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Abstract. Some new results about multidimensional Topological Persistence
are presented, proving that the discontinuity points of a k-dimensional size
function are necessarily related to the pseudocritical or special values of the
associated measuring function.

Introduction

Topological Persistence is devoted to the study of stable properties of sublevel
sets of topological spaces and, in the course of its development, has revealed itself
to be a suitable framework when dealing with applications in the field of Shape
Analysis and Comparison. Since the beginning of the 1990s research on this sub-
ject has been carried out under the name of Size Theory, studying the concept of
size function, a mathematical tool able to describe the qualitative properties of a
shape in a quantitative way. More precisely, the main idea is to model a shape
by a topological space M endowed with a continuous function ϕ, called measuring
function. Such a function is chosen according to applications and can be seen as
a descriptor of the features considered relevant for shape characterization. Under
these assumptions, the size function ℓ(M,ϕ) associated with the pair (M, ϕ) is a de-
scriptor of the topological attributes that persist in the sublevel sets of M induced
by the variation of ϕ. According to this approach, the problem of comparing two
shapes can be reduced to the simpler comparison of the related size functions. Since
their introduction, these shape descriptors have been widely studied and applied
in quite a lot of concrete applications concerning Shape Comparison and Pattern
Recognition (cf., e.g., [4, 8, 15, 34, 35, 36]). From a more theoretical point of view,
the notion of size function plays an essential role since it is strongly related to the
one of natural pseudodistance. This is another key tool of Size Theory, defining a
(dis)similarity measure between compact and locally connected topological spaces
endowed with measuring functions (see [3] for historical references and [16, 18, 19]
for a detailed review about the concept of natural pseudodistance). Indeed, size
functions provide easily computable lower bounds for the natural pseudodistance
(cf. [12, 13, 17]).

Approximately ten years after the introduction of Size Theory, Persistent Ho-
mology re-proposed similar ideas from the homological point of view (cf. [22]; for
a survey on this topic see [21]). In this context, the notion of size function coin-
cides with the dimension of the 0-th persistent homology group, i.e. the 0-th rank
invariant [7].
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We refer the interested reader to Appendix A for more information about the
relationship existing between Size Theory and Persistent Homology.

The study of Topological Persistence is capturing more and more attention in
the mathematical community, with particular reference to the multidimensional
setting (see [21, 29]). When dealing with size functions, the term multidimensional
means that the measuring functions are vector-valued, and has no reference to the
dimension of the topological space under study. However, while the basic properties
of a size function ℓ are now clear when it is associated with a measuring function ϕ
taking values in R, very little is known when ϕ takes values in Rk. More precisely,
some questions about the structure of size functions associated with Rk-valued
measuring functions need further investigation, with particular reference to the
localization of their discontinuities. Indeed, this last research line is essential in the
development of efficient algorithms allowing us to apply Topological Persistence to
concrete problems in the multidimensional context.

In this paper we start to fill this gap by proving a new result on the disconti-
nuities of the so-called multidimensional size functions, showing that they can be
located only at points with at least one pseudocritical or special coordinate (Theo-
rem 2.11 and Theorem 2.13). This is proved by using an approximation technique
and the theoretical machinery developed in [2], improving the comprehension of
multidimensional Topological Persistence and laying the basis for its computation.

This paper is organized in two sections. In Section 1 the basic results about
multidimensional size functions are recalled, while in Section 2 our main theorems
are proved.

1. Preliminary Results on Size Theory

The main idea in Size Theory is to study a given shape by performing a geo-
metrical/topological exploration of a suitable topological space M, with respect to
some properties expressed by an Rk-valued continuous function ~ϕ = (ϕ1, . . . , ϕk)
defined on M. Following this approach, Size Theory introduces the concept of size
function as a stable and compact descriptor of the topological changes occurring in
the lower level sets {P ∈ M : ϕi(P ) ≤ ti, i = 1, . . . , k} as ~t = (t1, . . . , tk) varies in
R
k.
In this section we recall some basic definitions and results about size functions,

confining ourselves to those that will be useful in the rest of this paper. For a
deeper investigation on these topics, the reader is referred to [2, 3, 28]. For further
details about Topological Persistence in the multidimensional setting, see [7, 28].

In proving our new results we need to assume that M is a closed C1 Riemannian
manifold. However, we prefer to report here the basic concepts of Size Theory in
their classical formulation, i.e. by supposing that M is a non-empty compact
and locally connected Hausdorff space. We shall come back to the case of a C1

Riemannian manifold later.
In the context of Size Theory, any pair (M, ~ϕ), where ~ϕ = (ϕ1, . . . , ϕk) : M →

Rk is a continuous function, is called a size pair. The function ~ϕ is said to be a
k-dimensional measuring function. The relations � and ≺ are defined in Rk as
follows: for ~x = (x1, . . . , xk) and ~y = (y1, . . . , yk), we write ~x � ~y (resp. ~x ≺ ~y) if
and only if xi ≤ yi (resp. xi < yi) for every index i = 1, . . . , k. Furthermore, Rk

is equipped with the usual max-norm: ‖(x1, x2, . . . , xk)‖∞ = max1≤i≤k |xi|. Now
we are ready to introduce the concept of size function for a size pair (M, ~ϕ). We
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shall denote the open set {(~x, ~y) ∈ Rk × Rk : ~x ≺ ~y} by ∆+, while ∆̄+ will be the
closure of ∆+. For every k-tuple ~x = (x1, . . . , xk) ∈ Rk, the set M〈~ϕ � ~x 〉 will be
defined as {P ∈ M : ϕi(P ) ≤ xi, i = 1, . . . , k}.
Definition 1.1. For every k-tuple ~y = (y1, . . . , yk) ∈ Rk, we shall say that two
points P,Q ∈ M are 〈~ϕ � ~y 〉-connected if and only if a connected subset of
M〈~ϕ � ~y 〉 exists, containing P and Q.

Definition 1.2. We shall call the (k-dimensional) size function associated with
the size pair (M, ~ϕ) the function ℓ(M,~ϕ) : ∆+ → N, defined by setting ℓ(M,~ϕ)(~x, ~y)
equal to the number of equivalence classes in which the set M〈~ϕ � ~x 〉 is divided
by the 〈~ϕ � ~y 〉-connectedness relation.

Remark 1.3. In other words, ℓ(M,~ϕ)(~x, ~y) is equal to the number of connected com-
ponents in M〈~ϕ � ~y 〉 containing at least one point of M〈~ϕ � ~x 〉. The finiteness
of this number is a consequence of the compactness and local connectedness of M
(cf. [26]).

In the following, we shall refer to the case of measuring functions taking value in
Rk by using the term “k-dimensional”. Before going on, we introduce the following
notations: when ~y ∈ Rk is fixed, the symbol ℓ(M,~ϕ)(·, ~y) will be used to denote the
function that takes each k-tuple ~x ≺ ~y to the value ℓ(M,~ϕ)(~x, ~y). An analogous
convention will hold for the symbol ℓ(M,~ϕ)(~x, ·).
Remark 1.4. From Remark 1.3 it can be immediately deduced that for every fixed
~y ∈ Rk the function ℓ(M,ϕ)(·, ~y) is non–decreasing with respect to �, while for every

fixed ~x ∈ Rk the function ℓ(M,ϕ)(~x, ·) is non–increasing.

1.1. The particular case k = 1. In this section we will discuss the specific
framework of measuring functions taking values in R, namely the 1-dimensional
case. Indeed, Size Theory has been extensively developed in this setting (cf. [3]),
showing that each 1-dimensional size function admits a compact representation as
a formal series of points and lines of R2 (cf. [27]). Due to this representation,
a suitable matching distance between 1-dimensional size functions can be easily
introduced, proving that these descriptors are stable with respect to such a distance
[11, 13]. Moreover, the role of 1-dimensional size functions is crucial in the approach
to the k-dimensional case proposed in [2].

Following the notations used in the literature about the case k = 1, the symbols
~ϕ, ~x, ~y, �, ≺ will be replaced respectively by ϕ, x, y, ≤, <.

When dealing with a (1-dimensional) measuring function ϕ : M → R, the
size function ℓ(M,ϕ) associated with (M, ϕ) gives information about the pairs
(M〈ϕ ≤ x〉,M〈ϕ ≤ y〉), where M〈ϕ ≤ t〉 is defined by setting M〈ϕ ≤ t〉 = {P ∈
M : ϕ(P ) ≤ t} for t ∈ R.

Figure 1 shows an example of a size pair and the associated 1-dimensional size
function. On the left (Figure 1(a)) one can find the considered size pair (M, ϕ),
where M is the curve depicted by a solid line, and ϕ is the ordinate function. On
the right (Figure 1(b)) the associated 1-dimensional size function ℓ(M,ϕ) is given.

As can be seen, the domain ∆+ = {(x, y) ∈ R
2 : x < y} is divided into bounded

and unbounded regions, in each of which the 1-dimensional size function takes a
constant value. The displayed numbers coincide with the values of ℓ(M,ϕ) in each
region. For example, let us now compute the value of ℓ(M,ϕ) at the point (a, b). By
applying Remark 1.3 in the case k = 1, it is sufficient to count how many of the
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Figure 1. (a) The topological spaces M and the measuring func-
tion ϕ. (b) The related size function ℓ(M,ϕ).

three connected components in the sublevel M〈ϕ ≤ b〉 contain at least one point
of M〈ϕ ≤ a〉. It can be easily verified that ℓ(M,ϕ)(a, b) = 2.

Following the 1-dimensional framework, the problem of comparing two size pairs
can be easily translated into the simpler one of comparing the related 1-dimensional
size functions. In [13], the matching distance dmatch has been formally proven to
be the most suitable distance between these descriptors. The definition of dmatch
is based on the observation that 1-dimensional size functions can be compactly
described by a formal series of points and lines lying on the real plane, called
respectively proper cornerpoints and cornerpoints at infinity (or cornerlines) and
defined as follows:

Definition 1.5. For every point P = (x, y) with x < y, consider the number µ(P )
defined as the minimum, over all the positive real numbers ε with x+ ε < y− ε, of

ℓ(M,ϕ)(x+ε, y−ε)− ℓ(M,ϕ)(x−ε, y−ε)− ℓ(M,ϕ)(x+ε, y+ε)+ ℓ(M,ϕ)(x−ε, y+ε).

When this finite number, called multiplicity of P , is strictly positive, the point P
will be called a proper cornerpoint for ℓ(M,ϕ).

Definition 1.6. For every line r with equation x = a, consider the number µ(r)
defined as the minimum, over all the positive real numbers ε with a+ ε < 1/ε, of

ℓ(M,ϕ)(a+ ε, 1/ε)− ℓ(M,ϕ)(a− ε, 1/ε).

When this finite number, called multiplicity of r, is strictly positive, the line r will
be called a cornerpoint at infinity (or cornerline) for ℓ(M,ϕ).

The fundamental role of proper cornerpoints and cornerpoints at infinity is ex-
plicitly shown in the following Representation Theorem, claiming that their multi-
plicities completely and univocally determine the values of 1-dimensional size func-
tions.

For the sake of simplicity, each line of equation x = a will be identified to a point
at infinity with coordinates (a,∞).

Theorem 1.7 (Representation Theorem). For every x̄ < ȳ <∞, it holds that

ℓ(M,ϕ)(x̄, ȳ) =
∑

x≤x̄
ȳ<y≤∞

µ((x, y)).
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Figure 2. (a) Size function corresponding to the formal series
r + a + b. (b) Size function corresponding to the formal series
r′ + a′. (c) The matching between the two formal series, realizing
the matching distance between the two size functions.

Remark 1.8. In plain words, the Representation Theorem 1.7 claims that the value
ℓ(M,ϕ)(x̄, ȳ) equals the number of cornerpoints lying above and on the left of (x̄, ȳ).
By means of this theorem we are able to compactly represent 1-dimensional size
functions as formal series of cornerpoints and cornerlines (An example is given by
Figure 2(a) and Figure 2(b)).

As a first and simple consequence of the Representation Theorem 1.7, we have
the following result, that will be useful in Section 2 (cf. [27]):

Corollary 1.9. Each discontinuity point (x̄, ȳ) for ℓ(M,ϕ) is such that either x̄ is
a discontinuity point for ℓ(M,ϕ)(·, ȳ), or ȳ is a discontinuity point for ℓ(M,ϕ)(x̄, ·),
or both these conditions hold.

We are now able to introduce the matching distance dmatch. Before going on, we
observe that the Representation Theorem 1.7 allows us to reduce the problem of
comparing 1-dimensional size functions into the comparison of the related multisets
of cornerpoints. Indeed, the matching distance dmatch can be seen as a measure
of the cost of transporting the cornerpoints of a 1-dimensional size function into
the cornerpoints of another one, with respect to a functional δ depending on the
L∞-distance between two matched cornerpoints and on their L∞-distance from the
diagonal {(x, y) ∈ R2 : x = y}. An example of matching between two formal series
is given by Figure 2(c).

Let us now define more formally the matching distance dmatch. Assume that
two 1-dimensional size functions ℓ1, ℓ2 are given. Consider the multiset C1 (re-
spectively C2) of cornerpoints for ℓ1 (resp. ℓ2), counted with their multiplicities
and augmented by adding the points of the diagonal {(x, y) ∈ R2 : x = y} counted
with infinite multiplicity. If we denote by ∆̄∗ the set ∆̄+ extended by the points at
infinity of the kind (a,∞), i.e. ∆̄∗ = ∆̄+ ∪ {(a,∞) : a ∈ R}, the matching distance
dmatch (ℓ1, ℓ2) is then defined as

dmatch (ℓ1, ℓ2) = min
σ

max
P∈C1

δ(P, σ(P )),

where σ varies among all the bijections between C1 and C2 and

δ((x, y), (x′, y′)) = min

{
max {|x− x′|, |y − y′|} ,max

{
y − x

2
,
y′ − x′

2

}}
,
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for every (x, y), (x′, y′) ∈ ∆̄∗ and with the convention about ∞ that ∞ − y =
y − ∞ = ∞ when y 6= ∞, ∞ − ∞ = 0, ∞

2 = ∞, |∞| = ∞, min{c,∞} = c and
max{c,∞} = ∞.

In plain words, the pseudometric δ measures the pseudodistance between two
points (x, y) and (x′, y′) as the minimum between the cost of moving one point
onto the other and the cost of moving both points onto the diagonal, with respect
to the max-norm and under the assumption that any two points of the diagonal
have vanishing pseudodistance (we recall that a pseudodistance d is just a distance
missing the condition d(X,Y ) = 0 ⇒ X = Y , i.e. two distinct elements may have
vanishing distance with respect to d).

An application of the matching distance is given by Figure 2(c). As can be
seen by this example, different 1-dimensional size functions may in general have
a different number of cornerpoints. Therefore dmatch allows a proper cornerpoint
to be matched to a point of the diagonal: this matching can be interpreted as the
destruction of a proper cornerpoint. Moreover, we stress that the matching distance
is stable with respect to perturbations of the measuring functions, as the following
Matching Stability Theorem states:

Theorem 1.10 (Matching Stability Theorem). If (M, ϕ), (M, ψ) are two size
pairs with maxP∈M |ϕ(P )−ψ(P )| ≤ ε, then it holds that dmatch(ℓ(M,ϕ), ℓ(M,ψ)) ≤ ε.

For a proof of the previous theorem and more details about the matching distance
the reader is referred to [12, 13] (see also [10] for the analogue of the matching
distance in Persistent Homology and its stability).

1.1.1. Coordinates of cornerpoints and discontinuity points. Following the related
literature (see also [14] for the case of measuring functions with a finite number
of critical homological values), it can be easily deduced that, if finite, both the
coordinates of a cornerpoint for a 1-dimensional size function ℓ(M,ϕ) are critical

values of the measuring function ϕ, under the assumption that ϕ is C1. However,
to the best of our knowledge, this result has never been explicitly proved until now.
Therefore, for the sake of completeness we formalize here this statement, that will
be used in Section 2:

Theorem 1.11. Let M be a closed C1 Riemannian manifold, and let ϕ : M → R

be a C1 measuring function. Then if (x̄, ȳ) is a proper cornerpoint for ℓ(M,ϕ), it
follows that both x̄ and ȳ are critical values of ϕ. If (x̄,∞) is a cornerpoint at
infinity for ℓ(M,ϕ), it follows that x̄ is a critical value of ϕ.

Proof. We confine ourselves to prove the former statement, since the proof of the
latter is analogous.

First of all, let us remark that there exists a closed C∞ Riemannian manifold

M̃ that is C1-diffeomorphic to M through a C1-diffeomorphism h : M̃ → M (cf.
[30, Thm. 2.9]). Set ϕ̃ = ϕ ◦ h. Obviously, the size functions associated with the

size pairs (M̃, ϕ̃) and (M, ϕ) coincide. Therefore, (x̄, ȳ) is also a cornerpoint for
ℓ
(M̃,ϕ̃)

.

We observe that the claim of our theorem holds for a closed C∞ Riemannian
manifold endowed with a Morse measuring function (see [25, Thm. 2.2]). Now, for

every real value ε > 0 it is possible to find a Morse measuring function ϕε : M̃ → R

such that max
Q∈M̃ |ϕ̃(Q) − ϕε(Q)| ≤ ε and max

Q∈M̃ ‖∇ϕ̃(Q) −∇ϕε(Q)‖ ≤ ε:

We can obtain ϕε by considering first the smooth measuring function given by



DISCONTINUITIES OF MULTIDIMENSIONAL SIZE FUNCTIONS 7

the convolution of ϕ̃ and an opportune “regularizing” function, and then a Morse

measuring function ϕε approximating in C1(M̃,R) the previous measuring function
(cf. [32, Corollary 6.8]). Therefore, from the Matching Stability Theorem 1.10 it
follows that for every ε > 0 we can find a cornerpoint (x̄ε, ȳε) for the size function
ℓ(M̃,ϕε)

with ‖(x̄, ȳ) − (x̄ε, ȳε)‖∞ ≤ ε and x̄ε, ȳε as critical values for ϕε. Passing

to the limit for ε → 0 we obtain that both x̄ and ȳ are critical values for ϕ̃. The
claim follows by observing that, since ϕ̃ and ϕ have the same critical values, both
x̄ and ȳ are also critical values for ϕ. �

From the Representation Theorem 1.7 and Theorem 1.11 we can obtain the
following corollary, refining Corollary 1.9 in the C1 case (we skip the easy proof):

Corollary 1.12. Let M be a closed C1 Riemannian manifold, and let ϕ : M → R

be a C1 measuring function. Let also (x̄, ȳ) be a discontinuity point for ℓ(M,ϕ).
Then at least one of the following statements holds:

(i): x̄ is a discontinuity point for ℓ(M,ϕ)(·, ȳ) and x̄ is a critical value for ϕ;
(ii): ȳ is a discontinuity point for ℓ(M,ϕ)(x̄, ·) and ȳ is a critical value for ϕ.

The generalization of Corollary 1.12 in the k-dimensional setting is not so simple
and requires some new ideas which are given in Section 2, which also provides our
main results.

1.2. Reduction to the 1-dimensional case. We are now ready to review the
approach to multidimensional Size Theory proposed in [2]. In that work, the authors
prove that the case k > 1 can be reduced to the 1-dimensional framework by a
change of variable and the use of a suitable foliation. In particular, they show
that there exists a parameterized family of half-planes in R

k × R
k such that the

restriction of a k-dimensional size function ℓ(M,~ϕ) to each of these half-planes can
be seen as a particular 1-dimensional size function. The motivations at the basis
of this approach move from the fact that the concepts of proper cornerpoint and
cornerpoint at infinity, defined for 1-dimensional size functions, appear not easily
generalizable to an arbitrary dimension (namely the case k > 1). As a consequence,
at a first glance it does not seem possible to obtain the multidimensional analogue
of the matching distance dmatch and therefore it is not clear how to generalize the
Matching Stability Theorem 1.10. On the other hand, all these problems can be
bypassed by means of the results we recall in the rest of this subsection.

Definition 1.13. For every unit vector ~l = (l1, . . . , lk) of Rk such that li > 0 for

i = 1, . . . , k, and for every vector ~b = (b1, . . . , bk) of Rk such that
∑k

i=1 bi = 0, we

shall say that the pair (~l,~b) is admissible. We shall denote the set of all admissible

pairs in Rk×Rk by Admk. Given an admissible pair (~l,~b), we define the half-plane
π(~l,~b) of Rk × Rk by the following parametric equations:

{
~x = s~l +~b

~y = t~l+~b

for s, t ∈ R, with s < t.

The following proposition implies that the collection of half-planes given in Def-
inition 1.13 is actually a foliation of ∆+.
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Proposition 1.14. For every (~x, ~y) ∈ ∆+ there exists one and only one admissible

pair (~l,~b) such that (~x, ~y) ∈ π(~l,~b).

Now we can show the reduction to the 1-dimensional case.

Theorem 1.15 (Reduction Theorem). Let (~l,~b) be an admissible pair, and F ~ϕ

(~l,~b)
:

M → R be defined by setting

F ~ϕ

(~l,~b)
(P ) = max

i=1,...,k

{
ϕi(P ) − bi

li

}
.

Then, for every (~x, ~y) = (s~l +~b, t~l+~b) ∈ π(~l,~b) the following equality holds:

ℓ(M,~ϕ)(~x, ~y) = ℓ(M,F
~ϕ

(~l,~b)
)(s, t) .

In the following, we shall use the symbol F ~ϕ

(~l,~b)
in the sense of the Reduction

Theorem 1.15.

Remark 1.16. In plain words, the Reduction Theorem 1.15 states that each mul-
tidimensional size function corresponds to a 1-dimensional size function on each
half-plane of the given foliation. It follows that each multidimensional size func-
tion can be represented as a parameterized family of formal series of points and
lines, following the description introduced in Subsection 1.1 for the case k = 1. In-

deed, it is possible to associate a formal series σ(~l,~b) with each admissible pair (~l,~b),

with σ(~l,~b) describing the 1-dimensional size function ℓ
(M,F

~ϕ

(~l,~b)
)
. Therefore, on each

half-plane π(~l,~b), the matching distance dmatch and the Matching Stability Theorem

1.10 can be applied. Moreover, the family
{
σ(~l,~b) : (~l,~b) ∈ Admk

}
turns out to be a

complete descriptor for ℓ(M,~ϕ), since two multidimensional size functions coincide
if and only if the corresponding parameterized families of formal series coincide.

Before proceeding, we now introduce an example showing how the Reduction
Theorem 1.15 works.

Example 1.17. In R
3 consider the set Q = [−1, 1]× [−1, 1]× [−1, 1] and the unit

sphere S2 of equation x2 + y2 + z2 = 1. Let also ~Φ = (Φ1,Φ2) : R3 → R2 be the

continuous function, defined as ~Φ(x, y, z) = (|x|, |z|). In this setting, consider the

size pairs (M, ~ϕ) and (N , ~ψ) where M = ∂Q, N = S2, and ~ϕ and ~ψ are respectively

the restrictions of ~Φ to M and N . In order to compare the size functions ℓ(M,~ϕ)

and ℓ(N , ~ψ), we are interested in studying the foliation in half-planes π(~l,~b), where

~l = (cos θ, sin θ) with θ ∈ (0, π2 ), and ~b = (a,−a) with a ∈ R. Any such half-plane
is represented by 




x1 = s cos θ + a
x2 = s sin θ − a
y1 = t cos θ + a
y2 = t sin θ − a

,

with s, t ∈ R, s < t. Figure 3 shows the size functions ℓ
(M,F

~ϕ

(~l,~b)
)

and ℓ
(N ,F

~ψ

(~l,~b)
)
, for

θ = π
4 and a = 0, i.e. ~l =

(√
2

2 ,
√

2
2

)
and ~b = (0, 0). With this choice, we obtain

that F ~ϕ

(~l,~b)
=

√
2 max{ϕ1, ϕ2} =

√
2max{|x|, |z|} and F

~ψ

(~l,~b)
=

√
2 max{ψ1, ψ2} =
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Figure 3. The topological spaces M and N and the size functions

ℓ(M,F
~ϕ

(~l,~b)
), ℓ(N ,F

~ψ

(~l,~b)
)

associated with the half-plane π(~l,~b), for ~l =

(
√

2
2 ,

√
2

2 ) and ~b = (0, 0).

√
2max{|x|, |z|}. Therefore, Theorem 1.15 implies that, for every (x1, x2, y1, y2) ∈

π(~l,~b), we have

ℓ(M,~ϕ)(x1, x2, y1, y2) = ℓ(M,~ϕ)

(
s√
2
,
s√
2
,
t√
2
,
t√
2

)
= ℓ(M,F

~ϕ

(~l,~b)
)(s, t)

ℓ(N , ~ψ)(x1, x2, y1, y2) = ℓ(N , ~ψ)

(
s√
2
,
s√
2
,
t√
2
,
t√
2

)
= ℓ

(N ,F
~ψ

(~l,~b)
)
(s, t) .

The matching distance dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
) is equal to

√
2 − 1, i.e. the

cost of moving the point of coordinates (0,
√

2) onto the point of coordinates (0, 1),

computed with respect to the max-norm. The points (0,
√

2) and (0, 1) are represen-
tative of the characteristic triangles of the size functions ℓ(M,F

~ϕ

(~l,~b)
) and ℓ

(N ,F
~ψ

(~l,~b)
)
,

respectively. Note that the matching distance computed for ~l =
(√

2
2 ,

√
2

2

)
and

~b = (0, 0) induces a pseudodistance. This means that, even by considering just one
half-plane of the foliation, it is possible to effectively compare multidimensional size
functions. We conclude by observing that ℓ(M,ϕ1) ≡ ℓ(N ,ψ1) and ℓ(M,ϕ2) ≡ ℓ(N ,ψ2).
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In other words, the multidimensional size functions, with respect to ~ϕ, ~ψ, are able to
discriminate the cube and the sphere, while both the 1-dimensional size functions,
with respect to ϕ1, ϕ2 and ψ1, ψ2, cannot do that. This higher discriminatory power
of multidimensional size functions gives a further motivation for their definition and
use.

The next result proves the stability of dmatch with respect to the choice of the
half-planes of the foliation. Indeed, the next proposition states that small enough

changes in (~l,~b) with respect to the max-norm induce small changes of ℓ(M,F
~ϕ

(~l,~b)
)

with respect to the matching distance.

Proposition 1.18. If (M, ~ϕ) is a size pair, (~l,~b) ∈ Admk and ε is a real number

with 0 < ε < mini=1,...,k li, then for every admissible pair (~l′,~b′) with ‖(~l,~b) −
(~l′,~b)‖∞ ≤ ε, it holds that

dmatch(ℓ(M,F
~ϕ

(~l,~b)
)
, ℓ

(M,F
~ϕ

(~l′,~b′)
)
) ≤ ε · maxP∈M ‖~ϕ(P )‖∞+‖~l‖∞+‖~b‖∞

mini=1,...,k{li(li − ε)} .

Remark 1.19. Analogously, it is possible to prove (cf. [2, Prop. 2]) that dmatch
is stable with respect to the chosen measuring function, i.e. that small enough
changes in ~ϕ with respect to the max-norm induce small changes of ℓ(M,F

~ϕ

(~l,~b)
) with

respect to the matching distance.

Proposition 1.18 and Remark 1.19 guarantee the stability of this approach.

2. Main Results

In this section we are going to prove some new results about the discontinuities
of multidimensional size functions. In order to do that, we will confine ourselves to
the case of a size pair (M, ~ϕ), where M is a closed C1 Riemannian m-manifold.

From now to Theorem 2.11 we shall assume that an admissible pair (~l,~b) ∈
Admk is fixed, considering the 1-dimensional size function ℓ(M,F ), where F (Q) =

maxi=1,...,k
ϕi(Q)−bi

li
. We shall say that F and ℓ(M,F ) are the (1-dimensional) mea-

suring function and the size function corresponding to the half-plane π(~l,~b), respec-

tively.
The main results of this section are stated in Theorem 2.11 and Theorem 2.13,

showing a necessary condition for a point (~x, ~y) ∈ ∆+ to be a discontinuity point for
the size function ℓ(M,~ϕ), under the assumption that ~ϕ is C1 and C0, respectively.
For the sake of clarity, we will now provide a sketch of the arguments that will lead
us to the proof of our main results.

Theorem 2.11 is a generalization in the k-dimensional setting of Corollary 1.12,
stating that each discontinuity point for a 1-dimensional size function ℓ(M,ϕ), re-

lated to a C1 measuring function ϕ, is such that at least one of its coordinates
is a critical value for ϕ. We recall that Corollary 1.12 directly descends from the
Representation Theorem 1.7 and from Theorem 1.11, according to which each finite
coordinate of a cornerpoint for ℓ(M,ϕ) has to be a critical value for ϕ. Our first goal
is to prove that a modified version of this last statement holds for the 1-dimensional
size function ℓ(M,F ) corresponding to the half-plane π(~l,~b). The reason for such an

adaptation is that the 1-dimensional measuring function F is not C1 (even in case
~ϕ is C1), and therefore we need to generalize the concepts of critical point and
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critical value by introducing the definitions of (~l,~b)-pseudocritical point and (~l,~b)-
pseudocritical value for a C1 function (Definition 2.1). These notions, together with
an approximation in C0(M,R) of the function F by C1 functions, are used to prove
that, if ~ϕ ∈ C1(M,Rk), each finite coordinate of a cornerpoint for ℓ(M,F ) has to

be an (~l,~b)-pseudocritical value for ~ϕ (Theorem 2.3). Next, we show (Proposition
2.4) that a correspondence exists between the discontinuity points of ℓ(M,F ) and the
ones of ℓ(M,~ϕ). Theorem 2.3 and Proposition 2.4 lead us to the relation (Theorem
2.7) between the discontinuity points for ℓ(M,~ϕ), lying on the half-plane π(~l,~b), and

the (~l,~b)-pseudocritical values for ~ϕ. This last result is refined in Theorem 2.11
under the assumption that ~ϕ is C1, providing a necessary condition for discontinu-
ities of ℓ(M,~ϕ) that does not depend on the half-planes of the foliation. This can
be done by introducing the concepts of pseudocritical point and pseudocritical value
for an Rk-valued C1 function (Definition 2.8), and considering a suitable projection
ρ : R

k → R
h. The necessary condition given in Theorem 2.11 is finally generalized

to the case of continuous measuring functions (Theorem 2.13), once more by means
of an approximation technique, and the notions of special point and special value.

Before going on, we need the following definition:

Definition 2.1. Assume that ~ϕ ∈ C1(M,Rk). For every Q ∈ M, set IQ ={
i ∈ {1, . . . , k} : ϕi(Q)−bi

li
= F (Q)

}
. We shall say that Q is an (~l,~b)-pseudocritical

point for ~ϕ if the convex hull of the gradients ∇ϕi(Q), i ∈ IQ, contains the null
vector, i.e. for every i ∈ IQ there exists a real value λi such that

∑
i∈IQ λi∇ϕi(Q) =

0, with 0 ≤ λi ≤ 1 and
∑

i∈IQ λi = 1. If Q is an (~l,~b)-pseudocritical point for ~ϕ,

the value F (Q) will be called an (~l,~b)-pseudocritical value for ~ϕ.

Remark 2.2. The concept of (~l,~b)-pseudocritical point is strongly connected, via
the function F introduced in Definition 2.1, with the notion of generalized gradient

introduced by F. H. Clarke [9]. For a point Q ∈ M, the condition of being (~l,~b)-
pseudocritical for ~ϕ corresponds to the one of being “critical” for the generalized
gradient of F [9, Prop. 2.3.12]. However, in this context we prefer to adopt a
terminology highlighting the dependence on the considered half-plane.

We can now state our first result.

Theorem 2.3. Assume that ~ϕ ∈ C1(M,Rk). If (σ, τ) is a proper cornerpoint

of ℓ(M,F ), then both σ and τ are (~l,~b )-pseudocritical values for ~ϕ. If (σ,∞) is a

cornerpoint at infinity of ℓ(M,F ), then σ is an (~l,~b )-pseudocritical value for ~ϕ.

Proof. We confine ourselves to proving the former statement, since the proof of the
latter is analogous. The idea is to show that our thesis holds for a C1 function ap-
proximating the measuring function F : M → R in C0(M,R), and verify that this

property passes to the limit. Let us now set Φi(Q) = ϕi(Q)−bi
li

and choose c ∈ R such

that minQ∈M Φi(Q) > −c, for every i = 1, . . . , k. Consider the function sequence

(Fp), p ∈ N+ = N\{0}, where Fp : M → R and Fp(Q) =
(∑k

i=1(Φi(Q) + c)p
) 1
p−c:

Such a sequence converges uniformly to the function F . Indeed, for every Q ∈ M
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and for every index p we have that

|F (Q) − Fp(Q)| =

∣∣∣∣∣max
i

Φi(Q) −
((

k∑

i=1

(Φi(Q) + c)p

) 1
p

− c

)∣∣∣∣∣ =

=

∣∣∣∣∣max
i

{Φi(Q) + c} −
(

k∑

i=1

(Φi(Q) + c)p

) 1
p
∣∣∣∣∣ =

=

(
k∑

i=1

(Φi(Q) + c)p

) 1
p

− max
i

{Φi(Q) + c} ≤

≤ max
i

{Φi(Q) + c} · (k 1
p − 1).

Let us now consider a proper cornerpoint C̄ of the size function ℓ(M,F ). By the
Matching Stability Theorem 1.10 it follows that it is possible to find a large enough
p and a proper cornerpoint Cp of the 1-dimensional size function ℓ(M,Fp) (associated

with the size pair (M, Fp)) such that Cp is arbitrarily close to C̄. Since Cp is a
proper cornerpoint of ℓ(M,Fp), it follows from Theorem 1.11 that its coordinates are

critical values of the C1 function Fp. By focusing our attention on the abscissa of
Cp (analogous considerations hold for the ordinate of Cp) it follows that there exists
Qp ∈ M with x(Cp) = Fp(Qp) and (in respect to local coordinates x1, . . . , xm of
the m-manifold M)

0 =
∂Fp
∂x1

(Qp) =

(
k∑

i=1

(Φi(Qp) + c)p

) 1−p
p

·
(

k∑

i=1

(Φi(Qp) + c)p−1 · ∂Φi
∂x1

(Qp)

)

...

0 =
∂Fp
∂xm

(Qp) =

(
k∑

i=1

(Φi(Qp) + c)p

) 1−p
p

·
(

k∑

i=1

(Φi(Qp) + c)p−1 · ∂Φi
∂xm

(Qp)

)
.

Hence we have

k∑

i=1

(Φi(Qp) + c)p−1 · ∂Φi
∂x1

(Qp) = 0

...
k∑

i=1

(Φi(Qp) + c)p−1 · ∂Φi
∂xm

(Qp) = 0 .

Therefore, by setting

vp = (v1
p, . . . , v

k
p ) =

(
(Φ1(Qp) + c)p−1, . . . , (Φk(Qp) + c)p−1

)
,

we can write tJ(Qp)·tvp = 0, where J(Qp) is the Jacobian matrix of ~Φ = (Φ1, . . . ,Φk)
computed at the point Qp. By the compactness of M, we can assume (possi-
bly by extracting a subsequence) that (Qp) converges to a point Q̄. Let us de-
fine up =

vp

‖vp‖∞

. By compactness (recall that ‖up‖∞ = 1) we can also assume

(possibly by considering a subsequence) that the sequence (up) converges to a
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vector ū = (ū1, . . . , ūk), where ūi = limp→∞
vip

‖vp‖∞

and ‖ū‖∞ = 1. Obviously
tJ(Qp) ·tup = 0 and hence we have

tJ(Q̄) ·tū = 0.(2.1)

Since for every index p and for every i = 1, . . . , k the relation 0 < uip ≤ 1 holds,

for each i = 1, . . . , k the condition 0 ≤ ūi = limp→∞ uip ≤ 1 is satisfied. Let us

now recall that F (Q̄) = maxi Φi(Q̄), by definition, and consider the set IQ̄ = {i ∈
{1, . . . , k} : Φi(Q̄) = F (Q̄)} = {i1, . . . , ih}. For every r 6∈ IQ̄ the component ūr

is equal to 0, since 0 ≤ urp =
(

Φr(Qp)+c
maxi{Φr(Qp)+c}

)p−1

and limp→∞
Φr(Qp)+c

maxi{Φr(Qp)+c} =

Φr(Q̄)+c
F(Q̄)+c

, which is strictly less than 1 for Φr(Q̄) < F (Q̄). Hence we have ū =

ūi1 ·ei1 + · · ·+ ūih ·eih , where ei is the ith vector of the standard basis of Rk. Thus,

from equality (2.1) we have
∑h
j=1 ū

ij · ∂Φij
∂x1

(Q̄) = 0, . . . ,
∑h
j=1 ū

ij · ∂Φij
∂xm

(Q̄) = 0,

that is
∑h
j=1

ūij

lij
· ∂ϕij
∂x1

(Q̄) = 0, . . . ,
∑h
j=1

ūij

lij
· ∂ϕij
∂xm

(Q̄) = 0, since Φi = ϕ−bi
li

. Hence,
∑h
j=1

ūij

lij
∇ϕij (Q̄) = 0. By recalling that ūij ≥ 0, lij > 0 and ū is a non–vanishing

vector, it follows immediately that
∑h

j=1
ū
ij

lij
> 0 and therefore the convex hull of

the gradients ∇ϕi1 (Q̄), . . . ,∇ϕih(Q̄) contains the null vector. Thus, Q̄ is an (~l,~b)-

pseudocritical point for ~ϕ and hence F (Q̄) is an (~l,~b)-pseudocritical value for ~ϕ.
Moreover, from the uniform convergence of the sequence (Fp) to F and from the
continuity of the function F , we have (recall that C̄ = limp→∞Cp)

x(C̄) = lim
p→∞

x(Cp) = lim
p→∞

Fp(Qp) = F (Q̄).

In other words, the abscissa x(C̄) of a proper cornerpoint of ℓ(M,F ) is the image of

an (~l,~b)-pseudocritical point Q̄ through F , i.e. an (~l,~b)-pseudocritical value for ~ϕ.
An analogous reasoning holds for the ordinate y(C̄) of a proper cornerpoint. �

Our next result shows that each discontinuity of ℓ(M,~ϕ) corresponds to a discon-
tinuity of the 1-dimensional size function associated with a suitable half-plane of
the foliation.

Proposition 2.4. A point (~x, ~y) = (s ·~l+~b, t ·~l+~b) ∈ π(~l,~b ) is a discontinuity point

for ℓ(M,~ϕ) if and only if (s, t) is a discontinuity point for ℓ(M,F ).

Proof. Obviously, if (s, t) is a discontinuity point for ℓ(M,F ), then (~x, ~y) = (s·~l+~b, t·
~l+~b) ∈ π(~l,~b ) is a discontinuity point for ℓ(M,~ϕ), because of the Reduction Theorem

1.15. In order to prove the inverse implication, we shall verify the contrapositive

statement, i.e. if (s, t) is not a discontinuity point for ℓ(M,F ), then (s ·~l+~b, t ·~l+~b)
is not a discontinuity point for ℓ(M,~ϕ). Indeed, if (s, t) is not a discontinuity point
for ℓ(M,F ), then ℓ(M,F ) is locally constant at (s, t) (recall that each size function is
natural–valued). Therefore it will be possible to choose a real number η > 0 such
that

ℓ(M,F )(s− η, t+ η) = ℓ(M,F )(s+ η, t− η).(2.2)

Before proceeding in our proof, we need the following result:
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Lemma 2.5. Let (M, ψ), (M, ψ′) be two size pairs, with ψ, ψ′ : M → R. If
dmatch

(
ℓ(M,ψ), ℓ(M,ψ′)

)
≤ 2ε, then it holds that

ℓ(M,ψ)(s− ε, t+ ε) ≤ ℓ(M,ψ′)(s+ ε, t− ε),

for every (s, t) with s+ ε < t− ε.

Proof of Lemma 2.5. Let ∆∗ be the set given by ∆+ ∪ {(a,∞) : a ∈ R}. For every
(s, t) with s < t, let us define the set L(s,t) = {(σ, τ) ∈ ∆∗ : σ ≤ s, τ > t}.
By the Representation Theorem 1.7 we have that ℓ(M,ψ)(s − ε, t + ε) equals the
number of proper cornerpoints and cornerpoints at infinity for ℓ(M,ψ) belonging

to the set L(s−ε,t+ε). Since dmatch
(
ℓ(M,ψ), ℓ(M,ψ′)

)
≤ 2ε, the number of proper

cornerpoints and cornerpoints at infinity for ℓ(M,ψ′) in the set L(s+ε,t−ε) is not less
than ℓ(M,ψ)(s − ε, t + ε). The reason is that the change from ψ to ψ′ does not
move the cornerpoints more than 2ε, with respect to the max-norm, because of the
Matching Stability Theorem 1.10. By applying the Representation Theorem 1.7
once again to ℓ(M,ψ′), we get our thesis. �

Let us go back to the proof of Proposition 2.4. By Proposition 1.18, we can then
consider a real value ε = ε(η) with 0 < ε < mini=1,...,k li such that for every admissi-

ble pair (~l′,~b′) with
∥∥∥(~l,~b) − (~l′,~b′)

∥∥∥
∞

≤ ε, the relation dmatch(ℓ(M,F ), ℓ(M,F ′)) ≤ η
2

holds, where ℓ(M,F ′) is the 1-dimensional size function corresponding to the half-
plane π(~l′,~b′). By applying Lemma 2.5 twice and the monotonicity of ℓ(M,F ′) in

each variable (cf. Remark 1.4), we get the inequalities

ℓ(M,F )(s− η, t+ η) ≤ ℓ(M,F ′)(s−
η

2
, t+

η

2
)

≤ ℓ(M,F ′)(s+
η

2
, t− η

2
) ≤ ℓ(M,F )(s+ η, t− η).(2.3)

Because of equality (2.2) we have that the inequalities (2.3) imply

ℓ(M,F )(s− η, t+ η) = ℓ(M,F ′)(s−
η

2
, t+

η

2
)

= ℓ(M,F ′)(s+
η

2
, t− η

2
) = ℓ(M,F )(s+ η, t− η).(2.4)

Therefore, once again because of the monotonicity of ℓ(M,F ′) in each variable,

for every (s′, t′) with ‖(s, t) − (s′, t′)‖∞ ≤ η
2 and for every (~l′,~b′) with ‖(~l,~b) −

(~l′,~b′)‖∞ ≤ ε the equality ℓ(M,F ′)(s
′, t′) = ℓ(M,F )(s, t) holds. By applying the

Reduction Theorem 1.15 we get ℓ(M,~ϕ)(s
′ ·~l′+~b′, t′ ·~l′+~b′) = ℓ(M,~ϕ)(s ·~l+~b, t ·~l+~b).

In other words, ℓ(M,~ϕ) is locally constant at the point (~x, ~y), and hence (~x, ~y) is not
a discontinuity point for ℓ(M,~ϕ). �

Remark 2.6. Let us observe that Proposition 2.4 holds under weaker hypotheses,
i.e. in the case that M is a non-empty, compact and locally connected Hausdorff
space. However, for the sake of simplicity, we prefer here to confine ourselves to
the setting assumed at the beginning of the present section.

The following theorem associates the discontinuities of a multidimensional size

function to the (~l,~b)-pseudocritical values of ~ϕ.

Theorem 2.7. Let (~x, ~y) ∈ ∆+ with (~x, ~y) = (s ·~l+~b, t ·~l+~b) ∈ π(~l,~b ). If (~x, ~y) is

a discontinuity point for ℓ(M,~ϕ) then at least one of the following statements holds:

(i): s is a discontinuity point for ℓ(M,F )(·, t);
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(ii): t is a discontinuity point for ℓ(M,F )(s, ·).
Moreover, (i) and (ii) are equivalent to

(i′): ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y);
(ii′): ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·),

respectively. If ~ϕ ∈ C1(M,Rk), statement (i) implies that s is an (~l,~b)-pseudocriti-

cal value for ~ϕ, and statement (ii) implies that t is an (~l,~b)-pseudocritical value for
~ϕ.

Proof. By Proposition 2.4 we have that (s, t) is a discontinuity point for ℓ(M,F ), and
from Corollary 1.9 it follows that either s is a discontinuity point for ℓ(M,F )(·, t)
or t is a discontinuity point for ℓ(M,F )(s, ·), or both these conditions hold, thus
proving the first part of the theorem.

Let us now suppose that s is a discontinuity point for ℓ(M,F )(·, t). Since the
function ℓ(M,F )(·, t) is monotonic, then for every real value ε > 0 we have that
ℓ(M,F )(s− ε, t) 6= ℓ(M,F )(s+ ε, t). Moreover, the following equalities hold because
of the Reduction Theorem 1.15:

ℓ(M,F )(s− ε, t) = ℓ(M,~ϕ)((s− ε) ·~l +~b, t ·~l+~b) = ℓ(M,~ϕ)(~x− ε ·~l, ~y)
ℓ(M,F )(s+ ε, t) = ℓ(M,~ϕ)((s+ ε) ·~l +~b, t ·~l +~b) = ℓ(M,~ϕ)(~x + ε ·~l, ~y).(2.5)

By setting ~ε = ε · ~l, we get ℓ(M,~ϕ)(~x − ~ε, ~y) 6= ℓ(M,~ϕ)(~x + ~ε, ~y). Therefore ~x is a
discontinuity point for ℓ(M,~ϕ)(·, ~y), thus proving that (i) ⇒ (i′).

Let us now prove that (i′) ⇒ (i). If ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y),
from the monotonicity in the variable ~x (cf. Remark 1.4) it follows that ℓ(M,~ϕ)(~x−
ε · ~l, ~y) 6= ℓ(M,~ϕ)(~x + ε · ~l, ~y) for every ε > 0. Therefore, because of the equalities
(2.5) we get ℓ(M,F )(s−ε, t) 6= ℓ(M,F )(s+ε, t), proving that (i′) ⇒ (i). Analogously,
we can show that (ii) ⇔ (ii′).

Furthermore, if s is a discontinuity point for ℓ(M,F )(·, t), from the Represen-
tation Theorem 1.7 it follows that s is the abscissa of a cornerpoint (possibly at
infinity). Hence, if ~ϕ ∈ C1(M,Rk) then by Theorem 2.3 we have that s is an

(~l,~b)-pseudocritical value for ~ϕ.
In a similar way, we can examine the case that t is a discontinuity point for

ℓ(M,F )(s, ·), and get the final statement. �

Before giving the first of our main results, we need the following definition.

Definition 2.8. Let ~ξ : M → R
h, and suppose that ~ξ is C1 at a point Q ∈ M. The

point Q is said to be a pseudocritical point for ~ξ if the convex hull of the gradients
∇ξi(Q), i = 1, . . . , h, contains the null vector, i.e. there exist λ1, . . . , λh ∈ R such

that
∑h

i=i λi ·∇ξi(Q) = 0, with 0 ≤ λi ≤ 1 and
∑h
i=1 λi = 1. If Q is a pseudocritical

point of ~ξ, then ~ξ(Q) will be called a pseudocritical value for ~ξ.

Remark 2.9. Definition 2.8 corresponds to the Fritz John necessary condition for
optimality in Nonlinear Programming [1]. We shall use the term “pseudocritical”
just for the sake of conciseness. For further references see [33]. The concept of
pseudocritical point is strongly related also to the one of Jacobi Set (cf. [20]).

The next example makes Definition 2.8 clearer.

Example 2.10. Let us compute the pseudocritical points and values for the mea-

suring function ~ξ = (ξ1, ξ2) : M → R
2, where M is the surface coinciding with
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the unit sphere S2 ⊂ R3, and ~ξ is obtained as the restriction to M of the function
~Ξ = (Ξ1,Ξ2) : R3 → R2, with ~Ξ(x, y, z) = (x, z) (see Figure 4). According to

Definition 2.8, it follows that a point Q ∈ M is pseudocritical for ~ξ if and only if
either ∇ξ1(Q) = 0, or ∇ξ2(Q) = 0, or these two gradient vectors are parallel with
opposite verse. Referring to our example, ∇ξ1(Q) and ∇ξ2(Q) are the projections
of ∇Ξ1(Q) = (1, 0, 0) and ∇Ξ2(Q) = (0, 0, 1) onto the tangent space of M at Q,
respectively. Therefore, it can be easily verified that the pseudocritical points of

M for the function ~ξ are given by the set {(cosα, 0, sinα), 0 ≤ α ≤ π
2 ∨ π ≤

α ≤ 3
2π}. Hence, the corresponding pseudocritical values are the elements of the

set {(cosα, sinα), 0 ≤ α ≤ π
2 ∨ π ≤ α ≤ 3

2π}.

x

y

z

Q

Q

∇Ξ1(Q)

∇Ξ2(Q)

∇ξ1(Q)

∇ξ2(Q)

Figure 4. (a) The sphere S2 ⊆ R
3 endowed with the measuring

function ~ξ = (ξ1, ξ2) : S2 → R2, defined as ~ξ(x, y, z) = (x, z) for

each (x, y, z) ∈ S2. The pseudocritical points of ~ξ are depicted in

bold red. (b) The point Q is a pseudocritical point for ~ξ, since the
vectors ∇ξ1(Q) and ∇ξ2(Q) are parallel with opposite verse.

In the following, we shall say that ρ : Rk → Rh is a projection if there ex-
ist h indices i1, . . . , ih such that ρ((x1, . . . , xk)) = (xi1 , . . . , xih), for every ~x =
(x1, . . . , xk) ∈ Rk. In other words, such a function ρ is used to delete some compo-
nents of a vector ~x ∈ R

k.
We are now ready to give the first main result of this paper.

Theorem 2.11. Assume that ~ϕ ∈ C1(M,Rk). Let (~x, ~y) ∈ ∆+ be a discontinuity
point for ℓ(M,~ϕ). Then at least one of the following statements holds:

(i): ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y);
(ii): ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·).

Moreover, if (i) holds, then a projection ρ exists such that ρ(~x) is a pseudocrit-
ical value for ρ ◦ ~ϕ. If (ii) holds, then a projection ρ exists such that ρ(~y) is a
pseudocritical value for ρ ◦ ~ϕ.

Proof. Because of Proposition 1.14, an admissible pair (~l,~b) exists, such that (~x, ~y) =

(s · ~l +~b, t · ~l +~b) for a suitable pair (s, t). Statements (i) and (ii) are guaranteed
by Theorem 2.7, assuring that either ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y) and
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s is an (~l,~b)-pseudocritical value for ~ϕ, or ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·)
and t is an (~l,~b)-pseudocritical value for ~ϕ, or both these conditions hold.

Let us now confine ourselves to assume that ~x is a discontinuity point for

ℓ(M,~ϕ)(·, ~y) and s is an (~l,~b)-pseudocritical value for ~ϕ. We shall prove that a
projection ρ exists such that ρ(~x) is a pseudocritical value for ρ ◦ ~ϕ. The proof in

the case that ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·) and t is an (~l,~b)-pseudocritical

value for ~ϕ proceeds in quite a similar way. Since s is an (~l,~b)-pseudocritical value
for ~ϕ, by Definition 2.1 there exist a point Q ∈ M and some indices i1, . . . , ih

with 1 ≤ h ≤ k, such that s = F (Q) =
ϕi1(Q)−bi1

li1
= · · · =

ϕih(Q)−bih
lih

and
∑h
j=1 λj · ∇~ϕij (Q) = 0, with 0 ≤ λj ≤ 1 for j = 1, . . . , h, and

∑h
j=1 λj = 1. Let us

now consider the projection ρ : Rk → Rh defined by setting ρ(~x) = (xi1 , . . . , xih).
Since (~x, ~y) = (x1, . . . , xk, y1, . . . , yk) = (s·l1+b1, . . . , s·lk+bk, t·l1+b1, . . . , t·lk+bk),
we observe that xij =

(
ϕij (Q)−bij

lij

)
·lij+bij = ϕij (Q), for every j = 1, . . . , h. There-

fore it follows that ρ(~x) is a pseudocritical value for ρ ◦ ~ϕ. �

Remark 2.12. We stress that Theorem 2.11 improves the result obtained in Theorem
2.7, providing a necessary condition for discontinuities of multidimensional size
functions that does not depend on the foliation of the domain ∆+.

2.1. Refining Theorem 2.11 to less regular measuring functions. In this
section we generalize Theorem 2.11 to the case of continuous measuring functions.

In what follows, we shall call a special point for a continuous function ~ξ : M → Rh

any point Q ∈ M where ~ξ is not C1. If Q is a special point for ~ξ, the value ~ξ(Q)

will be called a special value for ~ξ.

Theorem 2.13. Let (~x, ~y) ∈ ∆+ be a discontinuity point for ℓ(M,~ϕ). Then at least
one of the following statements holds:

(i): ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y);
(ii): ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·).

Moreover, if (i) holds, then a projection ρ exists such that ρ(~x) is either a special
value or a pseudocritical value for ρ ◦ ~ϕ. If (ii) holds, then a projection ρ exists
such that ρ(~y) is either a special value or a pseudocritical value for ρ ◦ ~ϕ.

Proof. Because of Proposition 1.14, an admissible pair (~l,~b) exists, such that (~x, ~y) =

(s ·~l+~b, t ·~l+~b) for a suitable pair (s, t). Statements (i) and (ii) are guaranteed by
Theorem 2.7, assuring that either ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y) and s
is a discontinuity point for ℓ(M,F )(·, t), or ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·)
and t is a discontinuity point for ℓ(M,F )(s, ·), or both these conditions hold.

Let us now assume that ~x is a discontinuity point for ℓ(M,~ϕ)(·, ~y) and s is a
discontinuity point for ℓ(M,F )(·, t). We shall prove that a projection ρ exists such
that ρ(~x) is either a special value or a pseudocritical value for ρ ◦ ~ϕ.

Call Sj the set of special points of ϕj : M → R, for j = 1, . . . , k. For every
i ∈ N

+ = N \ {0} and j = 1, . . . , k, consider the compact set Ki
j = {Q ∈ M :

d(Q, Sj) ≥ 1
i
}, and take a C1 function ϕij : M → R such that

(1) maxQ∈M |ϕj(Q) − ϕij(Q)| ≤ 1
i
;

(2) maxQ∈Ki
j
‖∇ϕj(Q) −∇ϕij(Q)‖ ≤ 1

i
.
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This can be done by considering the convolution of each component ϕj , j = 1, . . . , k,
with a suitable “regularizing” function.

From now on, for the sake of conciseness we shall use the symbols F and F i to

denote the functions F ~ϕ

(~l~b)
= maxj=1,...,k

{
ϕj−bj
lj

}
and F ~ϕi

(~l~b)
= maxj=1,...,k

{
ϕij−bj
lj

}
,

respectively. For every i ∈ N+, we also set ~ϕi = (ϕi1, . . . , ϕ
i
k).

Since s is a discontinuity point for ℓ(M,F )(·, t), by the Representation Theorem
1.7 it follows that a cornerpoint of ℓ(M,F ) (proper or at infinity) of coordinates
(s, t̄) exists, with t̄ > t. Moreover, by condition (1) we have that the sequence
(F i) uniformly converges to F . Therefore, the Matching Stability Theorem 1.10
implies that a sequence ((si, t̄i)) exists, such that (si, t̄i) is a cornerpoint for ℓ(M,F i)

and ((si, t̄i)) converges to (s, t̄). For every large enough index i, once more by the
Representation Theorem 1.7, si is then a discontinuity point for ℓ(M,F i)(·, t), and

hence by Theorem 2.7 we have that ~x i = si · ~l + ~b is a discontinuity point for
ℓ(M,~ϕi)(·, ~y). From Theorem 2.11 it follows that a projection ρi exists, such that

ρi(~x i) is a pseudocritical value for ρi ◦ ~ϕi. Possibly by considering a subsequence,
we can suppose that all the ρi equal a projection ρ. Moreover, we can consider a
sequence (Qi) such that Qi ∈ M, ρ ◦ ~ϕi(Qi) = ρ(~x i) and Qi is a pseudo-critical
point for ρ ◦ ~ϕi. Furthermore, by the compactness of M, possibly by extracting a
subsequence we can assume (Qi) converging to a point Q ∈ M. From the continuity
of ~ϕ and from the uniform convergence of (~ϕi) to ~ϕ, we can deduce

(3) ρ ◦ ~ϕ(Q) = limi→∞ ρ ◦ ~ϕ(Qi) = limi→∞ ρ ◦ ~ϕi(Qi) = limi→∞ ρ(~x i) = ρ(~x).

If ρ(~x) is a special value for ρ ◦ ~ϕ then our claim is proved. If ρ(~x) = (xj1 , . . . , xjh)
is not a special value for ρ ◦ ~ϕ then Q 6∈ Sj1 ∪ . . .∪Sjh . Hence, for any large enough
index i, it follows that Q,Qi ∈ Ki

j1
∩ . . . ∩ Ki

jh
. By recalling that each point Qi

is a pseudocritical point for ρ ◦ ~ϕi, and by observing that the property of being a
pseudocritical point passes to the limit, we get that ρ(~x) is a pseudocritical value
for ρ ◦ ~ϕ. In other words, we have just proved that if ~x is a discontinuity point for
ℓ(M,~ϕ)(·, ~y), then a projection ρ exists such that ρ(~x) is either a special value or a
pseudocritical value for ρ ◦ ~ϕ.

Analogously, it is possible to prove that if ~y is a discontinuity point for ℓ(M,~ϕ)(~x, ·),
then a projection ρ exists such that ρ(~y) is either a special value or a pseudocritical
value for ρ ◦ ~ϕ. �

2.2. Consequences of our results. The results proved in this paper imply several
relevant consequences. First of all they contribute to clarifying the structure of
multidimensional size functions. In order to explain this point let us consider the
case of a compact smooth surface S endowed with a smooth function ~ϕ : S → R2.
It is immediate to verify that all pseudocritical points belong to the Jacobi set of
~ϕ, that is the set where the gradients ∇ϕ1 and ∇ϕ2 are parallel. This implies (cf.
[20]) that in the generic case the pseudocritical points belong to a 1-submanifold
J of S (in local coordinates such a manifold is determined by the vanishing of the
Jacobian of ~ϕ). Now, Theorem 2.13 allows us to claim that all discontinuity points
(x1, x2, y1, y2) of the size function ℓ(M,~ϕ) belong either to J ×R

2 or to R
2×J . For

the computation of J we refer to [20].
In the light of this new information, we can imagine the possibility of construct-

ing new algorithms to efficiently compute multidimensional size functions. Let us
consider the connected components in which the domain of ℓ(M,~ϕ) is divided by
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the set (J × R2) ∪ (R2 × J ). Since size functions are locally constant at each
point of continuity (we recall that they are natural-valued), we immediately obtain
that ℓ(M,~ϕ) is constant at each of those connected components. It follows that the
computation of ℓ(M,~ϕ) just requires the computation of its value at only one point
for each connected component. These observations open the way to new and more
efficient methods of computation for multidimensional size functions.

Our results also make new pseudodistances between size functions computable

in an easier way. Indeed, let us consider two size pairs (M, ~ϕ), (N , ~ψ) and the
value δH giving the Hausdorff distance between the sets where ℓ(M,~ϕ) and ℓ(N , ~ψ)

are discontinuous. It is trivial to check that the function dD defined by setting

dD

(
ℓ(M,~ϕ), ℓ(N , ~ψ)

)
= δH is a pseudodistance between multidimensional size func-

tions. Helping us to localize the discontinuities of multidimensional size functions,
Theorem 2.13 makes the computation of dD easier.

Conclusions and future work

In this paper we have proved that a discontinuity point for a multidimensional
size function has at least one special or pseudocritical coordinate, under the hy-
pothesis that the considered measuring function is (at least) continuous. This result
is a first step in the development of Size Theory for Rk-valued measuring functions.
Indeed, the localization of the unique points where k-dimensional size functions can
be discontinuous allows us to better understand Topological Persistence and opens
the way to the formulation of effective algorithms for its computation. On the other
hand, it is worth noting that our framework could be applicable also to the study
of discontinuities in persistent algebraic topology, including persistent homology
groups and size homotopy groups. However, some difficulties could derive from the
present lack of the analogue of Theorem 1.10 for those structures, i.e. a stabil-
ity result in the case of continuous (possibly non-tame [10]) measuring functions.
These last research lines appear to be promising, both from the theoretical and the
applicative point of view.

Acknowledgements. Work performed within the activity of ARCES “E. De Cas-
tro”, University of Bologna, under the auspices of INdAM-GNSAGA.

The authors thank Davide Guidetti (University of Bologna) for his helpful advice.
This paper is dedicated to Martina and Riccardo.

A. Appendix

A.1. Relationship between Size Theory and Persistent Homology. Size
Theory and Persistent Homology are deeply connected theories. We shall recall
some similarities and differences between them in this appendix. For more details
we refer to the survey papers [3] and [21].

Size Theory was born at the beginning on the 1990s (cf. [23, 24]) as a math-
ematical approach to shape comparison. The main idea is to describe shape as
a pseudometric (the natural pseudodistance) between topological spaces endowed
with real-valued functions, called measuring functions. The measuring functions are
used as descriptors of the properties with respect to which the topological spaces
are compared. For example, if we are interested in the comparison of two objects
A and B with respect to their bumps and hollows, it can be natural to consider
two subsets of R

3 representing their bodies, endowed with two functions associating
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with each point its distance from the center of mass of the body it belongs to. On
the other hand, if we are interested in the colorings of A and B, we can consider two
surfaces endowed with functions representing the color taken at each point. The
natural pseudodistance between two pairs (topological space, measuring function),
called size pairs, is the infimum of the change of the measuring function under the
action of all possible homeomorphisms from one topological space to the other. Size
functions and size homotopy groups (their algebraic-topological equivalent; cf. [28])
appeared as mathematical tools useful for computing lower bounds for the natural
pseudodistance, introducing ante litteram the study of Topological Persistence.

Persistent Homology was born approximately ten years later, at the beginning
of the 00s, as a mathematical approach to studying the homology of topological
spaces known just by a sampling. In this case, the attention was focused on the
radius r of the spheres centered at the sample points, whose union approximates
the topological space. The problem of choosing the value of r led to the concept
of persistence, emphasizing the topological properties stable under the change of
r. In other words, the main goal was topological simplification, in order to get the
relevant topological information concerning the object under study. The value r,
playing the role of the measuring function in Size Theory, has been subsequently
extended to more general functions.

Despite their different origins and goals, Size Theory and Persistent Homology
have developed similar structures and concepts, under different names. In order to
help readers who are not familiar with both these theories, this section compares
some of their key concepts, explaining their reciprocal links. These connections and
relationships are summarized in Table 1.

As we have already said previously, the objects under study in Size Theory
are the pairs (topological space, measuring function), called size pairs. The main
results of this paper, stated in Theorem 2.11 and Theorem 2.13, are given under the
assumption that the topological space is a closed C1 Riemannian manifold, while the
measuring function is supposed to be at least continuous. In Persistent Homology
the object of study is usually a simplicial complex K, endowed with a filtration, i.e.
a nested sequence of subcomplexes that starts with the empty complex and ends
with the complete complex K. The filtration is usually obtained by a real-valued
function defined at the vertices of K and extended to the simplexes. Each level Kc

in the filtration is obtained by taking just the simplexes having vertexes at which
the function takes a value less than (or equal to) a parametrical value c.

As a matter of fact, Size Theory is more focused on continuous data (topological
spaces or manifolds, endowed with continuous or Ck functions), while Persistent
Homology usually studies discrete structures (simplicial complexes endowed with
piecewise linear functions) or structures satisfying some finiteness hypotheses (topo-
logical spaces endowed with tame functions). As a consequence, the results obtained
in the two theories are often expressed and proved in similar but different mathe-
matical settings. For example, while the fact that the persistent homology groups
are finitely generated is just a trivial consequence of the assumed hypotheses, the
finiteness of size functions requires a (simple but not trivial) proof. Analogously,
while the localization of discontinuities for the rank of the 0-th persistent homology
group (i.e. the 0-th rank invariant) is usually trivial in the 1-dimensional setting,
this does not hold for the discontinuities of a size function. This is actually what
happens in this paper, where the measuring functions are not required to be tame
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Size Theory references Persistent Homology references

size pair [23, 25] filtration [10, 22]
of a complex

natural pseudodistance [16, 18]
between size pairs

measuring [23, 25] filtrating [21, 22]
function function

(multidimensional) [2, 23, 24] 0th rank invariant [7]
size function

size homotopy group [28]
size functor [5]

persistent [21, 22]
k-th homology group

multiplicity [27, 31] multiplicity of points [21, 22]
of cornerpoints in persistence diagrams
formal series

of cornerpoints [27, 31] persistence diagrams [21, 22]
and cornerlines

multidimensional [2, 28] multidimensional [6, 7]
Size Theory Persistent Homology

Table 1. Approximative correspondence between some concepts
in Size Theory and Persistent Homology. For each concept bibli-
ographic references are reported. A line denotes a missing corre-
spondence.

(cf. [10] for a formal definition of tame function). Obviously, this creates many
technical difficulties, even in the case of C1 measuring functions, since they are
allowed to have an infinite number of critical values. This kind of problem does not
usually appear in literature regarding Persistent Homology.

Size functions are the most usual tool in Size Theory, while persistent homology
groups constitute the main object of research in Persistent Homology. Size func-
tions are simply the rank of persistent 0-homology groups. On the other hand,
the relationship between persistent homology groups (introduced in [22]) and size
homotopy groups (introduced in [28]) is the same that links homology groups and
homotopy groups. For example, the first persistent homology group is the Abelian-
ization of the first size homotopy group.

Both size functions and persistent homology groups are often represented by sets
of points with multiplicities. The representation for size functions is called formal
series of cornerpoints (proper and at infinity) and was introduced in [31]. The
correspondent representation for persistent homology groups is named persistence
diagram and was introduced in [22]. The formulas defining the multiplicities of
the considered points are quite analogous. However, because of the hypotheses
usually assumed in Persistent Homology, persistence diagrams are finite collections
of points, while the formal series used in Size Theory can contain an infinite number
of cornerpoints. The k-Triangle Lemma in [22] is essentially equivalent to the
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Representation Theorem recalled in this paper and proved in [27] (under slightly
different hypotheses).

Formal series representing size functions and persistence diagrams representing
the ranks of persistent homology groups can be compared by using some matching
distances (cf. [27, 31] for size functions and [10] for persistence diagrams). The
matching distance used in this paper has been studied in [11, 13] for size functions
and in [10] for persistent homology groups.

The study of multidimensional measuring functions has started in [28] for Size
Theory and in [7] for Persistent Homology.
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