominant and
the greatest indices in ρ2 are included in the TSVD provided that they are
contiguous (i.e. the successive element does not belong to ρ1). This situation
is shown in figures 3 obtained with the Phillips test problem. In the noiseless
the computed index is not close to the optimal one (figure 3(a)), but we can
see that the relative error is constant so the solution is effectively as good as
the optimal one (3(b)). In the noisy case we observe that the computed value
is very close to the optimal (figures 3(c), 3(d)).

4 Numerical Experiments

In this section we report the results obtained by several test problems with
the method (1) and the Generalized Cross Validation method implemented in
Hansen’s Regtool (GCV function) [3].

The first test is carried out on the 17 Regtools test problems relative to 1D
integral equations. We subdivide the test problems into two groups named G1
and G2 respectively. The group G1 is constituted by the test problems with low
errors present in the matrix (i.e. with singular values that level-off at machine
epsilon or lower values). Table (1) reports the names of the test and the call
to the specific matlab function used to generate the test. The group G2 is
constituted by the test problems with quite large errors in the matrix (i.e. with
singular values decay to a minimum value much larger than machine epsilon).
The names of the test problems and function calls are reported in table (2).

Each problem defines the matrix H, the true solution ftrue and the r.h.s. g
of the least squares problem min ‖Hftrue−g‖. White gaussian noise is added to
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the data g with variance δ and the problem min‖Hf−gδ‖ is solved by means of
the TSVD and Tikhonov methods. The noisy data gδ are obtained as follows:

gδ = g + δ‖g‖η
where η is a unitary vector of gaussian distributed random values. All the tests
are performed with dimension n = 100.

In tables 3,4 and 7 are reported the results obtained by the TSVD method:
the first two columns are relative to the test problems and report the name of
the test function (Test column) and the value of δ (Noise column). The results
reported in columns Best are obtained by computing the optimal solution: the
column Index is the number of terms used in the TSVD solution (2) and the
column Error reports the relative error computed with respect to the solution
ftrue.

The solution obtained by MinMax Rule is reported in columns MinMax tsvd
where the columns Index and Error report the number of terms determined by
the MinMax Rule and the relative error respectively. Analogously the columns
GCV tsvd report the number of terms (columns Index ) and the relative error
(column Error) computed by the GCV function.

Observing the last column of tables 3, 4, 5 and 6 (relative to the test problems
G1) we can see that GCV presents several critical situations with errors greater
than 10 while MinMax Rule has always maximum error < 1.

This behavior is not present in tables 7 and 8 showing that test problems
like G2 are better than G1 for GCV method. Analyzing the errors we can see
some cases where MinMax Rule and GCV have maximum error in the interval
[1, 6] for the TSVD method (table 7), while the GCV has better performance
for the Tikhonov method (table 8).

The efficiency of each method Ef can be evaluated as the ratio between the
optimal error Eb (i.e. the relative error obtained using the optimal regularization
parameter) and the error computed by each method Em:

Ef =
Eb

Em

The average behavior of each method with respect to the sets of test problems
G1 and G2 is analyzed by computing the smallest efficiency value Efmin and
the mean efficiency value Efmean as reported in table 9. Moreover the same
table reports the percentages of tests where each method reached the maximum
efficiency value (Ef = 1) (column Opt%) and those where the method reported
a relative error greater than 10 (column Fail%).

The MinMax rule performs better than GCV in terms of average efficiency
for the tsvd method with both tests G1 and G2 and for the Tikhonov method
with tests G1. The percentage of fails reported in these cases are 29 and 13
showing that GCV is not always able to compute an acceptable value for the
regularization parameter.

For test problems G2 with the Tikhonov method we can see that GCV has
better efficiency values with respect to the MinMax rule. Both methods are
however robust for these test problems since they do not report failures.
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The minimum efficiency value reported in table9 is relative to the test
ilaplace ex1 in absence of noise, solved with GCV tsvd method. The so-
lution and errors are reported in figure4 show very bad reconstructions, the
small value in the efficiency parameter is due to a very large value of the rela-
tive error obtained by the regularization method (figure 4(b)) and the computed
regularization parameter is larger than the optimal.

The minimum efficiency value obtained by the MinMax rule is relative to
the case test heat in absence of noise, solved tsvd method. In this case we can
observe a good quality solution (figure 5(a)) since the small efficiency value is
due to a very small value of the relative error in the optimal solution and the
value of the regularization parameter is smaller than the optimal.

We can therefore conclude that gcv is a very efficient method for computing
the tikhonov regularization parameter in test problems with predominant the
errors in the matrix (G2 group) returning in many cases values very close to
the optimal. In all the remaining cases MinMax rule is more robust, preventing
failures and giving always good results.

5 Conclusions

A fast and robust method for computing the regularization parameter is pro-
posed. The method is based on the properties of the Fourier coefficients obtained
by computing the SVD. This strategy can be extended quite naturally to general
regularization problems of the kind:

min
f
‖Hf − g‖2 + ‖Lf‖2, L 6= I

by means of the Generalized Singular Value Decomposition (GSVD).
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Figure 1: (a)(b) Foxgood test problem: Coefficients, singular values and Fourier
coefficients: (a) noiseless case (b) high noise = 1.e-2; (c),(d) Phillips test prob-
lem: Coefficients, singular values and Fourier coefficients: (c) noiseless case (d)
high noise = 1.e-2;

Test Regtool function
Shaw shaw(n)
Heat heat(n)
Baart baart(n)
iLaplace ex1 i laplace(n,1)
iLaplace ex2 i laplace(n,2)
iLaplace ex3 i laplace(n,3)
Foxgood foxgood(n)
Wing wing(n)
Spikes spikes(n)
Gravity ex1 gravity(n,1)
Gravity ex2 gravity(n,2)
Gravity ex3 gravity(n,3)

Table 1: Group G1 test problems: n = 100
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Test Regtool function
Phillips phillips(n)
Deriv2 ex1 deriv2(n,1)
Deriv2 ex2 deriv2(n,2)
Deriv2 ex3 deriv2(n,3)

Table 2: Group G2 test problems: n = 100

Test Noise Best MinMax tsvd GCV tsvd
Index Error Index Error Index Error

Shaw 0.0e+000 19 3.53e-004 14 3.65e-003 45 1.58e+001
Shaw 1.0e-005 10 2.72e-002 8 4.72e-002 9 3.21e-002
Shaw 1.0e-003 7 4.87e-002 8 8.81e-002 99 5.38e+014
Shaw 1.0e-002 7 1.03e-001 5 1.47e-001 7 1.03e-001
Heath 0.0e+000 97 3.04e-011 56 1.04e-002 99 5.42e+006
Heath 1.0e-005 55 1.14e-002 50 1.35e-002 58 1.29e-002
Heath 1.0e-003 24 4.39e-002 30 4.58e-002 29 4.56e-002
Heath 1.0e-002 23 1.19e-001 21 1.27e-001 17 1.31e-001
Baart 0.0e+000 11 1.63e-002 10 1.93e-002 64 4.81e+000
Baart 1.0e-005 5 5.25e-002 5 5.25e-002 5 5.25e-002
Baart 1.0e-003 5 9.26e-002 5 9.26e-002 7 1.58e+003
Baart 1.0e-002 3 1.67e-001 3 1.67e-001 3 1.67e-001
Foxgood 0.0e+000 7 2.47e-004 13 8.27e-004 38 3.66e+001
Foxgood 1.0e-005 5 1.56e-003 5 1.56e-003 4 2.24e-003
Foxgood 1.0e-003 3 7.86e-003 3 7.86e-003 15 8.55e+004
Foxgood 1.0e-002 2 3.33e-002 3 9.20e-002 2 3.33e-002
Wing 0.0e+000 7 3.11e-001 3 5.95e-001 10 4.62e+000
Wing 1.0e-005 5 4.24e-001 3 5.95e-001 4 4.38e-001
Wing 1.0e-003 2 5.95e-001 3 5.95e-001 2 5.95e-001
Wing 1.0e-002 2 5.95e-001 3 6.30e-001 2 5.95e-001
Spikes 0.0e+000 21 3.70e-001 9 8.38e-001 27 7.78e+000
Spikes 1.0e-005 12 7.79e-001 9 8.38e-001 12 7.79e-001
Spikes 1.0e-003 10 8.15e-001 7 8.56e-001 99 3.56e+014
Spikes 1.0e-002 8 8.39e-001 9 8.41e-001 6 8.56e-001

Table 3: TSVD method with G1 test problems. Columns Best: regularization
parameter and minimum relative error. Columns MinMax tsvd regularization
parameter and relative error of MinMax rule. Columns GCV tsvd regulariza-
tion parameter and relative error of gcv function.
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Test Noise Best MinMax tsvd GCV tsvd
Index Error Index Error Index Error

iLaplace ex1 0.0e+000 25 4.07e-006 26 4.45e-006 98 1.45e+014
iLaplace ex1 1.0e-005 13 4.32e-002 14 5.04e-002 13 4.32e-002
iLaplace ex1 1.0e-003 9 1.08e-001 7 1.27e-001 16 1.20e+002
iLaplace ex1 1.0e-002 6 1.48e-001 7 1.73e-001 6 1.48e-001
iLaplace ex2 0.0e+000 31 7.14e-001 31 7.14e-001 30 7.16e-001
iLaplace ex2 1.0e-005 16 7.69e-001 15 7.71e-001 14 7.70e-001
iLaplace ex2 1.0e-003 10 7.95e-001 11 8.08e-001 16 6.81e+001
iLaplace ex2 1.0e-002 8 8.08e-001 7 8.15e-001 7 8.15e-001
iLaplace ex3 0.0e+000 24 1.40e-007 24 1.40e-007 23 2.42e-007
iLaplace ex3 1.0e-005 11 2.71e-003 11 2.71e-003 10 4.57e-003
iLaplace ex3 1.0e-003 8 2.00e-002 8 2.00e-002 16 1.37e+002
iLaplace ex3 1.0e-002 5 7.65e-002 8 1.56e-001 5 7.65e-002
iLaplace ex4 0.0e+000 25 7.29e-001 25 7.29e-001 37 4.01e+002
iLaplace ex4 1.0e-005 16 7.65e-001 15 7.67e-001 14 7.66e-001
iLaplace ex4 1.0e-003 10 7.91e-001 11 8.03e-001 16 6.49e+001
iLaplace ex4 1.0e-002 8 8.06e-001 8 8.06e-001 7 8.10e-001
Gravity ex1 0.0e+000 35 1.20e-006 36 1.59e-006 96 6.40e+001
Gravity ex1 1.0e-005 14 2.72e-003 15 3.91e-003 13 3.53e-003
Gravity ex1 1.0e-003 10 1.65e-002 10 1.65e-002 8 2.03e-002
Gravity ex1 1.0e-002 7 3.00e-002 8 4.42e-002 6 4.13e-002
Gravity ex2 0.0e+000 45 2.19e-003 27 4.39e-003 43 2.33e-003
Gravity ex2 1.0e-005 16 1.01e-002 14 1.03e-002 13 1.04e-002
Gravity ex2 1.0e-003 9 2.39e-002 10 2.46e-002 16 3.17e+000
Gravity ex2 1.0e-002 7 5.02e-002 10 1.83e-001 9 1.80e-001
Gravity ex3 0.0e+000 48 3.14e-002 36 3.79e-002 47 3.16e-002
Gravity ex3 1.0e-005 17 5.79e-002 16 5.98e-002 15 5.99e-002
Gravity ex3 1.0e-003 9 7.50e-002 10 7.52e-002 16 2.97e+000
Gravity ex3 1.0e-002 8 9.78e-002 10 1.86e-001 8 9.78e-002

Table 4: TSVD method with G1 test problems. Columns Best: regularization
parameter and minimum relative error. Columns MinMax tsvd regularization
parameter and relative error of MinMax rule. Columns GCV tsvd regulariza-
tion parameter and relative error of gcv function.
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Test noise Best MinMax tikh GCV tikh
value Error value Error value Error

Shaw 0.0e+000 5.44e-011 5.33e-004 6.43e-008 3.62e-003 1.12e-012 3.17e-004
Shaw 1.0e-005 4.34e-003 4.55e-002 4.34e-003 4.55e-002 1.79e-004 3.12e-002
Shaw 1.0e-003 4.34e-003 4.86e-002 4.34e-003 4.86e-002 1.22e-003 1.41e-001
Shaw 1.0e-002 5.90e-002 1.19e-001 5.90e-002 1.19e-001 1.94e-002 6.32e-002
Heath 0.0e+000 1.25e-006 1.59e-003 7.82e-005 8.89e-003 3.49e-014 3.06e-011
Heath 1.0e-005 1.01e-004 1.01e-002 1.32e-004 1.08e-002 4.16e-005 1.29e-002
Heath 1.0e-003 1.34e-003 3.89e-002 9.98e-004 4.27e-002 7.72e-004 5.14e-002
Heath 1.0e-002 3.10e-003 1.11e-001 3.10e-003 1.11e-001 2.75e-003 1.21e-001
Baart 0.0e+000 4.56e-012 1.94e-002 4.56e-012 1.94e-002 1.23e-014 3.37e-001
Baart 1.0e-005 2.36e-004 7.41e-002 2.36e-004 7.41e-002 3.63e-005 5.66e-002
Baart 1.0e-003 2.36e-004 1.46e-001 2.36e-004 1.46e-001 1.72e-007 1.20e+003
Baart 1.0e-002 7.16e-002 2.17e-001 7.16e-002 2.17e-001 1.17e-002 1.31e-001
Foxgood 0.0e+000 2.77e-006 3.14e-004 2.72e-008 7.92e-004 3.08e-015 2.61e-001
Foxgood 1.0e-005 2.57e-004 2.42e-003 2.57e-004 2.42e-003 2.19e-004 2.62e-003
Foxgood 1.0e-003 6.60e-003 1.44e-002 6.60e-003 1.44e-002 1.09e-009 7.75e+004
Foxgood 1.0e-002 6.60e-003 6.19e-002 6.60e-003 6.19e-002 1.00e-002 4.97e-002
Wing 0.0e+000 3.71e-007 3.55e-001 1.11e-003 5.95e-001 1.70e-015 3.14e-001
Wing 1.0e-005 1.11e-003 5.95e-001 1.11e-003 5.95e-001 1.84e-006 4.37e-001
Wing 1.0e-003 1.11e-003 5.94e-001 1.11e-003 5.94e-001 3.52e-011 5.79e+005
Wing 1.0e-002 1.11e-003 6.05e-001 1.11e-003 6.05e-001 2.00e-003 5.97e-001
Spikes 0.0e+000 4.41e-012 6.17e-001 1.02e-002 8.35e-001 6.82e-014 5.00e-001
Spikes 1.0e-005 2.42e-003 8.15e-001 1.02e-002 8.35e-001 2.72e-005 7.86e-001
Spikes 1.0e-003 3.75e-002 8.42e-001 1.22e-001 8.53e-001 2.10e-003 8.05e-001
Spikes 1.0e-002 1.02e-002 8.60e-001 1.02e-002 8.60e-001 7.06e-002 8.51e-001

Table 5: Tikhonov method with G1 test problems. Columns Best: regular-
ization parameter and minimum relative error. Columns MinMax tikh regu-
larization parameter and relative error of MinMax rule. Columns GCV tikh
regularization parameter and relative error of gcv function.
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Test noise Best MinMax tikh GCV tikh
value Error value Error value Error

iLaplace ex1 0.0e+000 3.52e-012 5.76e-006 3.52e-012 5.76e-006 7.80e-012 4.87e-006
iLaplace ex1 1.0e-005 2.76e-005 5.30e-002 2.76e-005 5.30e-002 6.16e-005 4.64e-002
iLaplace ex1 1.0e-003 2.51e-002 1.27e-001 2.51e-002 1.27e-001 2.18e-006 8.68e+001
iLaplace ex1 1.0e-002 2.51e-002 1.50e-001 2.51e-002 1.50e-001 3.04e-002 1.52e-001
iLaplace ex2 0.0e+000 1.87e-017 1.54e+000 1.87e-017 1.54e+000 9.02e-015 7.20e-001
iLaplace ex2 1.0e-005 9.57e-006 7.70e-001 9.57e-006 7.70e-001 1.62e-005 7.70e-001
iLaplace ex2 1.0e-003 5.89e-004 7.94e-001 5.89e-004 7.94e-001 2.18e-006 4.91e+001
iLaplace ex2 1.0e-002 2.51e-002 8.15e-001 2.51e-002 8.15e-001 1.25e-002 8.07e-001
iLaplace ex3 0.0e+000 9.58e-011 1.31e-007 9.58e-011 1.31e-007 2.05e-012 1.56e-005
iLaplace ex3 1.0e-005 5.89e-004 4.20e-003 5.89e-004 4.20e-003 4.58e-004 4.44e-003
iLaplace ex3 1.0e-003 1.02e-002 3.16e-002 1.02e-002 3.16e-002 2.18e-006 9.90e+001
iLaplace ex3 1.0e-002 2.51e-002 1.11e-001 1.02e-002 1.62e-001 2.68e-002 1.09e-001
iLaplace ex4 0.0e+000 1.91e-011 7.29e-001 1.91e-011 7.29e-001 9.02e-015 2.06e+000
iLaplace ex4 1.0e-005 9.57e-006 7.66e-001 9.57e-006 7.66e-001 1.37e-005 7.66e-001
iLaplace ex4 1.0e-003 5.89e-004 7.93e-001 5.89e-004 7.93e-001 2.18e-006 4.68e+001
iLaplace ex4 1.0e-002 1.02e-002 8.02e-001 1.02e-002 8.02e-001 1.06e-002 8.03e-001
Gravity ex1 0.0e+000 2.47e-010 1.41e-006 1.22e-010 1.54e-006 5.08e-010 1.36e-006
Gravity ex1 1.0e-005 1.07e-003 3.71e-003 1.07e-003 3.71e-003 2.02e-003 3.11e-003
Gravity ex1 1.0e-003 3.03e-002 1.92e-002 3.03e-002 1.92e-002 4.20e-004 2.03e+000
Gravity ex1 1.0e-002 1.12e-001 4.22e-002 1.12e-001 4.22e-002 1.18e-001 4.05e-002
Gravity ex2 0.0e+000 3.45e-012 2.34e-003 2.77e-007 4.17e-003 1.24e-012 2.27e-003
Gravity ex2 1.0e-005 2.10e-003 1.04e-002 2.10e-003 1.04e-002 1.88e-003 1.04e-002
Gravity ex2 1.0e-003 3.03e-002 2.16e-002 3.03e-002 2.16e-002 4.20e-004 2.17e+000
Gravity ex2 1.0e-002 5.86e-002 7.82e-002 3.03e-002 1.54e-001 8.33e-002 4.30e-002
Gravity ex3 0.0e+000 4.00e-013 3.20e-002 5.02e-010 3.75e-002 1.01e-013 3.16e-002
Gravity ex3 1.0e-005 5.41e-004 5.83e-002 5.41e-004 5.83e-002 4.57e-004 5.80e-002
Gravity ex3 1.0e-003 3.03e-002 7.14e-002 3.03e-002 7.14e-002 4.20e-004 2.04e+000
Gravity ex3 1.0e-002 3.03e-002 1.75e-001 3.03e-002 1.75e-001 1.11e-001 1.05e-001

Table 6: Tikhonov method with G1 test problems. Columns Best: regular-
ization parameter and minimum relative error. Columns MinMax tikh regu-
larization parameter and relative error of MinMax rule. Columns GCV tikh
regularization parameter and relative error of gcv function.
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Test Noise Best MinMax tsvd GCV tsvd
Index Error Index Error Index Error

Phillips 0.0e+000 99 7.57e-004 84 7.57e-004 99 7.57e-004
Phillips 1.0e-005 21 1.67e-003 24 2.24e-003 21 1.67e-003
Phillips 1.0e-003 11 1.22e-002 11 1.22e-002 13 3.25e-002
Phillips 1.0e-002 9 2.17e-002 10 2.71e-002 7 2.50e-002
Deriv2 ex1 0.0e+000 100 3.43e-012 100 3.43e-012 73 6.50e-002
Deriv2 ex1 1.0e-005 100 4.84e-002 86 5.80e-002 62 8.07e-002
Deriv2 ex1 1.0e-003 25 1.81e-001 23 1.84e-001 99 4.46e+000
Deriv2 ex1 1.0e-002 11 2.47e-001 26 1.04e+000 12 3.26e-001
Deriv2 ex2 0.0e+000 100 8.29e-006 100 8.29e-006 73 6.04e-002
Deriv2 ex2 1.0e-005 97 5.21e-002 64 7.43e-002 61 7.66e-002
Deriv2 ex2 1.0e-003 25 1.78e-001 32 2.52e-001 99 4.83e+000
Deriv2 ex2 1.0e-002 11 2.33e-001 32 1.61e+000 12 3.34e-001
Deriv2 ex3 0.0e+000 99 5.37e-004 86 5.38e-004 99 5.37e-004
Deriv2 ex3 1.0e-005 33 2.72e-003 30 2.92e-003 29 2.91e-003
Deriv2 ex3 1.0e-003 7 1.86e-002 2 1.20e-001 99 5.63e+000
Deriv2 ex3 1.0e-002 5 3.88e-002 2 1.20e-001 3 4.87e-002

Table 7: Tsvd method with G2 test problems. Columns Best: regularization
parameter and minimum relative error. Columns MinMax tsvd regularization
parameter and relative error of MinMax rule. Columns GCV tsvd regulariza-
tion parameter and relative error of gcv function.
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Test noise Best MinMax tikh GCV tikh
value Error value Error value Error

Phillips 0.0e+000 4.26e-005 7.56e-004 4.26e-005 7.56e-004 2.26e-006 7.57e-004
Phillips 1.0e-005 5.92e-003 2.04e-003 5.13e-003 2.20e-003 4.07e-003 2.63e-003
Phillips 1.0e-003 9.48e-002 1.23e-002 9.48e-002 1.23e-002 2.71e-002 3.60e-002
Phillips 1.0e-002 1.18e-001 5.31e-002 1.18e-001 5.31e-002 1.18e-001 5.32e-002
Deriv2 ex1 0.0e+000 8.33e-006 3.00e-002 8.33e-006 3.00e-002 8.49e-006 3.07e-002
Deriv2 ex1 1.0e-005 8.36e-006 4.45e-002 9.58e-006 4.64e-002 8.49e-006 4.47e-002
Deriv2 ex1 1.0e-003 1.83e-004 1.76e-001 1.83e-004 1.76e-001 1.55e-004 1.87e-001
Deriv2 ex1 1.0e-002 5.91e-004 2.79e-001 1.42e-004 1.41e+000 8.08e-004 2.41e-001
Deriv2 ex2 0.0e+000 8.33e-006 2.81e-002 8.33e-006 2.81e-002 8.49e-006 2.87e-002
Deriv2 ex2 1.0e-005 8.49e-006 4.40e-002 1.84e-005 5.98e-002 8.49e-006 4.40e-002
Deriv2 ex2 1.0e-003 1.31e-004 2.19e-001 9.11e-005 3.00e-001 1.70e-004 1.88e-001
Deriv2 ex2 1.0e-002 5.91e-004 2.88e-001 9.11e-005 2.75e+000 9.76e-004 2.31e-001
Deriv2 ex3 0.0e+000 9.58e-006 3.91e-004 9.58e-006 3.91e-004 8.49e-006 4.09e-004
Deriv2 ex3 1.0e-005 1.05e-004 3.13e-003 1.05e-004 3.13e-003 6.60e-005 4.85e-003
Deriv2 ex3 1.0e-003 4.04e-003 3.18e-002 2.53e-002 1.19e-001 6.38e-004 3.09e-002
Deriv2 ex3 1.0e-002 1.12e-002 7.55e-002 2.53e-002 1.20e-001 2.51e-003 4.92e-002

Table 8: Tikhonov method with G2 test problems. Columns Best: regular-
ization parameter and minimum relative error. Columns MinMax tikh regu-
larization parameter and relative error of MinMax rule. Columns GCV tikh
regularization parameter and relative error of gcv function.

Test Method Emin Emean Opt% Fail%
G1 MinMax tsvd 3.54e-009 0.80 21 0

GCV tsvd 2.22e-020 0.59 23 27
MinMax tikh 7.21e-004 0.80 19 0
GCV tikh 5.34e-008 0.69 19 13

G2 MinMax tsvd 1.4e-001 0.72 19 0
GCV tsvd 5.48e-011 0.55 19 0
MinMax tikh 1.72e-002 0.57 13 0
GCV tikh 1.68e-002 0.70 56 0

Table 9: Efficiency values on the different test problems: Efmin is the minimum
efficiency value; Efmean is the mean efficiency value; Opt% is the percentage of
tests where each method reached the maximum efficiency value and Fail% is
percentage of cases with a relative error greater than 10 .
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Figure 2: Foxgood test problem (a), (c) ρ1 succession (red), ρ2 succession
(green);(b) (d) Relative error: read o (optimal solution), blue triangle (TSVD
MinMax solution); (a)(b) noiseless case (c)(d) high noise = 1.e-2
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Figure 3: Phillips test problem (a), (c) ρ1 succession (red), (ρ2 succession (green)
is empty); (b) (d) Relative error: red o (optimal solution), blue triangle (TSVD
MinMax solution); (a)(b) noiseless case (c)(d) high noise = 1.e-2
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Figure 4: Worse efficiency values for gcv method: (a) Solution of ilaplace ex1
test problem, no noise (b) Error curve for different values of the regularization
parameters. Red dot: optimal parameter. Blue triangle: solution computed by
tsvd with GCV parameter.
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Figure 5: Worse efficiency values for MinMax rule: (a) Solution of heat test
problem, no noise. (b) Error curve for different values of the regularization
parameters. Red dot: optimal parameter. Blue triangle: solution computed by
tsvd with regularization parameter given by MinMax rule.
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