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Abstract

This paper proposes the estimation of small-scale dynamic stochastic general equilibrium

(DSGE) monetary models under the quasi-rational expectations (QRE) hypothesis. The

QRE-DSGE model is based on the idea that the determinate reduced form solution associated

with the structural model, if it exists, must have the same lag structure as the ‘best fitting’

vector autoregressive (VAR) model for the observed time series. After discussing solution

properties and the local identifiability of the model, a likelihood-based iterative algorithm for

estimating the structural parameters and testing the data adequacy of the system is proposed.

A Monte Carlo experiment shows that, even controlling for the omitted dynamics bias, the

over-rejection of the nonlinear cross-equation restrictions when asymptotic critical values are

used and variables are highly persistent is a relevant issue in finite samples. An application

based on euro area data illustrates the advantages of using error-correcting formulations of the

QRE-DSGE model when the inflation rate and the short-term interest rate are approximated

as difference stationary processes. A parametric bootstrap version of the likelihood-ratio test

for the implied cross-equation restrictions does not reject the estimated QRE-DSGE model.
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1 Introduction

Small-scale dynamic stochastic general equilibrium (DSGE) models developed within the New

Keynesian tradition, are currently treated as the benchmark of much of the monetary policy

literature, given their ability to explain the impact of monetary policy on output and inflation.

Despite possessing attractive theoretical properties, such as the capability of featuring poten-

tial structural sources of endogenous persistence that can account for the inertia in the data

(external habit persistence, implicit indexation, adjustment costs of investment, see Christiano,

Eichembaum and Evans, 2005; Smets and Wouters, 2003), DSGE models are typically rejected

when compared with vector autoregressions (VAR) and have difficulties in generating sufficient

endogenous persistence to match the persistence observed in the data. The empirical reliabil-

ity of this class of models is an open question and misspecification remains an issue (An and

Schorfheide, 2007).

From the econometric point of view, DSGE models are interpreted as inherently misspeci-

fied systems and are usually treated as restricted but parametrically incomplete representations

of the actual data. Indeed, the restrictions these models impose on VARs approximating the

data can be classified into two categories: (i) highly nonlinear cross-equation restrictions (CER)

which involve the VAR coefficients and the structural parameters, which can be used to recover

estimates of the latter; (ii) zero constraints which limit the VAR lag order. In many circum-

stances, the constraints in (ii) are at odds with the dynamic features and persistence observed

in quarterly (monthly) time series, inducing an omitted dynamics issue that compromises the

estimates of the structural parameters derived from the restrictions in (i).

Given these caveats, structural estimation and evaluation of DSGE models are feasible with

standard statistical tools (maximum likelihood or Bayesian estimation)1 once the probabilistic

structure of the data has been completed with nuisance features, for instance adding dynamics

(Diebold et al. 1998; Kozicki and Tinsley, 1999; Rudebusch, 2002a; 2002b; Fuhrer and Rude-

busch 2004; Lindé, 2005, Section 5; Jondeau and Le Bihan, 2008), or manipulating arbitrarily

the shock structure of the model (Smets and Wouters, 2003, 2007), or using prior distributions

for the parameters with the possibility of relaxing the CER (Del Negro and Schorfheide, 2004;

Del Negro et al. 2007; Del Negro and Schorfheide, 2007).2

1Aside from ‘limited-information’ techniques, the recent estimation of small-scale DSGE monetary models

through ‘full information’ maximum likelihood methods include, Lindé (2005) and Cho and Moreno (2006).
2An alternative route has been recently explored by Cho and Moreno (2006), who focus on the small sample

properties of the tests commonly used to validate the cross-equation restrictions. These authors show that the

use of asymptotic critical values in samples of the sizes typically available to macroeconomists may imply false

rejections of small-scale DSGE macro models.
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In this paper, we propose the estimation of small-scale DSGE models under a version of the

quasi-rational expectations (QRE) hypothesis, see Nerlove et al. (1979), Nelson and Blessler

(1992), Nerlove and Fornari (1999). The extreme form of QRE simply replaces the endogenous

variables appearing in the structural equations of a linear rational expectations model with their

values calculated from the ‘best fitting’ reduced form model for them. The idea is that in a world

in which the data generating process is unknown and characterized by heterogeneous information

sets, rational expectations is impossible to observe and multivariate time series models as VAR

models can be regarded as ‘boundedly rational’ predictors ‘in the spirit’ of rational expectations,

see Branch (2004). As we show in the paper, the advantage of replacing rational expectations

with QRE is that the zero restrictions in (ii) are automatically relaxed and the risk of incurring

in an omitted dynamics issue is under control.

We define the QRE-DSGE model as a linear rational expectations model derived from the

baseline DSGE specification whose implied reduced form solution has the same lag structure

as the finite-order VAR which fits the data optimally. Once a VAR with a finite number of

lags resulting from proper specification analysis is found to approximate the observed time se-

ries reasonably, the QRE-DSGE model is obtained from the baseline specification of the DSGE

model by including a number of auxiliary lags of the endogenous variables, so that the asso-

ciated (determinate) reduced form solution, if it exists, corresponds to a restricted version of

that VAR. In this setup, the additional auxiliary parameters entering the QRE-DSGE model are

not interpreted as devices required to expand dynamically a baseline theoretical specification

in recognition of the observed length of real world contracts, adjustment costs, time-to-build

lags, delays in information flows and decision lags, as in Kozicki and Tinsley (1999), Rudebusch

(2002a), Fuhrer and Rudebusch (2004). Rather, the auxiliary parameters result from the as-

sumed expectations generating system, namely from the discrepancy between the time series

representation of the model under rational expectations and the time series representation of

the data resulting from the agents’ forecast model. The number of lags of the QRE-DSGE model

is not arbitrary but is the determined from the VAR lag order.

After discussing the conditions that ensure the generic local identifiability of the structural

parameters, we put forth a procedure for maximizing the likelihood function of the QRE-DSGE

model, which exploits the nonlinear link between the reduced form and structural parameters

iteratively.

The properties of the proposed estimation algorithm are investigated through some Monte

Carlo experiments. This experiment shows that likelihood-ratio tests for the CER based on

asymptotic critical values tend to over-reject the cross-equation restrictions in finite samples,

providing a further explanation of the empirical failure of DSGE monetary models.

3



The time series upon which DSGE models are estimated are typically constructed as (or

are thought of as being) deviations from steady state values. In the case of variables such as

output, these are mostly log deviations from a steady state path while, for variables such as

interest rates and inflation, they are level deviations from a constant steady state rate. As is

known, removing a constant does not ensure stationarity if the persistence of the time series

is governed by a unit root, see Cogley (2001), Fukac and Pagan (2006), Juselius and Franchi

(2007), Gorodnichenko and Ng (2008) and Dees et al. (2008). Moreover, treating mistakenly

nonstationary as stationary processes may flaw standard inferential procedures, see Johansen

(2006), Li (2007), Fanelli (2008) and Fanelli and Palomba (2009). We show how the QRE-

DSGE model can be transformed to account for the cointegration restrictions characterizing the

observed time series.

An illustration based on euro area data for the period 1980:3-2006:4 illustrates the advantages

of using error-correcting formulations of the QRE-DSGE model when the inflation rate and the

short-term interest rate are highly persistent. A parametric bootstrap version of the likelihood-

ratio test for the implied cross-equation restrictions does not reject the estimated QRE-DSGE

model.

The rest of the paper is organized as follows. Section 2 introduces a standard formulation of

small-scale DSGE monetary models and Section 3 discusses the omitted dynamics issue implicit

in this class of models. Section 4 introduces formally the QRE-DSGE model and discusses

identifiability of the structural parameters. Section 5 deals with the estimation algorithm and

Section 6 extends the analysis to the case of cointegrated variables. The finite sample properties

of the proposed estimation algorithm and the empirical size of likelihood-ration tests for the CER

are studied in Section 7 on simulated data. Section 8 provides an empirical illustration based

on euro area data. Some concluding remarks are provided in Section 9. Proofs and technical

details are reported in the Appendix.

2 Model

Let Zt := (Z1,t, Z2,t, · · · , Zn,t)
0 be a n × 1 vector of endogenous variables and assume that the

New Keynesian macroeconomic system of equations can be expressed in the form

Γ0Zt = ΓfEtZt+1 + ΓbZt−1 + c+ vt (1)

where, Γi := Γi(γs), i = 0, f, b are n× n matrices of structural parameters, c := c(γs) is a n× 1
constant, vt is a n × 1 vector which is assumed to be adapted to the sigma-field Ft, where Ft

represents the agents’ information set at time t and EtZt+1 ≡ E(Zt+1 | Ft). The (unrestricted)

structural parameters have been collected in the ms × 1 vector γs.
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Γ0 is non-singular. Note that with Γf := 0n×n, the RE-DSGE model (1)-(3) collapses to

a traditional simultaneous system of equations, whereas with Γb := 0n×n one gets a ‘purely

forward-looking’ specification.

Let Xt := (X1,t,X2,t, · · · ,Xp,t)
0 be the p × 1 vector of observable variables, p ≤ n. The

measurement system

Xt := GZt (2)

links the observable to the endogenous variables, where G is p × n. Throughout the paper the

following assumption will be considered.

Assumption 1 In the state-space representation (1)-(2), G := Ip and Xt is a ‘detrended’

process in the sense that the variables in Xt do not embody deterministic linear trends.

Assumption 1 entails that the analysis is confined to systems in which Zt =: Xt involves

observable time series and the number of shocks is equal to the number of endogenous variables

(p = n). More general specifications can be considered without changing the main idea upon

this paper is based. Assumption 1 does not rule out unit roots in Xt, see below.

When a direct link between the process generating vt and a set of observable ‘forcing vari-

ables’ is not provided by the theory, a typical completion of system (1) is obtained through the

autoregressive specification

vt = Θvt−1 + ut (3)

where Θ is a p×p (possibly diagonal) stable matrix (i.e. with eigenvalues inside the unit disk) and
ut is a white noise with covariance matrix Σu. The specification for vt in (3) provides explicit

recognition that the RE-DSGE model is not designed to capture the full extent of variation

observed in the data.3 The assumption that structural shocks are autocorrelated is common in

the literature but is not generally derived from first-principles.

Under Assumption 1 the multivariate linear(ized) rational expectations model (1)-(3) nests,

under precise conditions, a large class of small-scale New Keynesian models typically used in

monetary policy analysis, as suggested by the example below.

Example 1 [New Keynesian three-equation system] Consider the following model, con-
3 Ireland (2004, p. 1210) notes that the disturbance term vt in (1) can be interpreted as a quantity that other

than soaking up measurement errors, captures all of the ‘movements and co-movements in the data that the real

business cycle model, because of its elegance and simplicity, cannot explain.’
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sisting in the three stylized equations:

yt = 'fEtyt+1 + (1−'f )yt−1 − δ(it −Etπt+1) + v1t (4)

πt = γfEtπt+1 + γbπt−1 + (yt + v2t (5)

it = λrit−1 + (1− λr)(λππt + λyyt) + c3 + v3t (6)

where yt is a measure of the output gap, πt the inflation rate, it the nominal interest rate,

c3 a constant which is a suitable function of the desired nominal interest rate and the long

run equilibrium level of inflation, and vjt, j = 1, 2, 3 stochastic disturbances which can

be interpreted as demand, supply and monetary shocks, respectively. The first equation,

(4), is a log-linearized Euler aggregate demand (IS) curve, the second equation, (5), is

the New Keynesian Phillips (NKPC) curve, and the third equation, (6), is a backward-

looking Taylor type policy rule. The interested reader is referred to e.g. Clarida et al.

(1999), Smets and Wouters (2003) and Christiano et al. (2005) for a detailed derivation

of the equations in (4)-(6) and for the structural interpretation of the parameters in γs :=

('f , δ, γf , γb, (, λr, λπ, λy, c3)
0.4Referring to the notation used in (1), the model (4)-(6)

is obtained, provided a measure of the output gap is available, by setting Xt ≡ Zt :=

(yt, πt, it)
0 and

Γ0 : =


1 0 δ

−( 1 0

−(1− λr)λy −(1− λr)λπ 1

 , Γf :=


'f δ 0

0 γf 0

0 0 0

 (7)

Γb : =


(1−'f ) 0 0

0 γb 0

0 0 λr

 , c :=


0

0

c3

 . ¥ (8)

Under Assumption 1, for some parameter configurations, the unique solution of the system

(1)-(3), if it exists, can be cast in the form

Xt = Φ̃1Xt−1 + µ̃+ Ψ̃vt (9)

where the p × p matrices Φ̃1 := Φ1(γs) and Ψ̃ := Ψ(γs) and the p × 1 constant µ̃ := µ(γs) are

highly nonlinear function of γs and fulfill the restrictions

Γf (Φ̃1)
2 − Γ0Φ̃1 + Γb = 0p×p, (10)

4Following Lippi and Neri (2007) one might further augment the system (4)-(5) by a money demand equation

and derive the (possibly forward-looking) policy rule from the minimization of an intertemporal loss fuction. See

Section 8.
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µ̃ = (Γ0 − Γf Φ̃1 − Γf )−1c (11)

vec(Ψ̃) :=
n
[Ip ⊗ (Γ0 − Γf Φ̃1)]− [Θ0 ⊗ Γf ]

o−1
vec(Ip) (12)

where vec(·) is the column stacking operator and ‘⊗’ is the Kronecker product, see Binder and
Pesaran (1995) and Uligh (1999).

The Φ̃1 matrix solving (10) must be real and stable for the solution (9) to be stable (as-

ymptotically stationary) other than unique. The Ψ̃ matrix is non-singular.5 The following

assumption, which guarantee a unique stable solution, is considered.

Assumption 2 In the DSGE model (1)-(3) with reduced form (9)-(12), the matrices Γ0 and

(Γ0 − Γf Φ̃1) are non-singular and the matrices Φ̃1 and (Γ0 − Γf Φ̃1)−1Γf are stable.6

3 Omitted dynamics

Once the CER (10)-(12) are deduced, the structural parameters γs can be estimated by maxi-

mizing one of various approximations of the likelihood function of the system. For instance, one

can maximize the likelihood function of the VAR (9) subject to the restrictions (10) and (11), see

Cho and Moreno (2006). Alternatively, minimum distance (MD) methods can be used to min-

imize the distance between the unrestricted estimates of the reduced form parameters and the

structural parameters in (10)-(11), see Section 4. These procedure, however, can fail to deliver

consistent estimates because of the misspecification of the VAR (9) with respect to the data.

Actually, DSGE models can be misspecified in many respects, see An and Schorfheide (2007).

With the term ‘misspecification’ here we mean the situation in which the ‘correct’ time series

representation of Xt involves more lags than the (determinate) reduced form solution associated

with the RE-DSGE model. A formalized qualification is provided in Definition 1 below.

Aside from the Bayesian solution suggested by Del Negro et al. (2007), classical approaches

to cope with the poor dynamic structure implied by (1)-(3) include the introduction of ‘addi-

tional’ dynamics in (1) to account for real-word recognition, processing, adjustment costs and

time-to-build lags as in Kozicki and Tinsley (1999), Rudebusch (2002a, 2002b) and Fuhrer and

Rudebusch (2004), or the manipulation of the shock structure vt as in e.g. Smets and Wouters

(2003, 2007); see also Diebold et al. (1998).

To see how the time series structure of vt is related to the dynamic structure of the RE-

DSGE model, notice that when in (3) Θ 6= 0p×p, the reduced form (9) can be written as a

5The solution is not unique (i.e. there are multiple stable solutions) if Φ̃1 has eigenvalues inside the unit disk

but the matrix (Γ0 − Γf Φ̃1)
−1Γf has eigenvalues outside the unit disk, see Binder and Pesaran (1995), Section

2.3.
6Assumption 2 ensures that the matrix (Γ0 − Γf Φ̃1 − Γf ) in (11) is non-singular.
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(stable) constrained VAR of order two. Indeed, by substituting (3) into (9), using some algebra

and the non singularity of Ψ̃, yields the expression

Xt = (Φ̃1 + Ψ̃ΘΨ̃
−1)Xt−1 − Ψ̃ΘΨ̃−1Φ̃1Xt−2 + µ̃+ Ψ̃ut (13)

where Φ̃1, Ψ̃ and µ̃ are constrained as in (10)-(12). Similarly, if vt is arbitrarily specified as a VAR

of order two, the implied reduced form equilibrium of the RE-DSGE reads as a constrained VAR

of order three, and so forth. Likewise, if the disturbance vt is given a mixed vector autoregressive

moving average structure (VARMA), the implied reduced form can be represented as VARMA

model as well, see Broze et al. (1990).

Consider an econometrician who observes X1,X2, ...,XT and finds that the ‘best fitting’

forecast model for Xt is given by the VAR process

Xt = Φ1Xt−1 + · · ·+ΦkXt−k + µ+ εt (14)

where k > 2, Φi, i = 1, ..., k are p × p matrices of coefficients, µ a p × 1 constant, and εt is a

white noise process with covariance matrix Σε <∞. Setting εt := Fut, with F a p× p matrix,

it can be easily recognized that the equations that match the agents’ VAR coefficients and the

reduced form of the RE-DSGE model (1)-(3) are given by

Φ1 := (Φ̃1 + Ψ̃ΘΨ̃
−1) (15)

Φ2 := −Ψ̃ΘΨ̃−1Φ̃1 (16)

Φj := 0p×p , j = 3, 4, ..., k (17)

µ := µ̃ (18)

F := Ψ̃ (19)

where Φ̃1, Ψ̃ and µ̃ are defined as in (10) and (12). There are two types of restrictions involved

in (15)-(19): (i) the constraints in (15) and (16) and (18-(19) which define the mapping between

the reduced form coefficients (the Πis, µΠ and F ) and the structural parameters γs; (ii) the

zero restrictions in (17) (and in (16) when Θ = 0p×p) which reduce the VAR lag order from

4 to 2 (to 1 when Θ = 0p×p). It turns out that in general there exists a discrepancy between

the zero restrictions in (ii) and the idea that the VAR of lag order 4 fits the data optimally.

Thus the agents’ best fitting model can not be regarded as the reduced form solution of the

RE-DSGE model (1)-(3), unless the time series structure of vt is properly adapted. This leads

to the definition below.

Definition 1 [Omitted dynamics] The RE-DSGE model (1)-(3) entails an omitted dynamics

issue whenever the CER reduce the VAR lag order.
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In the next section we define the QRE-DSGE model as a dynamic counterpart of the RE-

DSGE specification (1)-(3) which circumvent the omitted dynamics issue of Definition 1.

4 The QRE-DSGE model

Consider the VAR for Xt

Xt = Φ1Xt−1 + · · ·+ΦkXt−k + µ+ εt , εt ∼WN(0,Σε) , t = 1, ..., T (20)

where Φj , j = 1, ..., k are p× p matrices of parameters, µ is a p× 1 vector of constants, εt is a
p× 1 white noise process with p× p covariance matrix Σε; X0, X−1, ..., X−1+k are fixed.

We consider the following assumptions:

Assumption 3 The roots, s, of det[Φ(s)] = 0 are such that | s |> 1, where Φ(L) = Ip −Pk
j=1ΦjL

j is the characteristic polynomial, and L is lag operator.

Assumption 4 System (20) is the agents’ forecast model with Φk 6= 0p×p and the coefficients
(Φ1, · · · ,Φk,Σε) are time-invariant.

Assumption 3, which is consistent with Assumption 2 when in (20) k := 1, rules out explosive

and unit roots. We extend the analysis to the case of unit roots in Section 6. Assumption 3, in

conjunction with Assumption 1, implies that we have already solved the step of linearizing the

variables in Xt around their deterministic/stochastic steady states.7

Assumption 4 implies that conditional forecasts at time t are taken with respect to the

sigma-field Ht := σ(X1, ...,Xt) ⊆ Ft; moreover, any model restriction which reduces the VAR

lag order leads to the omitted dynamics issue of the type of Definition 1. The assumption of

time invariant parameters guarantees that the CER we derive below give rise to a continuos

function with respect to the reduced form parameters. This assumption can be opportunely

relaxed, provided the analysis we present below is applied to ‘stable’ sample periods.8

The simple adaptation of the concept of QRE (Nerlove et al., 1979; Nerlove and Fornari,

1999) to the estimation of the DSGE model requires a two-step approach. In the first step,

the unrestricted VAR coefficients are estimated consistently. In the second step, the implied

7See Dee et al. (2008) for a solution in which theoretically consistent measures of the steady states are obtained

without resorting to ‘external’ procedures; see also Fukač and Pagan (2006).
8Many authors have shown evidence in DSGE models of the US economy of parameter instability across

sample periods, especially in correspondence of changes in monetary policy regimes (Boivin and Giannoni, 2006).

Misspecification tests for structural instability play a crucial role in applied research. See also Juselius and Franchi

(2007).
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one-step ahead forecasts

bEtXt+1 := Φ̂1Xt + · · ·+ Φ̂kXt−k+1 + µ̂

are used to replace expectations in (1), obtaining, after rearranging terms:9

(Γ0 − Γf Φ̂1)Xt = (Γf Φ̂2 + Γb)Xt−1

+ Γf Φ̂3Xt−2 + · · ·+ Γf Φ̂kXt−k+1 + (Γf µ̂+ c) + vt. (21)

Model (21) reads as an highly constrained simultaneous system of equations, whose structural

parameters can be estimated, jointly with the equations governing the law of motion of vt, with

any ‘limited’ or ‘full’-information method available in the literature.10

This solution has the merit of circumventing the zero restrictions on the VAR coefficients Φj ,

j = 1, ..., k but does not exploit the CER efficiently. To see this, note that the estimation of γs in

(21) by, say, full-information maximum likelihood, is asymptotically equivalent to the estimation

of γs obtained by a classical two-step MD method (Newey and Mcfadden, 1994) based on the

minimization of the distances:

(Γ0 − Γf Φ̂1)Φ̂1 − Γf Φ̂2 − Γb ≈ 0p×p a.s.

(Γ0 − Γf Φ̂1)Φ̂2 − Γf Φ̂3 ≈ 0p×p a.s.
...

(Γ0 − Γf Φ̂1)Φ̂k−1 − Γf Φ̂k ≈ 0p×p a.s.

(Γ0 − Γf Φ̂1)Φ̂k ≈ 0p×p a.s.

(Γ0 − Γf Φ̂1 − Γf )µ̂− c ≈ 0p×1 a.s.

These distances have been obtained by comparing the reduced form associated with system (21)

with the VAR coefficients in (20) and replacing Φj , j = 1, ..., k and µ with the unrestricted

consistent estimators Φ̂j and µ̂ obtained in the first step.

In this paper we propose the econometric analysis of small-scale DSGE models based on a

different qualification of the QRE hypothesis. We look for a specification which reconciles the

9 If the ‘best fitting’ model for the data is specified as a VAR with drifting parameters and the law of motion of

these parameters is associated with the time evolution of the agents’ belief, the QRE is equivalent to the adaptive

learning hypothesis, see Milani (2007) and references therein. In this respect, the extreme form of QRE can

be interpreted as a specification of the agents’ expectations formation which stands in an intermediate position

between rational expectations and adaptive learning.
10As it is known, an important question for two-step estimators is whether the estimation of the first step affects

the asymptotic variance of the second, and if so, what effect does the first step have, see Pagan (1984) and Newey

and McFadden (1994).
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time series approximation of the data, given by the VAR (20), with the dynamic theoretical

structure implied the DSGE model, without disregarding the full set of restrictions that the

latter imposes on the former. We maintain that the VAR (20), other than being the time series

approximation of the data, represents the unrestricted version of the (determinate) reduced form

solution associated with the DSGE model; however, to avoid the occurrence of restrictions which

reduce the VAR lag order and induce the omitted dynamic bias of Definition 1, we appeal to

a dynamic counterpart of the RE-DSGE model, denoted QRE-DSGE model. The QRE-DSGE

model is introduced formally in Definition 2.

Definition 2 [QR-DSGE model] Given the VAR in (20) and the RE-DSGE model (1)-(3)

with Assumptions 1-2, the QRE-DSGE model is defined as the multivariate linear rational

expectations model Γ0Xt = ΓfEtXt+1 + ΓbXt−1 +
³Pk

j=2ΥjXt−j
´
I{k≥2} + c+ vt

vt = Θvt−1(1− I{k≥2}) + ut
(22)

in which I{·} is the indicator function, ut is a white noise process with covariance matrix
Σu and each Υj , j = 2, ..., k is a p× p matrix containing auxiliary parameters.

The matrices Υjs in (22) are associated with ‘additional’ lags of Xt, depending on the

VAR lag order. These matrices may be specified as diagonal or not but dim(vec(Υ2 : ... :

Υk)) should be not be too large to avoid over-parameterization. The non-zero elements in Υj

are not intended to capture micro-founded propagation mechanisms or real world recognition,

processing, adjustment and time-to-build lags as in e.g. Kozicki and Tinsley (1999), Rudebusch

(2002a, 2002b), Fuhrer and Rudebusch (2004). Rather, the Υjs are the by-product of the agents’

expectations generating system in the sense that they fill the mismatch between the equilibrium

implied by the RE-DSGE model and the time series approximation of the data.

Note that by construction, the QRE-DSGE model circumvent the omitted dynamics issue

of Definition 1. When k := 1, the QRE-DSGE model (22) collapses to the RE-DSGE model

(1)-(3).

The proposition that follows derives the reduced form solution of the QRE-DSGE model.

Proposition 1 [Derivation of CER] Under Assumptions 1-4, if a unique reduced form solu-

tion for the QRE-DSGE model (22) exists, it is given by the VAR in (20) with coefficients

and disturbances subject to the restrictions Φj := Φ̃j , j = 1, ..., k, µ := µ̃, εt := Ψ̃ut, where

11



the matrices Φ̃j , Ψ̃ and µ̃ are determined by

(Γ0 − Γf Φ̃1)Φ̃1 = Γf Φ̃2 + Γb (23)

(Γ0 − Γf Φ̃1)Φ̃2 = Γf Φ̃3 +Υ2 (24)
...

(Γ0 − Γf Φ̃1)Φ̃k−1 = Γf Φ̃k +Υk−1

(Γ0 − Γf Φ̃1)Φ̃k = Υk

(Γ0 − Γf Φ̃1 − Γf )µ̃ = c (25)

(Γ0 − Γf Φ̃1)Ψ̃ = Ip. (26)

The constrained VAR is stable if the restricted companion matrix

Ã =


Φ̃1 Φ̃2 · · · Φ̃k

Ip 0p×p · · · 0p×p
...

. . .
...

...

0p×p 0p×p Ip 0p×p

 (27)

is stable.

Proof : See Appendix A.

It turns out that should the QRE-DSGE be rejected through the statistical assessment of

the CER (23)-(25), the rejection can not be ascribed, in this context, to the omitted dynamics

bias.

Let Γ := (Γs : Υ), Γs := (Γ0 : Γf : Γb : c), Υ := (Υ2 : ... : Υk) be the p × ((k + 2)p + 1)
matrix summarizing all parameters of the QRE-DSGE model. These parameters are given by

the m×1 vector γ = (γs0, υ0)0, where γs collects the ms truly structural parameters entering Γs,

and υ collects the mυ auxiliary parameters entering Υ; m = ms +mυ. The link between Γ and

γ is given by

vec(Γ) = Qγ (28)

where the full column rank selection matrix Q has dimensions p((k + 2)p+ 1)×m.

The next proposition deals with the possibility of recovering γ from the CER. An additional

technical assumption is required.

Assumption 5 The eigenvalues ς̃ i, i = 1, ...p, of the Φ̃1 matrix are such that ς̃i 6= ϑ−1i , i =

1, ...p, where ϑi are the eigenvalues of (Γ0 − Γf Φ̃1)−1Γf .

12



Proposition 2 [Explicit form of CER and identification issues] Consider the VAR (20)

with k ≥ 2 and the CER (23)-(25) implied by the QRE-DSGE model (22) and Assumptions
1-5. Let γ0 be the ‘true’ value of γ and φ̃0 the vector of ‘true’ restricted VAR coefficients,

where φ̃ := vec(Ω) and Ω = (Φ̃1 : Φ̃2 : · · · : Φ̃k : µ̃). (a) Necessary condition for the local
identifiability of γ is that dim(γ) = m ≤ dim(φ̃) = a := p(pk+1); if m < a there are a−m
over-identifying restrictions. (b) ; then

φ̃0 = g(γ0) (29)

where g(·) is a continuos differentiable function defined in a neighborhood of γ0.

Proof : Appendix A.

Observe that we do not use the restrictions (26) to derive the mapping (29) as the Ψ̃ matrix

is automatically determined from the knowledge of Γ0, Γf and Φ̃1.

5 Estimation

As shown in Proposition 2, the VAR (20) subject to the CER (23)-(25) can be written, in a

neighborhood of γ0, as

Xt = Ω(γ)X
∗
t−1 + εt(γ) (30)

where Ω(γ) := [Φ̃1(γ) : · · · : Φ̃k(γ) : µ̃(γ)], X∗
t−1 := (X 0

t−1, ...,X 0
t−k, 1)

0 and εt(γ) := Ψ̃(γ)ut.

The notation used in (30) remarks the dependence of the VAR coefficients on γ. In particular,

Φ̃j(γ) ≡ Φ̃j , j = 1, ..., k, µ̃(γ) ≡ µ̃ and Ψ̃(γ) ≡ Ψ̃, where the matrices Φ̃j , µ̃ and Ψ̃ are defined
by (23)-(26).

Assuming a Gaussian distribution for εt and denoting by logL(φ) the concentrated log-

likelihood function of the unrestricted VAR, the restricted likelihood is given by

logL(φ̃) = C − T

2
log

"
det

Ã
TX
t=1

(Xt − Ω(γ)X∗
t−1)(Xt −Ω(γ)X∗

t−1)
0
!#

(31)

where φ̃ = g(γ) by (29) and C := −pT
2 (log(2π) + 1).

The maximization of (31) is complicated by the fact that an analytic expression for Ω(γ) is

not directly available.

However, the nonlinear link between the reduced form and structural parameters in (23)-(26)

can be exploited iteratively as detailed in the Appendix.

Denote by γ̂ be the (Q)ML estimator which maximizes the log-likelihood (31). The following

proposition holds.

13



Proposition 3 [Asymptotic covariance matrix of γ] Given the VAR (20), the QRE-DSGE

model (22) and the CER (23)-(26), then under the conditions of propositions 1 and 2,

T 1/2(γ̂ − γ0)
d−→

T→∞
N(0,Vγ) , Vγ := (J 0γV−1φ Jγ)−1 (32)

where Vφ = [I∞(φ0)]−1 = [limT→∞ IT (φ0)]−1 := (Σε ⊗M−1
xx ), Mxx := E(X∗

tX
∗0
t ), I∞(φ0)

is the information matrix associated with the unrestricted VAR and

Jγ
a×m
≡ J (γ0) :=

∂g(γ)

∂γ0

¯̄̄̄
γ:=γ0

= −D−1φ0
a×a

× Dγ0
a×m

(33)

where a := p(pk + 1), the Dφ matrix is defined in (62) and

Dγ := Nφ
a×(2p2+a)

× Q
(2p2+a)×m

(34)

with Nφ := [N1 : N2 : N3] and

N1 :=
h
Ω
0 ⊗ Ip

i
(pk + 1)× p2

N2 :=
nh
Ω
0
Φ̃01 ⊗ Ip

i
+
h
K 0Ω

0 ⊗ Ip

io
(pk + 1)× p2

N3 := I(pk+1)

where K is a (pk+1)× (pk+1) selection matrix such that ΩK := (0p×p : Φ̃2 : · · · : Φ̃k : µ̃).

Proof : Appendix A.

A consistent estimate of Vγ can be obtained by replacing Vφ with Vφ := (Σ̂ε ⊗ bΥ−1xx ), bΣε =
T−1

PT
t=1(Xt − Φ̂X∗

t−1)(Xt − Φ̂X∗
t−1)0, bΥxx = T−1

PT
t=1X

∗
tX

∗0
t and Jγ with

bJγ = −D−1φ Dγ (35)

in which Dφ and Dγ are obtained from the corresponding population counterparts by replacing

the unknown parameters with their consistent estimates.

From Proposition 3 it follows that the asymptotic information matrix of the restricted VAR

is given by

I∞(γ0) := J 0γI∞(φ0)Jγ
so that the local identifiability of the QRE-DSGE model is directly related to the full-columns

rank condition of the Jacobian matrix Jγ , see Rothenberg (1971). In principle, given a consistent
estimate bJγ , the empirical evaluation of the lack of identification of the QRE-DSGE model can
be assessed by testing whether the symmetric matrix J 0γJγ has zero eigenvalues.11
11 It is possible to use the following result

T 1/2
³
vec( bJ 0

γ
bJγ)− vec(J 0

γJγ)
´

d−→
T→∞

N(0,VJ 0
γJγ ),
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Given the unrestricted estimates of the VAR coefficients, φ̂, the likelihood-ratio (LR) test

for the CER is given by

LR := 2
h
logL(φ̂)− logL(g(γ̂))

i
d−→

T→∞
χ2(a) (36)

where a = dim(φ)− dim(γ) is defined in Proposition 2.

6 Non-stationary variables

In this section we extend the analysis of the QRE-DSGE model to the case in which Assumption

3 is replaced by:

Assumption 3’ det[Φ(s)] = 0 has exactly p− r roots equal to s = 1, where 0 < r < p, and the

remaining roots are such that | s |> 1.

Assumption 3’ implies that Xt generated by (20) is integrated of order one (I(1)). In this

case, the VAR can be represented in Vector Error Correction (VEC) form

∆Xt = αβ0Xt−1 + ΞWt−1 + µ+ εt , εt ∼WN(0,Σε) , t = 1, ..., T (37)

where α and β are p×r matrices of full rank r respectively, such that αβ0 := −(Ip−Σkj=1Φj), Ξ :=
[Ξ1 : Ξ2 : ... : Ξk−1], Ξi := −Σkj=i+1Φj , i = 1, ..., k−1 andWt−1 := (∆X 0

t−1,∆X 0
t−2, ...,∆X 0

t−k+1)
0,

see Johansen (1996). For β := β0, where β0 represents an identified version of the cointegration

relations, the elements in β00Xt represent the stationary linear combinations of the variables in

Xt.

For instance, considering the Example 1, if the output gap yt is the only stationary variable

in Xt := (yt, πt, it)
0, r = 1 and β0 := (1, 0, 0)

0; if also the ex-post real interest rate is stationary,

r = 2 and β0 := (β01 : β02) with β01 := (1, 0, 0)
0 and β02 := (0,−1, 1)0.

Once the cointegration rank r has been determined from the data and the hypothesis β := β0

tested and not rejected, it is possible to define the p× 1 (triangular) vector

Yt :=

Ã
β00Xt

τ 0∆Xt

!
r × 1

(p− r)× 1
(38)

where τ is a p × (p − r) selection matrix such that det(τ 0β0⊥) 6= 0 and β0⊥ is the orthogonal

complement of β0 (Johansen, 1996). In the first example above, Yt := (yt,∆πt,∆it)
0 is obtained

(which holds under the assumptions of this paper), provided an analytic expression or a suitable approximation

of VJ 0
γJγ is available. Similarly, one can test the rank of Jγ using the singular value decomposition proposed by

Kleibergen and Paap (2006) (see also references therein), provided an analytic expression or a suitable approxi-

mation of the asymptotic covariance matrix of vec( bJγ) is derived. See Iskrev (2008) for a different approach to
the evaluation of identification in DSGE models.
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from (38) with β0 := (1, 0, 0)
0, τ := (e2 : e3), e02 := (0, 1, 0), e03 := (0, 0, 1); in the second example,

Yt := (yt, it − πt,∆πt)
0 is obtained with β0 := (β01 : β02) and τ := e2, respectively.

From the VEC (38) it turns out that the vector Yt defined in (38) admits the stable VAR

representation

Yt = B1Yt−1 +B2Yt−2 + ...+BkYt−k + µy + εyt (39)

where the matrices Bj , j = 1, ..., k and the vector µy are function of the elements in α,Ξ, µ, Bk

is constrained as

Bk :=
£
B1k : 0p×(p−r)

¤
(40)

and εyt := (β,τ)
0εt, see Mellader et al. (1992) and Paruolo (2003, Theorem 2).12

In order to regard the system (39)-(40) as the stationary reduced-form solution associated

with the QRE-DSGE model, the structural equations can be reparameterized in terms of Yt,

i.e. such that only the error correction terms and the changes in the variables are involved, see

Fukač and Pagan (2006, Section 4.1, Strategy A). To do this, we re-write the mapping (38) as

Yt := Pβ0,∆Xt , Pβ0,∆ :=

Ã
β00
τ 0∆

!

where ∆ = (1−L) and Pβ0,∆ is a p× p non-singular matrix; then we use Xt := P−1β0,∆
Yt in (22),

obtaining 
Γ
β0
0 P−1β0,∆

Yt = Γ
β0
f P−1β0,∆

EtYt+1 + Γ
β0
b P−1β0,∆

Yt−1
+
³Pk

j=2Υ
β0
j P−1β0,∆

Yt−j
´
I{k≥2} + cβ0 + v

β0
t

v
β0
t = Θv

β0
t−1(1− I{k≥2}) + u

β0
t .

(41)

In system (41) we added a superscript ‘β0’ to the matrices and the shocks to remark that the

over-identifying restrictions characterizing β0 have a direct impact on the structural parameters

and the shocks of the transformed structural model. Indeed, by imposing these restrictions and

re-arranging the equations, system (41) can be simplified in the expression Γy0Yt = Γ
y
fEtYt+1 + Γ

y
bYt−1 +

³Pk
j=2Υ

y
jYt−j

´
I{k≥2} + cy + vyt

vyt = Θv
y
t−1(1− I{k≥2}) + uyt

(42)

in which the superscript ‘y’ remarks that other than being formulated in terms of Yt, the para-

meters of the QRE-DSGE model (42) accounts for all cointegration restrictions upon which Yt

is defined.
12 If the constant µ in the VEC (37) is restricted to belong to the cointegration space, i.e. µ := αµ0, then

(β00 : µ0)

Ã
Xt

1

!
= β00Xt + µ0 in (38), and µy is zero in (39).
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System (42) can be regarded as the error-correcting counterpart of the QRE-DSGE model in

the presence of I(1) cointegrated variables. Note that by imposing the cointegration restrictions

and re-arranging terms, the (inverse of the) difference operator∆ appearing in (41) automatically

cancels out in (42). The vector of structural parameters of the ‘transformed’ system, γy, has

dimension dim(γy) := m−f , where m := dim(γ) and f is number of over-identifying restrictions

on β0. Likewise, v
y
t and uyt are transformations of the original disturbances vt and ut.

The example below shows how a specification of the form (42) can be obtained in practice.

Example 2 [New Keynesian three-equation system with I(1) variables] Turning on the

Example 1, assume that Xt is I(1) and is driven by a single common stochastic trend so

that r = 2 in (37). For simplicity we set k := 1 in the VAR for Xt, hence for a given

specification of vt, the QRE-DSGE amounts to the RE-DSGE model (4)-(6). Assume fur-

ther that β := β0 = (β01 : β02), where β01 := (1, 0, 0)
0 and β02 := (0,−1, 1)0, namely the

output gap and the ex-post real interest rate are stationary. This implies that there are

f = 2 over-identifying restrictions on β0 (f := h − r2, where h := 6 is the total number

of constraints, including normalization, on β0). From (38) and τ := (0, 1, 0)0 it turns out

that Yt := (yt, it − πt,∆πt)
0 so that

Pβ0,∆ :=


1 0 0

0 −1 1

0 ∆ 0

 .
By simple algebra, the equations (4), (5) and (6) can be reparameterized in the form

yt = 'fEtyt+1 + (1−'f )yt−1 − δ(it − πt) + δEt∆πt+1 + v1t (43)

(it − πt) = λr(it−1 − πt−1) + (1− λr)(λπ − 1)πt − λr∆πt + (1− λr)λyyt + c3 + v3t (44)

(1− γf − γb)πt = γfEt∆πt+1 − γb∆πt + (yt + v2t (45)

where it can be recognized that the constraint λπ := 1 in the policy rule (44) and the constraint

γf + γb := 1 in the NKPC (45) are necessary to obtain a balanced system, i.e. involving only

the I(0) variables in Yt := P−1β0,∆
Xt. The counterpart of system (41) is in this case given by

1 δ ∆−1δ

−( 0 ∆−1

−λy (1− λr) 1 ∆−1(1− λπ (1− λr) )




yt

it − πt

∆πt



=


'f 0 ∆−1δ

0 0 ∆−1γf
0 0 0




Etyt+1

Et(it+1 − πt+1)

Et∆πt+1

+

1−'f 0 0

0 0 ∆−1γb
0 λr ∆−1λr




yt−1
it−1 − πt−1
∆πt−1


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+


0

0

c3

+


v1,t

v2,t

v3,t


where the three matrices above correspond to Γβ00 P−1β0,∆

, Γβ0f P−1β0,∆
and Γβ0b P−1β0,∆

in (41), respec-

tively. By imposing λπ := 1 and γf + γb := 1 and re-arranging the equations yields a system of

the form (42) with

Γy0 :=


1 δ 0

− ρ
(1−γf ) 0 1

−(1− λr)λy 1 λr

 , Γyf :=


'f 0 δ

0 0
γf

(1−γf )
0 0 0

 (46)

Γyb :=


1−'f 0 0

0 0 0

0 λr 0

 , cy :=


0

0

c3

 , vyt :=


v1t
1

1−γf v2t

v3t

 . (47)

The vector of structural parameters, γy := ('f , δ, γf , (, λr, λy)
0, has dimension dim(γs)−f = 6.

The rejection of the two over-identifying restrictions on β0 implies the rejection of the constraints

λπ := 1 and γf + γb := 1. ¥

By replacing the cointegrated VAR with the stable system (39) and the QRE-DSGE model

(22) with transformed counterpart (42), the propositions 1 and 2 can be still applied and the

implied set of CER are given by

(Γy0 − Γyf B̃1)B̃1 = Γyf B̃2 + Γ
y
b (48)

(Γy0 − Γyf B̃1)B̃2 = Γyf B̃3 +Υ
y
2

...

(Γy0 − Γyf B̃1)B̃k−1 = Γyf B̃∗k +Υ
y
k−1

(Γy0 − Γyf B̃1 − Γyf )µ̃y = cy (49)

(Γy0 − Γyf B̃1)Ψ̃
y = Ip

where B̃j , j = 1, ..., k, µ̃y are the restricted counterparts of the coefficients in (39)-(40) and

εyt = Ψ̃
yuyt .

The estimation of the QRE-DSGE with I(1) cointegrated variables model can be carried out

as follows. If the over-identifying restrictions characterizing β0 are not rejected, the correspond-

ing (Q)ML estimate bβ0 can be used in place of β0 in (38) and treated as the ‘true’ value due
to the super-consistency result (Johansen, 1996). Then the estimation algorithm described in

Section 5 can be applied to the system (39)-(40) subject to the CER (48)-(49) to obtain the

(Q)ML estimate of the vector of structural parameters γy.
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7 Monte Carlo experiment

In this section, the estimation method introduced in Section 5 will be applied on simulated data

to examine the efficacy of the procedure.

We consider a three equation system (p = 3); the reduced form is a VAR with k = 3 lags and

Gaussian disturbances and the QRE-DSGE model is specified by taking the three equations of

Example 1 as the reference model. The DGP is thus represented by the structural system

Γ0Xt = ΓfEtXt+1 + ΓbXt−1 +Υ2Xt−2 +Υ3Xt−3 + c+ ut

in which Γ0, Γf ,Γb and c are specified as in (7)-(8) and Υ2 := υ2I3, and Υ3 := υ3I3, with υ2

and υ3 scalars; the covariance matrix of ut is specified as the identity matrix, Σu := I3. The

implied (determinate) reduced form is given by

Xt = Φ̃1Xt−1 + Φ̃2Xt−2 + Φ̃3Xt−3 + µ̃+ Ψ̃ut (50)

with Φ̃i, i = 1, 2, 3, µ̃ and Ψ̃ determined by

(Γ0 − Γf Φ̃1)Φ̃1 = Γf Φ̃2 + Γb

(Γ0 − Γf Φ̃1)Φ̃2 = Γf Φ̃3 + υ2I3

(Γ0 − Γf Φ̃1)Φ̃3 = υ3I3

(Γ0 − Γf Φ̃1 − Γf )µ̃ = c

(Γ0 − Γf Φ̃1)Ψ̃ = I3. (51)

The restriction γf + γb := 1 is imposed in estimation. The values of the parameters γ used

to generate the data are reported in the upper panel of Table 1.To mimic situations that may

occur in practise, the largest eigenvalue of the companion matrix of system (50) is set to 0.95,

hence the chosen DGP entails a relatively high persistent restricted VAR. The absolute value of

the largest eigenvalue of (Γ0 − Γf Φ̃1) is 0.45.
M = 1000 samples of length T = 100, 200 and 500, respectively, have been generated from

the reduced form (50)-(51).13 The ML estimates obtained with the iterative algorithm discussed

in Section 5 and in the Appendix are presented in Table 1, along with the rejection frequency

(empirical level) of the LR test (36) for the CER, computed using the 5% nominal critical

value. The table also reports the number of times (percentage) in which the iterative procedure

gives rise to estimates which violate the (asymptotic) stationarity condition (the estimated

companion matrix has eigenvalues outside the unit disk) and the uniqueness condition (the

13All results in this section have been obtained through Ox 3.0. Results with different values of T and M are

available upon request.
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estimated (Γ0−Γf Φ̃1) matrix has eigenvalues outside the unit disk) which preserve determinacy
of (50)-(51).

The results of this experiment show that the iterative estimation algorithm works well in

practice. In particular, even with highly persistent variables, it provides a substantial control of

the stability of the solution for different starting values of the structural parameters.14

It can be noticed, however, that with samples of size T = 100 the parameter λy, which

measure the long run response of the Central Bank to output gap fluctuations, might mistakenly

be considered insignificant. The situation improves substantially with the increase of the sample

size. However, since in practice researchers rarely can disregard regime changes in samples of,

say, T = 200 or more quarterly observations, the results in Table 1 support Cho and Moreno’s

(2006) small sample approach to inference in New Keynesian macro models.

More importantly, with samples of the sizes encountered in applications, the rejection fre-

quency of the LR test for the CER appears sensitively higher than the significance level (9% with

T = 100, 7.2% with T = 200 observations). Thus, even controlling for the omitted dynamics

bias, the tests for the CER based on asymptotic critical values tend to over-reject the small-scale

DSGE monetary model. This result contributes to explain, along with the results in Bekaert and

Hodrick (2001), Cho and Moreno (2006) and Fanelli and Palomba (2009) obtained in related

contexts, why we reject so often structural models involving forward-looking behaviour.

8 Empirical illustration

In this section we illustrate empirically the estimation of a QRE-DSGE model for the euro

area. The reference DSGE monetary model is given by the three-equation system (4)-(6) in the

Example 1.

We consider quarterly data taken from the last release of the Area-Wide Model data set

described in Fagan et al. (2001). The variables in the vector Xt := (πt : yt : it)
0 are constructed

as follows. The inflation rate πt is measured by the log of the quarterly changes in the GDP

deflator; the output gap is given by the difference between real GDP and potential output, where

the latter is proxied by the HP filter applied to real GDP; it is the short-term nominal interest

rate.

Estimation is restricted to the sample 1980:3-2006:4 (which includes the initial values) so that

the ‘structural instability’ characterizing European countries in the seventies is ruled out from

the analysis. This period includes a sub-sample during which the euro area was not formally

established (until the end of 1998). The ‘best-fitting’ model obtained from the specification

14The performance of the algorithm in preserving the uniqueness condition requires more investigation.
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analysis is a VAR with k := 4 lags (hence a sample of T := 102 observations, net of initial

values, is involved); the LR test which compares the VAR with one lag with the VAR with four

lags is strongly rejected by the data (LR:=78.32, p-value:=0.000). Some residuals diagnostic

tests for the estimated model are reported in the upper panel of Table 2. The VAR disturbances

can be assumed Gaussian, though marginally.

The inflation rate and the short term interest rate appear highly persistent over the chosen

sample, suggesting that Xt might be approximated as an I(1) process. Table 2 reports the two

largest estimated eigenvalues of the VAR companion matrix; the LR cointegration trace test; the

estimated cointegration vectors β := β0 = (β01 : β02), where β01 and β02 are specified as in the

Example 2, and the corresponding LR test for the overidentifying restrictions. The hypothesis

of two cointegrating relations, r := 2, is not at odds with the data; note that β0 implies that

the output gap and the ex-post real interest rate are stationary up to a constant.15

Since the structure β := β0 is not rejected (though marginally), from the discussion of

Section 6 (see Example 2) and the results in Table 2 it follows that the restrictions λπ := 1 and

γf + γb := 1 must be imposed on the equations (4)-(6) for the analysis to be consistent with the

stationary reduced form

Yt = B1Yt−1 +B2Yt−2 +B3Yt−3 +B4Yt−4 + εyt (52)

in which Yt := (yt− 0.0025,∆πt, it−πt− 0.027)0 (τ := (0, 1, 0)0) and εyt is a white noise process.
From Definition 2, as k > 2 the error-correcting counterpart of the QRE-DSGE model is

represented by the system

Γy0Yt = Γ
y
fEtYt+1 + Γ

y
bYt−1 +Υ

y
2Yt−2 +Υ

y
3Yt−3 +Υ

y
4Yt−4 + uyt (53)

where Γy0, Γ
y
f and Γ

y
b are specified as in (46)-(47), Υ

y
i , i = 2, 3, 4 are taken as diagonal and

uyt is a white noise process. The implied set of CER are summarized in the equations (48)-

(49) and the vector of structural plus auxiliary parameters is defined as γy = (γs0, υ0)0, where

γs := ('f , δ, γf , (, λr, λy), υ := (dg(Υ
y
2)
0, dg(Υy

3)
0, dg(Υy

4)
0)0.

The upper panel of Table 3 reports the ML estimates of the structural parameters (to save

space we have reported only the ‘truly’ structural, γs) with corresponding asymptotic standard

errors, obtained through the iterative method illustrated in Section 5 and in the Appendix. The

lower panel of Table 3 reports the LR test for the CER; in addition to the p-value obtained

by the asymptotic distribution of the test statistic, we also computed a parametric bootstrap

p-value associated with the test.

15The VAR constant is restricted to lie in the cointegration space (µ = αµ0, where µ0 is the intercept entering

the cointegrating relations) since the variables do not show any linear trend.
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The estimated parameters indicate both forward and backward components are important

for output and inflation dynamics, partly confirming the results obtained by Lippi and Neri

(2007) using different specifications of the policy rule and a shorter span of data.

While the low ‘t-statistics’ associated with the estimated output interest elasticity (δ) and

the inflation elasticity to the output gap (() may reflect the finite sample issues documented in

the simulation experiment of Section 7,16 the considerably large standard error associated with

the estimated long run response of the Central Bank to output gap fluctuations, λy, can be

ascribed to the poor dynamic specification of the monetary policy reaction function embodied

by system (53), see Lippi and Neri (2007) for details; as a result, the log-likelihood of the QRE-

DSGE model tends to be relatively flact in the direction of λy of the parameter space. It is

worth emphasizing that the parametric bootstrap version of the LR test for the CER does not

reject the estimated QRE-DSGE model for the euro area.

9 Concluding remarks

A growing literature attempts to ‘take DSGE models to the data’. In this paper we investigate

small-scale DSGE monetary models by relaxing the rational expectations hypothesis in favour of

a formulation of the QRE hypothesis which enables us to circumvent the omitted dynamics bias

implied by the RE-DSGE model. We have proposed the QRE-DSGE model as a specification

which combines, by construction, the theoretical model with the time series features of the

data. In the QRE-DSGE model, the mismatch between the reduced form solution obtained

under rational expectations and the ‘best fitting’ VAR for the data is filled by a set of auxiliary

parameters which reflect the distance between rational expectations and the agents’ expectations.

A likelihood-based estimation algorithm which exploits the CER iteratively has been pro-

vided and a Monte Carlo investigation shows that the highly nonlinear nature of the restrictions

may falsely led to reject the model in samples of the sizes encountered in practice. The QRE-

DSGE model can be easily transformed in error-correcting form when some of the observed time

series of the system can be approximated as I(1) cointegrated processes.

Application to euro area data shows that aside from the difficult task of properly specifying

the monetary policy reaction, the estimation of an error-correcting formulation of a small-scale

QRE-DSGE model provides reliable estimates of part of the structural parameters. A parametric

16Considering estimates obtained for the euro area, the estimated output interest elasticity δ is considerably

lower with respect to Smets and Wouters (2003) and Lippi and Neri (2007). On the other hand, Smets and

Wouters (2003) estimate a slope ( of the NKPC of 0.007, while Lippi and Neri (2007) a slope of 0.0003. Observe,

however, that while Smets and Wouters (2003) estimate a medium-scale DSGE model, the analysis in Lippi and

Neri (2007) is focused on the assumption of imperfect information and discretionary monetary policy.
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bootstrap version of the LR test for the CER does not reject the estimated QRE-DSGE model.

A Appendix

Proof of Proposition 1
If in the VAR (20) k := 1, the proof follows from Binder and Pesaran (1995). When k ≥ 2,

write the QRE-DSGE model in the form

Γ∗0X
∗
t = Γ

∗
bX

∗
t−1 + Γ

∗
fEtX

∗
t+1 + c∗ + u∗t (54)

where X∗
t = (X

0
t,X

0
t−1, ...,X 0

t−k+1)
0, c∗ = (c0, 01×p(k−1))0, u∗t = (u0t, 01×p(k−1))0 and

Γ∗0 =


Γ0 0p×p · · · 0p×p
0p×p Ip · · · 0p×p
...

...
. . .

0p×p 0p×p · · · Ip

 , Γ∗f =


Γf 0p×p · · · 0p×p
0p×p 0p×p · · · 0p×p
...

...
. . .

0p×p 0p×p · · · 0p×p



Γ∗b =


Γb Υ2 · · · Υk

Ip 0p×p · · · 0p×p
...

. . .
...

...

0p×p 0p×p Ip 0p×p

 .
Write also the VAR (20) in first-order companion form

X∗
t = AX∗

t−1 + µ∗ + ε∗t (55)

in which µ∗ = (µ0, 01×p(k−1))0, ε∗t = (ε0t, 01×p(k−1))0 and

A =


Φ1 Φ2 · · · Φk

Ip 0p×p · · · 0p×p
...

. . .
...

...

0p×p 0p×p Ip 0p×p

 .

is stable by Assumption 3. From Binder and Pesaran (1995) it follows that provided u∗t is a

bounded process, if a unique and stable solution of the system (54) exists, it takes the form (55)

with ε∗t := Ψ̃∗u∗t , A := Ã, µ∗ := µ̃∗, where Ã, Ψ̃∗and µ̃∗ are determined by the restrictions

Γ∗f (Ã)
2 − Γ∗0Ã+ Γ∗b = 0pk×pk (56)

µ̃∗ = (Γ∗0 − Γ∗f Ã− Γ∗f )−1c∗ (57)

Ψ̃∗ = (Γ∗0 − Γ∗f Ã)−1. (58)
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Uniqueness and stability obtains if Γ∗0 and (Γ∗0 − Γ∗f Ã) are non-singular and (Γ∗0 − Γ∗f Ã)−1Γ∗f
and Ã are stable, respectively. Observe that the stability of the unrestricted VAR companion

matrix Φ∗ is not sufficient for the stability of Ã.

Γ∗0 is non-singular if Γ0 is non-singular. Moreover, the matrix

(Γ∗0 − Γ∗f Ã) =


Γ0 − Γf Φ̃1 −Γf Φ̃2 · · · −Γf Φ̃k
0p×p Ip · · · 0p×p
...

...
. . .

0p×p 0p×p · · · Ip


is non-singular since the sub-matrix in the upper-left corner is non-singular (Assumption 2).

Finally, by using inversion formulas for partitioned matrix, one gets

(Γ∗0 − Γ∗f Ã)−1Γ∗f =


(Γ0 − Γf Φ̃1)−1Γf 0p×p · · · 0p×p

0p×p 0p×p · · · 0p×p
...

...
. . .

0p×p 0p×p · · · 0p×p


and this matrix has stable eigenvalues if the sub-matrix in the upper-left corner has stable

eigenvalues, condition guaranteed by Assumption 2. It turns out that the unique solution to the

multivariate linear rational expectations model (54) takes the form (55) with coefficients subject

to the restrictions (56)-(58). Using the definition of the variables, the expressions in (56)-(58)

are equivalent to (23)-(26). If the Ã matrix solving (56) is real and stable, the solution is stable,

other than unique. Assumptions 4 guarantees that Υk 6= 0p×p in (23)-(26). ¥

Proof of Proposition 2
Defined Ω := (Φ̃ : eµ), write the CER (23)-(25) compactly as

Γ0Ω− Γf Φ̃1Ω− ΓfΩK − Γ̆b = 0p×(pk+1) (59)

where K is a (pk + 1)× (pk + 1) selection matrix such that ΩK := (0p×p : Φ̃2 : · · · : Φ̃k : µ̃) and
Γ̆b := (Γb : c : Υ). Let φ̃ := vec(Ω) and φ̃j := vec(Φ̃j), j = 1, ..., k; obviously, φ̃ ≡ (φ̃01, ..., φ̃

0
k, µ̃

0)0.

By applying the vec operator to both sides of (59) we obtain the vector function

f(φ̃, γ) = (Ia ⊗ Γ0)φ̃− (Ia ⊗ Γf Φ̃1)φ̃

− (K 0 ⊗ Γf )φ̃− vec(Γ̆b) = 0a×1 (60)

where a := p(pk+1) and f : S→ Ra is continuous differentiable on the set S of Ra+m (Assump-

tion 4). If the a× a Jacobian matrix

Dφ :=
∂f(φ̃, γ)

∂φ̃
0 (61)
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is non-singular at (φ̃0, γ0), by the implicit function theorem, φ̃ can be uniquely expressed as

function of γ in a neighborhood N (γ0) ⊂ Rm of γ0. In particular, φ̃ = g(γ) for all γ in N (γ0),
where g is the differentiable function g : N (γ0)→ Ra. The order condition m ≤ a guarantees

that the number of structural parameters in γ does not exceed the number of reduced form

coefficients; if m < a, there are a−m over-identifying restrictions. This proves part (a).

To prove (b) we show that the Jacobian in (61) is non-singular at (φ̃0, γ0). To compute the

matrix Dφ we apply the vec operator to each set of restrictions in (23)-(26) and decompose Dφ

in blocks of dimension p2 × p2. For instance, taking the vec of (23) and deriving the resulting

expression with respect to the vector φ̃1 one gets

D1,1φ :=
∂vec[(Γ0 − Γf Φ̃1)Φ̃1 − Γf Φ̃2 − Γb]

∂vec(Φ̃1)0

= (Ip ⊗ Γ0)− (Ip ⊗ Γf )[(Φ̃01 ⊗ Ip) + (Ip ⊗ Φ̃1)]
where D1,1φ is the left-upper block of Dφ. Similarly, by deriving vec[(Γ0−Γf Φ̃1)Φ̃1−Γf Φ̃2−Γb]
with respect to φ̃l, l = 2, ..., k and µ̃ yields

D1,2φ : = −(Ip ⊗ Γf );
D1,lφ : = 0p2×p2 , l = 2, ..., k

D1,k+1φ : = 0p2×p.

It is assumed that all derivatives are evaluated at the ‘true’ parameter values (eφ0, γ0). Likewise,
by taking the vec of (24) and deriving the resulting expression with respect to φ̃l, l = 1, ..., k

and µ̃ yields:

D2,1φ := −(Φ̃02 ⊗ Γf );
D2,2φ := (Ip ⊗ Γ0)− (Ip ⊗ Γf Φ̃1);
D2,3φ := −(Ip ⊗ Γf );

D2,jφ : = 0p2×p2 , l = 3, ..., k

D3,k+1φ := 0p2×p,

and so forth. The Dφ matrix reads as

Dφ :=



D1,1φ −(Ip ⊗ Γf ) 0p2×p2 0p2×p2 · · · 0p2×p
−(Φ̃02 ⊗ Γf ) D2,2φ −(Ip ⊗ Γf ) 0p2×p2 · · · 0p2×p
−(Φ̃03 ⊗ Γf ) 0p2×p2 D3,3φ −(Ip ⊗ Γf ) · · ·

...
...

...
. . .

...
...

−(Φ̃0k ⊗ Γf ) 0p2×p2 0p2×p2 · · · Dk,k
φ 0p2×p

−(µ̃0 ⊗ Γf ) 0p×p2 0p×p2 · · · 0p×p2 Dk+1,k+1
φ


(62)
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where Dl,l

φ := (Ip ⊗ Γ0) − (Ip ⊗ Γf Φ̃01), l = 2, ..., k, and Dk+1,k+1
φ := (Γ0 − Γf Φ̃01 − Γf ). By

construction, each block of p2 columns in Dφ can not be obtained as linear combinations of the

other blocks of p2 columns. The Dl,l

φ , l = 2, ..., k matrices on the main diagonal are non-singular

by Assumption 2. Since Dk+1,k+1
φ = (Γ0−Γf Φ̃1)−Γf = (Γ0−Γf Φ̃1)[Ip− (Γ0−ΓΦ̃1)−1Γf ], also

this matrix is non-singular by Assumption 2. Finally,

D1,1φ := (Ip ⊗ Γ0)− (Ip ⊗ Γf )[(Φ̃01 ⊗ Ip) + (Ip ⊗ Φ̃1)]
= [Ip ⊗ (Γ0 − Γf Φ̃1)]− (Φ̃01 ⊗ Γf )
= [Ip ⊗ (Γ0 − Γf Φ̃1)][Ip2 − (Ip ⊗ (Γ0 − Γf Φ̃1)−1)(Φ̃01 ⊗ Γf )]
= [Ip ⊗ (Γ0 − Γf Φ̃1)][Ip2 − (Φ̃01 ⊗ (Γ0 − Γf Φ̃1)−1Γf )]

hence the first term in the product is non-singular by Assumption 2, whereas the second matrix

is non-singular as the eigenvalues of the matrix Φ̃01 ⊗ (Γ0 − Γf Φ̃1)−1Γf are different from 1 by

Assumption 5. We have therefore proved that each block of p2 columns in (62), other than being

linearly independent from the other block, has rank p2. Accordingly rank(Dφ) = kp2 + p = a.

This proves part (b). ¥

Proof of Proposition 3
Let logL(φ) be the concentrated log-likelihood function of the unrestricted VAR and logL(g(γ))

the concentrated log-likelihood of the VAR subject to the restrictions (29). It is known, under

Assumption 3, that

T 1/2(φ̂− φ0)
d−→

T→∞
N(0,Vφ) , Vφ = [I∞(φ0)]−1 := Σε ⊗Mxx

implies

T 1/2(γ̂ − γ0)
d−→

T→∞
N(0,Vγ) , Vγ := (J 0γV−1φ Jγ)−1

where Jγ := ∂g(γ)
∂γ0 is the Jacobian matrix associated with the function (29) evaluated at γ0,

whose existence id guaranteed by Proposition 2. Using (60) and the implicit function theorem,

it turns out that

Jγ := −D−1φ ×Dγ (63)

where Dφ is the Jacobian matrix defined in (62) and

Dγ :=
∂f(eφ, γ)
∂γ0

=
∂f(eφ, γ)
∂vec(Γ)0

× ∂vec(Γ)

∂γ0
=

∂f(eφ, γ)
∂vec(Γ)0

Q. (64)
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To evaluate ∂f(eφ,γ)
∂vec(Γ)0 we re-write the function

f(φ̃, γ) := vec[Γ0Ω− Γf Φ̃1Ω− ΓfΩK − Γ̆b]

in the alternative format

f(φ̃, γ) ≡ [Ω0 ⊗ Ip]vec(Γ0)

−
n
[Ω0Φ̃01 ⊗ Ip] + [K

0Ω0 ⊗ Ip]
o
vec(Γf )− vec(Γ̆b)

= [N1 : N2 : N3]


vec(Γ0)

vec(Γf )

vec(Γ̆b)

 = Nφvec(Γ)

where

N1 :=
£
Ω0 ⊗ Ip

¤
p(pk + 1)× p2

N2 :=
(h
Ω0Φ̃01 ⊗ Ip

i
+

"
K 0
Ã
Φ̃0

µ̃0

!
⊗ Ip

#)
p(pk + 1)× p2

N3 := Ia.

It turns out that
∂f(eφ, γ)
∂vec(Γ)0

≡ Nφ.

Note that the number of columns of Nφ, 2p2 + a, is equal to the number of rows of Q, p((k +

2)p+ 1); the Jacobian matrix (64) is thus given by

Dγ := Nφ Q

as in (34).¥

Estimation algorithm
Before discussing the suggested estimation algorithm, consider the constrained VAR in (30).

Let S be a p× p positive definite matrix. Any vector γ̂(S) which minimizes the quadratic form

RT (γ) :=
1

T

TX
t=1

(Xt − Ω(γ)X∗
t−1)

0 S (Xt − Ω(γ)X∗
t−1) (65)

given the observation X1,X2, ...,XT is called a MD estimator of γ0, see Phillips (1976) and

Malinvaud (1980, Ch. 9). These authors shows that, under a set of regularity conditions, if one

iterates the MD estimator γ̂(·) by replacing S at each iteration with the inverse of the moment
matrix of residuals obtained in the previous iteration, the algorithm based on the iterative
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minimization of (65) will converge eventually to the quasi-ML (QML) estimator that maximizes

(31).17

This result inspires the iterative likelihood-based estimation method sketched below. Observe

that the CER in (23)-(26) combine two type of restrictions. (23) involves a quadratic matrix

equation of the form

H1V
2 +H2V +H3 = 0p×p (66)

where the matrices Hi, i = 1, 2, 3 contain the structural parameters and V contains the coef-

ficients associated with the first lag of the VAR. H2 is non-singular while H1 and H3 can be

singular. The remaining set of nonlinear restrictions (24)-(26) do not involve quadratic ma-

trix equations. However, as shown in the proof of Proposition 1, a compact representation of

(23)-(26) is given by (56)-(57), where in particular (56) is of the form (66).

Assume temporarily that Hi, i = 1, 2, 3 are known (i.e. γ is known). Then the solution V

to (66) can be derived from the ‘theory of solvents’ and is equivalent to a quadratic eigenvalue

problem (Higham and Kim, 2000) which in turn can be re-formulated in terms of a generalized

eigenvalue problem involving the matrices"
0p×p Ip

−H3 −H2

#
,

"
Ip 0p×p
0p×p H1

#

see Uhlig (1999). In general, equation (66) can have no solution, a finite positive number, or

infinitely many. The solution can be a complex matrix. A natural way to get an approximate

real matrix solution to (66) is to appeal to numerical solutions based on function iterations

(Higham and Kim, 2000).

Re-write the CER in (59) as Ω =W (Ω, γ), whereW (·) is matrix continuous matrix function,
see below. Then define the iterations

Ωj :=W (Ωj−1, γ) , j = 1, 2, ... (67)

where Ω0 is an initial guess for Ω. These iterations provide an approximate solution which

corresponds to a real matrix provided Ω0 is real. Unfortunately, the iterations they can not in

general be transformed to a simpler form and so it is difficult to obtain convergence results of

17Alternatively, MD estimation of the QR-DSGE model can be based on the implicit form representation of

the CER, f(φ, γ) = 0, see equation (60). Given the unrestricted estimates of the VAR coefficients obtained in the

first step, φ̂, the method is based on the criterion

min
γ

f(φ̂, γ)0S f(φ̂, γ)

for an oppropriate choice of S, see e.g. Newey and Mcfadden, (1994).
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practical applicability. However, if γ is unknown, at each iteration the left-hand side of (67)

depends only on γ through the two alternative expressions

Ωj : =W (Ωj−1, γ)

: = Γ−10 Γf Φ̃1Ωj−1 + Γ
−1
0 ΓfΩj−1K + Γ−10 Γ̆b; (68)

Ωj : =W (Ωj−1, γ)

= ΓfΩj−1K(Γ0 − Γf Φ̃1)−1 + Γ̆b(Γ0 − Γf Φ̃1)−1 (69)

The suggested estimation algorithm starts from the unrestricted consistent estimates of the

VAR coefficients obtained with OLS (Gaussian ML), i.e. Ω0 := Ω̂ := [Φ̂1 : Φ̂2 : . . . : Φ̂k : µ̂],

and then uses at each iteration (68) or (69) to express the VAR coefficients as (unique) function

of the structural parameters. At the jth iteration, a (Q)ML estimate of γ, γ̂j , is obtained by

maximizing the log-likelihood (31) in which Ω(γ) is replaced with Ωj in (68) or (69). Newton

or Quasi-Newton techniques such as the BFGS method (Fletcher,1987) can be used at each

iteration and Σ̂jε = T−1
PT

t=1(Xt− Ω̂jX∗
t−1)(Xt− Ω̂jX∗

t−1)0 is the corresponding estimate of the

constrained VAR disturbances covariance matrix, where Ω̂j is obtained from (68) or (69) by

replacing γ with γ̂j . The procedure is iterated until some convergence criterion is met.

We have not a formal proof of convergence. Our conjecture is that it should be proved

that the algorithm converges under the same set of conditions Phillips (1976) employs to prove

that the iterated MD estimator based on the minimization of (65) converges (and attains the

QML estimator). The simulation experiment reported in Section 7 shows that convergence is

achieved, on average, in 27-29 iterations; moreover, the procedure delivers an accurate solution

to the quadratic matrix equation (23).

As it stands, the iterative algorithm does not impose neither uniqueness (i.e. the eigenvalues

of the matrix (Γ0−Γf Φ̃1)−1Γf must lie inside the unit disk), nor stability (i.e. the eigenvalues of
the restricted VAR companion matrix Ã in (27) must lie inside the unit disk). Nevertheless, the

iterations can be stopped as soon as violation of one of the two conditions or both, is detected.

The simulation experiment shows that for data generating processes in which the absolute value

of the largest eigenvalue of Ã is specified close to one, the suggested algorithm tends to preserve

stability, see Table 1. The experiment also shows that the procedure provides a strict control of

uniqueness when the absolute value of the largest eigenvalue of (Γ0 − Γf Φ̃1)−1Γf is relatively
far from one, see Table 1.
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True values in DGP:

'f δ γf ( λr λπ λy c3 ω2 ω3
0.25 0.10 0.30 0.13 0.5 1.5 0.5 0.4 -0.3 -0.1

Absolute value of largest eigen. of restricted VAR companion matrix Φ̃∗: 0.95

Absolute value of largest eigen. of (Γ0 − Γf Φ̃1)−1Γf : 0.45

ML estimates

T=100

0.252 0.103 0.306 0.132 0.486 1.503 0.501 0.399 -0.291 -0.103
(0.063) (0.057) (0.058) (0.066) (0.080) (0.312) (0.367) (0.103) (0.043) (0.024)
(0.067)∗ (0.057)∗ (0.057)∗ (0.085)∗ (0.075)∗ (0.205)∗ (0.222)∗ (0.110)∗ (0.068)∗ (0.044)∗

Frequency of rejections of LR test for CER: 0.09 (nominal level: 0.05)
# of times in which stability is violated : 0 ; # of times in which uniqueness is violated : 0

T=200

0.250 0.103 0.302 0.132 0.492 1.502 0.496 0.399 -0.295 -0.102
(0.043) (0.039) (0.041) (0.046) (0.056) (0.218) (0.258) (0.103) (0.030) (0.017)
(0.047)∗ (0.038)∗ (0.040)∗ (0.058)∗ (0.054)∗ (0.146)∗ (0.153)∗ (0.110)∗ (0.049)∗ (0.031)∗

Frequency of rejections of LR test for CER: 0.072 (nominal level: 0.05)
# of times in which stability is violated : 0 ; # of times in which uniqueness is violated : 0

T=500

0.248 0.101 0.301 0.131 0.497 1.502 0.497 0.397 -0.298 -0.102
(0.027) (0.024) (0.025) (0.029) (0.035) (0.136) (0.163) (0.046) (0.019) (0.017)
(0.031)∗ (0.023)∗ (0.027)∗ (0.039)∗ (0.036)∗ (0.096)∗ (0.09)∗ (0.049)∗ (0.032)∗ (0.031)∗

Frequency of rejections of LR test for CER: 0.068 (nominal level: 0.05)
# of times in which stability is violated : 0 ; # of times in which uniqueness is violated : 0

Table 1: ML estimates of the QRE-DSGE model on simulated data. NOTES:
Estimates are based on M=1000 simulated samples of length T, generated from
the constrained VAR (48)-(49) with k=3 lags and Gaussian disturbances with
covariance matrix Ψ̃Ψ̃0. The values in the table are averages of the M=1000
ML estimates; the numbers in parentheses without asterisks are averages of the
M=1000 estimated asymptotic standard errors obtained by replacing the un-
known matrices in (32) with their consistent estimates; the numbers in paren-
theses with asterisks are the standard errors of the simulated distribution of
M=1000 estimates. 100 samples have been discarded before starting computa-
tions and each simulated sample is initiated with 100 additional observations
to get a stochastic initial state and these are then discarded. Zero values are
used as starting values for the structural parameters. The LR test for CER
is computed with reference to the 95 quantile from a χ2 distribution with 30-
10=17 degree of freedom, where 30 is the number of estimated coefficients of
the unrestricted VAR (except the covariance matrix) and 10 is the dimension
of the vector of structural parameters.
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VAR: Xt = (πt , yt , it)0 lags k=4 , 1980:3-2006:4 (including intial values), T = 102

Vector AR 1-5: F (45, 124) := 1.06
[0.39]

Vector Normality: χ2(6) := 12.59
[0.05]

Absolute value of the two largest eigenvalues of companion matrix: 0.95 , 0.90

Cointegration rank test

H0 : r ≤ j Trace p-val
j=0 37.36 0.027

j=1 20.26 0.048

j=2 7.38 0.10

β̂ := β̂0≡
 1 0 0 −0.0025

(0.0019)

0 −1 1 − 0.027
(0.0073)

 , LR := 5.09
[0.08]

Table 2: Diagnostic and cointegration tests on the VAR for the data. NOTES:
Upper panel: Vector AR 1-5 assesses the absence of autocorrelation in the VAR
disturbances against the alternative of correlation up to the fifth order; Vector
normality is a multivariate test for the normality of disturbances. Middle panel:
the cointegration rank test is the LR trace test (Johansen, 1996). Lower panel:
estimated cointegration matrix β0 with corresponding LR test for the over-
identifying restrictions. The p-value in squared brackets is taken from a χ2(2)
distribution.
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Parameter Estimate Standard error
ML estimates

'f 0.41 0.19
δ 0.01 0.02

1− γf 0.45 0.02
( 0.01 0.03
λr 0.98 0.09
λy 0.48 9.15

LR test for CER: LR := 73.43
[0.00]

Parametric bootstrap p-value: 0.087

Table 3: Estimated structural parameters and LR test for the CER. NOTES.
Upper panel: a grid search has been used for the structural parameters using,
after a number of preliminary estimation trials, the range 0.15-0.45 for 'f , the
rage 0.01-0.10 for δ, the range 0.35-0.48 for 1 − γf , the range 0.01-0.10 for (
and the range 0.45-0.50 for λy, using 0.01 as increment. λr has been estimated
unrestrictedly. Lower panel: the p-value based on the asymptotic distribution
is taken from a χ2(15) distribution; the p-value obtained through the para-
metric bootstrap has been computed by generating M=1000 samples from the
VAR with coefficients fixed at the estimates obtained from the historical sample
under the CER, using the sample observations as initial values and Gaussian
disturbances.
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