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Abstract: In this paper we are concerned with Harnack inequalities for non-negative
solutions u : Ω → R to a class of second order hypoelliptic ultraparabolic partial
differential equations in the form

L u :=
m∑
j=1

X2
j u+X0u− ∂tu = 0

where Ω is any open subset of RN+1, and the vector fields X1, . . . , Xm and X0 − ∂t
are invariant with respect to a suitable homogeneous Lie group. Our main goal is the
following result: for any fixed (x0, t0) ∈ Ω we give a geometric sufficient condition
on the compact sets K ⊆ Ω for which the Harnack inequality

sup
K
u ≤ CK u(x0, t0)

holds for all non-negative solutions u to the equation L u = 0. We also compare our
result with an abstract Harnack inequality from potential theory.
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1 Introduction

In this paper we consider second order partial differential operators in RN+1 of the
form

L =
m∑
j=1

X2
j +X0 − ∂t, (1.1)

where 1 ≤ m ≤ N . The Xj’s are smooth vector fields on RN , i.e., if we by z = (x, t)
denote points in RN+1, then

Xj(x) =
N∑
k=1

akj (x)∂xk ,

where akj is a C∞ function on RN , for k ∈ {1, . . . , N}. In the following we also often
consider the Xj’s as vector fields in RN+1. Furthermore, we define the vector field Y
on RN+1 as

Y := X0 − ∂t.

A curve γ : [0, T ] → RN+1 is said to be L -admissible if it is absolutely continuous
and satisfies

γ′(s) =
m∑
j=1

ωj(s)Xj(γ(s)) + λ(s)Y (γ(s)), for a.e. s ∈ [0, T ], (1.2)

and for some suitable piecewise constant real functions ω1, . . . ωm, λ, with λ ≥ 0. We
say that γ connects (x, t) to (ξ, τ), for t > τ , if γ(0) = (x, t) and γ(T ) = (ξ, τ).
We refer the reader to Section 2 for the definition of a homogeneous Lie group
L = (RN+1, ◦, dλ). In this paper we impose the following restrictions on the vector
fields X1, . . . , Xm and Y :

(H.1) there exists a homogeneous Lie group L = (RN+1, ◦, dλ) such that

(i) X1, . . . , Xm, Y are left translation invariant on L,

(ii) X1, . . . , Xm are dλ-homogeneous of degree one and Y is dλ-homogeneous
of degree two,

(H.2) for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists a L -admissible path
γ : [0, T ]→ RN+1 connecting (x, t) to (ξ, τ).

In order to simplify our exposition we also require the technical assumption
X0(0) = 0. We note that operators in (1.1), satisfying assumptions (H.1) and (H.2),
have previously been studied by Kogoj and Lanconelli in [11]. Furthermore, we recall
that (H.1) and (H.2) yield the well known Hörmander condition [10]

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, for every z ∈ RN+1, (1.3)
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where Lie{X1, . . . , Xm, Y } denotes the Lie algebra generated by the vector fields.
In particular, (H.1) and (H.2) implies that L is a hypoelliptic operator, i.e., any
distributional solution u to L u = 0 is actually a smooth classical solution. We refer
to [11, Proposition 10.1] for the proof of the fact that (H.1) and (H.2) imply (1.3).

This paper is devoted to Harnack inequalities for non-negative solutions to the
equation L u = 0 on arbitrary open subsets Ω of RN+1. In particular, for any
given (x0, t0) ∈ Ω, we intend to characterize the compact sets K ⊆ Ω for which the
following Harnack inequality holds: there exists CK > 0 such that

sup
K
u ≤ CK u(x0, t0) (1.4)

for every non-negative solution u of L u = 0 in Ω. In order to formulate our main
result, we consider any open subset Ω of RN+1, any (x0, t0) ∈ Ω, and we denote by
A(x0,t0) = A(x0,t0)(Ω) the following set

A(x0,t0) =
{

(x, t) ∈ Ω | there exists an L -admissible path γ : [0, T ]→ Ω

such that γ(0) = (x0, t0), γ(T ) = (x, t)
}
.

(1.5)

We will refer to the set A(x0,t0) as the attainable set and we let int
(
A(x0,t0)

)
denote

the interior of A(x0,t0). We can now formulate the main result proved in this paper.

Theorem 1.1 Let Ω be an open subset of RN+1 and let (x0, t0) ∈ Ω. For every
compact set K ⊆ int

(
A(x0,t0)

)
, there exists a positive constant CK = CK(Ω, (x0, t0)),

only dependent on Ω, (x0, t0), K and on the operator L , such that

sup
K
u ≤ CK u(x0, t0),

for every non-negative solution u of L u = 0 in Ω.

We recall that A(x0,t0) is related to the Bony’s minimum principle [5] which can
be stated as follows. Let u be a solution of L u = 0. If u attains its minimum at
(x0, t0) ∈ Ω, then this minimum value is attained at every point of A(x0,t0).

We recall that operators L satisfying (H.1)-(H.2) have been studied in [7] in the
setting of the Potential Theory. We refer to the monographs [1] and [9]. We point
out that Potential Theory provides us with a statement analogous to Theorem 1.1
where the set A(x0,t0) is replaced by the “smallest absorbent set” Ω(x0,t0), see formula
(4.3) and Corollary 4.2 below. However, unlike A(x0,t0), the geometric structure of
the set Ω(x0,t0) is not explicitly known. Of course, if the identity A(x0,t0) = Ω(x0,t0)

was true, then Theorem 1.1 would be a direct consequence of the Potential Theory.
We recall that the identity A(x0,t0) = Ω(x0,t0) has been proven for some classes of
Hörmander operators, see Remarks 4.3 and 4.4 below. However, due to the presence
of the drift term X0 in the operator L , the same result has not (yet) been proved
for operators L satisfying (H.1)-(H.2). For the convenience of the reader, in Section
4 we recall some definitions from Potential Theory and we discuss, in more details,
the relations between the sets A(x0,t0) and Ω(x0,t0).
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The proof of Theorem 1.1 relies on an invariant Harnack inequality due to Kogoj
and Lanconelli [11, Theorem 7.1]. In addition we use a method introduced in [15]
and in [6], which allows us to construct Harnack chains along suitable L -admissible
paths. Specifically, we say that a finite set {z0, z1, . . . , zk} ⊆ Ω is a Harnack chain
connecting z0 to zk if there exist k positive constants C1, . . . , Ck such that

u(zj) ≤ Cj u(zj−1), j = 1, . . . , k, (1.6)

for every non-negative solution u : Ω→ R to the equation L u = 0. The conclusion
of the proof of Theorem 1.1 is achieved by a straightforward compactness argument.

We remark that, among the operators satisfying (H.1)-(H.2), we find general
families of well-known operators. We quote, for instance, Kolmogorov operators
studied by Lanconelli and Polidoro in [12]. Moreover, our result also applies to heat
kernels on Carnot groups. Even if the family of operators L considered in this paper
is wide, our method seems to be applicable to a more general class of hypoelliptic
operators L , since we only rely on the local properties of homogeneous Lie groups.
We refer to the recent paper [4] by Bonfiglioli and Uguzzoni and to its bibliography
for problems and conclusions related to our main result.

This paper is organized as follows. In Section 2 we recall some known results
concerning operators L satisfying hypotheses (H.1)-(H.2). In Section 3 we first
formulate and prove two statements of Harnack inequalities which are useful for our
purposes, then we prove Theorem 1.1. In Section 4 we relate Theorem 1.1 to the
general result from Potential Theory mentioned above. Furthermore, we recall a
result by Bonfiglioli, Lanconelli and Uguzzoni [2] where a geometric characterization
of Ω(x0,t0) is given for operators of the form

∑m
j=1 X

2
j − ∂t, and we explicitly describe

the set A(x0,t0) in the case of the Kolmogorov operator ∂2
x1

+ x1∂x2 − ∂t, where the
drift term is X0 = x1∂x2 .

2 Preliminaries

In this section we introduce some notations and recall some basic notions concerning
homogeneous Lie groups. We refer to the monograph [3] for a detailed treatment
of the subject. Let ◦ be a given group law on RN+1 and suppose that the map
(z, ζ) 7→ ζ−1 ◦ z is smooth. Then L = (RN+1, ◦) is called a Lie group. Moreover, L
is said homogeneous if there exists a family of dilations (dλ)λ>0 on L and if (dλ)λ>0

defines an automorphism of the group, i.e.,

dλ(z ◦ ζ) = (dλz) ◦ (dλζ) , for all z, ζ ∈ RN+1 and λ > 0.

Furthermore, the dilation dλ induces a direct sum decomposition on RN

RN = V1 ⊕ · · · ⊕ Vk, (2.1)

as follows. If we denote x = x(1) + x(2) + · · · + x(k) with x(j) ∈ Vj, then dλ(x, t) =
(D(λ)x, λ2t), where

D(λ)
(
x(1) + x(2) + · · ·+ x(k)

)
=
(
λx(1) + λ2x(2) + · · ·+ λkx(k)

)
. (2.2)
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The natural number

Q := dimV1 + 2 dimV2 + · · ·+ k dimVk + 2 (2.3)

is usually called the homogeneous dimension of L with respect to dλ. We next recall
some useful facts about homogeneous Lie groups. As stated in the Introduction,
hypotheses (H.1)-(H.2) yield the Hörmander condition (1.3). We note that (H.1)
and (1.3) imply that span

{
X1(0), . . . , Xm(0)

}
= V1. Hence it is not restrictive to

assume m = dimV1 and Xj(0) = ej for j = 1, . . . ,m, where {ei}1≤i≤N denotes the
canonical basis of RN . We set

|x|L =

(
k∑
j=1

mj∑
i=1

(
x

(j)
i

) 2k!
j

) 1
2k!

, ‖(x, t)‖L =
(
|x|2k!

L + |t|k!
) 1

2k! ,

and we observe that the above functions are homogeneous of degree 1, on RN and
RN+1 respectively, in the sense that∣∣(λx(1) + · · ·+ λkx(k)

)∣∣
L = λ|x|L, ‖dλ(x, t)‖L = λ‖(x, t)‖L,

for every (x, t) ∈ RN+1 and for any λ > 0. We define the quasi-distance d by setting

d(z, ζ) := ‖ζ−1 ◦ z‖L, z, ζ ∈ RN+1, (2.4)

and we introduce the associated ball

B(z0, r) := {z ∈ RN+1 | d(z, z0) < r}. (2.5)

We recall that, for every compact set K ⊂ RN+1 there exist two positive constants
c−K and c+

K , such that

c−K |z − ζ| ≤ d(z, ζ) ≤ c+
K |z − ζ|

1
k , for all z, ζ ∈ K. (2.6)

Here | · | denotes the usual Euclidean distance. For a proof of (2.6) we refer to
[14]. From the above inequalities it follows that the topology generated by the quasi-
distance d is equivalent to the standard Euclidean topology. For any z ∈ RN+1 and
H ⊂ RN+1, we define

d(z,H) := inf{d(z, ζ) | ζ ∈ H},

and for any open set Ω ⊂ RN+1 and for any ε ∈]0, 1[, we introduce the set

Ωε = {z ∈ Ω | d(z, ∂Ω) ≥ ε}. (2.7)

3 Harnack inequalities and proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1, but to do this we first have to
develop some results concerning Harnack inequalities. In particular, we first recall
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an invariant Harnack inequality due to Kogoj and Lanconelli [11], then we prove
a version of this inequality which is useful for our purposes. After that, we give a
non-local Harnack inequality stated in terms of the L -admissible path.

We first introduce some definitions. Let Q− = B× [−1, 0], where B = {x ∈ RN :
|x|L ≤ 1}, and let S =

{
(x, t) ∈ Q− : 1

4
≤ −t ≤ 3

4

}
. We define, for any positive R

and (x0, t0) ∈ RN+1,

Q−R(x0, t0) = (x0, t0) ◦ dR(Q−), SR(x0, t0) = (x0, t0) ◦ dR(S).

We explicitly note the following fact that will be useful in the sequel. There exists a
constant µ ∈]0, 1[ such that

Q−µR(x0, t0) ⊆ B((x0, t0), R), for every (x0, t0) ∈ RN+1 and R > 0. (3.1)

With the above notation, the Harnack inequality proved in [11, Theorem 7.1]
reads as follows. There exist two positive constants θ and M , only depending on the
operator L , such that

sup
SθR(x0,t0)

u ≤M u(x0, t0) (3.2)

for every non-negative solution u of L u = 0 in the cylinder Q−R(x0, t0). To proceed
and to state our first result we need to introduce some additional notations. In
particular, for α, β, γ, δ ∈ R, with 0 < α < β < γ < δ2, we set

Q̃−R(x0, t0) =
{

(x, t) ∈ Q−δR(x0, t0) | t0 − γR2 ≤ t ≤ t0 − βR2
}
,

Q̃+
R(x0, t0) =

{
(x, t) ∈ Q−δR(x0, t0) | t0 − αR2 ≤ t ≤ t0

}
.

We then have the following invariant Harnack inequality for non-negative solutions
u of L u = 0.

Theorem 3.1 Let L be an operator of the form (1.1) and assume that (H.1)-(H.2)
are fulfilled. Then there exist constants M > 1 and α, β, γ, δ ∈]0, 1[, 0 < α < β <
γ < δ2, which only depend on the operator L , such that

sup
Q̃−R(x0,t0)

u ≤M inf
Q̃+
R(x0,t0)

u,

for every non-negative solution u of L u = 0 in Q−R(x0, t0) and for any R > 0,
(x0, t0) ∈ RN+1.

Proof. By invariance with respect to the dilations dλ and with respect to left trans-
lations it is not restrictive to assume that R = 1 and (x0, t0) = (0, 0). Hence we
consider a non-negative solution u to L u = 0 in Q−. Let r ∈]0, 1[ be a fixed con-

stant, and set (x1, t1) :=
(

0,− θ2r2

2

)
. We claim that there exist a small δ > 0 such

that
Q−r (x, t) ⊆ Q−, (x1, t1) ∈ Sθr(x, t) for any (x, t) ∈ Q−δ (0, 0). (3.3)
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The above statement is a direct consequence of the continuity of the Lie group law
“◦”. The first assertion is trivial. To prove the second one we first note that (x1, t1)
is an interior point of Sθr(0, 0). Then, since (x, t)−1 ◦ (x1, t1)→ (x1, t1) as (x, t) tends
to (0, 0), there exists a sufficiently small positive δ such that (x1, t1) ∈ Sθr(x, t) for
any (x, t) ∈ Q−δ (0, 0). Thus, from (3.2) and (3.3) it follows that

u(x1, t1) ≤M inf
Q−δ (0,0)

u. (3.4)

Moreover, if δ is small enough, we also have Q−δ/θ(x1, t1) ⊆ Q−, thus, by using again

(3.2), we find
sup

Sδ(x1,t1)

u ≤M u(x1, t1).

Since we assume X0(0) = 0, we have Sδ(x1, t1) = Q̃−1 (0, 0) for some suitable β, γ ∈
]0, 1[. This concludes the proof of Theorem 3.1. �

Our second result is a non-local Harnack inequality which is stated in terms of
the L -admissible paths defined in (1.2). We recall that the L -admissible paths
with λ ≡ 1 are the trajectories that naturally contain the Harnack chains (1.6)
for the operators L satisfying assumptions (H.1)-(H.2). These trajectories have
previously been used in the papers [16] and [6] to prove Gaussian lower bounds for
the fundamental solution. In this paper we improve upon Proposition 3.4 in [16] and
Proposition 1.1 in [6] as we allow Ω to be an arbitrary open set of RN+1. An useful
tool in the proof is Lemma 2.2 in [6]. Here we give an equivalent statement of it in
terms of our notation. Let γ : [0, T ] → RN+1 be an L -admissible path with λ ≡ 1
and let a, b be two constants such that 0 ≤ a < b ≤ T . Then there exists a positive
constant h, only dependent on L , such that∫ b

a

|ω(s)|2ds ≤ h ⇒ γ(b) ∈ Q̃−r (γ(a)), with r =

√
b− a
β

. (3.5)

In the above statement, as well as in the sequel, we may allow ω1, . . . , ωm ∈ L2([0, T ])
in the definition of L -admissible paths (1.2). We recall the definition (2.7) of Ωε.

Theorem 3.2 Let L be an operator of the form (1.1) and assume that (H.1)-(H.2)
are fulfilled. Let Ω be an open subset of RN+1, and let ε ∈ ]0, 1] be small enough
to ensure that Ωε 6= ∅. Let γ an L -admissible path as in (1.2) contained in Ωε,
and assume that ω1, . . . ωm ∈ L2([0, T ]), and that λ is measurable with inf [0,T ] λ > 0.
Then there exists a constant C(γ, ε) > 0 which also depends on the operator L , such
that

u(ξ, τ) ≤ C(γ, ε)u(x, t), (x, t) = γ(0), (ξ, τ) = γ(T ),

for every non-negative solution u of L u = 0 in Ω. Moreover,

C(γ, ε) = exp

(
c0 + c1

t− τ
ε2

+ c2

∫ T

0

ω2
1(s) + · · ·+ ω2

m(s)

λ(s)
ds

)
for positive constants c0, c1, c2 only depending on the operator L .
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Remark 3.3 The Harnack constant in the above theorem blows up as λ → 0. On
the other hand, in the proof of Theorem 1.1, we show that any L -admissible path
(1.2) can be approximated by a suitable L -admissible path γε with inf λε ≥ ε.

Proof of Theorem 3.2. To prove Theorem 3.2 we proceed along the lines of the
proof of Proposition 1.1 in [6]. In particular, we aim to use (3.5) to construct a
Harnack chain connecting (x, t) to (ξ, τ). In order to use (3.5), we first consider the
case λ ≡ 1, so that T = t − τ . Then, at the end of the proof, we will remove this
additional assumption. We next show that, assuming λ ≡ 1, there exists a finite
sequence σ0, σ1, . . . , σk ∈ [0, t− τ ], with 0 = σ0 < σ1 < · · · < σk = t− τ , such that

u(γ(σj)) ≤M u(γ(σj−1)), j = 1, . . . , k,

where M > 1 is the constant in Theorem 3.1. Hence

u(γ(t− τ)) ≤Mku(γ(0)). (3.6)

To prove the above claim we first show that there exist positive numbers r0, r1, . . . , rk−1,
such that

Q−rj(γ(σj)) ⊂ Ω, γ(σj+1) ∈ Q̃−rj(γ(σj)) j = 0, 1, . . . , k − 1. (3.7)

Then, we can apply Theorem 3.1 k times to complete the proof. However, to conclude
the proof of Theorem 3.2 we also have to establish a suitable bound for k.

We next prove (3.7). We first note that γ(σ) ∈ Ωε for every σ ∈ [0, t − τ ], then
by (3.1) there exists µ ∈ ]0, 1[ such that Q−µε(γ(σ)) ⊂ B((γ(σ)), ε) ⊂ Ω. Thus, in
order to have Q−r (γ(σ)) ⊂ Ω, it is sufficient to choose r ∈ ]0, µε]. We next select
σ0, . . . , σk ∈ [0, t− τ ] recursively. Suppose that σ0, . . . , σj and r0, . . . , rj−1 have been
chosen and satisfy (3.7). In order to choose rj ∈ ]0, µε] and σj+1 ∈ ]σj, t − τ ] such
that (3.7) holds, we rely on (3.5) with a = σj, and b = σj+1. To this aim, we set

σj+1 = min

{
σj + β (µε)2, inf

{
σ ∈]σj, t− τ ] :

∫ σ

σj

|ω(s)|2

h
ds > 1

}}
. (3.8)

Note that, as the L2 norm of ω is assumed to be finite, there exists a integer j =: k−1
such that the integral in (3.8) does not exceed 1. In this case we agree to set σk = t−τ .
Based on the definition in (3.8) we see that σj+1 satisfies the restrictions

max

{
σj+1 − σj
β (µε)2

,

∫ σj+1

σj

|ω(s)|2

h
ds

}
≤ 1, 0 ≤ σj < σj+1 ≤ t− τ, (3.9)

and we see that if we let rj =
√

σj+1−σj
β

, then rj ≤ µε. Hence if we initialize the

recursion by setting σ0 = 0 then the sequences {σj}kj=0 and {rj}k−1
j=0 are well-defined
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and satisfy (3.7). It now only remains to estimate k. However, from the definition
in (3.8) it first follows that

1 <

∫ σj

σj−1

(
|ω(s)|2

h
+

1

β (µε)2

)
ds ≤ 2, j = 1, . . . , k − 1,

0 <

∫ t−τ

σk−1

(
|ω(s)|2

h
+

1

β (µε)2

)
ds ≤ 2,

and then, by summation, that

k − 1 <

∫ t−τ

0

(
|ω(s)|2

h
+

1

β (µε)2

)
ds ≤ 2k.

In particular, the inequalities in the last display imply that

k ≤ 1 +
t− τ
c ε2

+
1

h

∫ t−τ

0

|ω(s)|2ds. (3.10)

The proof of Theorem 3.2, in the case λ ≡ 1, is a direct consequence of (3.6) and
(3.10), if we set

c0 = log(M), c1 =
log(M)

c
, c2 =

log(M)

h
. (3.11)

We next remove the assumption λ ≡ 1. In that order, we consider any measurable
function λ : [0, T ] → R such that inf [0,T ] λ > 0 and we introduce the function
ϕ : [0, T ]→ [0, t− τ ] through the relation

ϕ(s) =

∫ s

0

λ(ρ)dρ, s ∈ [0, T ].

We define the function γ̃(s) := γ(ϕ−1(s)). This function satisfies

γ̃ : [0, t− τ ]→ Ω, γ̃(0) = (x, t), γ̃(t− τ) = (ξ, τ)

γ̃′(s) =
m∑
j=1

ωj(ϕ
−1(s))

λ(ϕ−1(s))
Xj(γ̃ε(s)) + Y (γ̃(s)), for a.e. s ∈ [0, t− τ ].

We then apply the first part of the proof to γ̃ and we note that∫ t−τ

0

(
ω1(ϕ−1(s))

λ(ϕ−1(s))

)2

+ · · ·+
(
ωm(ϕ−1(s))

λ(ϕ−1(s))

)2

ds =

∫ T

0

ω2
1(ρ) + · · ·+ ω2

m(ρ)

λ(ρ)
dρ.

This accomplishes the proof of Theorem 3.2 �

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Let K be a compact subset of int
(
A(x0,t0)

)
. Consider any

(x, t) ∈ K. Since (x, t) ∈ int
(
A(x0,t0)

)
, it follows that

Q−r (x̄, t̄) ⊂ A(x0,t0), (x̄, t̄) = (x, t) ◦
(

0,−r2β + γ

2

)−1

,

for all positive sufficiently small r. In the last display β, γ are defined as in Theorem
3.1. Applying Theorem 3.1 we see that

sup
Qr(x,t)

u ≤M inf
Q̃+
r (x̄,t̄)

u, Qr(x, t) := Q̃−r (x̄, t̄). (3.12)

Note that Qr(x, t) is an open neighborhood of (x, t). We next show that there exists

a Harnack chain starting from (x0, t0) with end point in Q̃+
r (x̄, t̄). To see this we first

note that, by the very definition of A(x0,t0), there exist T > 0 and a L -admissible
curve γ : [0, T ]→ Ω, defined by ω1, ..., ωm, λ, connecting (x0, t0) to (x̄, t̄). Moreover,
for every positive ε, we denote by γε the solution to

γε : [0, T ]→ RN+1, γε(0) = (x0, t0),

γ′ε(s) =
m∑
j=1

ωj(s)Xj(γε(s)) + (λ(s) + ε)Y (γε(s)), for a.e. s ∈ [0, T ].

In particular, since γε converges uniformly to γ as ε→ 0, and γ([0, T ]) is a compact
subset of Ω, it is possible to choose ε such that γε([0, T ]) is a compact subset of Ω.

Note that if we let γε(T ) = (xε, tε), then tε = t̄ − εT . Hence (xε, tε) ∈ Q̃+
r (x̄, t̄),

provided ε is suitably small. Since inf [0,T ](λ(s) + ε) ≥ ε, we can apply Theorem 3.2
and we find that there exists a positive constant C(γ, ε) such that

u(xε, tε) ≤ C(γ, ε)u(x0, t0). (3.13)

Then, using (3.12) and (3.13) we conclude that there exists an open neighborhood
Qr(x, t) of (x, t), and a positive constant C(γ, ε) only depending on (x, t), such that

sup
Qr(x,t)

u ≤M C(γ, ε)u(x0, t0).

Theorem 1.1 then follows from a standard covering argument. �

4 Potential Theory

In this section, we first recall some known result concerning the Potential Theory for
the operator L and we give the definition of the absorbent set. We then discuss, in
detail, the relation between the absorbent sets and the attainable sets (1.5).

In the following we let Ω be any open subset of RN+1. If u : Ω→ R is a smooth
function satisfying L u = 0 in Ω, then we say that u is L -harmonic in Ω. We
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denote by H (Ω) the linear space of functions which are L -harmonic in Ω. Given a
bounded open set V ⊂ RN+1, we say that V is L -regular if for any ϕ ∈ C(∂V,R)
there exists a unique function HV

ϕ ∈ H (V ) such that limz→z0 H
V
ϕ (z) = ϕ(z0) for

every z0 ∈ ∂V . If this function exists, then HV
ϕ ≥ 0 whenever ϕ ≥ 0, as the classical

Picone’s maximum principle holds for L [11, Proposition 2.1]. Furthermore, if V
is L -regular, then, for every fixed z ∈ V , the map ϕ 7→ HV

ϕ (z) defines a linear
positive functional on C(∂V,R). Hence, Riesz representation theorem implies that
there exists a Radon measure µVz , supported in ∂V , such that

HV
ϕ (z) =

∫
∂V

ϕ(ζ) dµVz (ζ), for every ϕ ∈ C(∂V,R). (4.1)

We will refer to µVz as the L -harmonic measure defined with respect to V and z.
We recall that a lower semi-continuous function u : Ω → ] −∞,∞] is said to be

L -superharmonic in Ω if u <∞ in a dense subset of Ω and if

u(z) ≥
∫
∂V

u(ζ) dµVz (ζ),

for every open L -regular set V ⊂ V ⊂ Ω and for every z ∈ V . We denote by

S (Ω) the set of L -superharmonic functions in Ω, and by S
+

(Ω) the set of the
functions in S (Ω) which are non-negative. A function v : Ω → [−∞,∞[ is said
to be L -subharmonic in Ω if −v ∈ S (Ω) and we write S (Ω) := −S (Ω). As the
collection of L -regular sets is a basis for the Euclidean topology, it follows that
S (Ω) ∩S (Ω) = H (Ω).

With the terminology of the Potential Theory [1, 9], the map RN+1 ⊇ Ω 7→H (Ω)
is a harmonic sheaf and (RN+1,H ) is a harmonic space. Since the constant functions
are L -harmonic, the second statement is a consequence of the following properties:

- the L -regular sets form a basis for the Euclidean topology [5, Corollaire 5.2];

- H satisfies the Doob convergence property, i.e., the pointwise limit of any
increasing sequence of L -harmonic functions, on any open set, is L -harmonic
whenever the pointwise limit is finite in a dense set [11, Proposition 7.4];

- the family S (RN+1) separates the points of RN+1, i.e., for every z, ζ ∈ RN+1,
z 6= ζ, there exists u ∈ S (RN+1) such that u(z) 6= u(ζ) [7, Proposition 7.1].

We remark that (RN+1,H ) enjoys of the stronger property that the family

S
+

(RN+1)∩C(RN+1) separates points of RN+1 [7, Proposition 7.1]. For this reason,
(RN+1,H ) is said to be a B-harmonic space.

We summarize the above facts in the following remark for further reference.

Remark 4.1 Let L be an operator of the form (1.1) and assume that (H.1)-(H.2)
are fulfilled. Let Ω be an open subset of RN+1. Then, the linear space of the L -
harmonic functions in Ω, H (Ω), is a harmonic sheaf and (RN+1,H ) is a B-
harmonic space.
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It is noteworthy that Wiener resolutivity theorem holds in B-harmonic spaces. To
use the Wiener theorem, as well as other general results from Potential Theory [1, 9],
we introduce some additional notations. We recall that if Ω ⊂ RN+1 is a bounded
open set, then an extended real function f : ∂Ω→ [−∞,∞] is called resolutive if

inf U
Ω

f = sup U Ω
f =: HΩ

f ∈H (Ω),

where

U
Ω

f :=
{
u ∈ S (Ω) : inf

Ω
u > −∞ and lim inf

z→ζ
u(z) ≥ f(ζ), ∀ ζ ∈ ∂Ω

}
,

U Ω
f :=

{
u ∈ S (Ω) : sup

Ω
u <∞ and lim sup

z→ζ
u(z) ≤ f(ζ), ∀ ζ ∈ ∂Ω

}
.

We say that HΩ
f is the generalized solution in the sense of Perron-Wiener-Brelot to

the problem {
u ∈H (Ω),

u = f on ∂Ω.

By Remark 4.1, Wiener resolutivity theorem implies that every f ∈ C(∂Ω,R) is
resolutive. The map C(∂Ω,R) 3 f 7→ HΩ

f (z) defines a positive functional for every
z ∈ Ω. Again, there exists a Radon measure µΩ

z on ∂Ω such that

HΩ
f (z) =

∫
∂Ω

f(ζ) dµΩ
z (ζ). (4.2)

We call µΩ
z the L -harmonic measure relative to Ω and z, and when Ω is L -regular

this definition coincides with the one in (4.1). We recall that f : ∂Ω → [−∞,∞] is
resolutive if and only if f ∈ L1(∂Ω, µΩ

z ) for every z ∈ Ω, and in this case HΩ
f (z) =∫

∂Ω
f dµΩ

z . Finally, a point ζ ∈ ∂Ω is called L -regular for Ω if

lim
Ω3z→ζ

HΩ
f (z) = f(ζ), for every f ∈ C(∂Ω,R).

Obviously, Ω is L -regular if and only if every ζ ∈ ∂Ω is L -regular.
Let Ω ⊂ RN+1 be an open set. A closed subset F of Ω is called an absorbent set if

for any z ∈ F and any neighborhood U of z, there exists a L -regular neighborhood
V of z contained in U such that µVz (Ω \ F ) = 0. For any given (x0, t0) ∈ Ω we set

F(x0,t0) = {F ⊆ Ω : F 3 (x0, t0), F is an absorbent set}

and we let
Ω(x0,t0) =

⋂
F∈F(x0,t0)

F (4.3)

denote the smallest absorbent set containing (x0, t0). The following general result,
analogous to our Theorem 1.1, holds. Let (RN+1,H ) be a B-harmonic space, let Ω
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be an open subset of RN+1 and let (x0, t0) ∈ Ω. Then, for every compact set K ⊂
int
(
Ω(x0,t0)

)
there exists a positive constant CK such that

sup
K
u ≤ CK u(x0, t0),

for every non-negative function u ∈ H (Ω). We refer to Theorem 1.4.4 in [1] and
Proposition 6.1.5 in [9]. As a consequence of the above inequality, Ω(x0,t0) is a propa-
gation set in the sense that if u(x0, t0) = minΩ u, then u ≡ u(x0, t0) in Ω(x0,t0). Using
Remark 4.1 we see that the stated results apply to our operator L . In particular,
we have

Corollary 4.2 Let L be an operator of the form (1.1) and assume that (H.1)-(H.2)
are fulfilled, let Ω be an open subset of RN+1 and let (x0, t0) ∈ Ω. For every compact
set K ⊂ int

(
Ω(x0,t0)

)
there exists a positive constant CK such that

sup
K
u ≤ CK u(x0, t0),

for every non-negative solution u of L u = 0 in Ω.

As mentioned in the introduction in general it is not easy to give a geometric
characterization of Ω(x0,t0) since it is defined in terms of the carrier set of the L -
harmonic measure µVz . Nevertheless, characterizations of the set Ω(x0,t0) have been
given for some classes of operators.

Remark 4.3 Stationary Hörmander operators in the form of sum of squares in RN

give rise to elliptic harmonic spaces, we refer to [9] for the definition. It is known that
in this case the relevant absorbent set Ωx0 agrees with the connected component of Ω
containing x0, which coincides with the attainable set Ax0. In particular, Ωx0 = Ax0.

Remark 4.4 Consider operators of the form L =
∑m

j=1X
2
j−∂t having no drift term

X0. In this case, Bonfiglioli, Lanconelli and Uguzzoni have proved that Ω(x0,t0) =
Ω ∩ {t ≤ t0}, where Ω = B×]t1, t2[ is a cylinder and B is a regular domain with
respect to the stationary operator

∑m
j=1X

2
j , see formula (4.3) in [2]. Thus, also in

this case, we have Ω(x0,t0) = A(x0,t0).

However, the presence of the drift term considerably changes the geometric struc-
ture of A(x0,t0) and, seemingly, the one of Ω(x0,t0). To clarify this fact, in the following
example we consider the simplest degenerate Kolmogorov operator in the variables
(x1, x2, t) ∈ R3,

L u = X2u+ Y u = 0, X = ∂x1 , and Y = x1∂x2 − ∂t. (4.4)

The fact that the Kolmogorov operator L satisfies the hypotheses (H.1)-(H.2) is
discussed in several paper, see for instance [11], [6] and [8]. Consider the domain

Ω = ]−R,R[×]− 1, 1[×]− 1, 1], (4.5)
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where R is a given positive constant. In this case

A(0,0,0) =
{

(x1, x2, t) ∈ Ω : |x2| ≤ −tR)
}
. (4.6)

We also recall that the points of the sets{
(x1, x2, t) ∈ ∂Ω : t = −1

}
,

{
(x1, x2, t) ∈ ∂Ω : |x1| = 1

}
,{

(x1,−1, t) ∈ ∂Ω : x1 ≤ 0
}
,

{
(x1, 1, t) ∈ ∂Ω : x1 ≥ 0

}
are L -regular for Ω [13, Example 6.5]. The following result shows that the strong
minimum principle cannot hold in a set bigger than A(0,0,0).

Proposition 4.5 Let Ω be defined as in (4.5). Then there exists a solution u ≥ 0
of (4.4) in Ω such that u ≡ 0 in A(0,0,0) and such that u > 0 in Ω \A(0,0,0).

Proof. Let ϕ be any function in C(∂Ω), such that ϕ ≡ 0 in ∂Ω ∩A(0,0,0) and ϕ > 0

in ∂Ω \ A(0,0,0). Then the Perron-Wiener-Brelot solution u := HΩ
ϕ of the following

Cauchy-Dirichlet problem {
X2u+ Y u = 0 in Ω

u = ϕ in ∂Ω

is non-negative. We next prove that u > 0 in Ω \ A(0,0,0). By contradiction, we
suppose that there exists (x1, x2, t) ∈ Ω \ A(0,0,0) such that u(x1, x2, t) = 0. Then
(x1, x2, t) is a minimum for u, so that from Bony’s minimum principle it follows
that u(R, x2, t) = ϕ(R, x2, t) = 0. This contradicts the assumption on ϕ. Suppose
now that there exists (x1, x2, t) ∈ A(0,0,0) such that u(x1, x2, t) > 0. Since every

point of the set ∂Ω ∩ A(0,0,0) is L -regular, u is continuous in A(0,0,0). Hence there

exists a (x̄1, x̄2, t̄) ∈ A(0,0,0) such that u(x̄1, x̄2, t̄) = maxA(0,0,0)
u > 0. By Bony’s

minimum principle we then have u(R, x̄2, t̄) = ϕ(R, x̄2, t̄) > 0, and this contradicts
our assumption on ϕ. �

Remark 4.6 The above example shows that a Harnack inequality cannot hold in a
set bigger than A(0,0,0). Indeed, the example shows that it is impossible to find a
positive constant C such that u(x1, x2, t) ≤ C u(0, 0, 0) whenever (x1, x2, t) 6∈ A(0,0,0).
Hence, as a consequence of Corollary 4.2, we have that int

(
Ω(0,0,0)

)
⊆ A(0,0,0).
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